

DYNAMIC TEXTURE MODELING OF 3D CLOTHED GAUSSIAN AVATARS FROM A SINGLE VIDEO

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in neural rendering, particularly 3D Gaussian Splatting (3DGS), have enabled animatable 3D human avatars from single videos with efficient rendering and high fidelity. However, current methods struggle with dynamic appearances, especially in loose garments (e.g., skirts), causing unrealistic cloth motion and needle artifacts. This paper introduces a novel approach to dynamic appearance modeling for 3DGS-based avatars, focusing on loose clothing. We identify two key challenges: (1) limited Gaussian deformation under pre-defined template articulation, and (2) a mismatch between body-template assumptions and the geometry of loose apparel. To address these issues, we propose a motion-aware autoregressive structural deformation framework for Gaussians. We structure Gaussians into an approximate graph and recursively predict structure-preserving updates, yielding realistic, template-free cloth dynamics. Our framework enables view-consistent and robust appearance modeling under the single-view constraint, producing accurate foreground silhouettes and precise alignment of Gaussian points with clothed shapes. To demonstrate the effectiveness of our method, we introduce an in-the-wild dataset featuring subjects performing dynamic movements in loose clothing, and extensive experiments validate that our approach significantly outperforms existing 3DGS-based methods in modeling dynamic appearances from single videos.

1 INTRODUCTION

Creating an animatable 3D avatar from a single video involves reconstructing a lifelike, controllable representation of a person capable of replicating both primary motions (i.e., movements of major body parts), and secondary motions (i.e., time-varying cloth dynamics). Achieving this capability is critical for immersive experiences in fields such as virtual reality, telepresence, and interactive entertainment, where realistic human representations significantly enhance user engagement (Sutherland et al., 1965; Lee et al., 2024). With the advent of 3D Gaussian Splatting (3DGS) (Kerbl & et al., 2023), high-quality neural rendering becomes feasible, substantially improving avatar realism and efficiency in synthesis from a monocular video.

However, existing 3DGS-based avatar methods (Lei et al., 2024; Hu et al., 2024a; Moon et al., 2024; Qian et al., 2024b) predominantly excel at modeling primary motion but exhibit limitations in robustly capturing secondary motion, as illustrated in Fig. 1a, where it shows the animation result of the 3D Gaussian avatar in a novel pose exhibiting a dynamic posture unseen during training. This is due to the fact that they rely on skeletal skinning of coarse meshes for animation (Loper et al., 2015), which inherently lacks subtle deformation effects such as inertia-driven soft-tissue dynamics. Consequently, it remains challenging to consistently reproduce these nuanced motions using neural networks alone.

There are two major challenges that hinder the secondary motion-aware dynamic appearance modeling in creating an animatable 3DGS avatar from a single video: (1) temporal context-unaware Gaussian deformation, and (2) cloth shape-agnostic Gaussian point initialization. First, existing methods deform the Gaussians of a clothed avatar as a function of the current body pose, which is aligned with the sampled images, to learn the appearance of a 3D Gaussian avatar. While this approach effectively captures the primary motion of main body parts, it is limited in representing secondary motion in garments such as dresses and skirts, which is strongly entangled with temporal continuity (Fig. 1b).

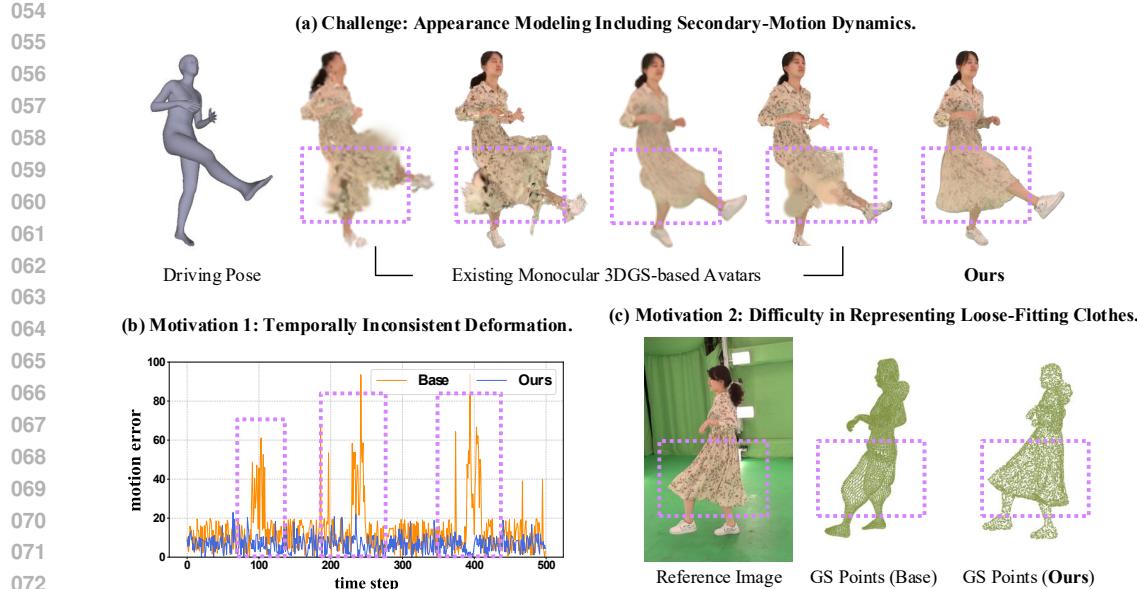


Figure 1: Conventional 3DGS-based avatars (Base) fail to model the dynamic appearance of subjects wearing loose garments, particularly in scenarios involving secondary motion (Lei et al., 2024; Qian et al., 2024b; Hu et al., 2024a; Moon et al., 2024). (a) Our method overcomes these limitations, enabling high-fidelity rendering of Gaussian avatars exhibiting dynamic motion from a single video. (b) In contrast, conventional methods define deformation through pre-specified articulation models such as linear blend skinning, which operate independently on each frame without accounting for temporal context—often leading to motion error spikes that indicate poor alignment with driving signals. (c) Furthermore, for initializing 3D Gaussians, they rely on a parametric template model resembling a naked body, which struggles to generate Gaussians for clothing regions deviating from the body surface, especially with loose-fitting garments.

Secondly, explicit representations based on 3D Gaussians are highly sensitive to the accuracy of their initial point placement, as widely discussed in primary 3DGS studies (Yu et al., 2024; Luiten et al., 2024). However, existing methods for creating 3DGS-based avatars from a single video (Lei et al., 2024; Hu et al., 2024a; Moon et al., 2024; Qian et al., 2024b), rely on parametric template models to initialize the shape of articulated subjects. These template models represent a naked body shape, leading to significant discrepancies between the initialized points and the actual shape when dealing with subjects wearing loose-fitting garments (Fig. 1c). Therefore, a few Gaussians should represent not only the body parts but also the appearance of the clothing, causing artifacts in novel pose animations where the model has not observed similar poses during training.

In this paper, we present a novel framework for modeling dynamic appearances of loose-fitting garments in 3D avatars, explicitly addressing the challenges posed by secondary motion. Central to our approach is a Secondary Motion-Aware Gaussian Deformation (**SMAD**) module, which constructs a velocity-encoded Gaussian graph over canonical Gaussians and autoregressively predicts second-order Gaussian dynamics. This enables realistic modeling of fine-grained cloth motion while preserving structural coherence during deformation. To achieve robust and view-consistent appearance modeling from a single-view video, we employ a confidence-aware feature fusion mechanism that aggregates multi-frame evidence and maintains silhouette fidelity throughout deformation. Finally, we contribute a new in-the-wild video dataset featuring subjects in diverse garments undergoing dynamic motion, filling the gap in benchmarks for evaluating secondary motion in animatable avatars.

Our contributions are summarized as follows:

- We propose a novel method for animatable 3D avatar generation based on 3DGS, which enables dynamic appearance modeling of dressed avatars.
- We propose a secondary motion-aware Gaussian deformation, introducing a velocity-encoded Gaussian graph representation that autoregressively estimates Gaussian dynamics.
- Extensive experiments demonstrate that our method outperforms existing methods on the subjects wearing loose-fitting clothes with dynamic movement.

108

2 RELATED WORK

110 **Animatable 3D Avatars from Multi-view Videos.** It has long been a major focus in vision
 111 and graphics. Early systems (Stoll et al., 2010; Alldieck et al., 2018; Joo et al., 2015; Pons-Moll
 112 et al., 2017; Habermann et al., 2019) reconstructed actors in multi-view studios and animated
 113 meshes via multi-view geometry and hand-crafted articulation designs. While these approaches
 114 empower the controllability, it required substantial expert intervention. The shift to implicit neural
 115 representations, especially neural radiance fields (Mildenhall et al., 2021), introduced photorealistic
 116 neural avatars (Peng et al., 2021b;a; Habermann & et al., 2021; Zheng et al., 2023; Shen et al., 2023b;
 117 Li et al., 2023; Zhu et al., 2024; Shen et al., 2023a; Yin et al., 2023b; Chen et al., 2024; Saito et al.,
 118 2024) and free-view synthesis (Kwon et al., 2021; Liu et al., 2021; Işık et al., 2023; Kwon et al.,
 119 2024b), though often with slow training and additional structural constraints for stable driving. The
 120 3DGS (Kerbl & et al., 2023) further achieved efficient rendering with high fidelity (Li et al., 2024;
 121 Zielonka et al., 2025; Zheng et al., 2024; Kwon et al., 2024a; Lin et al., 2024; Zhan et al., 2025;
 122 Liao et al., 2024). Yet, their high-fidelity performance fundamentally relies on dense, calibrated
 123 multi-view supervision, geometry constraints, and explicit subject-specific ground-truth template
 124 meshes. By contrast, our method is deliberately designed for the single-video setting, aiming to
 125 create user-friendly animatable clothed avatars directly from casual monocular footage.

126 **Animatable 3D Gaussian Avatars from Monocular Videos.** Advances in neural rendering and
 127 markerless motion-capture techniques have enabled the construction of user-friendly 3D avatars from
 128 monocular videos. With these advancements, it has been to learn a neural implicit representation
 129 defined in a continuous canonical space near a template mesh, and to deform this representation into
 130 the observation space using predefined articulations driven by motion inputs (Su et al., 2021; Weng
 131 et al., 2020; Chen et al., 2021; Weng et al., 2022; Wang et al., 2022; Yu et al., 2023; Jiang et al.,
 132 2023a;b). The advent of 3DGS has further accelerated photo-realistic modeling of 3d avatars; several
 133 works attach Gaussian primitives to a skeletal model and learn pose-conditioned deformations from
 134 monocular videos (Qian et al., 2024b; Hu et al., 2024a; Moon et al., 2024; Shao et al., 2024; Lei
 135 et al., 2024; Hu et al., 2024b; Zhai et al., 2025; Guo et al., 2025). However, existing methods assume
 136 template (Loper et al., 2015)-based initialization and its pre-defined articulation, which struggle to
 137 capture subtle, temporally coherent non-rigid effects. **We build upon other line, introducing two**
 138 **key aspects: a template-free initialization that directly aligns the Gaussian primitives, eliminating**
 139 **the need for naked-body templates; and a physics-inspired autoregressive deformation module that**
 140 **predicts velocities and accelerations with finite difference method (Xie et al., 2024), and captures**
 141 **second-order dynamics through a velocity-encoded Gaussian graph.**

142 **Dynamic Clothed Human Modeling.** Beyond primary motion driven by the main body move-
 143 ment, several works have also considered secondary motion, such as cloth dynamics. One line of
 144 works (Habermann et al., 2020; Habermann & et al., 2021; Habermann et al., 2021; Liao et al., 2024;
 145 Feng et al., 2022; 2023; Guo et al., 2023; 2024) reconstructs clothed surfaces using neural implicit
 146 representations, but canonicalization with predefined articulation struggles with loose garments.
 147 Another approaches combines non-rigid deformation with LBS and neural networks, yet requires
 148 **subject-specific ground-truth clothed meshes.** A separate direction incorporates physics simulation
 149 by numerically solving differential equations of the dynamic systems (Terzopoulos et al., 1987;
 150 Müller et al., 2007; Macklin et al., 2016). However, they are computationally expensive and difficult
 151 to parametrize; To alleviate this, several works (Pan et al., 2022; Santesteban et al., 2022; Grigorev
 152 et al., 2023; 2024) approximate dynamic systems with neural networks—e.g., augmenting models
 153 with virtual bones or employing recurrent architectures to predict garment-deformation sequences, but
 154 depend on high-level supervision such as 4D scans, cloth–body segmentation, and explicit colliders,
 155 and operate only on polygonal meshes. Our work is different lines of this work; we aim to create
 156 avatars represented as 3D Gaussian primitives and model its dynamics and appearances, given only
 157 from monocular videos, without access to any 3D ground-truth or prior geometric knowledge.

158

3 METHOD

159 Given a monocular RGB video $\mathcal{V} = \{I_t\}_{t=1}^T$ capturing a human subject in motion, our goal is to
 160 reconstruct a fully *animatable 3D Gaussian avatar* that faithfully models dynamic appearances of
 161 loose-fitting clothed subjects. We adopt a dynamic set of *3D Gaussian primitives* whose spatiotempo-

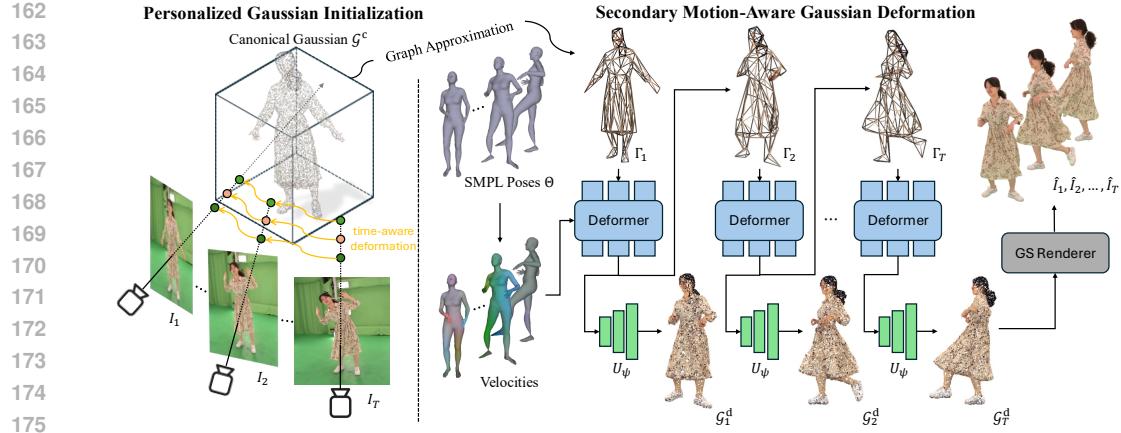


Figure 2: To model secondary motions in 3DGS-based avatars, we introduce a two-stage framework: (1) Personalized Gaussian Initialization using a deformable NeRF to estimate canonical Gaussians \mathcal{G}^c , and (2) Secondary Motion-Aware Deformation. \mathcal{G}^c are structured as a Gaussian graph Γ , processed by a GNN-based autoregressive deformers, and decoded via U_ψ into deformed Gaussians \mathcal{G}^d . Motion descriptors derived from SMPL poses Θ guide temporally coherent deformation. Then GS Renderer then synthesizes the final images.

ral properties evolve over time to capture complex non-rigid deformations, such as clothing dynamics. Formally, we represent the avatar at time t as a set of N deformed Gaussians:

$$\mathcal{G}_t^d = \{(\mu_{t,i}, \Sigma_{t,i}, c_{t,i}, \alpha_{t,i})\}_{i=1}^N, \quad (1)$$

where $\mu_{t,i} \in \mathbb{R}^3$ is the 3D mean position, $\Sigma_{t,i} \in \mathbb{R}^{3 \times 3}$ is the covariance matrix modeling spatial extent and orientation, $c_{t,i} \in \mathbb{R}^3$ denotes RGB color, and $\alpha_{t,i} \in \mathbb{R}$ represents opacity. The number of primitives N remains fixed across time, but their parameters are dynamically updated to reflect conditioning motion, a set of SMPL poses $\Theta = \{\theta_t\}_{t=1}^T$. We then obtain the animated rendering video $\hat{\mathcal{V}} = \{\hat{I}_t = \mathcal{R}(\mathcal{G}_t^d)\}_{t=1}^T$ by projecting the deformed Gaussians through a differentiable splatting renderer \mathcal{R} . Fig.2 illustrate the overall process of the proposed method.

Baselines. We adopt a simple baseline that obtains dense canonical Gaussian primitives using a 4D NeRF Gao et al. (2021). Concretely, we train a deformable neural radiance field on the input monocular video and map each observation-space point \mathbf{x}_t at time t to a canonical space (reference time). By querying color and density in the canonical space, we recover a dense canonical density field that captures both body and loose clothing without relying on a parametric template.

After training, we extract canonical Gaussians by thresholding the time-averaged canonical density $\bar{\sigma}(\mathbf{x}) = \frac{1}{T} \sum_t \sigma(\mathbf{x}, t)$ and clustering the surviving voxels to obtain Gaussian centers $\{\mu_i^c\}$, with isotropic variances $\{\Sigma_i^c\}$ and colors $\{c_i^c\}$. This yields a dense set of canonical 3D Gaussian primitives \mathcal{G}^c that serves as the person-specific Gaussian initialization (PGI) for subsequent stages.

3.1 VELOCITY-ENCODED GAUSSIAN GRAPH

To overcome the limited capability of representing secondary motions caused by reliance on linear blend skinning of parametric template human models (Loper et al., 2015; Pavlakos et al., 2019), we propose an autoregressive Gaussian deformation method that moves beyond the template model. Furthermore, to ensure robust performance even when the number of Gaussians grows exponentially and to alleviate computational complexity, we propose a graph-based deformation approach that approximates Gaussian interactions.

Graph Construction. Given a set of N initial Gaussian points $\{\mu_1, \mu_2, \dots, \mu_N\}$, we downsample the Gaussian points to $\mathbf{X} \in \mathbb{R}^{M \times 3}$ ($M \ll N$) with voxel-grid downsampling (Rusu & Cousins, 2011); these M nodes serve as the final Gaussian primitives used for rendering. We then construct a graph $\Gamma = (\mathbf{X}, \mathbf{A})$, where $\mathbf{A} \in \mathbb{R}^{M \times M}$ is adjacency matrix. It is constructed via k -Nearest Neighbors (k -NN) by computing pairwise distances $d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2, \quad \forall \mathbf{x}_i, \mathbf{x}_j \in X$. Each element of

216 \mathbf{A}_{ij} is formulated as $\exp\left(-\frac{d(\mathbf{x}_i, \mathbf{x}_j)^2}{\rho_a^2}\right)$, where ρ_a controls sensitivity to distances.
 217

218
 219 **Velocity Encoding (VE).** We build the node features $\mathbf{H} = \{\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_M\}$ at each node position \mathbf{x}_i .
 220 Let us consider \mathbf{h}_i as a concatenation of the node position \mathbf{x}_i and its velocity $\mathbf{v}_i(t) = \frac{\mathbf{x}_i(t) - \mathbf{x}_i(t - \Delta t)}{\Delta t}$
 221 at the time state t . Furthermore, to capture long-range dependencies, we buffer the past τ_v memory
 222 vectors as a set of $\bar{\mathbf{v}}_i = \{\mathbf{v}_i(t), \mathbf{v}_i(t - 1), \dots, \mathbf{v}_i(t - \tau_v)\}$ To condition a set of body pose priors
 223 $\Theta_{t-\tau:t} = \{\theta_t, \theta_{t-1}, \dots, \theta_{t-\tau}\}$ with time window τ , we additionally embed it to $\mathbf{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_M\}$
 224 with MLP. At this end, the node feature \mathbf{h}_i is defined as $\mathbf{h}_i = (\mathbf{x}_i, \bar{\mathbf{v}}_i, \mathbf{e}_i)$.
 225

226 **3.2 SECONDARY MOTION-AWARE DEFORMATION (SMAD)**

227 Our goal is to move beyond linear blend skinning (LBS) with parametric body models (Loper
 228 et al., 2015) and learn an animatable 3DGS avatar that can faithfully reproduce *secondary motions*.
 229 Motivated by deformation methods that generalize to unseen motions without relying on pre-defined
 230 kinematic hierarchies (Zheng et al., 2021; Grigorev et al., 2023), we employ a graph neural network
 231 (GNN) deformator that autoregressively predicts the non-rigid dynamics of human bodies—hence, of
 232 Gaussian primitives.
 233

234 **Definition.** We model each Gaussian node i as a point mass g_i whose motion follows a second-
 235 order mass–spring–damper system (Gilmer et al., 2020; Wang et al., 2020). Let $\mathbf{x}_i(t) \in \mathbb{R}^3$ and
 236 $\mathbf{v}_i(t) = \dot{\mathbf{x}}_i(t) \in \mathbb{R}^3$ denote the position and velocity at time t . The dynamics are

237
$$\mathbf{F}_i^{\text{ext}}(t) = g_i \ddot{\mathbf{x}}_i(t) + \gamma_i \dot{\mathbf{x}}_i(t) + \sum_j k_{ij} \left(\mathbf{x}_i(t) - \mathbf{x}_j(t) - \mathbf{L}_{ij}^{\text{rest}} \right), \quad (2)$$

239 where $\ddot{\mathbf{x}}_i(t) = \mathbf{a}_i(t)$ is acceleration, γ_i is a damping coefficient, k_{ij} is the spring stiffness between
 240 nodes i and j , $\mathbf{L}_{ij}^{\text{rest}}$ is their rest offset in canonical space, and $\mathbf{F}_i^{\text{ext}}(t)$ is an external driving force. We
 241 treat k_{ij} as a learnable parameter that is adaptively updated during training. This allows the model to
 242 automatically disentangle rigid and non-rigid parts without any explicit supervision.
 243

244 With a discrete step Δt , we apply explicit Euler integration:

245
$$\mathbf{a}_i(t) = \frac{1}{g_i} \left(\mathbf{F}_i^{\text{ext}}(t) - \gamma_i \mathbf{v}_i(t) - \sum_j k_{ij} [\mathbf{x}_i(t) - \mathbf{x}_j(t) - \mathbf{L}_{ij}^{\text{rest}}] \right), \quad (3)$$

246
$$\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \Delta t \mathbf{a}_i(t), \quad \mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \Delta t \mathbf{v}_i(t + \Delta t). \quad (4)$$

247 This second-order formulation naturally induces *secondary motion* (e.g., cloth flutter). In practice, we
 248 let a message-passing GNN (Gilmer et al., 2020) *learn* these updates rather than prescribing forces
 249 explicitly.
 250

253 **Architecture.** The Gaussian graph deformator parameterizes the above updates with a message-
 254 passing GNN. Each node i carries a feature $\mathbf{h}_i(t) \in \mathbb{R}^{d_h}$ obtained from Sec. 3.1. At time t , node i
 255 aggregates information from its neighbors using an adjacency $\mathbf{A}_{ij}(t)$. With an MLP M_θ , we define
 256 messages as

257
$$\mathbf{m}_{j \rightarrow i}(t) = M_\theta(\mathbf{h}_i(t), \mathbf{h}_j(t)) \in \mathbb{R}^{d_m}, \quad \mathbf{m}_i^{\text{agg}}(t) = \sum_j \mathbf{A}_{ij}(t) \mathbf{m}_{j \rightarrow i}(t). \quad (5)$$

258 Two update functions then produce the next-step node feature and physical state:
 259

260
$$\mathbf{h}_i(t + \Delta t) = F_\theta(\mathbf{h}_i(t), \mathbf{m}_i^{\text{agg}}(t)), \quad (6)$$

261
$$[\mathbf{x}_i(t + \Delta t), \mathbf{v}_i(t + \Delta t)] = G_\theta([\mathbf{x}_i(t), \mathbf{v}_i(t)], \mathbf{m}_i^{\text{agg}}(t)), \quad (7)$$

262 where G_θ serves as a neural surrogate for the mass–spring–damper updates in Eq. equation 2. After
 263 L message-passing layers, we obtain updated positions and velocities for all nodes. Each node
 264 corresponds to a deformed Gaussian \mathcal{G}_i^d , and we finally set
 265

266
$$\boldsymbol{\mu}_i \leftarrow \mathbf{x}_i(t + \Delta t), \quad \mathbf{c}_i, \alpha_i, \Sigma_i \leftarrow D_\psi(\mathbf{z}_i, \mathbf{h}_i(t + \Delta t)), \quad (8)$$

267 where $\mathbf{z}_i \in \mathbb{R}^{d_z}$ is a learned latent code and D_ψ predicts color, opacity, and covariance for each
 268 Gaussian.
 269

270 **Training Objectives.** After computing $\mathcal{G}^d = \{\mathcal{G}_1^d, \mathcal{G}_2^d, \dots, \mathcal{G}_N^d\}$, we render it via Gaussian Splatting-based rasterizer \mathcal{R} to $\hat{I}_t = \mathcal{R}(\mathcal{G}_t^d)$. We define a total SMAD loss term $\mathcal{L}_{\text{SMAD}}$ as:

$$273 \quad \mathcal{L}_{\text{SMAD}} = \mathcal{L}_{\text{RGB}} + \lambda_{\text{iso}} \mathcal{L}_{\text{iso}} + \lambda_{\text{damp}} \mathcal{L}_{\text{damp}}. \quad (9)$$

275 We mainly use the common L1 rgb photometric loss between rendered images and ground-truth images, which is formulated as:

$$277 \quad \mathcal{L}_{\text{RGB}} = \|\mathcal{R}(\mathcal{G}_t^d) - I_t\|_1. \quad (10)$$

278 It minimizes the pixel intensities of rendered Gaussians $\mathcal{R}(\mathcal{G}_t^d)$ to the ground-truth images I_t . In 279 addition, we utilize two regularization terms:

$$281 \quad \mathcal{L}_{\text{iso}} = \sum_{(i,j) \in \mathcal{E}} \left(\|\mathbf{x}_i - \mathbf{x}_j\|_2 - \|\mathbf{L}_{ij}^{\text{rest}}\|_2 \right)^2, \quad \mathcal{L}_{\text{damp}} = \sum_{i=1}^N \sum_{t=1}^T \|\mathbf{v}_i(t)\|_2^2. \quad (11)$$

284 The isometry Loss \mathcal{L}_{iso} penalizes deviations in geodesic distance to preserve local surface area. It 285 prevents stretching or shrinking of garment regions; useful for preserving cloth realism during motion. 286 We set $\lambda_{\text{iso}} = 0.1$, where it emphasize length preservation. The damping Loss $\mathcal{L}_{\text{damp}}$ regularizes 287 velocity magnitudes to reduce high-frequency vibration and dynamic instability. It reduces visual 288 fluttering or noise in motion, especially noticeable in fine cloth edges. We $\lambda_{\text{damp}} = 0.01$, where it 289 avoids over-constraining dynamic details.

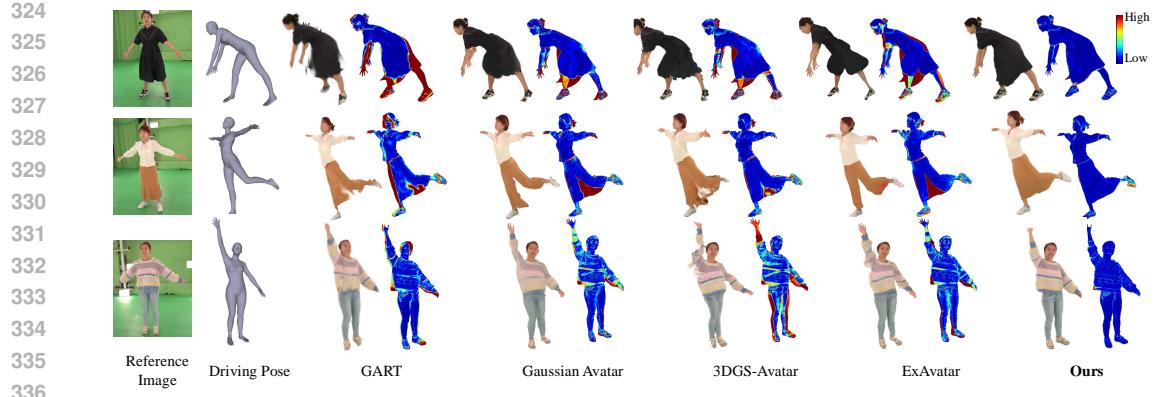
290 4 EXPERIMENTS

293 **Dataset.** **ZJU-MoCap** (Peng et al., 2021a) is a primary benchmark for animatable 3D avatars. 294 Using HumanNeRF (Weng et al., 2022) split sequences, we report novel view synthesis results due to 295 limited pose diversity. To supplement the lack of motion variation and loose-fitting garments, we 296 additionally evaluate on two benchmarks. **4D-Dress** (Wang et al., 2024) firstly introduces real-world 297 4D human clothing dataset featuring dynamic cloth motions, designed to advance research in realistic 298 garment modeling and animation. We carefully selected five subjects, each wearing loose-fitting 299 clothing such as skirts or puffer jackets. We also introduce **LoCo-Human**, a new in-the-wild dataset 300 featuring five **Loose-Clothed Humans** performing 5 dynamic and 1 static motions per subject. The 301 static sequence is used for training, and the others for evaluating generalization in-the-wild scenarios.

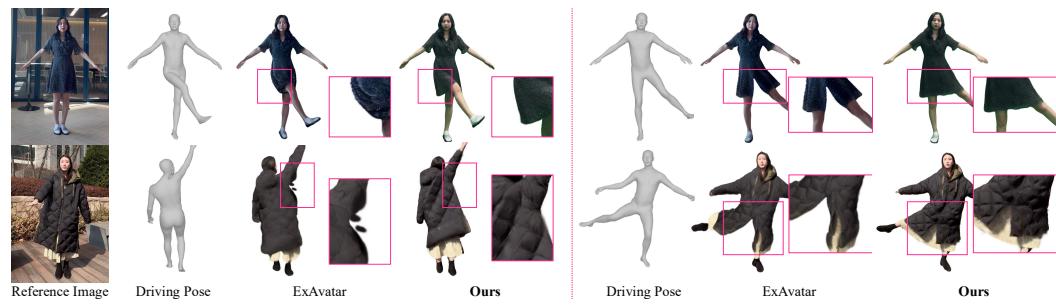
302 **Baselines & Evaluation Metrics.** We compare our method with existing approaches on 3DGS-based 303 avatars from monocular videos. Given the extensive body of prior work in this domain, it is practically 304 infeasible to compare against all existing methods. Therefore, we specifically focus on publicly 305 available baseline methods (Lei et al., 2024; Hu et al., 2024a; Qian et al., 2024b; Moon et al., 2024) 306 that explicitly address dynamic appearance modeling. We evaluate the visual fidelity of the rendered 307 animatable avatars with widely used metrics: PSNR, SSIM, and LPIPS. PSNR and SSIM measure 308 pixel-level similarity and structural consistency with the ground-truth images, while LPIPS captures 309 perceptual quality based on deep feature distances. These metrics collectively assess both low-level 310 accuracy and high-level perceptual realism. To quantitatively assess both temporal consistency 311 and how faithfully the animated avatars follow the driving motion, we compute the motion error 312 (Kanazawa et al., 2019) between driving signal and motion estimated from the rendered animations.

313 4.1 RESULTS

314 We comprehensively compare our proposed method to state-of-the-art animatable 3D Gaussian avatar 315 methods on three datasets: the 4D-Dress, ZJU-Mocap, and our newly proposed LoCo-Human in-the- 316 wild dataset. We adopt standard metrics including PSNR, SSIM, and LPIPS to quantitatively measure 317 visual fidelity and perceptual quality of animated avatars in rendered images. We first evaluate the 318 ability to synthesize novel poses of dressed avatars on 4D-Dress. As presented in Tab. 1 (a), our 319 method outperforms baseline methods across all metrics, demonstrating superior reconstruction 320 quality. Qualitative comparisons (Fig. 3) further confirm our method’s capability to produce realistic 321 cloth dynamics, mitigating common artifacts such as unrealistic garment splitting observed in 322 baselines. Next, we formally compare our method on the widely-used ZJU-Mocap benchmark. 323 Following the conventional evaluation protocol, we quantitatively and qualitatively assess novel-view 324 synthesis quality (Tab. 1 (b) & Fig. 5). Results indicate that our method consistently achieves superior 325

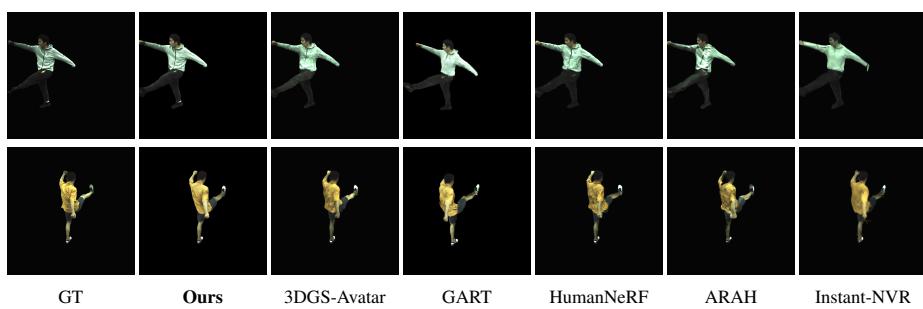


337 **Figure 3:** Qualitative comparison of novel pose synthesis on 4D-Dress dataset. We compare our method to the
338 several 3D Gaussian Splatting-based Avatars (Lei et al., 2024; Hu et al., 2024a; Qian et al., 2024b; Moon et al.,
339 2024). For each subject, we present reference image, driving pose, rendered image and error map to ground-truth
340 image. Our method models robust dynamic appearances wearing loose-fitting clothes compared to the baselines.
341



352 **Figure 4:** Qualitative comparison on the in-the-wild LoCo-Human dataset. Given the target driving poses,
353 we animate avatars wearing loose-fitting garments. Compared to ExAvatar (Moon et al., 2024), our method
354 better preserves cloth details and faithfully produces coherent motion under diverse poses. Insets highlight finer
355 garment structures, showing sharper textures and more realistic deformation.
356

357 performance compared to previous single-video avatar approaches, reflecting improvements in visual
358 sharpness and perceptual realism. In addition, we conduct extended evaluations on LoCo-Human,
359 an in-the-wild dataset to assess the generalization ability of our method in real-world scenarios. As
360 shown in Tab. 1 (c), our approach consistently outperforms existing baselines across diverse subjects.
361 The qualitative results Fig. 4, further support these findings—demonstrating the robustness of our
362 method even in scenarios involving challenging clothing, complex motions, and various confounding
363 factors. These empirical results suggest that our deformation network, which mimics a second-order
364 dynamic system, better captures cloth dynamics compared to conventional deformation schemes
365 based on parametric template models. These extensive experiments validate that our approach
366 effectively addresses critical challenges associated with dynamic appearance modeling from single
367 monocular videos.
368



377 **Figure 5:** Qualitative comparison of novel view synthesis on ZJU-Mocap (Peng et al., 2021a). Our method
378 yields view-consistent and artifact-free appearance modeling, even for repetitive motions in novel view synthesis
379 scenarios.
380

(a) Novel Pose Synthesis on 4D-Dress Dataset															
Method	00148			00170			00185			00187			00190		
	PSNR↑	SSIM↑	LPIPS↓												
GART (Lei et al., 2024)	20.86	0.9509	0.0661	23.52	0.9622	0.0413	26.84	0.9599	0.0488	25.81	0.9401	0.0592	29.01	0.9627	0.0375
Gaussian Avatar (Hu et al., 2024a)	20.91	0.9512	0.0657	24.12	0.9630	0.0356	26.62	0.9586	0.0500	24.96	0.9317	0.0684	26.44	0.9591	0.0512
3DGS-Avatar (Qian et al., 2024b)	<u>22.79</u>	0.9560	0.0471	25.49	0.9636	0.0293	27.54	0.9595	0.0394	<u>25.99</u>	0.9398	0.0457	29.49	0.9616	0.0278
ExAvatar (Moon et al., 2024)	21.93	0.9536	0.0628	<u>26.30</u>	0.9657	0.0367	<u>28.35</u>	0.9618	0.0470	25.84	0.9403	0.0620	26.12	0.9586	0.0569
Ours	24.74	0.9601	0.0397	27.62	0.9700	0.0301	29.98	0.9673	0.0370	27.71	0.9548	0.0443	<u>29.44</u>	0.9635	<u>0.0347</u>
(b) Novel View Synthesis on ZJU-MoCap															
Method	394			393			392			387			386		
	PSNR↑	SSIM↑	LPIPS↓												
NeuralBody (Peng et al., 2021a)	29.10	0.9593	54.55	28.61	0.9590	59.05	30.10	0.9642	53.27	27.00	0.9518	59.47	30.54	0.9678	46.43
HumanNeRF (Weng et al., 2022)	30.31	0.9642	32.89	28.31	0.9603	36.72	31.04	0.9705	32.12	28.18	0.9632	35.58	33.20	0.9752	28.99
MonoHuman (Yu et al., 2023)	29.15	0.9595	38.08	27.64	0.9566	43.17	29.50	0.9635	39.45	27.93	0.9601	41.76	32.94	0.9695	36.04
ARAH (Wang et al., 2022)	29.46	0.9632	40.76	28.77	<u>0.9645</u>	42.30	<u>32.02</u>	0.9742	35.28	<u>28.49</u>	0.9656	40.43	33.50	0.9781	31.40
GART (Lei et al., 2024)	29.92	0.9651	32.55	28.65	0.9620	35.55	31.36	0.9736	30.50	28.20	0.9644	34.43	33.48	0.9850	29.55
3DGS-Avatar (Qian et al., 2024b)	<u>30.54</u>	<u>0.9661</u>	<u>31.21</u>	<u>28.88</u>	0.9635	<u>35.26</u>	31.66	0.9730	<u>30.14</u>	28.33	0.9642	<u>34.24</u>	33.63	0.9773	<u>25.77</u>
Ours	30.89	0.9677	31.18	29.48	0.9643	34.10	32.33	0.9754	29.47	28.86	0.9650	32.91	33.86	0.9784	25.22
(c) LoCo-Human (In-the-Wild)															
Method	S01			S02			S03			S04			S05		
	PSNR↑	SSIM↑	LPIPS↓												
3DGS-Avatar (Qian et al., 2024b)	23.15	0.9374	0.0567	24.21	0.9391	0.0579	23.74	0.9349	0.0594	22.87	0.9337	0.0618	22.59	0.9312	0.0632
ExAvatar (Moon et al., 2024)	<u>24.82</u>	0.9478	<u>0.0489</u>	<u>25.07</u>	0.9483	<u>0.0468</u>	<u>24.43</u>	<u>0.9465</u>	<u>0.0527</u>	<u>23.93</u>	<u>0.9442</u>	<u>0.0543</u>	<u>23.68</u>	0.9426	<u>0.0571</u>
Ours	<u>26.17</u>	0.9576	<u>0.0423</u>	<u>26.44</u>	0.9589	0.0409	<u>25.76</u>	0.9554	<u>0.0441</u>	<u>25.38</u>	0.9531	<u>0.0467</u>	<u>24.83</u>	0.9517	0.0484

Table 1: Quantitative comparisons across (a) novel pose synthesis on 4D-Dress, (b) novel view synthesis on ZJU-MoCap, and (c) generalization on LoCo-Human. We highlight the best (**bold**) and second-best (underline) performance in each case.

4.2 ABLATION STUDY

Physics & Graph Design (PGD). We start from the base configuration of vanilla GNN with autoregressive deformation of predicting positions and velocities with finite-difference method, without any physically plausible regularization \mathcal{L}_{iso} and \mathcal{L}_{damp} . Adding physics regularization (A1) yields a clear gain of +0.84 PSNR, and -10.3% LPIPS. Introducing the spring stiffness k_{ij} coefficients as a learnable parameter (A2), which adaptively distinguishes the rigid and non-rigid parts of subjects in unsupervised setting, further improves the rendering quality under dynamic motions. The advanced message-passing strategy for GNN with embedding edge features (A3) bring another boost of +0.68 PSNR, and -10.2% LPIPS. The full configuration with latent codes for time-varying dynamic appearance finally achieves the best results, which is +2.68 PSNR and a 31.0% LPIPS reduction over A0, underscoring the complementary roles of physics constraints and graph design.

Velocity Encoding (VE). Encoding an autoregressive window of past velocities markedly improves temporal fidelity. Performance rises monotonically from no VE (B0) to larger horizons, peaking at $\tau_v = 11$ (B4), with a net +5.83 PSNR and a 40.3% LPIPS drop. Very short context ($\tau_v = 1$) yields limited gains, while overly long horizons saturate; $\tau_v = 11$ strikes the best balance between temporal context and feature efficiency.

SMAD Capacity (M). Increasing the number of Gaussian graph nodes improves accuracy up to a moderate resolution. Compared to the no-SMAD baseline (C0), capacity scaling to $M = 40k$ (C4) delivers +3.60 PSNR, +0.017 SSIM, and a 32.2% LPIPS reduction. Extremely small graphs ($< 10k$) under-represent non-rigid dynamics, while very large ones (100k) underperform C4, suggesting optimization and overfitting issues at excessive capacity.

Fig. 6 (left) shows that VE reduces motion spikes by 35.5%, with green frames showing stable rendering and red frames showing flickering. Fig. 6 (right) shows PGI improves detail beyond the body, while SMAD removes skirt artifacts present in template-only results.

4.3 ANALYSES

Model Selection. To validate the effectiveness of our proposed design for SMAD module, we additionally conducted a controlled comparison against a carefully designed MLP-based autoregressive deformer, following (Zheng et al., 2021), and vanilla GNN. This baselines use the same inputs (positions, encoded velocities) as our method, ensuring a fair comparison. Table 4 shows that the MLP deformer fits the training motion but degrades significantly on unseen motion, while the GNN-

Physics & Graph Design (PGD)			Velocity Encoding (VE)			SMAD Capacity (M)					
Method	PSNR↑	SSIM↑	LPIPS↓	Method	PSNR↑	SSIM↑	LPIPS↓	Method	PSNR↑	SSIM↑	LPIPS↓
A0: Base	25.21	0.952	0.058	B0: w/o VE	22.06	0.930	0.067	C0: w/o SMAD	24.29	0.946	0.059
A1: + phys. reg	26.05	0.956	0.052	B1: $\tau_v = 1$	23.41	0.932	0.060	C1: $M = 5k$	25.36	0.950	0.053
A2: + adaptive k_{ij}	26.44	0.958	0.049	B2: $\tau_v = 7$	24.95	0.944	0.053	C2: $M = 10k$	26.47	0.958	0.048
A3: + message-passing	27.12	0.961	0.044	B3: $\tau_v = 15$	26.78	0.958	0.045	C3: $M = 100k$	27.02	0.962	0.045
A4: Full (Ours)	27.89	0.963	0.040	B4: $\tau_v = 11$ (Ours)	27.89	0.963	0.040	C4: $M = 40k$ (Ours)	27.89	0.963	0.040

Table 2: Ablation study on the effectiveness of our mainly proposed components. Three column blocks report (Left) physics/graph design, (Middle) velocity encoding horizon (τ_v), (Right) SMAD capacity M .

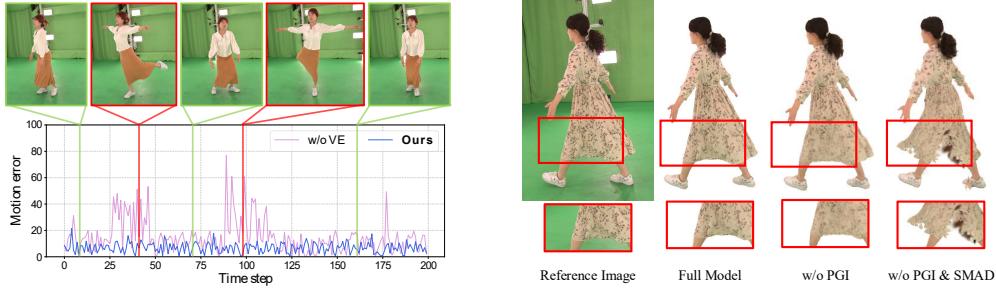


Figure 6: Ablation study on the visual effectiveness of (left) VE, (right) PGI, and SMAD. VE significantly reduces the motion error by encouraging temporal consistent deformation. PGI contributes to capturing fine-detailed clothing patterns, and SMAD sufficiently guarantees the robustness of clothing dynamics.

based deformers remains substantially more stable and accurate. This confirms that the graph-based formulation provides stronger structural priors and better generalization for clothed-human deformation. We also observe that embedding features on edges through message passing yields additional performance gains.

Generalization. Our auto-regressive deformation leverages a second-order state (x_t, v_t) , where velocities are obtained via finite differences. This provides a physically meaningful motion representation that aligns with how real deformable systems evolve, enabling more stable extrapolation than pose-only models. Prior work in human and cloth dynamics similarly shows that explicit velocity states improve rollout stability. By integrating over (x_t, v_t) and regularizing with damping and local-isometry constraints, our model suppresses high-frequency drift and captures inertia-driven behavior, leading to robust generalization to unseen motions. Table 3 further supports this observation.

It reports quantitative results on the 4D-Dress subjects across train, test, and out-of-distribution (OOD) motion sequences. To assess whether performance differences across these distributions are statistically significant, we conducted paired t-tests for each setting. No comparison yielded a significant difference, indicating that our model maintains consistent performance regardless of motion distribution. This empirical evidence reinforces that our approach generalizes reliably to dynamic motions unseen during training.

Error Accumulation. It is well-known that auto-regressive models are prone to numerical error accumulation over long sequences. To analyze and reflect on this point, we captured two types of motion sequences, each lasting over 30 seconds: (a) a dynamic pose sequence, and (b) a repetitive pose sequence. We evaluated our proposed method, and also conducted a comparative analysis with and without our proposed velocity encoding scheme to evaluate its effectiveness. Our velocity encoding scheme appears to mitigate this issue by incorporating a history of multiple past states, rather than relying solely on the most recent estimate. This allows the model to remain robust even when the immediate past prediction is noisy, reducing the risk of cumulative drift.

Training Cost. Our model requires an average of 12.5 hours for personalized Gaussian initialization and 4.5 hours for training the secondary motion-aware deformation module, totaling approximately 17 hours on a single NVIDIA RTX 3090 GPU. Considering that existing state-of-the-art methods (Moon et al., 2024) typically require around 4 hours of training, our approach indeed incurs higher computa-

Data	PSNR↑	SSIM↑	LPIPS↓
OOD	26.51	0.956	0.049
Test	27.89	0.963	0.040
Train	28.64	0.984	0.037

Table 3: Quantitative results on train/test, and out-of-distribution (OOD) motion sequences to evaluate generalization capability of our method (blue: p-val $p > 0.05$).

486 487 488 489 490	Model	PSNR↑ SSIM↑ LPIPS↓			PSNR↑ SSIM↑ LPIPS↓		
		Test			Train		
MLP	25.46	0.954	0.056	27.97	0.973	0.044	
vanilla GNN	28.68	0.958	0.045	28.44	0.980	0.040	
Ours	27.89	0.963	0.040	28.64	0.984	0.037	

491
492 **Table 4:** Quantitative results of difference design
493 choices of SMAD on train/test distributions.

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

tional cost. However, we emphasize that, unlike prior methods whose limited model capacity yields only marginal gains even with extended training, our formulation continues to deliver significant performance improvements when trained longer (see Fig. 7). This suggests that our method possesses a higher effective capacity and is well suited for high-fidelity dynamic appearance modeling in personalized avatar reconstruction.

5 DISCUSSION

On the Importance of Gaussian Initialization. Accurate initialization is fundamental for animatable 3D Gaussian avatars, especially when modeling loose-fitting clothing. Prior monocular methods rely on parametric template bodies (Loper et al., 2015; Pavlakos et al., 2019), assuming minimally clothed geometry. As seen in Fig. 1(c), this creates large mismatches between template surfaces and real garment volumes, causing undersampling, silhouette distortion, and instability under unseen poses. Because Gaussians are explicit point samples, such errors propagate into deformation and cannot be repaired by skinning alone. Our personalized Gaussian initialization avoids these issues by estimating a clothed canonical field via deformable NeRF, producing a subject-specific and geometry-faithful Gaussian distribution. This reduces the deformation network’s burden, enabling it to focus on true non-rigid motion rather than fixing incorrect geometry. Fig. 6 show that PGI improves clothing detail, reduces skirt-splitting, and stabilizes secondary motion. Overall, initialization is not a preprocessing step but a critical determinant of garment fidelity and temporal stability.

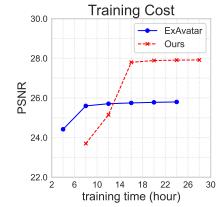
Template-free Deformation. Even with a faithful canonical geometry, deformation remains constrained when tied to template-based articulation such as LBS. These methods define motion as a direct function of skeletal pose, which fails for loose garments that do not follow body kinematics. As visualized in Fig. 1(b), template-driven deformation creates motion-error spikes, flickering, and cloth splitting because it lacks temporal awareness and restricts non-rigid behavior. Our SMAD module departs from this paradigm by learning a template-free, autoregressive deformation field on a velocity-encoded Gaussian graph. Instead of following a fixed hierarchy, Gaussians interact through learned graph messages, enabling the model to infer how cloth regions co-move or lag independently of the body. This grants expressive, pose-agnostic deformation capability and yields coherent dynamics across diverse motions. Results in Table 2 and Fig. 6 show that removing template constraints dramatically improves robustness, generalization, and overall clothing realism.

6 CONCLUSION

In this paper, we introduced a novel approach for dynamic appearance modeling of 3D Gaussian Splatting-based avatars from a single video, focusing on loose-fitting clothing dynamics. We addressed two main challenges: limited Gaussian deformation from template articulation, and misalignment issues from Gaussian initialization relying on naked body templates. To resolve these, we proposed an autoregressive Gaussian deformation strategy that predicts velocities for realistic cloth dynamics, and a personalized Gaussian initialization using a deformable neural radiance field to capture clothed silhouettes. Additionally, we provided a new in-the-wild dataset featuring subjects performing dynamic movements in challenging clothing. Extensive evaluations confirmed our method improves realism and outperforms existing approaches in both controlled and unconstrained settings.

Model	PSNR↑ SSIM↑ LPIPS↓			PSNR↑ SSIM↑ LPIPS↓		
	(a) dynamic pose			(b) repetitive pose		
w/o VE	24.47	0.949	0.050	24.69	0.950	0.049
w/ VE (Ours)	25.65	0.955	0.044	26.84	0.960	0.039

503
504 **Table 5:** Analyses of error accumulation ablating
505 the velocity encoding (VE) strategy on two long
506 sequences.



507
508 **Figure 7:** Analysis of
509 the training-cost trade-
510 off compared to an ex-
511 isting method.

540 REFERENCES
541

542 Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-Moll. Video
543 based reconstruction of 3D people models. In *CVPR*, 2018.

544 Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao Bao, Xu Jia, and Huchuan Lu. Animatable
545 neural radiance fields from monocular rgb videos. *arXiv preprint arXiv:2106.13629*, 2021.

546

547 Yushuo Chen, Zerong Zheng, Zhe Li, Chao Xu, and Yebin Liu. Meshavatar: Learning high-quality
548 triangular human avatars from multi-view videos. In *ECCV*, 2024.

549

550 Yao Feng, Jinlong Yang, Marc Pollefeys, Michael J Black, and Timo Bolkart. Capturing and
551 animation of body and clothing from monocular video. In *SIGGRAPH Asia 2022 Conference
552 Papers*, pp. 1–9, 2022.

553

554 Yao Feng, Weiyang Liu, Timo Bolkart, Jinlong Yang, Marc Pollefeys, and Michael J Black. Learning
555 disentangled avatars with hybrid 3d representations. *arXiv preprint arXiv:2309.06441*, 2023.

556

557 Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
558 monocular video. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
559 pp. 5712–5721, 2021.

560

561 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Message
562 passing neural networks. In *Machine learning meets quantum physics*, pp. 199–214. Springer,
563 2020.

564

565 Artur Grigorev, Bernhard Thomaszewski, Michael J Black, and Otmar Hilliges. HOOD: Hierarchical
566 graphs for generalized modelling of clothing dynamics. June 2023.

567

568 Artur Grigorev, Giorgio Becherini, Michael Black, Otmar Hilliges, and Bernhard Thomaszewski.
Contourcraft: Learning to resolve intersections in neural multi-garment simulations. In *ACM
SIGGRAPH 2024 conference papers*, pp. 1–10, 2024.

569

570 Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Vid2Avatar: 3D avatar reconstruc-
571 tion from videos in the wild via self-supervised scene decomposition. In *CVPR*, 2023.

572

573 Chen Guo, Tianjian Jiang, Manuel Kaufmann, Chengwei Zheng, Julien Valentin, Jie Song, and Otmar
574 Hilliges. Reloo: Reconstructing humans dressed in loose garments from monocular video in the
575 wild. *arXiv:2409.15269*, 2024.

576

577 Chen Guo, Junxuan Li, Yash Kant, Yaser Sheikh, Shunsuke Saito, and Chen Cao. Vid2avatar-pro:
578 Authentic avatar from videos in the wild via universal prior. In *Proceedings of the Computer Vision
and Pattern Recognition Conference*, pp. 5559–5570, 2025.

579

Marc Habermann and et al. Real-time deep dynamic characters. In *SIGGRAPH*, 2021.

580

581 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt.
582 Livecap: Real-time human performance capture from monocular video. *ACM Transactions On
583 Graphics (TOG)*, 38(2):1–17, 2019.

584

585 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt.
586 Deepcap: Monocular human performance capture using weak supervision. In *Proceedings of the
587 IEEE/CVF conference on computer vision and pattern recognition*, pp. 5052–5063, 2020.

588

589 Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, and Christian Theobalt. A
590 deeper look into deepcap. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(4):
4009–4022, 2021.

591

592 Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
593 Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
594 animatable 3d gaussians. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, 2024a.

594 Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articulated gaussian splatting from monocular
 595 human videos. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 20418–20431, 2024b.

597

598 Mustafa Işık, Martin Rünz, Markos Georgopoulos, Taras Khakhulin, Jonathan Starck, Lourdes
 599 Agapito, and Matthias Nießner. Humanrf: High-fidelity neural radiance fields for humans in
 600 motion. *ACM TOG*, 42(4):1–12, 2023. doi: 10.1145/3592415. URL <https://doi.org/10.1145/3592415>.

601

602 Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Instantavatar: Learning avatars from
 603 monocular video in 60 seconds. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 604 *and Pattern Recognition*, pp. 16922–16932, 2023a.

605

606 Yuheng Jiang, Kaixin Yao, Zhuo Su, Zhehao Shen, Haimin Luo, and Lan Xu. Instant-nvr: Instant
 607 neural volumetric rendering for human-object interactions from monocular rgbd stream. In
 608 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 609 595–605, 2023b.

610 Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara,
 611 and Yaser Sheikh. Panoptic studio: A massively multiview system for social motion capture. In
 612 *Proceedings of the IEEE international conference on computer vision*, pp. 3334–3342, 2015.

613

614 Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jitendra Malik. Learning 3d human dynam-
 615 ics from video. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 616 *recognition*, pp. 5614–5623, 2019.

617 Bernhard Kerbl and et al. 3d gaussian splatting for real-time radiance field rendering. In *SIGGRAPH*,
 618 2023.

619

620 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*,
 621 abs/1412.6980, 2015.

622

623 Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural Human Performer:
 624 Learning generalizable radiance fields for human performance rendering. *NeurIPS*, 2021.

625

626 Youngjoong Kwon, Baole Fang, Yixing Lu, Haoye Dong, Cheng Zhang, Francisco Vicente Carrasco,
 627 Albert Mosella-Montoro, Jianjin Xu, Shingo Takagi, Daeil Kim, et al. Generalizable human
 628 gaussians for sparse view synthesis. In *European Conference on Computer Vision*, pp. 451–468.
 Springer, 2024a.

629

630 Youngjoong Kwon, Lingjie Liu, Henry Fuchs, Marc Habermann, and Christian Theobalt. DELIFFAS:
 631 Deformable light fields for fast avatar synthesis. *NeurIPS*, 2024b.

632

633 Lik-Hang Lee, Tristan Braud, Peng Yuan Zhou, Lin Wang, Dianlei Xu, Zijun Lin, Abhishek Kumar,
 634 Carlos Bermejo, Pan Hui, et al. All one needs to know about metaverse: A complete survey on
 635 technological singularity, virtual ecosystem, and research agenda. *Foundations and trends® in*
636 human-computer interaction, 18(2–3):100–337, 2024.

637

638 Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
 639 articulated template models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
640 Pattern Recognition, pp. 19876–19887, 2024.

641

642 Zhe Li, Zerong Zheng, Yuxiao Liu, Boyao Zhou, and Yebin Liu. Posevocab: Learning joint-structured
 643 pose embeddings for human avatar modeling. *ACM SIGGRAPH Conference Proceedings*, 2023.

644

645 Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Animatable gaussians: Learning pose-
 646 dependent gaussian maps for high-fidelity human avatar modeling. In *Proceedings of the IEEE/CVF*
647 conference on computer vision and pattern recognition, pp. 19711–19722, 2024.

648

649 Zhihao Li, Jianzhuang Liu, Zhensong Zhang, Songcen Xu, and Youliang Yan. Cliff: Carrying location
 650 information in full frames into human pose and shape estimation. In *European Conference on*
651 Computer Vision, pp. 590–606. Springer, 2022.

648 Zhouyingcheng Liao, Vladislav Golyanik, Marc Habermann, and Christian Theobalt. Vinecs: video-
 649 based neural character skinning. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 650 and *Pattern Recognition*, pp. 1377–1387, 2024.

651 Siyou Lin, Zhe Li, Zhaoqi Su, Zerong Zheng, Hongwen Zhang, and Yebin Liu. Layga: Layered
 652 gaussian avatars for animatable clothing transfer. In *ACM SIGGRAPH 2024 Conference Papers*,
 653 pp. 1–11, 2024.

654 Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian Theobalt.
 655 Neural actor: Neural free-view synthesis of human actors with pose control. *ACM Trans.*
 656 *Graph.(ACM SIGGRAPH Asia)*, 2021.

657 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 658 A skinned multi-person linear model. *ACM transactions on graphics (TOG)*, 34(6):1–16, 2015.

659 Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
 660 Tracking by persistent dynamic view synthesis. In *2024 International Conference on 3D Vision*
 661 (*3DV*), pp. 800–809. IEEE, 2024.

662 Miles Macklin, Matthias Müller, and Nuttapong Chentanez. Xpbd: position-based simulation of
 663 compliant constrained dynamics. In *Proceedings of the 9th International Conference on Motion in*
 664 *Games*, pp. 49–54, 2016.

665 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 666 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 667 of the ACM, 65(1):99–106, 2021.

668 Gyeongsik Moon, Takaaki Shiratori, and Shunsuke Saito. Expressive whole-body 3d gaussian avatar.
 669 *arXiv preprint arXiv:2407.21686*, 2024.

670 Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
 671 *Journal of Visual Communication and Image Representation*, 18(2):109–118, 2007.

672 Xiaoyu Pan, Jiaming Mai, Xinwei Jiang, Dongxue Tang, Jingxiang Li, Tianjia Shao, Kun Zhou,
 673 Xiaogang Jin, and Dinesh Manocha. Predicting loose-fitting garment deformations using bone-
 674 driven motion networks. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

675 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 676 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 677 Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 678 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 679 performance deep learning library. In *Advances in Neural Information Processing Systems 32*, pp.
 680 8024–8035. Curran Associates, Inc., 2019. URL <http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf>.

681 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
 682 Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single
 683 image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp.
 684 10975–10985, 2019.

685 Sida Peng, Junting Dong, Qianqian Wang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou, and Hujun
 686 Bao. Animatable neural radiance fields for modeling dynamic human bodies. In *ICCV*, 2021a.

687 Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
 688 Zhou. Neural Body: Implicit neural representations with structured latent codes for novel view
 689 synthesis of dynamic humans. In *CVPR*, 2021b.

690 Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J Black. Clothcap: Seamless 4d clothing
 691 capture and retargeting. *ACM Transactions on Graphics (ToG)*, 36(4):1–15, 2017.

692 Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and Matthias
 693 Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. *CVPR*, pp. 20299–
 694 20309, 2024a.

702 Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar:
 703 Animatable avatars via deformable 3d gaussian splatting. *CVPR*, pp. 5020–5030, 2024b.
 704

705 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 706 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 707 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 708 Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*, 2024. URL
 709 <https://arxiv.org/abs/2408.00714>.

710 Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In *2011 IEEE*
 711 *international conference on robotics and automation*, pp. 1–4. IEEE, 2011.

712 Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan Li, and Giljoo Nam. Relightable gaussian
 713 codec avatars. In *CVPR*, 2024.

714

715 Igor Santesteban, Miguel A Otraduy, and Dan Casas. Snug: Self-supervised neural dynamic garments.
 716 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 717 8140–8150, 2022.

718

719 Zhijing Shao, Zhaolong Wang, Zhuang Li, Duotun Wang, Xiangru Lin, Yu Zhang, Mingming Fan,
 720 and Zeyu Wang. SplattingAvatar: Realistic Real-Time Human Avatars with Mesh-Embedded
 721 Gaussian Splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 722 *Recognition (CVPR)*, 2024.

723

724 Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Zarate, Julien Valentin, Jie Song, and Otmar
 725 Hilliges. X-avatar: Expressive human avatars. In *Computer Vision and Pattern Recognition*
 726 (*CVPR*), 2023a.

727

728 Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Jose Zarate, Julien Valentin, Jie Song, and Otmar
 729 Hilliges. X-avatar: Expressive human avatars. In *Proceedings of the IEEE/CVF Conference on*
 730 *Computer Vision and Pattern Recognition*, pp. 16911–16921, 2023b.

731

732 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 733 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

734

735 Carsten Stoll, Juergen Gall, Edilson De Aguiar, Sebastian Thrun, and Christian Theobalt. Video-based
 736 reconstruction of animatable human characters. *ACM Transactions on Graphics (TOG)*, 29(6):
 737 1–10, 2010.

738

739 Shih-Yang Su, Frank Yu, Michael Zollhöfer, and Helge Rhodin. A-nerf: Articulated neural radiance
 740 fields for learning human shape, appearance, and pose. *Advances in neural information processing*
 741 *systems*, 34:12278–12291, 2021.

742

743 Ivan E Sutherland et al. The ultimate display. In *Proceedings of the IFIP Congress*, volume 2, pp.
 744 506–508. New York, 1965.

745

746 Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable models. In
 747 *Proceedings of the 14th annual conference on Computer graphics and interactive techniques*, pp.
 748 205–214, 1987.

749

750 Bohan Wang, Mianlun Zheng, and Jernej Barbić. Adjustable constrained soft-tissue dynamics. In
 751 *Computer Graphics Forum*, volume 39, pp. 69–79. Wiley Online Library, 2020.

752

753 Shaofei Wang, Katja Schwarz, Andreas Geiger, and Siyu Tang. Arah: Animatable volume rendering
 754 of articulated human sdf. In *European conference on computer vision*, pp. 1–19. Springer, 2022.

755

756 Wenbo Wang, Hsuan-I Ho, Chen Guo, Boxiang Rong, Artur Grigorev, Jie Song, Juan Jose Zarate, and
 757 Otmar Hilliges. 4d-dress: A 4d dataset of real-world human clothing with semantic annotations.
 758 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 759 550–560, 2024.

760

761 Chung-Yi Weng, Brian Curless, and Ira Kemelmacher-Shlizerman. Vid2actor: Free-viewpoint
 762 animatable person synthesis from video in the wild. *arXiv preprint arXiv:2012.12884*, 2020.

756 Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-
 757 Shlizerman. Humannerf: Free-viewpoint rendering of moving people from monocular video.
 758 In *Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition*, pp.
 759 16210–16220, 2022.

760 Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang.
 761 Physgaussian: Physics-integrated 3d gaussians for generative dynamics. In *Proceedings of the*
 762 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4389–4398, 2024.

763 Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua
 764 Shen. Metric3d: Towards zero-shot metric 3d prediction from a single image. In *Proceedings of*
 765 *the IEEE/CVF International Conference on Computer Vision*, pp. 9043–9053, 2023a.

766 Yifei Yin, Chen Guo, Manuel Kaufmann, Juan Zarate, Jie Song, and Otmar Hilliges. Hi4d: 4d
 767 instance segmentation of close human interaction. In *Computer Vision and Pattern Recognition*
 768 (*CVPR*), 2023b.

769 Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting: Alias-free
 770 3d gaussian splatting. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 771 *recognition*, pp. 19447–19456, 2024.

772 Zhenzhen Yu, Yikai Zhang, and et al. Monohuman: Animatable human neural field from monocular
 773 video. In *CVPR*, 2023.

774 Zhichao Zhai, Guikun Chen, Wenguan Wang, Dong Zheng, and Jun Xiao. Taga: Self-supervised
 775 learning for template-free animatable gaussian articulated model. In *Proceedings of the Computer*
 776 *Vision and Pattern Recognition Conference*, pp. 21159–21169, 2025.

777 Youyi Zhan, Tianjia Shao, Yin Yang, and Kun Zhou. Real-time high-fidelity gaussian human avatars
 778 with position-based interpolation of spatially distributed mlps. In *Proceedings of the Computer*
 779 *Vision and Pattern Recognition Conference*, pp. 26297–26307, 2025.

780 Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. A deep emulator for secondary motion
 781 of 3d characters. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 782 *recognition*, pp. 5932–5940, 2021.

783 Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, and Yebin
 784 Liu. Gps-gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time human novel view
 785 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 786 pp. 19680–19690, 2024.

787 Zerong Zheng, Xiaochen Zhao, Hongwen Zhang, Boning Liu, and Yebin Liu. AvatarRex: Real-time
 788 expressive full-body avatars. *ACM TOG*, 2023.

789 Heming Zhu, Fangneng Zhan, Christian Theobalt, and Marc Habermann. Trihuman: A real-time
 790 and controllable tri-plane representation for detailed human geometry and appearance synthesis.
 791 *ACM Trans. Graph.*, September 2024. ISSN 0730-0301. doi: 10.1145/3697140. URL <https://doi.org/10.1145/3697140>.

792 Wojciech Zienonka, Timur Bagautdinov, Shunsuke Saito, Michael Zollhöfer, Justus Thies, and Javier
 793 Romero. Drivable 3d gaussian avatars. In *2025 International Conference on 3D Vision (3DV)*, pp.
 794 979–990. IEEE, 2025.

801
 802
 803
 804
 805
 806
 807
 808
 809

810
811
812
813
814
815

Appendix

Table of Contents

816	A Notation	17
817		
818	B Implementation Details	18
819	B.1 Velocity-Encoded Gaussian Graph	18
820	B.2 Secondary Motion-Aware Gaussian Deformation	18
821	B.3 Training	19
822		
823	C Experimental Setting Details	19
824	C.1 Dataset Description	19
825	C.2 Baseline Methods	19
826	C.3 Evaluation Metrics	20
827		
828	D Additional Analyses and Discussions	22
829	D.1 Hyper-Parameter Search	22
830	D.2 Time Efficiency	22
831	D.3 Statistical Significance	22
832	D.4 Generalization	23
833		
834	E More Results	23
835		
836	F Limitations	24
837		
838	G Broader Impacts	24

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **A NOTATION**
865866 We summarize the key notations used in main paper in Table F.
867868 **Table F: Summary of Mathematical Notations in the Paper**
869

#	Notation	Dimension / Set	Definition
1	$V = \{I_t\}_{t=1}^T$	$I_t \in \mathbb{R}^{H \times W \times 3}$	Monocular RGB video with T frames
2	T	\mathbb{N}	Number of video frames
3	$\mathcal{G}_t^d = \{(\mu_{t,i}, \Sigma_{t,i}, c_{t,i}, \alpha_{t,i})\}_{i=1}^N$	—	Deformed Gaussians at time t
4	N	\mathbb{N}	Number of Gaussian primitives
5	$\mu_{t,i}$	\mathbb{R}^3	Mean position of the i -th Gaussian
6	$\Sigma_{t,i}$	$\mathbb{R}^{3 \times 3}$	Covariance (size & orientation)
7	$c_{t,i}$	\mathbb{R}^3	RGB color
8	$\alpha_{t,i}$	\mathbb{R}	Opacity
9	$\Theta = \{\theta_t\}_{t=1}^T$	$\text{SO}(3)^K$	SMPL joint pose sequence
10	$\mathcal{R}(\cdot)$	$(\mathbb{R}^3, \Sigma, \alpha)^N \rightarrow \mathbb{R}^{H \times W \times 3}$	Differentiable 3D Gaussian renderer
11	\mathcal{G}^c	—	Canonical (undeformed) Gaussian set
12	$\Gamma = (X, A)$	$X \in \mathbb{R}^{M \times 3}, A \in \mathbb{R}^{M \times M}$	Gaussian graph (nodes & adjacency)
13	$X = \{x_i\}_{i=1}^M$	\mathbb{R}^3	Node positions after voxel downsampling
14	$A_{ij} = \exp \left[-\frac{\ x_i - x_j\ ^2}{\rho_a^2} \right]$	$[0, 1]$	Edge weight (k-NN Gaussian kernel)
15	ρ_a	\mathbb{R}^+	Distance-sensitivity bandwidth
16	$h_i = (x_i, \bar{v}_i, e_i)$	\mathbb{R}^{d_h}	Node feature: position, velocity buffer, pose embed
17	$v_i(t) = \frac{x_i(t) - x_i(t - \Delta t)}{\Delta t}$	\mathbb{R}^3	Instantaneous velocity
18	τ_v	\mathbb{N}	Past-velocity buffer length
19	g_i	\mathbb{R}^+	Point mass for physics model
20	$a_i(t) = \ddot{x}_i(t)$	\mathbb{R}^3	Acceleration of node i
21	γ_i	\mathbb{R}^+	Damping coefficient
22	k_{ij}	\mathbb{R}^+	Spring stiffness between nodes i, j
23	L_{ij}^{rest}	\mathbb{R}^3	Rest offset of the spring
24	$F_i^{\text{ext}}(t)$	\mathbb{R}^3	External force applied to node i
25	Δt	\mathbb{R}^+	Simulation time-step
26	z_i	\mathbb{R}^{d_z}	Learnable latent code for Gaussian i
27	$\omega_{t,k} = \exp \left[-\frac{1 - d_{t,0}^\top d_{t,k}}{2\rho} \right]$	$(0, 1]$	Confidence of k -th synthesized view
28	$d_{t,0}, d_{t,k}$	\mathbb{S}^2	Unit view-direction vectors
29	ρ	\mathbb{R}^+	Temperature for confidence fall-off
30	$f_{t,k}$	\mathbb{R}^{d_f}	Pixel-aligned feature from view k
31	$(q_{t,0}, k_{t,k}, v_{t,k})$	\mathbb{R}^d	Query, key, value embeddings for attention
32	$\alpha_{t,k}$	$[0, 1]$	Attention weight for view k
33	$\bar{\sigma}(x) = \frac{1}{T} \sum_{t=1}^T \sigma(x, t)$	\mathbb{R}	Time-averaged density for Gaussian extraction
34	κ	\mathbb{R}^+	Density threshold for voxel selection
35	$L_{\text{smooth}}, L_{\text{bend}}, L_{\text{iso}}, L_{\text{damp}}$	-	Regularization losses

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **B IMPLEMENTATION DETAILS**919 **B.1 VELOCITY-ENCODED GAUSSIAN GRAPH**

920 *Voxel-grid downsampling* ($N \rightarrow M$). Given a set of N initial Gaussian points, we introduce
 921 autoregressively graph-based Gaussian deformation to transform the Gaussians without pre-defined
 922 articulation to template parametric model for enhancing secondary motion dynamics. To avoid an
 923 $\mathcal{O}(N^2)$ neighbourhood search and to limit graph size for the GNN, we down-sample the Gaussian
 924 cloud on an isotropic voxel grid:

925

- 926 *Grid resolution.* Let d_{\min} denote the minimum distance below which two Gaussians would overlap
 927 in the 3DGS renderer (e.g. the renderer’s splat radius at canonical scale). We choose the voxel
 928 edge length as $s = 2d_{\min}$, which empirically yields ≈ 10 Gaussians per occupied voxel.
- 929 *Hash insertion.* Every Gaussian is hashed into a voxel key. It retains the index with the *smallest*
 930 per-voxel rendering error, measured on a $4 \times$ subsampled depth map; all other Gaussians in that
 931 voxel are discarded.
- 932 *Representative pooling.* For the surviving indices we conduct average pooling, giving a single
 933 *graph node*. The total number of nodes is $M = 40k$, an order of magnitude smaller than N
 934 without noticeable quality loss.

935

936 *k-Nearest-Neighbour edge set.* With the down-sampled node coordinates $X = \{\mathbf{x}_j\}_{j=1}^M$ (which
 937 is different from the one defined in PGI), we build an undirected, symmetric k -NN graph: $A =$
 938 $\{(i, j) \mid \mathbf{x}_i \in \text{Top}_k(\|\mathbf{x}_i - \mathbf{x}_j\|_2)\}$. We set $k = 16$, which is sufficiently dense to preserve local
 939 manifold connectivity yet keeps the message-passing cost low.

940 **B.2 SECONDARY MOTION-AWARE GAUSSIAN DEFORMATION**

941 **Architecture.** Given the *velocity-encoded Gaussian graph* $\mathcal{G} = (X, A)$ (Table G), SMAD
 942 converts the current node state at animation step t into frame-specific *Gaussian attribute deltas*
 943 $\{\Delta\mu_i, \Delta\Sigma_i, \Delta\mathbf{c}_i, \Delta\alpha_i\}_{i=1}^M$, through three conceptually simple stages. We present the architectural
 944 details of our SMAD, as illustrated in Table H.

945 **Node projection (layer 0).** Each node i consists of concatenated features $\mathbf{h}_i = \{\mathbf{x}_i, \bar{\mathbf{v}}_i, \mathbf{e}_i\}$, where
 946 embedding vector through MLP is obtained by driving pose sequences $\Theta_{t-\tau:t} = \{\theta_t, \dots, \theta_{t-\tau}\}$. The
 947 \mathbf{h}_i seeds the message-passing stage.

948 **Three shared message-passing iterations (layers 1–9).** At each iteration $\ell \in \{1, 2, 3\}$ we construct an
 949 edge feature vector for every directed pair $(i, j) \in A$

$$950 \mathbf{e}_{ij}^\ell = [h_i^{\ell-1}, h_j^{\ell-1}, \bar{\mathbf{x}}_j - \bar{\mathbf{x}}_i, \bar{\mathbf{v}}_j - \bar{\mathbf{v}}_i, \|\bar{\mathbf{x}}_j - \bar{\mathbf{x}}_i\|_2, 1] \in \mathbb{R}^{519}.$$

951 The shared *edge-MLP* M_θ (layer $1+3(\ell-1)$) compresses \mathbf{e}_{ij}^ℓ to a 128-D message $m_{ij}^\ell = M_\theta(\mathbf{e}_{ij}^\ell)$.
 952 For every receiver node we perform mean aggregation over its k nearest neighbours: $\bar{m}_i^\ell =$
 $\frac{1}{k} \sum_{j \in \mathcal{N}(i)} m_{ij}^\ell$. The aggregated vector is fed, together with the previous hidden state $h_i^{\ell-1}$, into a
 953 GRU cell $h_i^\ell = H_\theta(\bar{m}_i^\ell, h_i^{\ell-1})$. Because M_θ and H_θ share weights across iterations, the network
 954 learns a recurrent, physics-inspired propagation of inertia without increasing parameter count.

955 **Decoder U_ψ (layers 10–15).** After three iterations we obtain the refined latent representation $h_i^3 \in \mathbb{R}^{256}$
 956 for each node. A two-stage MLP (256 → 256 → 128 with ReLU) acts as a shared decoder whose final
 957 128-D activations feed four independent linear heads:

$$958 \Delta\mu_i, \Delta\mathbf{v}_i, \Delta\Sigma_i, \Delta\mathbf{c}_i = U_\psi(h_i^3).$$

959 Here, $\Delta\mu_i$ is a 3-D position offset, $\Delta\mathbf{v}_i$ a 3-D velocity refinement that is re-queued into the velocity
 960 ring buffer, $\Delta\Sigma_i$ a log-diagonal covariance update, and $\Delta\mathbf{c}_i \in [0, 1]^3$ a colour residual (sigmoid-
 961 bounded). These deltas are added to the canonical attributes before the Gaussian splatting renderer is
 962 invoked for the current frame.

963 SMAD therefore (i) embeds pose and recent motion into a compact latent space, (ii) injects neigh-
 964 borhood cues through three message-passing steps that emulate mass–spring–damper interactions,
 965 and (iii) decodes temporally coherent, view-aware adjustments to every Gaussian’s geometry and
 966 appearance.

972
973
974
975
976
977

Layer	Operation	Input	Output
1-2	FC + LN + ReLU	$\{\theta_t, \dots, \theta_{t-\tau}\}$	256
3	FC + LN + ReLU + skip	256	256
4	Head (Linear)	256	128

978
979
980
981
982
983
984
985
Table G: Embedding MLP of driving motions into
Gaussian graph for SMAD.

Layer	Operation	Input (dim)	Output (dim)
0	Node projection (Linear \rightarrow ReLU)	$(\mathbf{x}_i, \bar{\mathbf{v}}_i, \mathbf{e}_i)$	256
<i>Message-Passing Iteration 1-3 (shared weights)</i>			
1,4,7	M_θ edge-MLP	edge features (519)	128
2,5,8	Message aggregation	$k \times 128$	128
3,6,9	H_θ	$(\mathbf{m}_i^{\text{agg}}, \mathbf{h}_i)$	256
<i>Decoder U_ψ: Gaussian attribute heads</i>			
10	MLP-1 (Linear 256 \rightarrow 256 \rightarrow ReLU)	256	256
11	MLP-2 (Linear 256 \rightarrow 128 \rightarrow ReLU)	256	128
12	$\Delta\mu$ head	128	3
13	$\Delta\mathbf{v}$ head	128	3
14	$\Delta\Sigma$ head	128	3
15	$\Delta\mathbf{c}$ head + Sigmoid	128	3

986
987
988
989
990
991
992
993
994
995
996
997
998
Table H: Secondary Motion-Aware Deformation
(SMAD): main network & Gaussian decoder.984
985
B.3 TRAINING986
987
988
989
990
991
992
993
994
995
996
997
998
We adopted 2-stage training. Fristly, we train personalized Gaussian initialization as pre-stage, where it locates initial Gaussians densely aligned onto the person-specific silhouette. Thereafter, we train secondary motion-aware Gaussian deformation to auto-regressively transform the canonical 3D Gaussians that are aware of clothing dynamics. We used the Adam optimizer Kingma & Ba (2015) with an initial learning rate of 0.001, decaying by a factor of 0.5 if no improvement is made in four consecutive epochs. We used PyTorch Paszke et al. (2019) for the backend processing. All experiments were conducted on AMD Ryzen Threadripper PRO 5965WX CPU and an NVIDIA GeForce RTX 3090 GPU.994
995
C EXPERIMENTAL SETTING DETAILS996
997
C.1 DATASET DESCRIPTION998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Motivation. Existing datasets for evaluating animatable 3D avatars predominantly focus on subjects wearing tight-fitting clothing and performing repetitive, often monotonous motions. Although the recently proposed 4D-Dress dataset addresses some of these limitations by including diverse garment types, it is still collected in a controlled laboratory setting and primarily designed for multi-view capture evaluations. However, our ultimate goal is to democratize avatar generation—making it robust and accessible to everyday users using only monocular inputs. To this end, it is essential to evaluate performance under in-the-wild scenarios, where diverse factors such as occlusion, motion blur, and uncontrolled lighting can affect avatar quality. We introduce a novel dataset **LoCo-Human**, featuring (1) subjects wearing loose-fitting garments, (2) realistic clothing dynamics exhibiting secondary motion, and (3) videos captured in the wild. This setting enables evaluation of avatar reconstruction robustness under real-world conditions.1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Dataset Statistics. Our dataset comprises five unique subjects, each recorded in a total of six sequences: one static-motion sequence and five dynamic-motion sequences. For each subject, one sequence captures a 360-degree rotation, while the remaining four sequences feature free-form dynamic motion, performed without scripted guidelines. All subjects wear challenging garments, such as long skirts and padded coats, designed to emphasize loose-fitting clothing dynamics. Fig. H shows qualitative results on several samples from our dataset.1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520

1026 of our method, we conduct a comparative analysis with existing 3DGS-based avatar approaches.
 1027 Given the rapid expansion of research in this domain, an exhaustive comparison with all prior works
 1028 is impractical. Therefore, we select a subset of publicly available methods, with particular emphasis
 1029 on those that explicitly address dynamic appearance modeling.

1030 *GART* *Lei et al. (2024)*. GART introduces the Gaussian Articulated Template (GART) model,
 1031 designed to reconstruct non-rigid articulated human subjects from monocular videos. To facilitate
 1032 challenging deformation, it employs a learnable forward skinning strategy via latent bones. However,
 1033 due to the lack of supervision on where to place novel bones and how to assign skinning weights
 1034 for each Gaussian, the method struggles to maintain structural consistency during deformation. This
 1035 often leads to a breakdown in kinematic coherence and introduces excessive degrees of freedom,
 1036 making stable animation difficult.

1037 *GaussianAvatar* *Hu et al. (2024a)*. GaussianAvatar proposes an efficient method for creating realistic
 1038 human avatars with dynamic 3D appearances from a single video. It utilizes UV positional maps to
 1039 encode pose-dependent features and integrates them with canonical surface geometry. However, its
 1040 pose representation is heavily reliant on parametric template priors. While effective for minimally
 1041 clothed humans, this reliance limits its generalization to clothed avatars whose geometry deviates
 1042 significantly from the template, especially in the case of skirts, which often exhibit unnatural splitting
 1043 between the legs under dynamic motion.

1044 *3DGS-Avatar* *Qian et al. (2024a)*. 3DGS-Avatar also presents a framework for creating animatable
 1045 human avatars from monocular video using 3D Gaussian primitives. It introduces a non-rigid
 1046 deformation network that learns per-Gaussian offsets to represent dynamic clothed avatars. However,
 1047 by assigning independent degrees of freedom to each Gaussian, the method neglects the underlying
 1048 structural coherence of the avatar. This leads to undesired needle-like artifacts, particularly under
 1049 dynamic motions.

1050 *ExAvatar* *Moon et al. (2024)*. ExAvatar proposes a hybrid representation that combines a whole-body
 1051 parametric mesh with 3D Gaussian Splatting. By binding each Gaussian to corresponding mesh
 1052 vertices, the model ensures stable deformation under novel motions. Nevertheless, it exhibits weak
 1053 appearance modeling for clothed subjects wearing loose-fitting garments, such as coats or skirts,
 1054 which significantly deviate from the shape of the minimally clothed parametric template.

1055 In summary, existing methods largely depend on shape and articulation priors from parametric
 1056 template models to synthesize and animate avatars. This reliance limits their ability to model (1)
 1057 loose-fitting clothed humans with geometry far from minimally clothed templates, and (2) realistic
 1058 deformation that preserves geometric structure while capturing clothing dynamics. Our approach
 1059 aims to overcome these limitations by introducing a template-free formulation tailored for secondary
 1060 motion-aware avatar modeling.

1061

1062 C.3 EVALUATION METRICS

1063 We used PSNR, SSIM, LPIPS, and motion error as the primary evaluation metrics.

1064 *Peak Signal-to-Noise Ratio (PSNR)*. PSNR is a widely used metric for evaluating the reconstruction
 1065 quality of compressed or reconstructed images by comparing them to the original. It quantifies the
 1066 ratio between the maximum possible pixel value and the power of the distortion (error) introduced.
 1067 Given an original image I and a rendered image \hat{I} of animatable 3D Gaussian avatars, we first
 1068 compute the Mean Squared Error (MSE). Then the PSNR is defined as:
 1069

$$1070 \text{PSNR} = 10 \cdot \log_{10} \left(\frac{255^2}{\text{MSE}} \right).$$

1071 *Structural Similarity Index Measure (SSIM)*. SSIM is a perceptual metric that quantifies image quality
 1072 degradation based on changes in structural information, taking into account human visual perception.
 1073 Unlike PSNR, it considers luminance, contrast, and structural similarity. Given two local image
 1074 patches x and y , SSIM is defined as:
 1075

$$1076 \text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

Animation results of rendered 3D Gaussian avatars across time axis.

Figure H: Qualitative results on LoCo-Human consisting of the subjects wearing loose-fitting clothes with dynamic motions.

where (μ_x, μ_y) are mean intensities, (σ_x^2, σ_y^2) are variances, σ_{xy} are covariance between x and y . The final SSIM value is obtained by averaging local SSIM scores across the entire image.

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS is a perceptual metric that compares images using deep features extracted from pretrained neural networks. It is designed to align closely with human perceptual judgments by evaluating similarity in a learned feature space. Given two images I and \hat{I} , let $\hat{f}^l(x)$ and $\hat{f}^l(y)$ denote the normalized feature maps from layer l of a pretrained network ϕ , with spatial dimensions $H_l \times W_l$ and channel dimension C_l . Then LPIPS is defined as:

$$\text{LPIPS}(I, \hat{I}) = \sum_l w_l \cdot \frac{1}{H_l W_l} \sum_{h=1}^{H_l} \sum_{w=1}^{W_l} \left\| \hat{f}_{h,w}^l(I) - \hat{f}_{h,w}^l(\hat{I}) \right\|_2^2$$

where w_l are learned weights that reweight the contribution of each layer to better match human perceptual similarity. We use deep features from Simonyan & Zisserman (2014). For ZJU-Mocap, following the convention of previous studies Qian et al. (2024a), we reported the LPIPS values scaled by 10^3 in the main draft to make the performance differences with the baselines more clearly distinguishable.

Motion Error. We additionally measured motion error to evaluate the temporally consistent animation and fidelity to the driving motion of the generated avatars. Specifically, this is computed as the acceleration error between the driving pose (used as the condition) and the corresponding pose of the rendered Gaussian avatar, which is estimated in reverse using a pre-trained pose estimator Li et al. (2022). To assess this, we measured acceleration error, presented in Kanazawa et al. (2019) the acceleration error metric is used. It measures the average deviation between the estimated and ground-truth joint accelerations across a temporal sequence. Given a sequence of 3D joint positions $\{\mathbf{x}_{\text{joints}}^t \in \mathbb{R}^{3J}\}_{t=1}^T$, the acceleration at time t is approximated using the second-order finite difference: $\mathbf{a}_{\text{joints}}^t = \mathbf{x}_{\text{joints}}^{t+1} - 2\mathbf{x}_{\text{joints}}^t + \mathbf{x}_{\text{joints}}^{t-1}$. The acceleration error is then computed as:

$$\text{Motion Error} = \frac{1}{T-2} \sum_{t=2}^{T-1} \left\| \hat{\mathbf{a}}_{\text{joints}}^t - \mathbf{a}_{\text{joints}}^t \right\|_2$$

where $\hat{\mathbf{a}}_{\text{joints}}^t$ and $\mathbf{a}_{\text{joints}}^t$ denote the predicted and ground-truth joint accelerations, respectively.

Method	Training Time	Inference Time	Method	Training Time	Inference Time
ExAvatar	3.0h	27 fps	Ours	12.5h (1) + 4.5h (2)	26 fps

1137

1138

Table I: Training (time: hours) and testing (fps: frames per second) cost comparison to template Pavlakos et al. (2019)-based 3D Gaussian avatar Moon et al. (2024). Our training time consists of (1) personalized Gaussian initialization module and (2) secondary motion-aware Gaussian deformation.

1142

1143

1144 D ADDITIONAL ANALYSES AND DISCUSSIONS

1146 D.1 HYPER-PARAMETER SEARCH

1148 We ablated key hyperparameters: scaling factors of loss
 1149 functions $\lambda_{\text{damp}} \in \{0.001\text{--}1.0\}$, and $\lambda_{\text{iso}} \in \{0.01\text{--}1.0\}$ in
 1150 Fig. I. The results show that $\lambda_{\text{damp}} = 0.01$ and $\lambda_{\text{iso}} = 0.1$
 1151 performed best; $\lambda_{\text{damp}} = 1.0$ sharply degraded results, im-
 1152 plying excessive temporal smoothing, while isotropy gains
 1153 largely saturated past 0.1. Based on the results shown
 1154 in the figure, both \mathcal{L}_{iso} and $\mathcal{L}_{\text{damp}}$ help suppress exces-
 1155 sive deformation and promote stable optimization, though
 1156 they operate differently. \mathcal{L}_{iso} preserves local isotropy, pre-
 1157 venting geometric distortions, and its increase leads to a
 1158 gradual improvement in PSNR. In contrast, $\mathcal{L}_{\text{damp}}$ miti-
 1159 gates excessive dynamic oscillations, yielding a more pronounced
 1160 PSNR gain within an appropriate range. Combined, the two terms jointly enforce structural fidelity and dynamic stability, achieving a
 1161 balanced improvement in both visual consistency and numerical robustness.

1163 D.2 TIME EFFICIENCY

1165 To evaluate the efficiency of our model, we measured the runtime of the proposed method from both
 1166 the training and testing (inference) perspectives. Tab. I presents the average time costs, computed
 1167 by measuring the runtimes for all subjects used in the experiments and reporting the mean values.
 1168 Compared to existing 3DGS-based avatar methods that rely on parametric template model priors,
 1169 our method consists of two stages. In the first stage, we train a network for personalized Gaussian
 1170 initialization, and in the second stage, we train a secondary motion-aware Gaussian deformation
 1171 network. On average, the first and second stages take 12.5 and 4.5 hours to train, respectively, which
 1172 is relatively longer than existing methods. Importantly, the network trained in the first stage is not
 1173 required during the inference phase. As a result, the inference-time cost is nearly equivalent to prior
 1174 methods and operates at a near real-time speed.

1175

1176

1177 D.3 STATISTICAL SIGNIFICANCE

1178 We conducted a two-sided paired t -test, conservatively setting $p = 0.05$ to relieve a multi-comparison
 1179 issue. The test was based on SSIM metric scores evaluated across the test sequences of all subjects
 1180 used for evaluation on 4D-Dress. We performed (1) statistical significance analysis against comparison
 1181 methods Lei et al. (2024); Hu et al. (2024a); Qian et al. (2024b); Moon et al. (2024), and (2)
 1182 significance testing against ablated versions of our proposed main components. When compared
 1183 with 3DGS-based baseline methods, all resulting p -values were lower than 0.005, demonstrating
 1184 that our method achieves significantly improved performance despite the conservative threshold (see
 1185 Table J). Furthermore, to assess the effectiveness of each major component proposed in this paper,
 1186 we performed two-sided paired t -tests between the full model and its ablated variants. As shown
 1187 in Table K, all components were found to be statistically significant, highlighting in particular the
 1188 effectiveness of our template-free Gaussian deformation module.

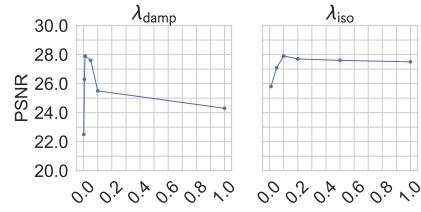


Figure I: Hyper-parameter search on weighting factor of loss functions λ_{damp} and λ_{iso} .

1188	Method vs GART Lei et al. (2024) vs GaussianAvatar Hu et al. (2024a) vs 3DGS-Avatar Qian et al. (2024a) vs ExAvatar Moon et al. (2024)
1189	p -value 5.6×10^{-6} 4.2×10^{-6} 6.9×10^{-5} 5.7×10^{-5}

1190

1191

1192 **Table J:** Statistical significance ($p \leq 0.05$). We performed a two-sided paired t -test against each baseline method
1193 conservatively at $p = 0.05$ to relieve a multi-comparison issue. Our method exhibit statistical significance
1194 compared to the baselines suggesting that our method have significant performance improvement.

1195

1196

1197

1198

1199

1200

1201 **Table K:** Statistical significance ($p \leq 0.05$) to validate the mainly proposed components. We performed a
1202 two-sided paired t -test against each baseline method conservatively at $p = 0.05$ to relieve a multi-comparison
1203 issue. The proposed components exhibit statistical significance by suggesting that each components are effective
1204 to create animatable 3D Gaussian avatars.

1205

1206

1207

D.4 GENERALIZATION

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

We further evaluate the generalization performance. Fig. J shows the distribution of training poses and test poses on a t-SNE plot, as well as the performance on the in-the-wild dataset. The blue box indicates the distribution of the training dataset, and the orange box indicates that of the test dataset. Even though the test dataset was unseen during training, our method demonstrates excellent generalization performance. In Fig. J, we plot how the perceptual error changes relative to the motion similarity between the training and testing data, measured via normalized cross-correlation (NCC) between the time-varying 3D conditional poses. We observe a more pronounced increase in the error for Moon et al. (2024) as the testing frames deviate further from the training data. Furthermore, while ExAvatar shows a large variation in standard error that increases as motion similarity decreases, our method consistently maintains a low level of standard error. Since the standard error is computed between the train and test motions, a lower value indicates less overfitting and suggests better generalization performance. This suggests that our method exhibits robust generalization performance on par with the linear skinning model of the conventional template parametric model.

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235 **Figure J:** (a) Visual check of in-distribution (blue) and out-of-distribution (orange) driving poses with t-sne
1236 plot. (b) Average perceptual metric (LPIPS; Lower is better) with standard error plot of 4D-Dress over motion
1237 similarity between train and test set. Our method (red) maintains consistent rendering performance even for test
1238 motions with low similarity to the training motion—showing relatively less performance degradation compared
1239 to high-similarity cases—whereas the baseline Moon et al. (2024) (blue) exhibits a significant drop in perceptual
1240 quality when handling test motions with low motion similarity.

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

E MORE RESULTS

1251

1252

1253

1254

We present additional qualitative comparison results in the remainder. Please refer to the Fig. K, L, M, N, O, P.

1242 **F LIMITATIONS**
1243

1244 First, our method struggles under dynamics that involve sudden and large motion changes. Although
 1245 we designed the system to account for temporal context using velocity encoding and auto-regressive
 1246 modeling, it still has difficulty predicting the emergence of node accelerations that lie outside
 1247 the training distribution. Second, our method does not model multi-garment interactions. The
 1248 current Gaussian graph is a single-layer structure that captures the overall clothed shape and ensures
 1249 deformations that preserve this global structure. However, it does not model interactions between
 1250 garments or predict their independent motions. In future work, we aim to address these limitations.
 1251 To tackle the first challenge, we could introduce a deformation model that considers bidirectional
 1252 temporal context. Alternatively, incorporating a generative flow matching technique that predicts a
 1253 bundle of vectors (a vector field) may offer a promising way to learn and represent the distribution
 1254 of complex motions. To address the second issue, we could consider constructing a hierarchical
 1255 Gaussian graph and introducing a graph neural network to model interactions between different
 1256 garments. However, achieving this would require highly accurate semantic segmentation between
 1257 garments. Currently, such segmentation remains difficult in the presence of diverse self-occlusions
 1258 and depth ambiguities from a single-view video. Therefore, enabling high-quality multi-garment
 1259 segmentation from a single video alone would itself be a highly challenging yet exciting direction for
 1260 future research in hierarchical Gaussian deformation modeling.

1261 **G BROADER IMPACTS**
1262

1263 **Potential Negative Societal Impacts.** Our technology could be misused, leading to negative societal
 1264 consequences. One major risk is Deepfake-style impersonation: a realistic avatar of a person could
 1265 be created without consent and used to impersonate them, enabling misinformation or fraud. The
 1266 ability to replicate someone’s likeness from a single video also raises privacy concerns, as individuals
 1267 could have their image replicated and misused in unwanted ways, which can erode trust in digital
 1268 media. It could also impact creative industries: unauthorized digital replicas of actors might violate
 1269 intellectual property rights and undermine the entertainment industry’s economy, and a proliferation
 1270 of lifelike fake characters could confuse audiences and devalue genuine performances. These risks
 1271 underscore the need for ethical guidelines and safeguards to prevent malicious use of AI-driven avatar
 1272 technology.

1273 **Broader Impact.** Our work offers positive implications for research, industry, and consumers.
 1274 *Research Community:* Our method introduces a new approach to animatable avatars using 3D
 1275 Gaussian Splatting, advancing neural rendering, and provides an in-the-wild dynamic clothing dataset
 1276 to spur further research on neural avatars and secondary motion modeling. *Industry:* The improved
 1277 realism and efficiency of our approach can benefit digital human applications in entertainment,
 1278 gaming, and virtual reality by enabling creators to produce lifelike characters with realistic cloth
 1279 dynamics from minimal input, allowing immersive real-time experiences. *Consumers:* More realistic
 1280 and animatable avatars mean more immersive virtual experiences for end-users. Users in VR and
 1281 gaming will be able to interact through avatars that mirror their appearance and clothing motion,
 1282 enhancing their sense of presence. By bridging real and virtual representations, our work enriches
 1283 virtual experiences.

1284 **Ethics Statement.** This work makes use of both publicly available datasets (e.g., ZJU-MoCap,
 1285 4D-Dress) and a newly collected dataset, LoCo-Human, which contains in-the-wild monocular video
 1286 sequences of clothed human subjects. For all publicly available datasets, we adhere to their respective
 1287 license terms and usage conditions.

1288 For LoCo-Human, all participants were recruited with explicit informed consent, covering video
 1289 recording, research use, and potential public release of the anonymized dataset. No minors or
 1290 vulnerable populations were included. Personally identifying metadata beyond facial and body
 1291 appearance was not collected, and access to raw recordings will be restricted. The dataset will be
 1292 released after peer review with a research-only license prohibiting redistribution and commercial use,
 1293 and with clear take-down procedures if requested by participants.

1294 We acknowledge that technologies enabling high-fidelity 3D avatar reconstruction from monocular
 1295 videos may be misused for malicious purposes (e.g., impersonation, non-consensual content genera-

1296 tion). To mitigate such risks, we emphasize responsible use of the dataset and models, encourage
1297 watermarking or detection mechanisms for synthetic outputs, and restrict the release of model weights
1298 to verified research purposes only.

1299 We also recognize the possibility of bias due to the limited diversity of clothing types, subjects, and
1300 motions in LoCo-Human. We report dataset composition and limitations transparently and encourage
1301 future work to expand demographic and cultural coverage for fairness and inclusivity.

1302 No sensitive medical or financial information is used in this work. Institutional review board (IRB)
1303 approval was not required, but ethical considerations regarding informed consent, privacy, and
1304 responsible release were carefully followed.

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

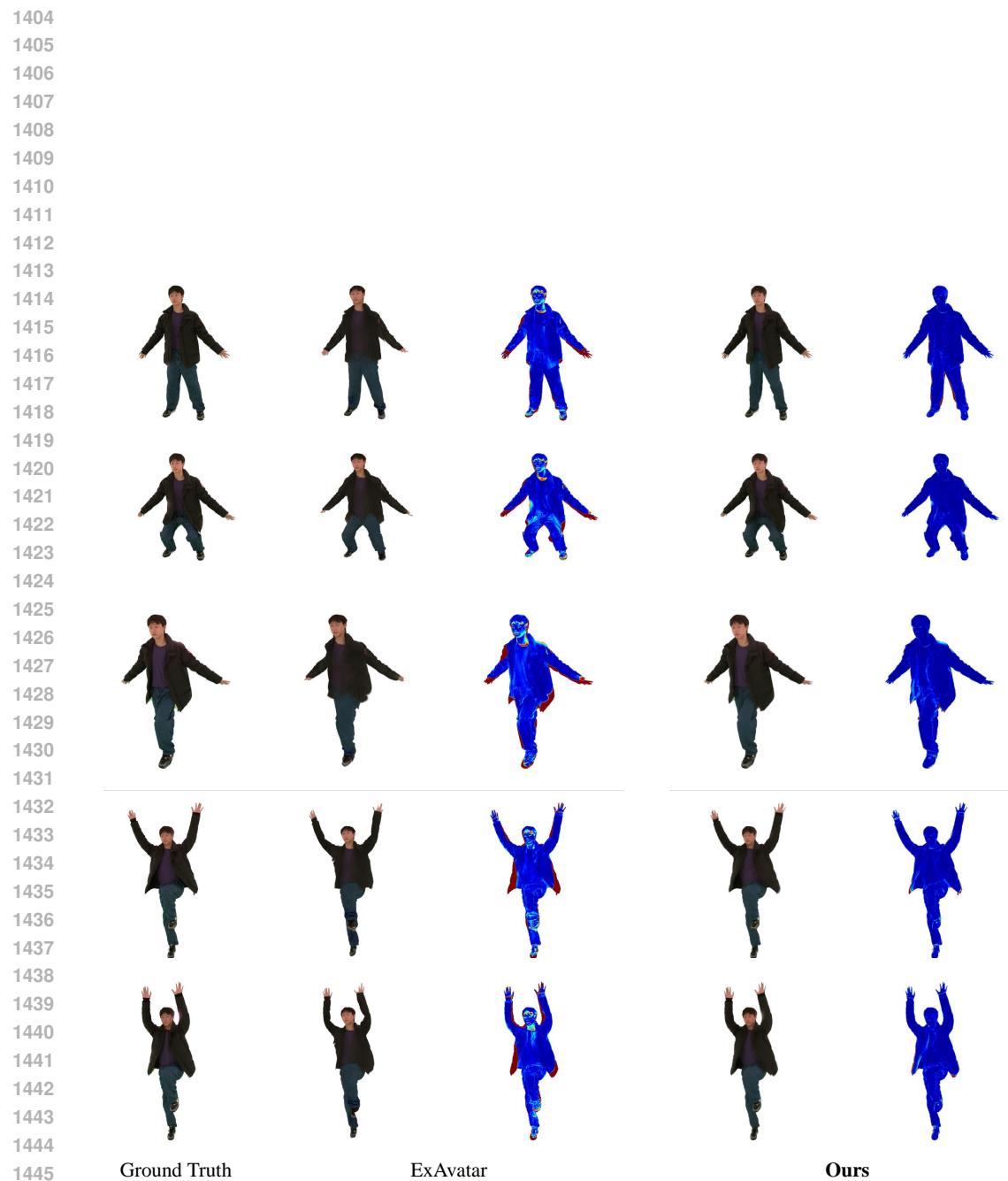


Figure L: Qualitative Results of 00169 subjects on 4D-Dress dataset, compared to Moon et al. (2024) with multiple motions across time axis.

Figure M: Qualitative Results of 00170 subjects on 4D-Dress dataset, compared to Lei et al. (2024) with multiple motions across time axis.

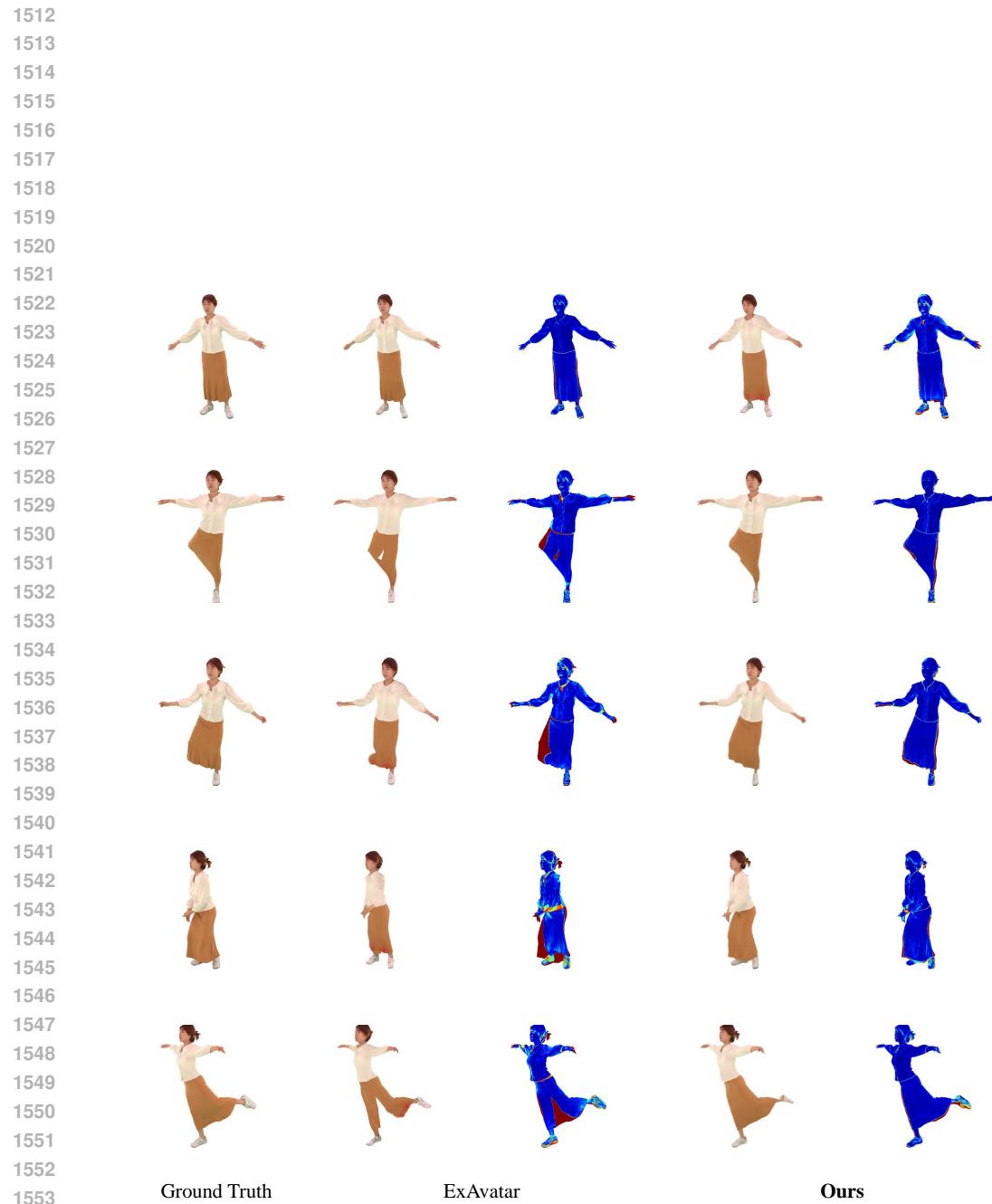


Figure N: Qualitative Results of 00185 subjects on 4D-Dress dataset, compared to Moon et al. (2024) with multiple motions across time axis.

Figure O: Qualitative Results of 00187 subjects on 4D-Dress dataset, compared to Hu et al. (2024a) with multiple motions across time axis.

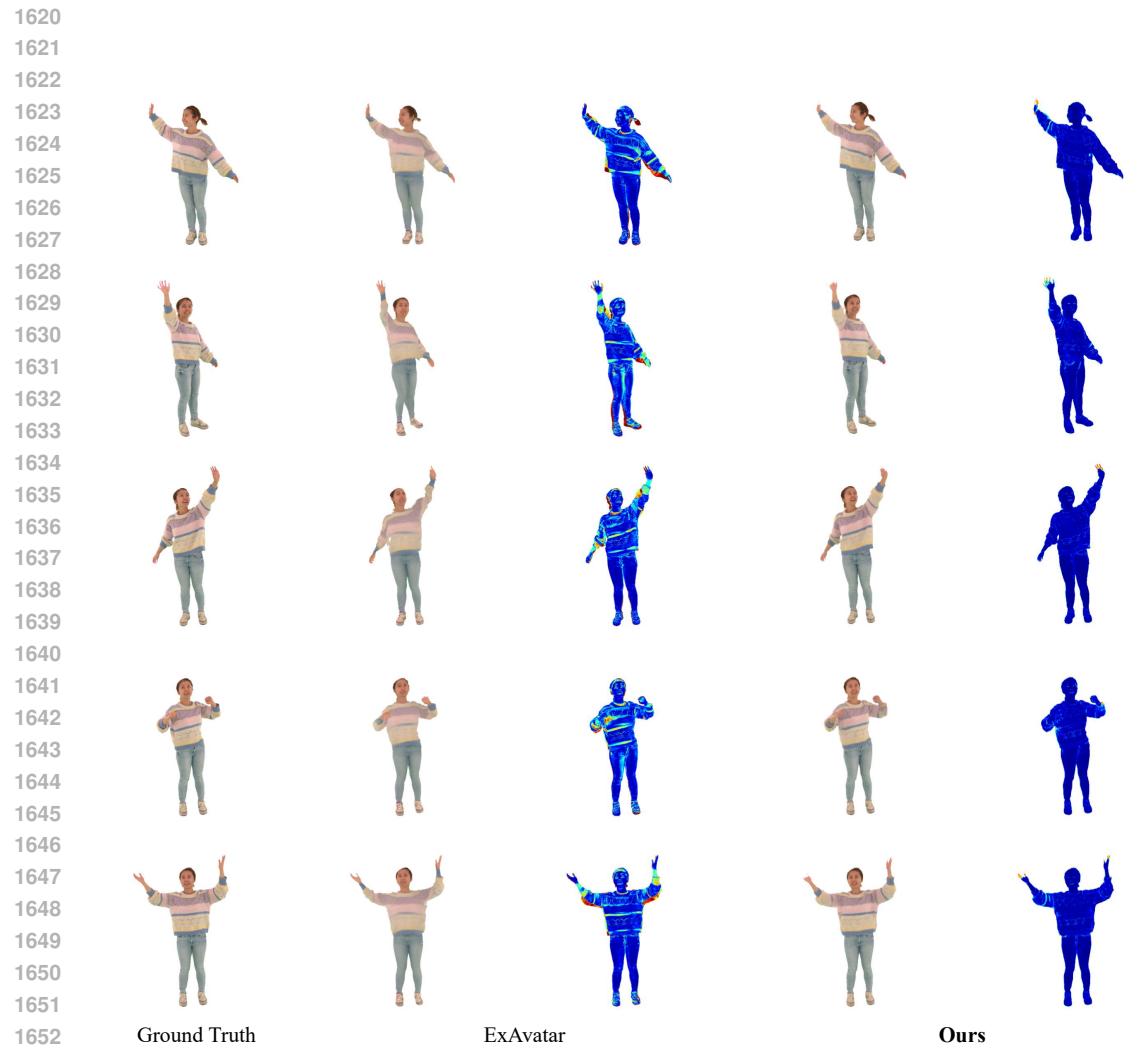


Figure P: Qualitative Results of 00190 subjects on 4D-Dress dataset, compared to Moon et al. (2024) with multiple motions across time axis.

1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673