Under review as a conference paper at ICLR 2026

DYNAMIC TEXTURE MODELING OF 3D CLOTHED
GAUSSIAN AVATARS FROM A SINGLE VIDEO

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in neural rendering, particularly 3D Gaussian Splatting (3DGS),
have enabled animatable 3D human avatars from single videos with efficient
rendering and high fidelity. However, current methods struggle with dynamic
appearances, especially in loose garments (e.g., skirts), causing unrealistic cloth
motion and needle artifacts. This paper introduces a novel approach to dynamic
appearance modeling for 3DGS-based avatars, focusing on loose clothing. We
identify two key challenges: (1) limited Gaussian deformation under pre-defined
template articulation, and (2) a mismatch between body-template assumptions
and the geometry of loose apparel. To address these issues, we propose a motion-
aware autoregressive structural deformation framework for Gaussians. We structure
Gaussians into an approximate graph and recursively predict structure-preserving
updates, yielding realistic, template-free cloth dynamics. Our framework enables
view-consistent and robust appearance modeling under the single-view constraint,
producing accurate foreground silhouettes and precise alignment of Gaussian
points with clothed shapes. To demonstrate the effectiveness of our method, we
introduce an in-the-wild dataset featuring subjects performing dynamic movements
in loose clothing, and extensive experiments validate that our approach significantly
outperforms existing 3DGS-based methods in modeling dynamic appearances from
single videos.

1 INTRODUCTION

Creating an animatable 3D avatar from a single video involves reconstructing a lifelike, controllable
representation of a person capable of replicating both primary motions (i.e., movements of major body
parts), and secondary motions (i.e., time-varying cloth dynamics). Achieving this capability is critical
for immersive experiences in fields such as virtual reality, telepresence, and interactive entertainment,
where realistic human representations significantly enhance user engagement (Sutherland et al.,
1965; [Lee et al.l [2024). With the advent of 3D Gaussian Splatting (3DGS) (Kerbl & et al.|[2023),
high-quality neural rendering becomes feasible, substantially improving avatar realism and efficiency
in synthesis from a monocular video.

However, existing 3DGS-based avatar methods (Lei et al., 2024; Hu et al., 2024a; Moon et al., [2024;
Qian et al., 2024b) predominantly excel at modeling primary motion but exhibit limitations in robustly
capturing secondary motion, as illustrated in Fig.[Th, where it shows the animation result of the 3D
Gaussian avatar in a novel pose exhibiting a dynamic posture unseen during training. This is due to
the fact that they rely on skeletal skinning of coarse meshes for animation (Loper et al., 2015), which
inherently lacks subtle deformation effects such as inertia-driven soft-tissue dynamics. Consequently,
it remains challenging to consistently reproduce these nuanced motions using neural networks alone.

There are two major challenges that hinder the secondary motion-aware dynamic appearance modeling
in creating an animatable 3DGS avatar from a single video: (1) temporal context-unaware Gaussian
deformation, and (2) cloth shape-agnostic Gaussian point initialization. First, existing methods
deform the Gaussians of a clothed avatar as a function of the current body pose, which is aligned with
the sampled images, to learn the appearance of a 3D Gaussian avatar. While this approach effectively
captures the primary motion of main body parts, it is limited in representing secondary motion in
garments such as dresses and skirts, which is strongly entangled with temporal continuity (Fig. [Ib).
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(a) Challenge: Appearance Modeling Including Secondary-Motion Dynamics.
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Figure 1: Conventional 3DGS-based avatars (Base) fail to model the dynamic appearance of subjects wearing
loose garments, particularly in scenarios involving secondary motion (Lei et al'} 2024} [Qian et al.} 2024b},
et al} 2024a; [Moon et all,2024). (a) Our method overcomes these limitations, enabling high-fidelity rendering
of Gaussian avatars exhibiting dynamic motion from a single video. (b) In contrast, conventional methods
define deformation through pre-specified articulation models such as linear blend skinning, which operate
independently on each frame without accounting for temporal context—often leading to motion error spikes
that indicate poor alignment with driving signals. (c) Furthermore, for initializing 3D Gaussians, they rely on a
parametric template model resembling a naked body, which struggles to generate Gaussians for clothing regions
deviating from the body surface, especially with loose-fitting garments.

Secondly, explicit representations based on 3D Gaussians are highly sensitive to the accuracy of
their initial point placement, as widely discussed in primary 3DGS studies (Yu et al.,2024; [Luiten
et all 2024). However, existing methods for creating 3DGS-based avatars from a single video (Lel
et al.| [2024}; [Hu et al.| 20244; Moon et al, 2024} [Qian et all, [2024b), rely on parametric template
models to initialize the shape of articulated subjects. These template models represent a naked body
shape, leading to significant discrepancies between the initialized points and the actual shape when
dealing with subjects wearing loose-fitting garments (Fig. [Ik). Therefore, a few Gaussians should
represent not only the body parts but also the appearance of the clothing, causing artifacts in novel
pose animations where the model has not observed similar poses during training.

In this paper, we present a novel framework for modeling dynamic appearances of loose-fitting
garments in 3D avatars, explicitly addressing the challenges posed by secondary motion. Central
to our approach is a Secondary Motion-Aware Gaussian Deformation (SMAD) module, which
constructs a velocity-encoded Gaussian graph over canonical Gaussians and autoregressively predicts
second-order Gaussian dynamics. This enables realistic modeling of fine-grained cloth motion while
preserving structural coherence during deformation. To achieve robust and view-consistent appearance
modeling from a single-view video, we employ a confidence-aware feature fusion mechanism that
aggregates multi-frame evidence and maintains silhouette fidelity throughout deformation. Finally,
we contribute a new in-the-wild video dataset featuring subjects in diverse garments undergoing
dynamic motion, filling the gap in benchmarks for evaluating secondary motion in animatable avatars.

Our contributions are summarized as follows:
* We propose a novel method for animatable 3D avatar generation based on 3DGS, which
enables dynamic appearance modeling of dressed avatars.

* We propose a secondary motion-aware Gaussian deformation, introducing a velocity-
encoded Gaussian graph representation that autoregressively estimates Gaussian dynamics.

» Extensive experiments demonstrate that our method outperforms existing methods on the
subjects wearing loose-fitting clothes with dynamic movement.
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2 RELATED WORK

Animatable 3D Avatars from Multi-view Videos. It has long been a major focus in vision
and graphics. Early systems (Stoll et al.l 2010} [Alldieck et al., 2018} Joo et al.| 2015} [Pons-Moll
et all, 2017} [Habermann et al., [2019) reconstructed actors in multi-view studios and animated
meshes via multi-view geometry and hand-crafted articulation designs. While these approaches
empower the controllability, it required substantial expert intervention. The shift to implicit neural
representations, especially neural radiance fields (Mildenhall et al.,[2021)), introduced photorealistic

neural avatars (Peng et al| [2021bfa; [Habermann & et al.l 2021; Zheng et al.| Shen et al.| 2023b
Li et all,[2023} [Zhu et al., 2024} Shen et al.,[2023a} Yin et al., [2023b} |Chen et al, 2024; [Saito et al.
2024)) and free-view synthesis (Kwon et al 2021} [Liu et all, 2021}, [[sik et al., 2023} [Kwon et al.

2024b)), though often with slow training and additional structural constraints for stable driving. The
3DGS (Kerbl & et al.} 2023)) further achieved efficient rendering with high fidelity (Li et al., 2024}
Zielonka et al.| 2025} [Zheng et al] [2024}; [Kwon et al] 2024a; [Lin et al 2024} [Zhan et al.| 2025},
Liao et al.l 2024). Yet, their high-fidelity performance fundamentally relies on dense, calibrated
multi-view supervision, geometry constraints, and explicit subject-specific ground-truth template
meshes. By contrast, our method is deliberately designed for the single-video setting, aiming to
create user-friendly animatable clothed avatars directly from casual monocular footage.

Animatable 3D Gaussian Avatars from Monocular Videos. Advances in neural rendering and
markerless motion-capture techniques have enabled the construction of user-friendly 3D avatars from
monocular videos. With these advancements, it has been to learn a neural implicit representation
defined in a continuous canonical space near a template mesh, and to deform this representation into
the observation space using predefined articulations driven by motion inputs (Su et al, Weng
et al, [Chen et al|, 2021} [Weng et al., 2022} [Wang et al., 2022} [Yu et al., 2023}, Jiang et al.
2023a:b). The advent of 3DGS has further accelerated photo-realistic modeling of 3d avatars; several
works attach Gaussian primitives to a skeletal model and learn pose-conditioned deformations from
monocular videos (Qian et al., 2024}, [Hu et al, Moon et al.} 2024} [Shao et al. 2024}
et al} 2024} [Hu et al.l [2024b} [Zhai et al., 2025} |Guo et al.} 2025)). However, existing methods assume
template (Loper et al.l 2015)-based initialization and its pre-defined articulation, which struggle to
capture subtle, temporally coherent non-rigid effects. We build upon other line, introducing two
key aspects: a template-free initialization that directly aligns the Gaussian primitives, eliminating
the need for naked-body templates; and a physics-inspired autoregressive deformation module that
predicts velocities and accelerations with finite difference method 2024), and captures
second-order dynamics through a velocity-encoded Gaussian graph.

Dynamic Clothed Human Modeling. Beyond primary motion driven by the main body move-
ment, several works have also considered secondary motion, such as cloth dynamics. One line of

works (Habermann et al,2020; [Habermann & et al.| 2021} [Habermann et al., 2021}, [Liao et al.} 2024}
Feng et al., [2022}; 2023}, [Guo et al.}[2023;[2024) reconstructs clothed surfaces using neural implicit

representations, but canonicalization with predefined articulation struggles with loose garments.
Another approaches combines non-rigid deformation with LBS and neural networks, yet requires
subject-specific ground-truth clothed meshes. A separate direction incorporates physics simulation
by numerically solving differential equations of the dynamic systems (Terzopoulos et al., [1987}
[Miiller et al.,[2007; [Macklin et al,[2016). However, they are computationally expensive and difficult
to parametrize; To alleviate this, several works (Pan et al.| 2022} [Santesteban et al., 2022; [Grigorev|
et al. [2023}; [2024) approximate dynamic systems with neural networks—e.g., augmenting models
with virtual bones or employing recurrent architectures to predict garment-deformation sequences, but
depend on high-level supervision such as 4D scans, cloth-body segmentation, and explicit colliders,
and operate only on polygonal meshes. Our work is different lines of this work; we aim to create
avatars represented as 3D Gaussian primitives and model its dynamics and appearances, given only
from monocular videos, without access to any 3D ground-truth or prior geometric knowledge.

3 METHOD

Given a monocular RGB video V = {I;}1_; capturing a human subject in motion, our goal is to
reconstruct a fully animatable 3D Gaussian avatar that faithfully models dynamic appearances of
loose-fitting clothed subjects. We adopt a dynamic set of 3D Gaussian primitives whose spatiotempo-
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Figure 2: To model secondary motions in 3DGS-based avatars, we introduce a two-stage framework: (1)
Personalized Gaussian Initialization using a deformable NeRF to estimate canonical Gaussians G, and (2)
Secondary Motion-Aware Deformation. G° are structured as a Gaussian graph I, processed by a GNN-based
autoregressive deformer, and decoded via U, into deformed Gaussians G¢. Motion descriptors derived from
SMPL poses © guide temporally coherent deformation. Then GS Renderer then synthesizes the final images.

ral properties evolve over time to capture complex non-rigid deformations, such as clothing dynamics.
Formally, we represent the avatar at time ¢ as a set of N deformed Gaussians:

g;‘ = {(Mt,zw Eumct,i,at,i)}fil, 1

where 1, ; € R3 is the 3D mean position, ¥ ; € R3*3 is the covariance matrix modeling spatial
extent and orientation, ¢; ; € R? denotes RGB color, and oy ; € R represents opacity. The number
of primitives N remains fixed across time, but their parameters are dynamically updated to reflect
conditioning motion, a set of SMPL poses © = {6;}7_,. We then obtain the animated rendering

video V = {I; = R(G)}L_, by projecting the deformed Gaussians through a differentiable splatting
renderer R. Fig[2]illustrate the overall process of the proposed method.

Baselines. We adopt a simple baseline that obtains dense canonical Gaussian primitives using a
4D NeRF (2021). Concretely, we train a deformable neural radiance field on the input
monocular video and map each observation-space point x; at time ¢ to a canonical space (reference
time). By querying color and density in the canonical space, we recover a dense canonical density
field that captures both body and loose clothing without relying on a parametric template.

After training, we extract canonical Gaussians by thresholding the time-averaged canonical density
o(x) = £ Y., 0(x,t) and clustering the surviving voxels to obtain Gaussian centers {u}, with
isotropic variances {X$ } and colors {c§}. This yields a dense set of canonical 3D Gaussian primitives
G° that serves as the person-specific Gaussian initialization (PGI) for subsequent stages.

3.1 VELOCITY-ENCODED GAUSSIAN GRAPH

To overcome the limited capability of representing secondary motions caused by reliance on linear
blend skinning of parametric template human models (Coper et all}, 2015} [Pavlakos et al., 2019), we
propose an autoregressive Gaussian deformation method that moves beyond the template model.
Furthermore, to ensure robust performance even when the number of Gaussians grows exponentially
and to alleviate computational complexity, we propose a graph-based deformation approach that
approximates Gaussian interactions.

Graph Construction. Given a set of N initial Gaussian points {1, 2, ..., iy }, we downsample the
Gaussian points to X € RM*3 (M < N) with voxel-grid downsampling (Rusu & Cousins, 2011);
these M nodes serve as the final Gaussian primitives used for rendering. We then construct a graph
I' = (X, A), where A € RM*M j5 adjacency matrix. It is constructed via k-Nearest Neighbors
(k-NN) by computing pairwise distances d(x;, x;) = ||x; — x;||2, Vx;,x; € X. Each element of




Under review as a conference paper at ICLR 2026

A;; is formulated as exp (fd(x’p’ifj))

, Where p, controls sensitivity to distances.

Velocity Encoding (VE). We build the node features H = {h;, ho, ..., hy,} at each node position x;.
Let us consider h; as a concatenation of the node position x; and its velocity v;(t) = W
at the time state ¢. Furthermore, to capture long-range dependencies, we buffer the past 7, memory
vectors as a set of v; = {v;(¢),v;(t — 1),...,v;(t — 7,)} To condition a set of body pose priors
Ot—7it = {04,011, ..., 0;_, } with time window 7, we additionally embed itto E = {eq, ez, ...,enr}
with MLP. At this end, the node feature h; is defined as h; = (x;, V;, e;).

3.2 SECONDARY MOTION-AWARE DEFORMATION (SMAD)

Our goal is to move beyond linear blend skinning (LBS) with parametric body models (Loper
et al., 2015) and learn an animatable 3DGS avatar that can faithfully reproduce secondary motions.
Motivated by deformation methods that generalize to unseen motions without relying on pre-defined
kinematic hierarchies (Zheng et al., 2021} |Grigorev et al.| 2023), we employ a graph neural network
(GNN) deformer that autoregressively predicts the non-rigid dynamics of human bodies—hence, of
Gaussian primitives.

Definition. We model each Gaussian node ¢ as a point mass g; whose motion follows a second-
order mass—spring—damper system (Gilmer et al., 2020; [Wang et al., [2020). Let x;(t) € R? and
v;(t) = x;(t) € R3 denote the position and velocity at time ¢. The dynamics are

ngt(t) =g %;(t) + 7% (t) + Zj kij <X7', (t) — X (t) — LE‘;St)7 2)

where X;(t) = a;(t) is acceleration, +; is a damping coefficient, k;; is the spring stiffness between
nodes i and j, LIS is their rest offset in canonical space, and F§*(¢) is an external driving force. We
treat k;; as a learnable parameter that is adaptively updated during training. This allows the model to
automatically disentangle rigid and non-rigid parts without any explicit supervision.

With a discrete step At, we apply explicit Euler integration:
1
ai(t) = - (F9(0) —vilt ka (1) = x(8) = L)), 3)

Vit + At) = v(t) + Atay(t), xi(t + Ab) = x;(t) + Atvi(t+ Ab). @

This second-order formulation naturally induces secondary motion (e.g., cloth flutter). In practice, we
let a message-passing GNN (Gilmer et al., 2020) learn these updates rather than prescribing forces
explicitly.

Architecture. The Gaussian graph deformer parameterizes the above updates with a message-
passing GNN. Each node i carries a feature h;(t) € R% obtained from Sec. At time ¢, node ¢
aggregates information from its neighbors using an adjacency A,;;(¢). With an MLP Mpy, we define
messages as

m;_,;(t) = Mo (h;(t), hj(t)) € R, m*( Z Aij () myi(1). ©)

Two update functions then produce the next-step node feature and physical state:
h(t + At) = Fp(hy(t), mj®(t)), (©6)
[x;(t + At), vi(t + At)] = Go([xi(t), vi(t)], mi*(t)), @)

where G serves as a neural surrogate for the mass—spring—damper updates in Eq. equation 2] After
L message-passing layers, we obtain updated positions and velocities for all nodes. Each node
corresponds to a deformed Gaussian gid, and we finally set

wi < x(t+ At), Ci, a;, B; + Dy (2, hi(t + At)), (®)

where z; € R% is a learned latent code and D, predicts color, opacity, and covariance for each
Gaussian.
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Training Objectives. ~After computing G4 = {G¢, 33, ..., G4 }, we render it via Gaussian Splatting-
based rasterizer R to ft = R(gf). We define a total SMAD loss term Lsmap as:

CSMAD = ACRGB + )\iso»ciso + Adampﬁdamp (9)

We mainly use the common L1 rgb photometric loss between rendered images and ground-truth
images, which is formulated as:

Lres = |R(GH — L], - (10)

It minimizes the pixel intensities of rendered Gaussians R(G{!) to the ground-truth images I;. In
addition, we utilize two regularization terms:

9 N T
»Ciso = Z <||XZ - Xj”? - ||L§;Sl||2) s 'Cdamp = ZZ ”Vl(t)H; : (1D

(i-j)€€ i=1 t=1

The isometry Loss L5, penalizes deviations in geodesic distance to preserve local surface area. It
prevents stretching or shrinking of garment regions; useful for preserving cloth realism during motion.
We set \iso = 0.1, where it emphasize length preservation. The damping Loss Lgamp regularizes
velocity magnitudes to reduce high-frequency vibration and dynamic instability. It reduces visual
fluttering or noise in motion, especially noticeable in fine cloth edges. We Agamp = 0.01, where it
avoids over-constraining dynamic details.

4 EXPERIMENTS

Dataset. ZJU-MoCap (Peng et al.| |2021a) is a primary benchmark for animatable 3D avatars.
Using HumanNeRF (Weng et al., 2022) split sequences, we report novel view synthesis results due to
limited pose diversity. To supplement the lack of motion variation and loose-fitting garments, we
additionally evaluate on two benchmarks. 4D-Dress (Wang et al.| 2024) firstly introduces real-world
4D human clothing dataset featuring dynamic cloth motions, designed to advance research in realistic
garment modeling and animation. We carefully selected five subjects, each wearing loose-fitting
clothing such as skirts or puffer jackets. We also introduce LoCo-Human, a new in-the-wild dataset
featuring five Loose-Clothed Humans performing 5 dynamic and 1 static motions per subject. The
static sequence is used for training, and the others for evaluating generalization in-the-wild scenarios.

Baselines & Evaluation Metrics. We compare our method with existing approaches on 3DGS-based
avatars from monocular videos. Given the extensive body of prior work in this domain, it is practically
infeasible to compare against all existing methods. Therefore, we specifically focus on publicly
available baseline methods (Lei et al.,[2024; |Hu et al.,[2024a; Qian et al.,|2024b; Moon et al., [2024)
that explicitly address dynamic appearance modeling. We evaluate the visual fidelity of the rendered
animatable avatars with widely used metrics: PSNR, SSIM, and LPIPS. PSNR and SSIM measure
pixel-level similarity and structural consistency with the ground-truth images, while LPIPS captures
perceptual quality based on deep feature distances. These metrics collectively assess both low-level
accuracy and high-level perceptual realism. To quantitatively assess both temporal consistency
and how faithfully the animated avatars follow the driving motion, we compute the motion error
(Kanazawa et al.,2019) between driving signal and motion estimated from the rendered animations.

4.1 RESULTS

We comprehensively compare our proposed method to state-of-the-art animatable 3D Gaussian avatar
methods on three datasets: the 4D-Dress, ZJU-Mocap, and our newly proposed LoCo-Human in-the-
wild dataset. We adopt standard metrics including PSNR, SSIM, and LPIPS to quantitatively measure
visual fidelity and perceptual quality of animated avatars in rendered images. We first evaluate the
ability to synthesize novel poses of dressed avatars on 4D-Dress. As presented in Tab. 1| (a), our
method outperforms baseline methods across all metrics, demonstrating superior reconstruction
quality. Qualitative comparisons (Fig. 3) further confirm our method’s capability to produce realistic
cloth dynamics, mitigating common artifacts such as unrealistic garment splitting observed in
baselines. Next, we formally compare our method on the widely-used ZJU-Mocap benchmark.
Following the conventional evaluation protocol, we quantitatively and qualitatively assess novel-view
synthesis quality (Tab.[T](b) & Fig.[3). Results indicate that our method consistently achieves superior
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Figure 3: Qualitative comparison of novel pose synthesis on 4D-Dress dataset. We compare our method to the
serveral 3D Gaussian Splatting-based Avatars (Lei et al.,|2024; [Hu et al.| 20244} |Qian et al.,|2024b; Moon et al.,
2024). For each subject, we present reference image, driving pose, rendered image and error map to ground-truth
image. Our method models robust dynamic appearances wearing loose-fitting clothes compared to the baselines.
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Figure 4: Qualitative comparison on the in-the-wild LoCo-Human dataset. Given the target driving poses,
we animate avatars wearing loose-fitting garments. Compared to ExAvatar (Moon et al.| [2024)), our method
better preserves cloth details and faithfully produces coherent motion under diverse poses. Insets highlight finer
garment structures, showing sharper textures and more realistic deformation.

performance compared to previous single-video avatar approaches, reflecting improvements in visual
sharpness and perceptual realism. In addition, we conduct extended evaluations on LoCo-Human,
an in-the-wild dataset to assess the generalization ability of our method in real-world scenarios. As
shown in Tab.[T](c), our approach consistently outperforms existing baselines across diverse subjects.
The qualitative results Fig. 4} further support these findings—demonstrating the robustness of our
method even in scenarios involving challenging clothing, complex motions, and various confounding
factors. These empirical results suggest that our deformation network, which mimics a second-order
dynamic system, better captures cloth dynamics compared to conventional deformation schemes
based on parametric template models. These extensive experiments validate that our approach
effectively addresses critical challenges associated with dynamic appearance modeling from single
monocular videos.

GT Ours 3DGS-Avatar GART HumanNeRF ARAH Instant-NVR

Figure 5: Qualitative comparison of novel view synthesis on ZJU-Mocap (Peng et al.|[2021a). Our method
yields view-consistent and artifact-free appearance modeling, even for repetitive motions in novel view synthesis
scenarios.
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(a) Novel Pose Synthesis on 4D-Dress Dataset

Method 00148 00170 00185 00187 00190
[PSNRt SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNR{ SSIMt LPIPS||PSNRt SSIM{ LPIPS||PSNRT SSIM{ LPIPS|
GART (Lei et al.|[2024} 20.86 0.9509 0.0661 | 23.52 0.9622 0.0413 | 26.84 0.9599 0.0488 | 25.81 0.9401 0.0592 | 29.01 0.9627 0.0375

Gaussian Avatar (Hu et al.|[2024a)| 20.91 0.9512 0.0657 | 24.12 0.9630 0.0356 | 26.62 0.9586 0.0500 | 24.96 0.9317 0.0684 | 26.44 0.9591 0.0512
3DGS-Avatar (Qian et al.{2024b} | 22.79 0.9560 0.0471 | 25.49 0.9636 0.0293 | 27.54 0.9595 0.0394 | 25.99 0.9398 0.0457 | 29.49 0.9616 0.0278

ExAvatar (Moon et al.]2024] 21.93 0.9536 0.0628 | 26.30 0.9657 0.0367 | 28.35 0.9618 0.0470 | 25.84 0.9403 0.0620 | 26.12 0.9586 0.0569
Ours | 2474 0.9601 0.0397 | 27.62 0.9700 0.0301 | 29.98 0.9673 0.0370 | 27.71 0.9548 0.0443 | 29.44 0.9635 0.0347
(b) Novel View Synthesis on ZJU-MoCap

Method 394 393 392 387 386

[PSNRT SSIM{ LPIPS||[PSNRT SSIM{ LPIPS||[PSNR1 SSIM{ LPIPS||PSNR{ SSIMt LPIPS||PSNR1 SSIMt LPIPS|

NeuralBody (Peng et al.|[2021a) | 29.10 0.9593 54.55 | 28.61 0.9590 59.05 | 30.10 0.9642 53.27 | 27.00 0.9518 59.47 | 30.54 0.9678 46.43
HumanNeRF (Weng et al.[2022) | 30.31 0.9642 32.89 | 28.31 0.9603 36.72 | 31.04 09705 32.12 | 28.18 0.9632 35.58 | 33.20 0.9752 28.99

MonoHuman (Yu et al.|[2023) 29.15 09595 38.08 | 27.64 0.9566 43.17 | 29.50 0.9635 39.45 | 27.93 0.9601 41.76 | 32.94 0.9695 36.04
ARAH (Wang et al.|[2022} 29.46 0.9632 40.76 | 28.77 0.9645 42.30 | 32.02 0.9742 3528 | 28.49 0.9656 40.43 | 33.50 0.9781 31.40
GART (Lei et al.|[2024) 29.92 09651 32.55 | 28.65 0.9620 35.55 | 31.36 0.9736 30.50 | 28.20 0.9644 34.43 | 33.48 0.9850 29.55
3DGS-Avatar (Qian et al.|[2024b) | 30.54 0.9661 31.21 | 28.88 0.9635 35.26 | 31.66 0.9730 30.14 | 28.33 0.9642 34.24 | 33.63 09773 25.77
Ours ‘ 30.89 0.9677 31.18 ‘ 29.48 0.9643 34.10 ‘ 3233 0.9754 2947 ‘ 28.86 0.9650 32.91 ‘ 33.86 0.9784 25.22
(¢) LoCo-Human (In-the-Wild)
Method So1 S02 S03 S04 S05

[PSNRt SSIM{ LPIPS||PSNR{ SSIM{ LPIPS||PSNR{ SSIMt LPIPS||PSNRt SSIM{ LPIPS||PSNRT SSIM{ LPIPS|

3DGS-Avatar (Qian et al.{2024b} | 23.15 0.9374 0.0567 | 24.21 0.9391 0.0579 | 23.74 0.9349 0.0594 | 22.87 0.9337 0.0618 | 22.59 0.9312 0.0632
ExAvatar (Moon et al.|[2024) 24.82 0.9478 0.0489 | 25.07 0.9483 0.0468 | 24.43 0.9465 0.0527 | 23.93 0.9442 0.0543 | 23.68 0.9426 0.0571

Ours ‘ 26.17 0.9576 0.0423‘ 26.44 0.9589 0.()409‘ 25.76 0.9554 0.0441‘ 25.38 0.9531 0.0467‘ 24.83 0.9517 0.0484

Table 1: Quantitative comparisons across (a) novel pose synthesis on 4D-Dress, (b) novel view synthesis on
ZJU-MoCap, and (c) generalization on LoCo-Human. We highlight the best (bold) and second-best (underline)
performance in each case.

4.2 ABLATION STUDY

Physics & Graph Design (PGD). We start from the base configuration of vanilla GNN with auto-
regressive deformation of predicting positions and velocities with finitie-difference method, without
any physically plausible regularization L;s, and Lgq4mp. Adding physics regularization (Al) yields a
clear gain of +0.84 PSNR, and —10.3% LPIPS. Introducing the spring stifness k;; coefficients as a
learnable parameter (A2), which adaptively distinguishes the rigid and non-rigid parts of subjects in
unsupervised setting, further improves the rendering quality under dynamic motions. The advanced
message-passing strategy for GNN with embedding edge features (A3) bring another boost of +0.68
PSNR, and —10.2% LPIPS. The full configuration with latent codes for time-varying dynamic
appearance finally achieves the best results, which is +2.68 PSNR and a 31.0% LPIPS reduction over
AQ, underscoring the complementary roles of physics constraints and graph design.

Velocity Encoding (VE). Encoding an autoregressive window of past velocities markedly improves
temporal fidelity. Performance rises monotonically from no VE (BO) to larger horizons, peaking at
7, =11 (B4), with a net +5.83 PSNR and a 40.3% LPIPS drop. Very short context (7, = 1) yields
limited gains, while overly long horizons saturate; 7, =11 strikes the best balance between temporal
context and feature efficiency.

SMAD Capacity (M ). Increasing the number of Gaussian graph nodes improves accuracy up to a
moderate resolution. Compared to the no-SMAD baseline (CO0), capacity scaling to M =40k (C4)
delivers +3.60 PSNR, +0.017 SSIM, and a 32.2% LPIPS reduction. Extremely small graphs (< 10k)
under-represent non-rigid dynamics, while very large ones (100k) underperform C4, suggesting
optimization and overfitting issues at excessive capacity.

Fig. [6] (left) shows that VE reduces motion spikes by 35.5%, with green frames showing stable
rendering and red frames showing flickering. Fig.[6](right) shows PGI improves detail beyond the
body, while SMAD removes skirt artifacts present in template-only results.

4.3 ANALYSES

Model Selection. To validate the effectiveness of our proposed design for SMAD module, we addi-
tionally conducted a controlled comparison against a carefully designed MLP-based autoregressive
deformer, following (Zheng et al.} 2021), and vanilla GNN. This baselines use the same inputs
(positions, encoded velocities) as our method, ensuring a fair comparison. Table ] shows that the
MLP deformer fits the training motion but degrades significantly on unseen motion, while the GNN-
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Physics & Graph Design (PGD) Velocity Encoding (VE) SMAD Capacity (M)
Method PSNR?T SSIMt LPIPS| Method PSNR?T SSIMT LPIPS| Method PSNR?T SSIM1 LPIPS|
A0: Base 2521 0952  0.058 BO: w/o VE 2206 0930 0.067 CO: w/o SMAD 2429 0946  0.059
Al: + phys. reg 2605 0956 0.052 Bl:71, =1 2341 0932 0060 Cl: M = 5k 2536 0950 0.053
A2: + adaptive k; ; 2644 0958 0.049 BTy, =7 2495 0944 0.053 C2: M = 10k 2647 0958 0.048
A3: + message-passing  27.12 0961  0.044 B3: 7, = 15 26.78 0958 0.045 C3: M = 100k 27.02 0962  0.045
A4: Full (Ours) 2789 0963 0.040 B4: 7, = 11 (Ours) 27.89 0963 0.040 C4: M = 40k (Ours) 27.89 0.963  0.040

Table 2: Ablation study on the effectiveness of our mainly proposed components. Three column blocks report
(Left) physics/graph design, (Middle) velocity encoding horizon (), (Right) SMAD capacity M.

w/oVE = —— Ours

Motion error

o PRMAAAAAIAU i

0 % 50 75 100 125 150 175 200 N
Time step Reference Image Full Model w/o PGI w/o PGI & SMAD

Figure 6: Ablation study on the visual effectiveness of (left) VE, (right) PGI, and SMAD. VE significantly
reduces the motion error by encouraging temporal consistent deformation. PGI contributes to capturing fine-
detailed clothing patterns, and SMAD sufficiently guarantees the robustness of clothing dynamics.

based deformers remains substantially more stable and accurate. This confirms that the graph-based
formulation provides stronger structural priors and better generalization for clothed-human deforma-
tion. We also observe that embedding features on edges through message passing yields additional
performance gains.

Generalization. Our auto-regressive deformation lever-
ages a sec.ond-prde.r state (¢, vt), Whe1.“e VGlOClths are Daw | PSNRT  SSIMT  LPIPS)
obtained via finite differences. This provides a physically

inoful moti tation that ali ith h | 00D | 2651 0956  0.049
meaningful motion representation that aligns with how rea Test 2789 0963  0.040
deformable systems evolve, enabling more stable extrap-
olation than pose-only models. Prior work in human and
f:loth dynarrllllcs mmﬂglr.ly sléows that e).(phClt velocity state; Table 3: Quantitative results on train/test,
Improve ro Ou,t stabi ltY' y 1ntegrat}ng over (:Ut,vt).an and out-of-distribution (OOD) motion se-
regularizing with damping and local-isometry constraints, —quences to evaluate generalization capability
our r.nodefl suppresses hlghtfrequency drift and'captures of our method (blue: p-val p > 0.05).
inertia-driven behavior, leading to robust generalization to
unseen motions. Table [3 further supports this observation.
It reports quantitative results on the 4D-Dress subjects across train, test, and out-of-distribution
(OOD) motion sequences. To assess whether performance differences across these distributions
are statistically significant, we conducted paired t-tests for each setting. No comparison yielded
a significant difference, indicating that our model maintains consistent performance regardless of
motion distribution. This empirical evidence reinforces that our approach generalizes reliably to
dynamic motions unseen during training.

Train | 28.64 0.984 0.037

Error Accumulation. It is well-known that auto-regressive models are prone to numerical error
accumulation over long sequences. To analyze and reflect on this point, we captured two types of
motion sequences, each lasting over 30 seconds: (a) a dynamic pose sequence, and (b) a repetitive
pose sequence. We evaluated our proposed method, and also conducted a comparative analysis
with and without our proposed velocity encoding scheme to evaluate its effectiveness. Our velocity
encoding scheme appears to mitigate this issue by incorporating a history of multiple past states,
rather than relying solely on the most recent estimate. This allows the model to remain robust even
when the immediate past prediction is noisy, reducing the risk of cumulative drift.

Training Cost. Our model requires an average of 12.5 hours for personalized Gaussian initialization
and 4.5 hours for training the secondary motion-aware deformation module, totaling approximately 17
hours on a single NVIDIA RTX 3090 GPU. Considering that existing state-of-the-art methods
typically require around 4 hours of training, our approach indeed incurs higher computa-
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Model ‘PSNRT SSIM1 LPIPS| |[PSNRT SSIMT LPIPS| Model PSNR? SSIM{ LPIPS||PSNRT SSIM LPIPS,,
Test Train (a) dynamic pose (b) repetitive pose

MLP 2546 0954 0.056 | 27.97 0973 0.044 w/o VE 2447 0949 0.050 | 24.69 0.950 0.049
vanilla GNN| 28.68 0.958 0.045 | 28.44 0.980 0.040 w/ VE (Ours)| 25.65 0.955 0.044 | 26.84 0.960 0.039
Ours | 27.89 0963 0.040 | 28.64 0.984 0.037

Table 5: Analyses of error accumulation ablating
Table 4: Quantitative results of difference design the velocity encoding (VE) strategy on two long
choices of SMAD on train/test distributions. sequences.

tional cost. However, we emphasize that, unlike prior methods whose limited model capacity yields
only marginal gains even with extended training, our formulation continues to deliver significant
performance improvements when trained longer (see Fig.[7). This suggests that our method possesses
a higher effective capacity and is well suited for high-fidelity dynamic appearance modeling in
personalized avatar reconstruction.

5 DISCUSSION

On the Importance of Gaussian Initialization. Accurate initialization is fun- ~ «,  Training Cost
damental for animatable 3D Gaussian avatars, especially when modeling o
loose-fitting clothing. Prior monocular methods rely on parametric template
bodies (Loper et al.} 2015} [Pavlakos et al [2019), assuming minimally clothed — £** /,;—o—'a
geometry. As seen in Fig. [I[c), this creates large mismatches between tem- ., </

plate surfaces and real garment volumes, causing undersampling, silhouette

distortion, and instability under unseen poses. Because Gaussians are explicit — ~ * i o™ *
point samples, such errors propagate into deformation and cannot be repaired

by skinning alone. Our personalized Gaussian initialization avoids these issues Figure 7: Analysis of
by estimating a clothed canonical field via deformable NeRF, producing a the training-cost trade-
subject-specific and geometry-faithful Gaussian distribution. This reduces the ~©ff compared to an ex-
deformation network’s burden, enabling it to focus on true non-rigid motion 15ting method.

rather than fixing incorrect geometry. Fig.[6]show that PGI improves clothing detail, reduces skirt-
splitting, and stabilizes secondary motion. Overall, initialization is not a preprocessing step but a
critical determinant of garment fidelity and temporal stability.

Template-free Deformation. Even with a faithful canonical geometry, deformation remains constrained
when tied to template-based articulation such as LBS. These methods define motion as a direct
function of skeletal pose, which fails for loose garments that do not follow body kinematics. As
visualized in Fig. [[{b), template-driven deformation creates motion-error spikes, flickering, and
cloth splitting because it lacks temporal awareness and restricts non-rigid behavior. Our SMAD
module departs from this paradigm by learning a template-free, autoregressive deformation field
on a velocity-encoded Gaussian graph. Instead of following a fixed hierarchy, Gaussians interact
through learned graph messages, enabling the model to infer how cloth regions co-move or lag
independently of the body. This grants expressive, pose-agnostic deformation capability and yields
coherent dynamics across diverse motions. Results in Table 2]and Fig. [f] show that removing template
constraints dramatically improves robustness, generalization, and overall clothing realism.

6 CONCLUSION

In this paper, we introduced a novel approach for dynamic appearance modeling of 3D Gaus-
sian Splatting-based avatars from a single video, focusing on loose-fitting clothing dynamics. We
addressed two main challenges: limited Gaussian deformation from template articulation, and mis-
alignment issues from Gaussian initialization relying on naked body templates. To resolve these,
we proposed an autoregressive Gaussian deformation strategy that predicts velocities for realistic
cloth dynamics, and a personalized Gaussian initialization using a deformable neural radiance field to
capture clothed silhouettes. Additionally, we provided a new in-the-wild dataset featuring subjects
performing dynamic movements in challenging clothing. Extensive evaluations confirmed our method
improves realism and outperforms existing approaches in both controlled and unconstrained settings.
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A NOTATION

We summarize the key notations used in main paper in Table[F]

Table F: Summary of Mathematical Notations in the Paper

#  Notation Dimension / Set Definition

1 Vv={L}, I, € REXWX3 Monocular RGB video with 7" frames

2 T N Number of video frames

30 G ={(pei, Doy ey o) Ny - Deformed Gaussians at time ¢

4 Number of Gaussian primitives

5 e R3 Mean position of the i-th Gaussian

6 Xy R3%3 Covariance (size & orientation)

7 e R3 RGB color

8 oy, R Opacity

9 o={0}L, SO(3)% SMPL joint pose sequence

10 R(") (R, %, a)N — RHXWX3 " Differentiable 3D Gaussian renderer

11 g° - Canonical (undeformed) Gaussian set

12 T=(X,A4) X € RM*x3 A ¢ RM*XM  Gaussian graph (nodes & adjacency)

13 R3 Node positions after voxel downsampling
14 [0,1] Edge weight (k-NN Gaussian kernel)

15 R* Distance-sensitivity bandwidth

16 R Node feature: position, velocity buffer, pose embed
17 R3 Instantaneous velocity

18 N Past-velocity buffer length

19 Rt Point mass for physics model
20 R3 Acceleration of node i
21 R+ Damping coefficient
22 R* Spring stiffness between nodes %, j
23 R3 Rest offset of the spring
24 R3 External force applied to node 4
25 R+ Simulation time-step
26 z; R4= Learnable latent code for Gaussian i

T

27 wip =exp {7%} (0,1] Confidence of k-th synthesized view
28  dio,di g S? Unit view-direction vectors
29 p Rt Temperature for confidence fall-off
30 fik Rés Pixel-aligned feature from view k&
31 (qe,05 ke, vek) R4 Query, key, value embeddings for attention
32 o [0,1] Attention weight for view k
33 5(z)=7 Zthl o(z,t) R Time-averaged density for Gaussian extraction
34 K RT Density threshold for voxel selection
35 Lmooths Lvends Lisos Ldaamp - Regularization losses
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B IMPLEMENTATION DETAILS

B.1 VELOCITY-ENCODED GAUSSIAN GRAPH

Voxel-grid downsampling (N — M ). Given a set of N initial Gaussian points, we introduce
autoregressively graph-based Gaussian deformation to transform the Gaussians without pre-defined
articulation to template parametric model for enhancing secondary motion dynamics. To avoid an
O(N?) neighbourhood search and to limit graph size for the GNN, we down-sample the Gaussian
cloud on an isotropic voxel grid:

1. Grid resolution. Let d,;,, denote the minimum distance below which two Gaussians would overlap
in the 3DGS renderer (e.g. the renderer’s splat radius at canonical scale). We choose the voxel
edge length as s = 2d iy, which empirically yields =10 Gaussians per occupied voxel.

2. Hash insertion. Every Gaussian is hashed into a voxel key. It retains the index with the smallest
per-voxel rendering error, measured on a 4 x subsampled depth map; all other Gaussians in that
voxel are discarded.

3. Representative pooling. For the surviving indices we conduct average pooling, giving a single
graph node. The total number of nodes is M = 40k, an order of magnitude smaller than N
without noticeable quality loss.

k-Nearest-Neighbour edge set. With the down-sampled node coordinates X = {x; }Jle (which

is different from the one defined in PGI), we build an undirected, symmetric k-NN graph: A =

{ (i,4) | xi € Topk(||x; — x;||2) }. We set k = 16, which is sufficiently dense to preserve local

manifold connectivity yet keeps the message-passing cost low.

B.2 SECONDARY MOTION-AWARE GAUSSIAN DEFORMATION

Architecture. Given the velocity-encoded Gaussian graph — = (X, A) (Table , SMAD
converts the current node state at animation step t into frame-specific Gaussian attribute deltas
{Api, AZ;, Ac;, Aa; } M, , through three conceptually simple stages. We present the architectural
details of our SMAD, as illustrated in Table [H]

Node projection (layer 0). Each node i consists of concatenated features h; = {x;, v;, e; }, where
embedding vector through MLP is obtained by driving pose sequences ©;_,.; = {6;,...,0;_-}. The
h; seeds the message-passing stage.

Three shared message-passing iterations (layers 1-9). At each iteration £ € {1,2,3} we construct an
edge feature vector for every directed pair (i, j) € A

ef; = [hh BT R — %Ki, v, — Vi, [R5 — X2, 1] € ROV
The shared edge-MLP Mg (layer 143(¢ — 1)) compresses ef; to a 128-D message m{; = My(ef;).

For every receiver node we perform mean aggregation over its k nearest neighbours: m{ =

% > JEN() mfj. The aggregated vector is fed, together with the previous hidden state hf_l, into a

GRU cell hf = Hy (mf, hf‘l). Because My and Hy share weights across iterations, the network
learns a recurrent, physics-inspired propagation of inertia without increasing parameter count.

Decoder Uy, (layers 10~15). After three iterations we obtain the refined latent representation h3 € R?56
for each node. A two-stage MLP (256—256— 128 with ReLU) acts as a shared decoder whose final
128-D activations feed four independent linear heads:

A[l/z', AVZ‘,AEZ', ACZ' = Uﬂ,(h?)

Here, Ap; is a 3-D position offset, Av; a 3-D velocity refinement that is re-queued into the velocity
ring buffer, AX; a log-diagonal covariance update, and Ac; € [0,1]3 a colour residual (sigmoid-
bounded). These deltas are added to the canonical attributes before the Gaussian splatting renderer is
invoked for the current frame.

SMAD therefore (i) embeds pose and recent motion into a compact latent space, (ii) injects neigh-
bourhood cues through three message-passing steps that emulate mass—spring—damper interactions,
and (iii) decodes temporally coherent, view-aware adjustments to every Gaussian’s geometry and
appearance.
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Layer | Operation | Input (dim) | Output (dim)
0 | Node projection (Linear — ReLU) | (Xi, Vi, €;) | 256
Message-Passing lteration 1-3 (shared weights)
H 1,47 | My edge-MLP edge features (519) 128
Layer ‘ Operatlon ‘ Input ‘ OL‘tPUt 2,5.8 | Message aggregation k%128 128
1-2 | FC + LN + ReLU {04,..,0:_2} | 256 369 | Ho (w3, hy) 256
3 FC + LN + ReLU + Sklp 256 256 Decoder Uy,: Gaussian attribute heads
p g 10 MLP-1 (Linear 256—256—ReLU) 256 256
4 Head (Llnedr) 256 128 11 MLP-2 (Linear 256—128—ReLU) 256 128
12 Ap head 128 3
i o . . 13 | Av head 128 3
Table G: Embedding MLP of driving motions into 14| AX head 128 3
15 Ac head + Sigmoid 128 3

Gaussian graph for SMAD.

Table H: Secondary Motion-Aware Deformation
(SMAD): main network & Gaussian decoder.

B.3 TRAINING

We adopted 2-stage training. Fristly, we train personalized Gaussian initialization as pre-stage,
where it locates initial Gaussians densely aligned onto the person-specific silhouette. Thereafter, we
train secondary motion-aware Gaussian deformation to auto-regressively transform the canonical
3D Gaussians that are aware of clothing dynamics. We used the Adam optimizer |Kingma & Ba
(2015) with an initial learning rate of 0.001, decaying by a factor of 0.5 if no improvement is made
in four consecutive epochs. We used PyTorch [Paszke et al.|(2019) for the backend processing. All
experiments were conducted on AMD Ryzen Threadripper PRO 5965WX CPU and an NVIDIA
GeForce RTX 3090 GPU.

C EXPERIMENTAL SETTING DETAILS

C.1 DATASET DESCRIPTION

Motivation. Existing datasets for evaluating animatable 3D avatars predominantly focus on subjects
wearing tight-fitting clothing and performing repetitive, often monotonous motions. Although the
recently proposed 4D-Dress dataset addresses some of these limitations by including diverse garment
types, it is still collected in a controlled laboratory setting and primarily designed for multi-view
capture evaluations. However, our ultimate goal is to democratize avatar generation—making it robust
and accessible to everyday users using only monocular inputs. To this end, it is essential to evaluate
performance under in-the-wild scenarios, where diverse factors such as occlusion, motion blur, and
uncontrolled lighting can affect avatar quality. We introduce a novel dataset LoCo-Human, featuring
(1) subjects wearing loose-fitting garments, (2) realistic clothing dynamics exhibiting secondary
motion, and (3) videos captured in the wild. This setting enables evaluation of avatar reconstruction
robustness under real-world conditions.

Dataset Statistics. Our dataset comprises five unique subjects, each recorded in a total of six
sequences: one static-motion sequence and five dynamic-motion sequences. For each subject, one
sequence captures a 360-degree rotation, while the remaining four sequences feature free-form
dynamic motion, performed without scripted guidelines. All subjects wear challenging garments,
such as long skirts and padded coats, designed to emphasize loose-fitting clothing dynamics. Fig.[H]
shows qualitative results on several samples from our dataset.

Capture Setup. All sequences were captured using standard smartphone devices. We provide 3
to 10-minute-long RGB video sequences for each subject, along with corresponding segmentation
masks, depth maps, and SMPL pose parameters. Segmentation masks were obtained using SAM
v2 Ravi et al.[(2024)), with optional manual refinement to ensure silhouette accuracy. For depth
information, we used smartphone depth cameras to obtain coarse estimates, which are further refined
using Metric3D|Yin et al.|(2023a). To extract driving pose parameters, we fit the SMPL model |[Loper
et al.|(2015) to each input monocular video, following the protocol described in Moon et al.| (2024)).

C.2 BASELINE METHODS

Our objective is to construct animatable 3D human avatars from a single video, faithfully reflecting
secondary motion, based on the 3D Gaussian Splatting representation. To validate the effectiveness
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of our method, we conduct a comparative analysis with existing 3DGS-based avatar approaches.
Given the rapid expansion of research in this domain, an exhaustive comparison with all prior works
is impractical. Therefore, we select a subset of publicly available methods, with particular emphasis
on those that explicitly address dynamic appearance modeling.

GART |Lei et al.| (2024). GART introduces the Gaussian Articulated Template (GART) model,
designed to reconstruct non-rigid articulated human subjects from monocular videos. To facilitate
challenging deformation, it employs a learnable forward skinning strategy via latent bones. However,
due to the lack of supervision on where to place novel bones and how to assign skinning weights
for each Gaussian, the method struggles to maintain structural consistency during deformation. This
often leads to a breakdown in kinematic coherence and introduces excessive degrees of freedom,
making stable animation difficult.

GaussianAvatar Hu et al.|(20244). GaussianAvatar proposes an efficient method for creating realistic
human avatars with dynamic 3D appearances from a single video. It utilizes UV positional maps to
encode pose-dependent features and integrates them with canonical surface geometry. However, its
pose representation is heavily reliant on parametric template priors. While effective for minimally
clothed humans, this reliance limits its generalization to clothed avatars whose geometry deviates
significantly from the template, especially in the case of skirts, which often exhibit unnatural splitting
between the legs under dynamic motion.

3DGS-Avatar|Qian et al.|(2024a). 3DGS-Avatar also presents a framework for creating animatable
human avatars from monocular video using 3D Gaussian primitives. It introduces a non-rigid
deformation network that learns per-Gaussian offsets to represent dynamic clothed avatars. However,
by assigning independent degrees of freedom to each Gaussian, the method neglects the underlying
structural coherence of the avatar. This leads to undesired needle-like artifacts, particularly under
dynamic motions.

ExAvatar|Moon et al.|(2024)). ExAvatar proposes a hybrid representation that combines a whole-body
parametric mesh with 3D Gaussian Splatting. By binding each Gaussian to corresponding mesh
vertices, the model ensures stable deformation under novel motions. Nevertheless, it exhibits weak
appearance modeling for clothed subjects wearing loose-fitting garments, such as coats or skirts,
which significantly deviate from the shape of the minimally clothed parametric template.

In summary, existing methods largely depend on shape and articulation priors from parametric
template models to synthesize and animate avatars. This reliance limits their ability to model (1)
loose-fitting clothed humans with geometry far from minimally clothed templates, and (2) realistic
deformation that preserves geometric structure while capturing clothing dynamics. Our approach
aims to overcome these limitations by introducing a template-free formulation tailored for secondary
motion-aware avatar modeling.

C.3 EVALUATION METRICS

We used PSNR, SSIM, LPIPS, and motion error as the primary evaluation metrics.

Peak Signal-to-Noise Ratio (PSNR). PSNR is a widely used metric for evaluating the reconstruction
quality of compressed or reconstructed images by comparing them to the original. It quantifies the
ratio between the maximum possible pixel value and the power of the distortion (error) introduced.
Given an original image [ and a rendered image I of animatable 3D Gaussian avatars, we first
compute the Mean Squared Error (MSE). Then the PSNR is defined as:

2 2
PSNR = 10 - log;, (1\/1535E) :

Structural Similarity Index Measure (SSIM). SSIM is a perceptual metric that quantifies image quality
degradation based on changes in structural information, taking into account human visual perception.
Unlike PSNR, it considers luminance, contrast, and structural similarity. Given two local image
patches x and y, SSIM is defined as:

(2 pty + C1)(204y + C2)

SSIM(zx,y) =
) = a2y (o2 + 02 1 G
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Reference Animation results of rendered 3D Gaussian avatars across time axis.

Figure H: Qualitative results on LoCo-Human consisting of the subjects wearing loose-fitting clothes with
dynamic motions.

where (fi., f1,,) are mean intensities, (07, 07) are variances, o, are covariance between x and y.

The final SSIM value is obtained by averaging local SSIM scores across the entire image.

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS is a perceptual metric that compares
images using deep features extracted from pretrained neural networks. It is designed to align closely
with human perceptual judgments by evaluating similarity in a learned feature space. Given two
images I and I, let f!(z) and f'(y) denote the normalized feature maps from layer [ of a pretrained
network ¢, with spatial dimensions H; x W; and channel dimension C;. Then LPIPS is defined as:

2
2

FhalD) = fh D)

H, W, )
1

LPIPS(I, 1) =Y w; - Hllwl 3>
l h=1w=

where w; are learned weights that reweight the contribution of each layer to better match human
perceptual similarity. We use deep features from [Simonyan & Zisserman| (2014)). For ZJU-Mocap,
following the convention of previous studies (Qian et al.| (2024a), we reported the LPIPS values
scaled by 102 in the main draft to make the performance differences with the baselines more clearly
distinguishable.

Motion Error. We additionally measured motion error to evaluate the temporally consistent animation
and fidelity to the driving motion of the generated avatars. Specifically, this is computed as the
acceleration error between the driving pose (used as the condition) and the corresponding pose of
the rendered Gaussian avatar, which is estimated in reverse using a pre-trained pose estimator [Li
(2022). To assess this, we measured acceleration error, presented in [Kanazawa et al.| (2019)
the acceleration error metric is used. It measures the average deviation between the estimated and
ground-truth joint accelerations across a temporal sequence. Given a sequence of 3D joint positions

{Xfoims € R3/}T_ |, the acceleration at time ¢ is approximated using the second-order finite difference:

t ot oot t—1 . . .
Aoints = Xjoints 2ijims + Kioints- The acceleration error is then computed as:
T-1
Motion Error = e Al ints — Aloins ||
1 - T_9 Ajoints — Hjoints 2
t=2

where & . and a’

ioints ioints denote the predicted and ground-truth joint accelerations, respectively.
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Method | Training Time Inference Time | Method |  Training Time Inference Time
ExAvatar | 3.0h 27 fps | Ours | 12.5h (1) +4.5h (2) 26 fps

Table I: Training (time: hours) and testing (fps: frames per second) cost comparison to template Pavlakos et al.
(2019)-based 3D Gaussian avatar[Moon et al.|(2024). Our training time consists of (1) personalized Gaussian
initialization module and (2) secondary motion-aware Gaussian deformation.

D ADDITIONAL ANALYSES AND DISCUSSIONS

D.1 HYPER-PARAMETER SEARCH

We ablated key hyperparameters: scaling factors of loss 0.0 Adamp Aiso
functions Agamp € {0.001—1.0}, and i, € {0.01-1.0} in 260 T
Fig.[ll The results show that Agamp = 0.01 and Aigo = 0.1 ¢ 54, T\* f i
performed best; Agamp = 1.0 sharply degraded results, im- § 20 |

plying excessive temporal smoothing, while isotropy gains 20

largely saturated past 0.1. Based on the results shown 200

in the figure, both Lis, and Lyamp help suppress exces- SRR QX ®e? O

sive deformation and promote stable optimization, though

they operate differently. i, preserves local isotropy, pre- Figure I: Hyper-parameter search on weight-
venting geometric distortions, and its increase leads to a  ing factor of loss functions Agamp and Aiso.
gradual improvement in PSNR. In contrast, Lgqmp miti-

gates excessive dynamic oscillations, yielding a more pronounced PSNR gain within an appropriate
range. Combined, the two terms jointly enforce structural fidelity and dynamic stability, achieving a
balanced improvement in both visual consistency and numerical robustness.

D.2 TIME EFFICIENCY

To evaluate the efficiency of our model, we measured the runtime of the proposed method from both
the training and testing (inference) perspectives. Tab. [[|presents the average time costs, computed
by measuring the runtimes for all subjects used in the experiments and reporting the mean values.
Compared to existing 3DGS-based avatar methods that rely on parametric template model priors,
our method consists of two stages. In the first stage, we train a network for personalized Gaussian
initialization, and in the second stage, we train a secondary motion-aware Gaussian deformation
network. On average, the first and second stages take 12.5 and 4.5 hours to train, respectively, which
is relatively longer than existing methods. Importantly, the network trained in the first stage is not
required during the inference phase. As a result, the inference-time cost is nearly equivalent to prior
methods and operates at a near real-time speed.

D.3 STATISTICAL SIGNIFICANCE

We conducted a two-sided paired ¢-test, conservatively setting p = 0.05 to relieve a multi-comparison
issue. The test was based on SSIM metric scores evaluated across the test sequences of all subjects
used for evaluation on 4D-Dress. We performed (1) statistical significance analysis against comparison
methods [Lei et al.| (2024); [Hu et al.| (2024a); |Qian et al.| (2024b); [Moon et al.| (2024)), and (2)
significance testing against ablated versions of our proposed main components. When compared
with 3DGS-based baseline methods, all resulting p-values were lower than 0.005, demonstrating
that our method achieves significantly improved performance despite the conservative threshold (see
Table[J). Furthermore, to assess the effectiveness of each major component proposed in this paper,
we performed two-sided paired ¢-tests between the full model and its ablated variants. As shown
in Table K] all components were found to be statistically significant, highlighting in particular the
effectiveness of our template-free Gaussian deformation module.
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Method | vs GART |Lei et al.|(2024) | vs GaussianAvatar|[Hu et al.|(2024a) | vs 3DGS-Avatar|Qian et al. |2024a) | vs ExAvatar[Moon et al.|(2024)
p-value | 5.6 x 1079 | 42x 1070 | 6.9x 1070 | 5.7x 1070

Table J: Statistical significance (p j 0.05). We performed a two-sided paired ¢-test against each baseline method
conservatively at p = 0.05 to relieve a multi-comparison issue. Our method exhibit statistical significance
compared to the baselines suggesting that our method have significant performance improvement.

Method | vsw/oVE | vsw/oSMAD |

p-value ‘ 3.3 x 1074 ‘ 1.7 x 107% ‘

Table K: Statistical significance (p j 0.05) to validate the mainly proposed components. We performed a
two-sided paired ¢-test against each baseline method conservatively at p = 0.05 to relieve a multi-comparison
issue. The proposed components exhibit statistical significance by suggesting that each components are effective
to create animatable 3D Gaussian avatars.

D.4 GENERALIZATION

We further evaluate the generalization performance. Fig. [J]shows the distribution of training poses
and test poses on a t-SNE plot, as well as the performance on the in-the-wild dataset. The blue
box indicates the distribution of the training dataset, and the orange box indicates that of the test
dataset. Even though the test dataset was unseen during training, our method demonstrates excellent
generalization performance. In Fig.[J] we plot how the perceptual error changes relative to the
motion similarity between the training and testing data, measured via normalized cross-correlation
(NCC) between the time-varying 3D conditional poses. We observe a more pronounced increase
in the error for Moon et al| (2024) as the testing frames deviate further from the training data.
Furthermore, while ExAvatar shows a large variation in standard error that increases as motion
similarity decreases, our method consistently maintains a low level of standard error. Since the
standard error is computed between the train and test motions, a lower value indicates less overfitting
and suggests better generalization performance. This suggests that our method exhibits robust
generalization performance on par with the linear skinning model of the conventional template
parametric model.

LPIPS vs Motion Similarity
—£ Exavatar
- Ours

LPPS x 109

£ f
(@) (b)

Figure J: (a) Visual check of in-distribution (blue) and out-of-distribution (orange) driving poses with t-sne
plot. (b) Average perceptual metric (LPIPS; Lower is better) with standard error plot of 4D-Dress over motion
similarity between train and test set. Our method (red) maintains consistent rendering performance even for test
motions with low similarity to the training motion—showing relatively less performance degradation compared
to high-similarity cases—whereas the baseline|Moon et al.| (2024)) (blue) exhibits a significant drop in perceptual
quality when handling test motions with low motion similarity.

E MORE RESULTS

We present additional qualitative comparison results in the remainder. Please refer to the Fig.[K] [
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F LIMITATIONS

First, our method struggles under dynamics that involve sudden and large motion changes. Although
we designed the system to account for temporal context using velocity encoding and auto-regressive
modeling, it still has difficulty predicting the emergence of node accelerations that lie outside
the training distribution. Second, our method does not model multi-garment interactions. The
current Gaussian graph is a single-layer structure that captures the overall clothed shape and ensures
deformations that preserve this global structure. However, it does not model interactions between
garments or predict their independent motions. In future work, we aim to address these limitations.
To tackle the first challenge, we could introduce a deformation model that considers bidirectional
temporal context. Alternatively, incorporating a generative flow matching technique that predicts a
bundle of vectors (a vector field) may offer a promising way to learn and represent the distribution
of complex motions. To address the second issue, we could consider constructing a hierarchical
Gaussian graph and introducing a graph neural network to model interactions between different
garments. However, achieving this would require highly accurate semantic segmentation between
garments. Currently, such segmentation remains difficult in the presence of diverse self-occlusions
and depth ambiguities from a single-view video. Therefore, enabling high-quality multi-garment
segmentation from a single video alone would itself be a highly challenging yet exciting direction for
future research in hierarchical Gaussian deformation modeling.

G BROADER IMPACTS

Potential Negative Societal Impacts. Our technology could be misused, leading to negative societal
consequences. One major risk is Deepfake-style impersonation: a realistic avatar of a person could
be created without consent and used to impersonate them, enabling misinformation or fraud. The
ability to replicate someone’s likeness from a single video also raises privacy concerns, as individuals
could have their image replicated and misused in unwanted ways, which can erode trust in digital
media. It could also impact creative industries: unauthorized digital replicas of actors might violate
intellectual property rights and undermine the entertainment industry’s economy, and a proliferation
of lifelike fake characters could confuse audiences and devalue genuine performances. These risks
underscore the need for ethical guidelines and safeguards to prevent malicious use of Al-driven avatar
technology.

Broader Impact. Our work offers positive implications for research, industry, and consumers.
Research Community: Our method introduces a new approach to animatable avatars using 3D
Gaussian Splatting, advancing neural rendering, and provides an in-the-wild dynamic clothing dataset
to spur further research on neural avatars and secondary motion modeling. Industry: The improved
realism and efficiency of our approach can benefit digital human applications in entertainment,
gaming, and virtual reality by enabling creators to produce lifelike characters with realistic cloth
dynamics from minimal input, allowing immersive real-time experiences. Consumers: More realistic
and animatable avatars mean more immersive virtual experiences for end-users. Users in VR and
gaming will be able to interact through avatars that mirror their appearance and clothing motion,
enhancing their sense of presence. By bridging real and virtual representations, our work enriches
virtual experiences.

Ethics Statement. This work makes use of both publicly available datasets (e.g., ZJU-MoCap,
4D-Dress) and a newly collected dataset, LoCo-Human, which contains in-the-wild monocular video
sequences of clothed human subjects. For all publicly available datasets, we adhere to their respective
license terms and usage conditions.

For LoCo-Human, all participants were recruited with explicit informed consent, covering video
recording, research use, and potential public release of the anonymized dataset. No minors or
vulnerable populations were included. Personally identifying metadata beyond facial and body
appearance was not collected, and access to raw recordings will be restricted. The dataset will be
released after peer review with a research-only license prohibiting redistribution and commercial use,
and with clear take-down procedures if requested by participants.

We acknowledge that technologies enabling high-fidelity 3D avatar reconstruction from monocular
videos may be misused for malicious purposes (e.g., impersonation, non-consensual content genera-
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tion). To mitigate such risks, we emphasize responsible use of the dataset and models, encourage
watermarking or detection mechanisms for synthetic outputs, and restrict the release of model weights
to verified research purposes only.

We also recognize the possibility of bias due to the limited diversity of clothing types, subjects, and
motions in LoCo-Human. We report dataset composition and limitations transparently and encourage
future work to expand demographic and cultural coverage for fairness and inclusivity.

No sensitive medical or financial information is used in this work. Institutional review board (IRB)
approval was not required, but ethical considerations regarding informed consent, privacy, and
responsible release were carefully followed.
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Ground Truth 3DGS-Avatar Ours

Figure K: Qualitative Results of 00148 subjects on 4D-Dress dataset, compared to (2024b) with
multiple motions across time axis.
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Ground Truth ExAvatar Ours

Figure L: Qualitative Results of 00169 subjects on 4D-Dress dataset, compared to|Moon et al.| (2024) with
multiple motions across time axis.
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Ground Truth GART Ours

Figure M: Qualitative Results of 00170 subjects on 4D-Dress dataset, compared to (2024) with
multiple motions across time axis.
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Figure N: Qualitative Results of 00185 subjects on 4D-Dress dataset, compared to (2024) with
multiple motions across time axis.
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Figure P: Qualitative Results of 00190 subjects on 4D-Dress dataset, compared to (2024) with
multiple motions across time axis.
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