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Abstract

Existing NLP datasets contain various biases,
and models tend to quickly learn those biases,
which in turn limits their robustness. Exist-
ing approaches to improve robustness against
dataset biases mostly focus on changing the
training objective so that models learn less
from biased examples. Besides, they mostly
focus on addressing a specific bias, and while
they improve the performance on adversar-
ial evaluation sets of the targeted bias, they
may bias the model in other ways, and there-
fore, hurt the overall robustness. In this pa-
per, we propose to augment the input sentences
in the training data with their corresponding
predicate-argument structures, which provide
a higher-level abstraction over different real-
izations of the same meaning and help the
model to recognize important parts of sen-
tences. We show that without targeting a
specific bias, our sentence augmentation im-
proves the robustness of transformer models
against multiple biases. In addition, we show
that models can still be vulnerable to the
lexical overlap bias, even when the training
data does not contain this bias, and that the
sentence augmentation also improves the ro-
bustness in this scenario. We will release
our adversarial datasets to evaluate bias in
such a scenario as well as our augmentation
scripts at https://github.com/UKPLab/

data-augmentation-for-robustness.

1 Introduction

Due to annotation artifacts, existing datasets con-
tain certain biases.1 Models often rely on these
biases to perform well on the corresponding eval-
uation set, which also includes similar biases (Gu-
rurangan et al., 2018; Poliak et al., 2018a; McCoy

1In this work, the term bias refers to the label bias as de-
fined by Shah et al. (2020), i.e., the conditional distribution of
the target label diverges at test time based on specific attributes
of the training data.

et al., 2019b; Gardner et al., 2020). As a result,
the model learns the spurious patterns in the data
instead of the intended phenomena of the dataset,
which in turn limits the robustness and makes mod-
els vulnerable against adversarial evaluations (Mc-
Coy et al., 2019b; Nie et al., 2019a). The adver-
sarial evaluation sets consist of counterexamples in
which relying on the bias results in incorrect pre-
dictions. Overcoming such biases is an important
challenge in developing robust NLP models.

The majority of existing works improve the ro-
bustness against a given bias by proposing new
methods or training paradigms (He et al., 2019;
Clark et al., 2019; Mahabadi and Henderson, 2019;
Utama et al., 2020a,b; Wu et al., 2020). The com-
mon component in such methods is a bias model
that is trained to detect training examples that can
be solved only using a bias. This information is
then used for ignoring or down-weighting biased
training examples (He et al., 2019; Clark et al.,
2019; Mahabadi and Henderson, 2019), or tun-
ing the confidence of the model on such examples
(Utama et al., 2020a). While these methods are
very effective in improving the robustness against
the targeted bias, they have two shortcomings:

• They mostly target a specific bias and dis-
courage the model from learning that bias.
However, they may bias the model in other
unwanted directions and therefore hurt the
overall robustness. 2

• They are only applicable to scenarios in which
the training examples contain the bias. How-
ever, as we show in this paper, a model can
still be vulnerable to a specific bias even if

2The concurrent work of Utama et al. (2020b) and Wu
et al. (2020) are the exceptions to this trend, in which they
address multiple biases together and show that their debiasing
methods improve the overall robustness.
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the training examples do not explicitly exhibit
that bias.

An alternative approach is to augment the train-
ing data with additional counterexamples for the
bias (McCoy et al., 2019b; Elkahky et al., 2018).
This may also result in overfitting to the augmented
counterexamples and hurting the overall robustness
(Nie et al., 2019a).

In this paper, we propose to augment exist-
ing training sentences with their corresponding
predicate-argument structures. The motivation of
using predicate-argument structures is to provide
a higher-level abstraction over different surface re-
alizations of the same underlying meaning. We
examine the impact of this linguistic augmentation
on pre-trained transformers, e.g., BERT (Devlin
et al., 2019a), which achieve state-of-the-art perfor-
mances on numerous NLP datasets. The addition
of predicate-argument structures to input sentences
helps the model to recognize and focus on more
important parts of sentences, and therefore, to learn
a different attention pattern.

The findings of this paper are as follows:

• We show that the model may still be vulner-
able to a specific bias even when training ex-
amples of the target task do not contain that
bias. We propose new adversarial sets for
evaluating the robustness of models in such
scenarios based on the SWAG dataset and the
lexical overlap bias. Lexical overlap is a com-
mon bias in various NLP datasets, e.g., natural
language inference (McCoy et al., 2019b), or
question answering (Jia and Liang, 2017a).
We show that the performance of pre-trained
transformers that are fine-tuned on the SWAG
dataset (Zellers et al., 2018) drop below a ran-
dom baseline on evaluation sets that contain
this bias.

• Our results show that without targeting a spe-
cific bias or adding additional training exam-
ples, the proposed sentence augmentation im-
proves the robustness of the model against
various types of biases. Besides, we show that
the sentence augmentation is effective in both
scenarios when the training data contains or
does not contain the bias. Our approach only
requires the augmentation for the training sen-
tences and does not require any changes to
the test data, and therefore, does not add any
additional cost at the test time.

• Our results emphasize the importance of eval-
uating the impact of debiasing methods on
more than one adversarial set and with more
than one base model.

2 Related Work

Debiasing Methods. Existing debiasing solu-
tions fall into one of these two categories: (1)
extending the training data with additional coun-
terexamples, and (2) proposing a new approach that
recognizes biased examples in the training data and
then using this knowledge during training (Utama
et al., 2020a; He et al., 2019; Clark et al., 2019; Ma-
habadi and Henderson, 2019; Utama et al., 2020b;
Wu et al., 2020).

The first type of solution is to identify the bias
and augment the training data with counterexam-
ples in which relying on the targeted bias results in
incorrect predictions. While augmenting the train-
ing data with counterexamples improves the results
on the targeted bias, it may hurt the overall robust-
ness (Nie et al., 2019a). As mentioned by Jha et al.
(2020), while augmentation with counterexamples
helps the model to unlearn the targeted bias, it is
unlikely that it encourages the model to rely on
more generalizable features of the data.

The approaches of the second category first use
a bias detection model for recognizing training ex-
amples that contain the bias. They then either (a)
train an ensemble of the bias model and a base
model so that the base model only learns from non-
biased examples (He et al., 2019; Clark et al., 2019;
Mahabadi and Henderson, 2019), (b) change the
importance of the biased training examples in the
training objective (Schuster et al., 2019; Mahabadi
and Henderson, 2019), or (c) change the confidence
of the model on biased examples (Utama et al.,
2020a).

The shortcoming of existing debiasing methods
is that they mostly model a single bias and only
evaluate the impact of the proposed method on
the adversarial evaluation set of the targeted bias.
Therefore, while they improve the performance
on the targeted adversarial sets, they may hurt the
overall robustness. The recent work of Utama et al.
(2020b) and Wu et al. (2020) are the exceptions
in which they show that their proposed debiasing
frameworks improve the overall robustness, and
hence the generalization across different datasets
in natural language understanding and question an-
swering, respectively. Utama et al. (2020b) propose



a new framework that automatically recognizes bi-
ased training examples and does not require pre-
defining bias types. Therefore, the recognized bi-
ased examples may contain various bias types. Wu
et al. (2020) propose a framework for modeling
multiple known biases concurrently. To do so, they
propose to combine two bias weights in the training
objective including (a) a dataset-level weight indi-
cating the strength of the bias in the datasets, and
(b) an example-level weight indicating the strength
of the bias in a training example. The common
finding in both works is that debiasing based on
multiple biases is a key factor in improving the
overall robustness.

Compared to existing debiasing methods:

• Our proposed approach does not include an
additional model to recognize biased exam-
ples or additional training examples. As we
show in Section 4.4, since it does not target
any specific bias, it improves the robustness
of the baseline model against multiple biases.

• Since it does not require recognizing biased
examples, it is applicable to improve robust-
ness against biases that do not exist in the
training examples.

Using Linguistic Structures for Neural Models.
The use of linguistic information in recent neural
models is not very common. The use of such in-
formation has been mainly investigated for tasks
in which there is a clear relation between the lin-
guistic features and the target task. For instance,
various neural models use syntactic information
for the task of semantic role labeling (SRL) (Roth
and Lapata, 2016; Marcheggiani and Titov, 2017;
Strubell et al., 2018; Swayamdipta et al., 2018),
which is closely related to syntactic relations, i.e.,
some arcs in the syntactic dependency tree can be
mirrored in semantic dependency relations.

Marcheggiani and Titov (2017) build a graph
representation from the input text using their cor-
responding dependency relations and use graph
convolutional networks (GCNs) to process the re-
sulting graph for SRL. They show that the incorpo-
ration of syntactic relations improves the in-domain
but decreases the out-of-domain performance.

Similarly, Cao et al. (2019) and Dhingra et al.
(2018) incorporate linguistic information, i.e.,
coreference relations, in their model and show im-
provements in in-domain evaluations.

Strubell et al. (2018) use linguistic information,
i.e., dependency parse, part-of-speech tags, and
predicates for SRL using a transformer-based en-
coder (Vaswani et al., 2017). They make use of
this linguistic information by (1) using multi-task
learning, and (2) supervising the neural attention of
the transformer model to predict syntactic depen-
dencies. They use gold syntax information during
training and predicted information during the test
time. Their model substantially improves both in-
domain and out-of-domain performance in SRL.
However, these results are then outperformed by a
simple BERT model without using any additional
linguistic information (Shi and Lin, 2019).

Moosavi and Strube (2018) examine the use of
various linguistic features, e.g., syntactic depen-
dency relations and gender and number informa-
tion, as additional input features to a neural coref-
erence resolver. They show that using informative
linguistic features substantially improves the gen-
eralization of the examined model.

In a similar direction, Moosavi et al. (2019) im-
prove the robustness by enhancing the input repre-
sentations. They did so by adding a set of simple
features to the input where the input is a pair of text
sequences and show that it improves generalization
across similar datasets and tasks.

All the above approaches require additional lin-
guistic information, e.g., syntax, both during the
training and the test time. Swayamdipta et al.
(2018), on the other hand, only make use of the
additional syntactic information during training.
They use multi-task learning by considering syntax
parsing as an auxiliary task and minimizing the
combination of the losses of the main and auxiliary
tasks. They use syntactic information for the tasks
of SRL and coreference resolution. They show that
this information slightly improves the in-domain
performance. In this work, we do not change the
loss function and only augment the input sentences
of the training data. The advantage of our solu-
tion is that it does not require any changes in the
model or its training objective. It can be applied to
all the transformer-based models without changing
the training procedure.

Using Predicate-Argument Structures.
Predicate-argument structures have been used
for improving the performance of downstream
tasks like machine translation (Liu and Gildea,
2010; Bazrafshan and Gildea, 2013), reading
comprehension (Berant et al., 2014; Wang et al.,



2015), and dialogue systems (Tur et al., 2005;
Chen et al., 2013). However, these approaches are
based on pre-neural models.

The proposed model by Marcheggiani et al.
(2018) for neural machine translation is a sample
neural model that incorporates predicate-argument
structures. Unlike this work, Marcheggiani et al.
(2018) incorporate these linguistic structures at
the model-level. They add two layers of semantic
GCNs on top of a standard encoder, e.g., convolu-
tional neural network or bidirectional LSTM. The
semantic structures are used for determining nodes
and edges in the GCNs. In this work, however, we
incorporate these structures at the input level, and
only for the training data. Therefore, we can use
the state-of-the-art models without any changes.

Overall, this work differs from the related work
because (1) it evaluates the use of predicate-
argument structures for improving the robustness
of transformer-based models on natural language
understanding tasks, and (2) it uses these structures
at the input level to extend raw inputs, (3) it only
employs this information during training, and (4)
it requires no changes in the model or the training
procedure.

3 Augmenting Input Sentences with
Predicate-argument Structures

We augment the raw text of each input sentence in
the training data with its corresponding predicate-
argument structures. We use the PropBank-style
semantic role labeling model of Shi and Lin (2019),
which has state-of-the-art results on the CoNLL-
2009 dataset. We specify the beginning of the aug-
mentation by the [PRD] special token that indi-
cates that the next tokens are the detected pred-
icate.3 We then specify the ARG0 and ARG1
arguments, if any, with [AG0] and [AG1] spe-
cial tokens, respectively. The end of the detected
predicate-argument structure is also specified by
the [PRE] special token. If more than one predi-
cate is detected for a sentence, we at most add the
first three detected predicate-argument structures.4

Figure 1 shows an example for an augmented sen-
tence.

3Special tokens are atomic, i.e., they are not split by the
tokenizer.

4In our preliminary experiments, we found out that this
setting works better than adding all of them.

Original: Someone takes the drink, then holds it.
Augmented: Someone takes the drink, then holds
it. [PRD] takes [AG0] Someone [AG1] the
drink [PRE] [PRD] holds [AG0] Someone
[AG1] it [PRE]

Figure 1: Augmenting the text of an input sentence
with its predicate-argument structures.

4 Impact of Sentence Augmentation on
Improving Robustness

In this section, we explain the datasets and models
that we use in our experiments, as well as the result
of the sentence augmentation compared to other
recent debiasing methods.

4.1 Training Data

As mentioned, we have evaluated the impact of the
proposed augmentation on two different settings:
(1) when the training data contains the investigated
biases, and (2) when training examples do not ex-
plicitly contain the bias.

Training Data with Biases (MultiNLI). For
evaluating the impact of data augmentation when
the training examples are biased, we use MultiNLI
(Williams et al., 2018) for training, which is the
largest available dataset for Natural Language Infer-
ence (NLI). Given a premise and a hypothesis, NLI
is the task of determining whether the hypothesis
is entailed, contradicts, or is neutral to the premise.

Various studies show that similar to many other
NLP datasets, MultiNLI contains various biases.
For instance, hypothesis sentences may contain
words that are highly associated with a target label,
regardless of the premise (Gururangan et al., 2018;
Poliak et al., 2018b). This bias is referred to as the
hypothesis-only bias. Another well-known bias in
MultiNLI is the lexical overlap bias, i.e., the label
of most premise-hypothesis pairs with overlapping
words is entailment.

Training Data without the Bias (SWAG). For
the second setting, we evaluate the impact of the
augmentation to improve the robustness against the
lexical overlap bias. Lexical overlap is a common
bias in various NLP datasets, e.g., NLI (McCoy
et al., 2019b), duplicate question detection (Zhang
et al., 2019), or question answering (Jia and Liang,
2017b).We use the SWAG dataset (Zellers et al.,
2018) as the training data.



Given a premise about a situation, the task of
the SWAG dataset, i.e., grounded commonsense
reasoning, is to reason about what is happening
and to predict what might come next. The task is
modeled as a multiple choice answer selection. For
instance, “The tutorial starts by showing each part
of the drum set up close” is a correct ending for the
premise “A man in a black polo shirt is sitting in
front of an electronic drum set”.

If we train the bias model of Clark et al. (2019)
for solving the task only based on lexical over-
lap features, it only achieves 26% accuracy on
SWAG, which is around the random baseline, while
it achieves 65% accuracy on MultiNLI.5 This indi-
cates that the examples in the SWAG dataset are not
affected by this bias. Please note that the SWAG
dataset may also contain various biases. However,
it does not contain the lexical overlap bias.

4.2 Evaluation Sets
In this section, we discuss the adversarial evalua-
tion sets that we use to evaluate the robustness of
the model. Apart from the adversarial sets, which
are the out-of-distribution evaluation sets com-
pared to the training data distribution, we also re-
port the performance on the corresponding devel-
opment set as the in-domain performance.

4.2.1 MultiNLI Evaluation Sets
We use the following adversarial sets for evaluating
models that are trained on MultiNLI:

MultiNLI Hard: Gururangan et al. (2018) intro-
duce a hard split for MultiNLI evaluation sets in
which models cannot predict the correct labels us-
ing the hypothesis-only bias.

HANS: McCoy et al. (2019b) create this dataset
for evaluating the lexical overlap bias. Sentence
pairs in HANS include various forms of lexical
overlap, namely lexical overlap, subsequence, and
constituent.

In the lexical overlap subset, all words of the
hypothesis appear in the premise. For instance,
“The doctor was paid by the actor” and “The doctor
paid the actor” sentence pair belong to this subset.

The subsequence subset contains hypotheses,
which are a contiguous subsequence of their cor-
responding premise. “The doctor near the actor
danced” and “The actor danced” are sample sen-
tence pairs from this subset.

5The details of this bias model is reported in the supple-
mentary materials.

Finally, in the constituent subset, hypotheses are
a complete subtree of the premise. For example, “If
the artist slept, the actor ran” and “The artist slept”
belong to this subset.

Stress Test: Naik et al. (2018) provide adversar-
ial evaluation sets based on weaknesses of state-
of-the-art NLI models. We use negation, word
overlap, and length mismatch sets from the stress
test, in which a tautology is added at the end of the
premise or hypothesis in MultiNLI.

• Negation: the tautology “and false is not true”
is added to the end of all the hypothesis sen-
tences in the MultiNLI development set for
creating this evaluation set. The presence
of the negation word “not” may confuse the
model to predict contradiction.

• Word Overlap: For creating this evaluation
set, Naik et al. (2018) append the tautology
“and true is true” to the end of all the hypoth-
esis sentences in the MultiNLI development
set.

• Length Mismatch: the tautology “and true is
true” is appended five times to the end of the
premise sentences in the MultiNLI develop-
ment set for creating this adversarial evalua-
tion set.

4.2.2 SWAG Evaluation Sets
We created three different adversarial datasets
based on the SWAG development set for evaluating
the lexical overlap bias. These datasets evaluate the
model’s understanding of (1) syntactic variations,
(2) antonym relations, and (3) named entities in the
presence of high lexical overlap.

The common property in all three evaluation sets
is a high lexical overlap between the sentence pairs.
In all these evaluation sets, one of the incorrect end-
ings is replaced with a new incorrect ending that
has a high lexical overlap with the premise. Since
the new incorrect endings are created automatically,
they may contain sentences that are not meaningful.
For instance, the syntactic variations subset con-
tains the incorrect endings “a key holds up some-
one” and “The last page flips to the writer” for the
“Someone holds up a key” and “The writer flips to
the last page” premises, respectively. Humans can
recognize such sentences are not meaningful, and
therefore, they are not a plausible ending for given
premises. However, as we will see, because of the



lexical overlap bias, the model mostly selects the
new incorrect endings.

Syntactic Variations: In this evaluation set, we
take premises that contain subject-verb-object
structures from the SWAG development set. We
then construct a new negative ending by swapping
the subject and object of the premise and replace
one of the existing negative endings with the new
one.6 This dataset includes 20K samples. It is
similar to a subset of the lexical overlap subset in
HANS, as well as the adversarial evaluation that is
explored by Nie et al. (2019b) for NLI.

Antonym Relations: In this test set, we create a
new negative ending by replacing the first verb of
the premise with its antonym. We use WordNet for
antonym relations. This adversarial setting is also
common in NLI, e.g., (Naik et al., 2018; Glockner
et al., 2018). As an example, “A lot of people are
standing on terraces in a big field and people is
walking in the entrance of a big stadium” is an
incorrect ending for the “A lot of people are sitting
on terraces in a big field and people is walking
in the entrance of a big stadium” premise in this
evaluation set. This set contains 7476 samples.

Named Entities: In this adversarial dataset, a
new incorrect ending is created by replacing one of
the named entities of the premise with an unrelated
named entity.7 For instance, based on the “The
reflection he sees is Harrison Ford as someone
Solo winking back at him” premise, we create “The
reflection he sees is Eve as someone Solo winking
back at him.” as the new incorrect ending. This test
set contains 190 samples.

4.3 Base Model
We use the Bert-base-uncased model (Devlin et al.,
2019b) as the base model.8 Bert-orig refers to the
results when the model is trained on the original
training data. Bert-aug represents the results when
the base model is trained on the augmented data.
The set of all parameters are the same in Bert-orig
and Bert-aug. Besides, the evaluation data is the
same for both Bert-orig and Bert-aug experiments,
and their only difference is their training data.

We compare our results with the confidence regu-
larization approach of Utama et al. (2020a) and the

6We use Stanford parser (Chen and Manning, 2014) for
detecting subjects and objects.

7We use the Stanford named entity recognizer (Finkel et al.,
2005) for determining the named entities.

8We use Huggingface Transformers (Wolf et al., 2019).

product-of-expert approach (He et al., 2019; Clark
et al., 2019). They both use Bert-base-uncased as
the base model.

CR(lex) and CR(hypo) refer to the confidence-
regularization method when it is debiased based
on the lexical overlap and hypothesis-only biases,
respectively. Similarly, POE(lex) and POE(hypo)
show the product-of-expert results based on the
lexical overlap and hypothesis-only biases, respec-
tively.

We use the same set of hyper-parameters9 for
all the models and report the average performance
using five different random seeds for all the re-
sults, i.e., Table 1-Table 4. As reported by McCoy
et al. (2019a) and Zhou et al. (2020), the perfor-
mance on the adversarial evaluation sets can highly
vary given different values of hyper-parameters.10

Therefore, to ensure a fair comparison, results on
adversarial sets should be reported using the same
parameters in out-of-distribution evaluations.

4.4 Results
Table 1 and Table 2 show the results of the exam-
ined models on all evaluation sets of MultiNLI and
SWAG datasets, respectively. MultiNLI and its cor-
responding adversarial evaluation sets, i.e., HARD
and Stress Test, contain two subsets, matched and
mismatched. Sentence pairs in the matched subsets
are from the same domain as those of the training
data while they are from different domains in the
mismatched subsets. We have reported the results
on the matched subsets in Table 1. The results on
the mismatched subsets are included in the supple-
mentary material, and they follow the same pattern.

The confidence regularization and product-of-
expert debiasing methods model a single bias at
a time and train a bias detection model to detect
training examples that can be solved by only using
biased features. Therefore, they are only applica-
ble when training examples contain the examined
bias, and they are not used for the experiments of
Table 2.

Based on the results of Table 1:

• The model that is debiased for a specific bias
has a higher accuracy on the corresponding
adversarial evaluation set, i.e., POE(lex) has
the highest average score on HANS. However,

9I.e., batch size=16, learning rate=2e-5, and the same set
of random seeds.

10E.g., The accuracy on the non-entailment examples in the
lexical overlap subset of HANS can vary between 6% to 54%
for the BERT-base model using different random seeds.



In-domain HANS Hard Stress Test
Model lex. subs. const. Negation Overlap Length

BERT-orig 84.2±0.3 62.9±7.8 52.1±0.9 56.0±1.4 75.3±0.6 55.5±0.6 59.5±1.1 81.3±0.3

CR(lex) 83.7±0.1 62.1±2.7 60.9±3.7 64.2±1.6 74.8±0.3 55.6±0.4 59.5±1.0 81.3±0.3
CR(hypo) 84.4±0.2 68.5±8.3 53.9±1.2 56.2±0.8 77.2±0.4 55.1±0.4 59.5±1.3 81.5±0.3
PoE(lex) 82.6±0.2 69.1±5.9 68.1±9.6 68.8±3.6 73.2±0.2 55.6±0.4 59.1±0.8 80.7±0.4
PoE(hypo) 83.3±0.4 66.6±7.3 53.1±1.2 58.8±2.3 77.8±0.7 55.2±0.5 59.7±0.8 80.5±0.3
BERT-aug 84.4±0.1 69.8±5.6 53.5±1.5 58.3±2.0 75.9±0.3 56.3±0.2 60.2±1.4 81.5±0.3

Table 1: Comparing the impact of the augmentation to the confidence regularization (CR) (Utama et al., 2020a),
and product-of-expert (POE) (He et al., 2019; Clark et al., 2019) methods debiased for the lexical overlap (lex) and
hypothesis-only (hypo) biases. E.g., CR(lex) is the confidence regularization method debiased based on lexical
overlap. All models are trained on MultiNLI with the same hyperparameters. Highest scored on each dataset are
boldfaced. Scores that are lower that BERT-orig are marked in gray.

Model Dev. Syntax Antonym NEs
BERT-base 81.1±0.1 27.7±0.9 18.3±1.7 7.9±1.1
BERT-aug 79.1±0.3 47.1±1.4 36.3±1.6 15.9±1.7

Table 2: Results on SWAG and it’s adversarial sets.

they can reduce the performance on the non-
targeted evaluation sets, e.g., POE(lex) results
are below the baseline on HARD and Stress
Test evaluation sets.

• The use of sentence augmentation results in
consistent improvements across the examined
evaluation sets.

Based on the results of Table 2, we see that while
BERT has very high accuracy on the SWAG devel-
opment set, its performance drops below a ran-
dom baseline on the lexical overlap adversarial sets.
This indicates that the model is biased towards se-
lecting the endings which have a high lexical over-
lap to the premise, while the training data does not
contain this bias. Besides, we see that augment-
ing the training data improves the accuracy on the
adversarial sets from 8-20 points.

An example of the attention pattern with and
without sentence augmentation Figure 2 shows
the difference of the BERT attention weights, us-
ing BertViz11 (Vig, 2019), on an example from the
HANS dataset. In this example, the premise and hy-
pothesis are “The senators supported the secretary
in front of the doctor.” and “The doctor supported
the senators.”, respectively.

For instance, for the predicate “supported” in
the hypothesis, the BERT model that is trained
on augmented data (bottom subfigure), has high
attention weights on “senators”, “supported”, and

11https://github.com/jessevig/bertviz

“secretary”, while for original the attention weights
of this predicate are more distributed. Similarly, for
the subject “doctor” in the hypothesis, augmented
mainly attends to the corresponding subject in the
premise, i.e., “senators”.

5 Are the improvements model-agnostic?

We also evaluate the impact of our augmentation on
other transformer models including XLNET (Yang
et al., 2019) and RoBERTa (Liu et al., 2019).

The differences of the examined transformer
models are as follows: BERT is jointly trained on
a masked language modeling task and a next sen-
tence prediction task. It is pre-trained on the Book-
Corpus and English Wikipedia. XLNET (Yang
et al., 2019) is trained with a permutation-based
language modeling objective for capturing bidirec-
tional contexts. The XLNet-base model is trained
with the same data as BERT-base. The RoBERTa
model (Liu et al., 2019) has the same architecture
as BERT. However, it is trained with dynamic mask-
ing and without the next sentence prediction task.
It is also trained using larger batch-size, vocabulary
size, and training data.

Table 3 and Table 4 present the results when the
models are trained on the original vs. augmented
MultiNLI and SWAG training data, respectively.

The results show that when the model itself is
relatively robust and has high performance on vari-
ous evaluation sets, which is the case for RoBERTa
trained on MultiNLI, augmenting the training data
will not have a positive impact. While several re-
cent debiasing methods are model-agnostic, e.g.,
(Utama et al., 2020a; Mahabadi and Henderson,
2019; Clark et al., 2019), they are evaluated using
only the BERT base model. This result indicates
the importance of evaluating model-agnostic meth-

https://github.com/jessevig/bertviz


Figure 2: BERT attention weights on an example from the HANS dataset based on original (top weights) and
augmented (bottom weights) training. Attention weights are visualized using BertViz (Vig, 2019). They highlight
the attention between the hypothesis and premise words and for the predicate-argument structures of the hypothesis.

In-domain HANS Hard Stress Test SNLI
Model lex. subs. const. Negation Overlap Length
XLNET-orig 86.6±0.1 70.2±1.3 53.6±0.9 66.5±2.2 79.4±0.8 57.6±1.2 62.7±0.7 84.0±0.4 80.9±0.1
XLNET-aug 86.1±0.3 71.5±1.1 55.4±1.2 66.6±4.7 79.0±0.6 60.6±1.5 67.5±4.1 84.1±0.1 80.7±0.3

RoBERTa-orig 87.5±0.1 83.3±2.3 64.6±1.0 68.1±3.3 80.6±0.1 57.3±0.4 65.5±1.8 85.0±0.2 84.0±0.1
RoBERTa-aug 87.3±0.2 82.1±1.7 61.8±0.8 66.3±3.5 80.3±0.2 57.2±0.5 63.7±1.2 85.0±0.1 83.8±0.4

Table 3: Impact of linguistic augmentation on the XLNET and RoBERTa models trained on MultiNLI. Accuracy
scores that are higher than the baseline are boldfaced.

Model Dev. Syntax Antonym NEs
XLNET-orig 80.2±0.2 37.0±1.6 25.4±1.7 17.1±2.8
XLNET-aug 77.8±0.3 63.3±1.1 50.5±1.2 36.7±3.8

RoBERTa-orig 83.7±0.2 49.1±2.4 31.7±2.0 24.1±1.3
RoBERTa-aug 82.0±0.3 60.9±1.1 47.7±1.3 38.6±4.0

Table 4: Impact of sentence augmentation on XLNET
and RoBERTa trained on SWAG.

ods on more than one model.

6 Conclusions

We propose a new approach for improving the ro-
bustness of transformer models by augmenting
the training sentences with their corresponding
predicate-argument structures. We show that with-
out targeting any specific bias, sentence augmenta-
tion improves the robustness against different types
of biases. Sentence augmentation is independent of
the underlying task and model and therefore applies

to different tasks and settings. The augmentation
only applies to the training examples, and therefore,
it does not add any additional complexity at the test
time. We evaluate the impact of the proposed aug-
mentation on the natural language inference and
grounded common sense reasoning tasks. How-
ever, this work opens new research directions on
improving robustness by using better linguistically-
informed input representations, rather than simply
using raw texts. To ensure improved robustness,
we encourage the community to evaluate their de-
biasing methods on (1) more than one evaluation
set, (2) in a wider setting in which the bias does
or does not exist in the training data, and (3) with
more than one base model.
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In-domain Hard Stress Test
Model Negation Overlap Length

BERT-base 84.7±0.2 77.1±0.2 56.1±0.7 59.1±0.6 82.3±0.3

CR (lex) 84.2±0.2 76.2±0.3 56.2±0.5 58.9±0.8 82.3±0.2
CR (hypo) 84.8±0.2 78.8±0.5 55.7±0.4 59.4±1.0 82.4±0.3
PoE (lex) 82.9±0.1 74.3±0.2 55.8±0.4 58.4±0.6 81.7±0.1
PoE (hypo) 83.7±0.4 79.1±0.6 55.6±0.5 59.3±0.9 81.4±0.5
BERT-aug 84.7±0.1 77.3±0.2 56.5±0.3 59.4±0.6 82.6±0.2

Table 5: Comparing the impact of the augmentation to the confidence regularization (CR) (Utama et al., 2020a),
and product-of-expert (POE) (He et al., 2019; Clark et al., 2019) methods debiased for the lexical overlap (lex) and
hypothesis-only (hypo) biases. E.g., CR(lex) is the confidence regularization. All the results are reported on the
mismatched subset of each evaluation set.

features including: (1) whether all the hypothesis
words exist in the premise, (2) whether the hypothe-
sis is a subsequence of the premise, (3) the fraction
of hypothesis words that also exist in the premise,
and (4) the max and the average of the cosine dis-
tances between the premise and hypothesis word
vectors. This model is used for detecting training
examples that can be solved using the lexical over-
lap bias.

B Results on the mismatched evaluation
sets

Table 5 presents the corresponding results of Ta-
ble 1 on the mismatched subsets.


