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Abstract
Application of artificial intelligence (AI) has been ubiquitous in the growth of
research in the areas of basic sciences. Frequent use of machine learning (ML)
and deep learning (DL) based methodologies by researchers has resulted in
significant advancements in the last decade. These techniques led to notable
performance enhancements in different tasks such as protein structure prediction,
drug-target binding affinity prediction, and molecular property prediction. In
material science literature, it is well-known that crystalline materials exhibit topo-
logical structures. Such topological structures may be represented as graphs and
utilization of graph neural network (GNN) based approaches could help encoding
them into an augmented representation space. Primarily, such frameworks adopt
supervised learning techniques targeted towards downstream property prediction
tasks on the basis of electronic properties (formation energy, bandgap, total
energy, etc.) and crystalline structures. Generally, such type of frameworks rely
highly on the handcrafted atom feature representations along with the structural
representations. In this paper, we propose an unsupervised framework namely,
CrysAtom, using untagged crystal data to generate dense vector representation of
atoms, which can be utilized in existing GNN-based property predictor models
to accurately predict important properties of crystals. Empirical results show that
our dense representation embeds chemical properties of atoms and enhance the
performance of the baseline property predictor models significantly.

1 Introduction
In recent years, there has been a significant surge in applying machine learning (ML) algorithms across
various disciplines, including material science and chemistry, where ML advancements are leveraged
to address domain-specific challenges [1–4], such as property prediction, molecule generation, and
discovery of key descriptors for CO2 activation [5, 6]. Despite the reliance on density functional
theory (DFT) simulations in early material science works [7], their resource-intensive nature prompted
a shift towards ML-based strategies to replace high-latency computational processes with efficient
approximations [8, 9]. ML techniques depend on handcrafted features, whereas deep learning
algorithms learn feature representations, mitigating the need for domain-expert intervention [7]. In
material science, crystal structures play a significant role for most of the downstream tasks [5]. Since
the majority of the crystals are available in nature as three-dimensional (3D) structures, they are
initially transformed into graphs by preserving their periodic invariance [5]. Such graphs are used
in graph neural network based frameworks for solving different downstream property prediction
tasks [5, 10–12].
For the downstream tasks, atoms are commonly initialized using a one-hot sparse representation,
leading to suboptimal performance [9, 13]. In contrast, distributed representations encapsulate richer
semantic and structural information [14, 15]. Atom2Vec [13] proposed a singular value decomposition
(SVD) based distributed atom vector representation using handcrafted feature vectors, requiring
domain knowledge. To alleviate this problem, SkipAtom [9] introduced a skip-gram [15] based
dense representation of the atoms by learning the required feature representation from the dataset.
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However, neither consider structural representation of the crystal materials, that can be harnessed
by neural network-based models for improving dense representations. To mitigate this challenge,
we investigate the feasibility of utilizing the graph structure information into the neural network
framework towards generating distributed atom vector representations. On this note, we propose a
novel auto-encoder-decoder based framework, namely Crystal Atom Vector Extractor (CrysAtom),
to learn distributed representations of molecular atoms (shown in Figure 1i) by introducing a fusion
mechanism by combining Self-Supervised Learning (SSL) and Unsupervised Learning (UL)-based
techniques. The key distinction of our approach from existing work [16] lies in the adoption of
a novel fusion mechanism, characterized by a generalized SSL loss for pretraining task. Unlike
previous methods, our SSL techniques are uniquely generalized, requiring no external information
such as space groups. Furthermore, we utilize our proposed distributed vector representation for
different downstream property prediction tasks and analyze its performance.
Our Contributions: To the best of our knowledge, we are the first to investigate the feasibility
of applying an auto-encoder-decoder based graph neural network approach to obtain a domain-
independent generic distributed representation of atoms. We assess the quality of our distributed
representation by comparing it with other existing state-of-the-art (SOTA) representations of atoms
(Atom2Vec and SkipAtom) in multiple property prediction tasks. We use two popular benchmark
materials datasets to show that our distributed representation of atoms obtained from CrysAtom
helps gain substantial improvement in performance for several property predictor models (CGCNN,
ALIGNN, etc) over their vanilla (from 5.21% to 21.92%), distilled and fine-tuned versions. Moreover,
the property-tagged dataset suffers from error bias, as it is theoretically derived from DFT. We
successfully mitigate this issue using a small set of experimental data in the training setup.

2 Related Works
In recent times, data-driven approach specifically the graph neural network based frameworks [5, 17,
18] played a crucial role to conduct the property prediction task by utilizing the topological structures
of the crystal materials. Earlier studies [5, 10, 19–21] did not comprise of the periodic invariance
properties. Later, Matformer [11], applied a periodic graph transformer based framework by em-
ploying both periodic invariance and periodic pattern encoding strategy. Similarly, PotNet [12] used
interatomic potentials for the property prediction tasks. Recently, M3GNet [22], and CHGNet [23]
introduced universal interatomic potentials into their architecture to capture complex structure of
crystal materials. In a few previous works [24–26] atomistic simulations have been used to predict
crystal materials properties. Additionally, there are several works which employed UL [7, 16] and
SSL [27, 28] strategies to apply the pretraining task followed by task-specific finetuning. All prior
works used sparse one-hot representations for node features. We propose a novel CrysAtom frame-
work that generates distributed atom vector representations by incorporating graph structure into the
encoder and introducing a generalized unsupervised contrastive loss, requiring no external informa-
tion like space groups, as described by Das et.al. [16]. Also, there are several algorithms [23, 29]
which use pre-train and finetune techniques. Recently, Gupta et.al. [30] proposed a transfer learning
based method to predict the property of crystals by creating atom and angle based features. However,
they did not generate generalized dense vector representation of atoms. In their method, atom features
are generated by training on a property (formation energy) tagged data and thus their dense vector is
biased towards formation energy property.

3 Methodology
This section commences by outlining the general idea of our proposed neural framework, namely
CrysAtom2, for generating dense vector representation of chemical atoms. Subsequently, a detailed
discussion about the different components of our proposed framework follows. An overview of our
proposed CrysAtom framework has been shown in Figure 1ii. Table 5 summarizes important terms
and corresponding notations used in this work, which is present in Appendix.
3.1 CrysAtom
In this work, we propose a novel encoder-decoder based neural framework, CrysAtom, to generate
dense vector representations of the chemical atoms, which can be used to enhance the performance of
SOTA downstream neural property predictor models present in the literature of material science [5, 7,
11, 16]. To generate the dense vector representation, we first consider a collection of untagged crystal
graphs Dut = {Gi} collected from the well-known materials database, which serves as input to our
proposed CrysAtom model (fθ). Similar to some of the state-of-the-art methods, popularly known for
generating dense vector representations of atoms, such as SkipAtom and Atom2Vec, we use untagged

2Our source code is available at https://github.com/shrimonmuke0202/CrysAtom
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Figure 1: (i) Workflow showing the downstream property prediction tasks with the (a) application of the
distributed vector representation obtained from CrysAtom framework, and (b) application of sparse atom vector
representation. (ii) Schematic diagram illustrating the architecture of our proposed framework, CrysAtom,
highlighting the key components. The diagram encapsulates the novel mechanisms underlying CrysAtom’s
functionality.
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Figure 2: (i) This illustration showcases a periodic crystal structure, featuring a point cloud of atoms arranged
in repeating patterns. The image includes a magnified view of a unit cell, clearly delineating the lattice vectors
(L = [l1, l2, l3]), highlighting the fundamental building blocks of the crystal’s geometric arrangement. (ii)
Illustration of the multigraph representation of a crystal. We use blue arrows, l1 and l2, for the a crystal structure
in 2D. We use circles of different colors to represent different atoms and green lines to denote periodic boundaries.
We use Ni as the neighborhood set of node i, and use yellow and blue arrows to specify the captured atomic
interactions from the multigraph of the given crystal. (a) A crystal structure with periodic patterns l1 and l2 is
shown in 2D. (b) Atomic interactions between the yellow nodes j and the center red node i, captured by the
multigraph of the crystal. (c) The corresponding multigraph. All the periodic duplicates of j in the crystal are
mapped to a single node j in the multigraph.

data for generating dense vectors with better generalization capabilities. Subsequently, it generates
the dense vector representation of the chemical atoms by learning the intrinsic structural and chemical
patterns from the input representation of the crystal graphs. Additionally, to establish the effectiveness
of the vector representations generated by CrysAtom, we conduct extensive theoretical and empirical
analysis. For empirical analysis, we consider chemical property prediction, which is an important
and challenging task in material science literature [7, 16].
Crystal Graph Representation. As proposed by Xie et. al. [5], we use crystal graph structures
D = {Gi = (Vi, Ei, χi, Fi)} to represent crystalline materials. A crystal lattice is formed by
repeating a unit cell in all three dimensions as shown in Figure 2i. Gi is an undirected weighted
multigraph that represents unit cell of the crystal structure. Vi denotes a set of nodes (atoms) present
in the unit cell and Ei = {(u, v, nuv)} denotes a set of triples, where each triple consists of three
entries - a pair of nodes and the number of edges between them. It signifies that v is an atom that
appears nuv times in the nearby cells around u. The nearby cells are defined as the cells that are
within a distance of radius r from u. Therefore, r is a hyper-parameter for this model and the set of
nearby cells may be expressed as,

Nr(u) = {v ∈ Vi | dist(u, v) ≤ r},

where Vi is the set of atoms present in the crystal graph Gi of crystal i and Nr(u) is the set of
nearby cells for u given r. In the later part of the paper, we have often used the terms nodes and
atoms interchangeably. The pictorial representation of creating multigraph from crystal structure
has been shown in Figure 2ii. χi represents node features i.e., features which comprehensively
represent the chemical properties of an atom, such as atomic volume, electron affinity, etc. Finally,
Fi represents a collection of edge weights between a pair of atoms in a crystal graph. In other words,
Fi = {{sn}(u,v) | (u, v) ∈ Ei} is a set that represents a collection of bond length values between
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each pair of nodes (u, v) that are connected by an edge in Ei. The bond length is denoted as sn,
where s is the length of one bond and n is the number of bonds (hence, the number of edges) between
u and v. We consider bond length as a measure of distance from one atom to other atoms in close
proximity. In the next section, we explain our proposed methodology for generating dense vector
representation of atoms and subsequently analyze its effectiveness in property predictor models.

3.2 Atom vector formation
In this part, we discuss the architecture of the proposed CrysAtom model, as shown Figure 1ii. It
consists of an auto-encoder with an SSL framework that leverages the correlations in the input to
learn robust and generalizable dense vector representation of atoms.
Encoder. We develop our auto-encoder module by employing crystal graph convolutional neural
network (CGCNN) [5]. We utilize CGCNN to encode the chemical and structural information of
a crystal graph G. It encodes information of the l-hop neighborhood for each node by applying
following equations:

zl−1
(u,v)n

= xl−1
u ⊕ xl−1

v ⊕ sn(u,v) (1)

xl
u = xl−1

u +
∑
v,n

σ(zl−1
(u,v)n

Θl−1
c + bl−1

c )⊙ g(zl−1
(u,v)n

Θl−1
s + bl−1

s )

where, l is the number of CGCNN layers, xl−1u denotes the embedding of node u by aggregating
the l − 1 hop neighborhood information. The embedding of node u is initialized to a transformed
node feature vector, i.e., it is a function of the atom u’s chemical features such as x0

u = χuΘχ where
Θχ is the list of trainable parameters of the transformation network and χu is the input node feature
vector. sn(u,v) ∈ Fu represents the overall bond length between atoms u and v. The operator ⊕
denotes concatenation and ⊙ denotes element-wise multiplication. Here, Θl−1c , Θl−1s , bl−1c , bl−1s are
the convolution matrix, self-weight matrix, convolution bias, self-bias of (l − 1)th layer convolution,
respectively. σ is a nonlinear transformation function, used to generate a real value in [0,1] indicating
the edge importance and g is a feed-forward network. Finally, we collect local information at each
node after aggregating the information from the neighborhood (xlu). We denote the set of trainable
parameters for this encoder as Θe for future reference.
Decoder. The encoder encodes the chemical properties of an atom into a latent vector space x by
learning the structural and chemical information. Subsequently, the decoder tries to decode the
vectors from x, thereby enhancing the encoding capability of the encoder. As mentioned earlier,
the crystal properties depend on the local chemical environment and the overall conformation of
the repeating crystal cell structure. Therefore, we build our decoder framework to reconstruct two
important features to capture the properties of local chemical environment: (a) the node features,
which are the chemical properties of individual atoms, and (b) the local connectivity, which is the
relative position of the nodes with respect to their local neighbors. We employ the node feature
reconstruction strategy by computing the following equations,

χ̂u = ΘT
x x

l
u + bx (2)

LFR = −χu · log(χ̂u)− (1− χu) · log(1− χ̂u) (3)
where Θx, bx and LFR are the trainable weights, biases and the feature reconstruction loss, respec-
tively.
Furthermore, we reconstruct the global topological information to generate the connectivity and the
periodicity information of the crystal structures by employing a bilinear transformation strategy, with
the help of the following equations,

xl
uv = σ(xl

uΘ
T
blx

l
v + bbl) (4)

LCR = argmax
n

eβk(x
l
uv,n)∑

n eβk(x
l
uv,n)

(5)

where Θbl, bbl and LCR are the trainable weights and biases and connection reconstruction loss,
respectively. The function σ is an activation function that maps the input to a value between 0 and
1. The output representation from the initial bilinear transformation layer (Θbl and bbl) is passed
to another linear transformation layer followed by a softmax activation. The term βk represents a
feed-forward neural network with k layers, which generates a logit vector of length n (as mentioned
previously, n is the number of edges between two atoms) with the help of a softmax function. We
denote the set of trainable parameters for this decoder as Θd for future reference.
SSL framework. Here, the SSL framework uses correlation between the actual input graph and
its augmented versions to learn robust and generalized representation from the unlabeled data [28].
It provides an additional boost in terms of performance. We employ two types of augmentation
techniques such as atom masking and edge masking. Atom masking randomly masks 10% of the
atoms in the crystal, while edge masking randomly masks 10% of the edge features between adjacent
atoms.

XG = READOUT(xl
u) (6)
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Algorithm 1 Training procedure and chemical vector extraction
Input :D = {Gi = (Vi, Ei, χi, Fi)} dataset used for creating the chemical atom vector
Output : Generalized dense atom vector representations (A)

1 begin
2 Initialize Θe, Θd ▷ Parameters of the encoder and decoder
3 LFR, LCR, LBT ,A, S,N ,Gj ,D ▷ Feature reconstruction loss (Equation 3), Connection reconstruction loss (Equation 5), Barlow

Twins loss (Equation 7), Set of atom vectors, Set of common atoms in one batch, Number of epochs, Batch graph (collection of 128
crystal structures), and Graph data

4 for i← 1 toN do
5 forGj ∈ D do
6 ▷ j-th batch with randomly selected 128 crystals
7 Hemd = fe(Gj , Θe) ▷ Hemd: hidden representation ofGj

8 AFemd, Adje = fd(Hemd, Θd) ▷ AFemd: output of the decoder,Adje: constructed adjacency matrix
9 G1, G2 ← Gj ▷ G1,G2: augmented representations ofGj

10 XG1 ,XG2 = fe(G1, G2) ▷ XG1 ,XG2 : augmented embeddings ofG1, G2

11 Lj = αLFR + βLCR + γLBT
12 Θ = Θe ⊕Θd

13 Θ = Θ − α∇L
14 Aj ← fUnbatch(Hemd) ▷ fUnbatch generates atom representations
15 ∀ s ∈ S, Ss

j = 0, counts = 0 ▷ Ss
j : cumulative representation of atom s inAj

16 ∀As
j ∈ Aj , counts + +, Ss

j = Ss
j + As

j

17 ∀ s ∈ S,As
j =

Ss
j

counts
▷ Final representation of atom s for batch j

18 if Lj ≤ Lj−1 then
19 Aj = As

j

20 else
21 Aj = Aj−1

22 returnA

where READOUT interpretes to a global pooling function. Augmented graph representations are
generated from the same crystalline structures. These augmented representations are used towards
identity matrix formation. Given the problem formulation, we identified Barlow Twins [31] (BT)
loss as a suitable loss function to reconstruct the graph representation of the crystals. Hereby, we
utilize Barlow Twins loss function, which is based on the redundancy reduction principle by H.
Barlow [32, 33]. We apply this loss function to the cross-correlation matrix that is formed from the
embeddings produced by the encoder module of the auto-encoder.

LBT ≜
∑
i

(1−M2
ii)︸ ︷︷ ︸

invariance term

+ λ
∑
i

∑
j ̸=i

M2
ij︸ ︷︷ ︸

redundancy reduction term

(7)

Mij ≜

∑
b X

G1
b,i X

G2
b,j√

(XG1
b,i )

2

√
(XG2

b,j )
2

(8)

Equation 7 describes the Barlow Twins loss function, which is used in our SSL block. It considers
the cross-correlation matrix M of embeddings from two augmented instances, which is computed
by Equation 8. The parameter λ (set to 0.0051 in the original paper [31]) is a positive constant that
balances the first and second terms of the loss function. In this study, we apply Equations 1 and 6, to
obtain the two augmented embeddings, namely XG1 and XG2 . Furthermore, we utilize Equation 8
to derive the cross-correlation matrix, wherein b represents the batch index and i, j indicate the
vector dimension of the projected output. Overall, the deep auto-encoder architecture is trained in an
end-to-end fashion to optimize the loss function (Ltrain) as shown in Equation 9.

Ltrain = αLFR + βLCR︸ ︷︷ ︸
loss for UL

+ γLBT︸ ︷︷ ︸
loss for SSL

(9)

LFR, LCR are the reconstruction losses for node features and local connectivity, respectively. LBT is
the Barlow Twins loss and α, β, γ are the weighting coefficients for each loss. We consider α = 0.25,
β = 0.25 and γ = 0.5, considering a convex combination. The sequential steps for the training process
and extraction of dense vector representation are stated in Algorithm 1. The number of parameters
used by CrysAtom is 5.5 MB and the running time of each epoch of the training (using Algorithm 1)
is approximately 30 minutes.
Atom Feature Vector Extraction. The atom vector extraction strategy in Algorithm 1 focuses on
deriving atom feature vectors from the latent feature representations generated by the encoder module
during each training epoch. For a batch graph Gj , the hidden representation Hemd is obtained using
the encoder function fe:

Hemd = fe(Gj ,Θe)
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Subsequently, the function fUnbatch is applied to Hemd to generate individual atom representation
Aj .

Aj = fUnbatch(Hemd)

Here, fUnbatch maps the latent feature vectors Hemd to their corresponding atom feature vectors. If
Hemd is a hidden representation of size n× d, where n is the number of nodes (atoms) and d is the
dimensionality of the feature vector, fUnbatch effectively extracts the important features to generate
the distributed vector representation for each atom.
For each atom type s in the set of common atoms S, the proposed algorithm computes a cumulative
representation Ssj and calculates counts as,

Ss
j =

n∑
i=1

⊮{Ai
j=s} ·Ai

j , counts =

n∑
i=1

⊮{Ai
j=s}

Here, ⊮{Ai
j=s} is an indicator function that is 1 if the atom Aij is of type s and 0 otherwise. Lastly,

the final representation for each atom type s, in the batch j, is computed by averaging the cumulative
representations.

As
j =

∑n
i=1 ⊮{Ai

j=s} ·Ai
j∑n

i=1 ⊮{Ai
j=s}

In this way, our algorithm ensures that the atom vectors are consistently updated and refined through
the training epochs, ultimately storing the generalized dense atom vector representations in A.
3.3 Downstream Property Prediction Task
The objective of this study is to integrate the proposed atom feature vectors into a SOTA property
predictor model to enhance the performance of the downstream task. The following steps are used
for applying the dense vector representations to the downstream property prediction tasks. We extract
the atom vectors from our novel CrysAtom framework. Subsequently, we train SOTA property
predictor model (Pψ) by providing property-tagged training data Dt = {Gi, yi} as well as the
generated feature vector as initial node feature representation. Here, we consider CGCNN [5],
CrysXPP [7], ALIGNN [10], M3GNet [22], Matformer [11], PotNet [12], and coGN [34] as the
baseline property predictors due to its SOTA performance in property prediction tasks. Additionally,
we take a pre-trained model named CHGNet [23] as baseline property prediction model. Training
setup, hyper-parameter selection (Table 6), and detailed descriptions of baseline property predictors,
have been presented in Appendix B and F for brevity.

4 Results
In this section, we first describe the details of our dataset used in our experiments, and then we follow
up with the research questions in context to the task of atom vector generation, and the analytical
discussion towards addressing those research questions.
4.1 Datasets
We use 139K unlabeled crystal graphs from the Materials Project (MP) to obtain the required dense
vector representation of atoms. For our downstream property prediction, as suggested by the Yan et.
al [11], we consider the datasets MP 2018.6.1 [35], JARVIS-DFT 2021.8.12 [36], and MatBench [37]
to investigate the chemical rationality of our proposed vector representations. MP 2018.6.1 contains
69,239 materials with four properties, formation energy, bandgap (OPT), bulk modulus (Kv) and shear
modulus (Gv), whereas the JARVIS-DFT dataset contains 55,723 materials with seven properties
such as formation energy, bandgap (OPT), total energy, ehull, bandgap (MBJ), bulk modulus (Kv) and
shear modulus (Gv). MatBench [37] contains total 132,752 crystals for formation energy (e_form),
bandgap (gap) respectively, and 10,987 crystals for bulk (log_kvrh) and shear modulus (log_gvrh).
Here, all these properties in Materials Project, JARVIS-DFT, and MatBench datasets are based on
DFT calculations of crystal. To investigate how our dense vector representation mitigates DFT errors,
we take a small dataset OQMD-EXP [38] containing 1,500 materials, consisting of experimental data
for formation energy. Details of each of these datasets have been provided in Appendix C.
4.2 Research Questions
We pose a few important research questions (RQs), which are central to our research work.
RQ-1: Effectiveness of CrysAtom for downstream property prediction task. How effectively does
CrysAtom aid the existing neural property predictors to achieve SOTA performance? Furthermore,
to what extent does CrysAtom improve the performance of the distilled, pre-trained, and fine-tuned
versions of the neural property predictors?
RQ-2: Robust dense vector representation. How does our dense vector representation CrysAtom
fare when compared to the popular vector representations for atoms, such as, Atom2Vec or SkipAtom?
RQ-3: Removing DFT bias. How effectively does our proposed crystal atom vector representation
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mitigate DFT error bias, leading to SOTA results in existing neural property predictors?
RQ-4: Preserving periodic properties. How well does CrysAtom capture the periodic properties
and the chemical significance of the atom?
4.3 Discussions

Property Unit CGCNN CGCNN CrysXPP CrysXPP ALIGNN ALIGNN M3GNet M3GNet Matformer Matformer PotNet PotNet
(CrysAtom) (CrysAtom) (CrysAtom) (CrysAtom) (CrysAtom) (CrysAtom)

Formation Energy eV/atom 0.039 0.028 0.041 0.030 0.026 0.023 0.024 0.022 0.021 0.019 0.019 0.018
Bandgap (OPT) eV 0.388 0.270 0.347 0.262 0.271 0.252 0.280 0.263 0.211 0.206 0.204 0.193

Bulk Modulus (Kv) log(GPa) 0.054 0.050 0.080 0.048 0.051 0.043 0.050 0.045 0.043 0.040 0.040 0.038
Shear Modulus (Gv) log(GPa) 0.087 0.082 0.105 0.082 0.078 0.072 0.087 0.076 0.073 0.071 0.065 0.064

Formation Energy eV/atom 0.063 0.040 0.062 0.041 0.033 0.031 0.039 0.031 0.033 0.030 0.029 0.028
Bandgap (OPT) eV 0.200 0.143 0.190 0.142 0.142 0.133 0.145 0.133 0.137 0.135 0.127 0.120

Total Energy eV/atom 0.078 0.043 0.072 0.044 0.037 0.035 0.041 0.035 0.035 0.031 0.032 0.029
Ehull eV 0.170 0.124 0.139 0.121 0.076 0.066 0.095 0.068 0.064 0.057 0.055 0.049

Bandgap (MBJ) eV 0.410 0.333 0.378 0.348 0.310 0.280 0.360 0.294 0.300 0.290 0.270 0.240
Bulk Modulus (Kv) GPa 14.47 12.37 13.61 13.10 10.40 10.19 12.40 11.24 11.21 10.85 10.11 9.98
Shear Modulus (Gv) GPa 11.75 10.45 11.20 10.44 9.86 9.39 10.95 10.29 10.76 9.85 9.23 9.13

Table 1: Summary of the results (MAE) of different properties in Materials Project (top) and JARVIS-DFT
(bottom). Model M is the vanilla variant of a SOTA model and M(CrysAtom) is a variant of the SOTA model
with CrysAtom dense vectors as input. The best performance has been highlighted in bold.

e_form gap

Methods MAE MAE

coGN 0.0170 0.1559

coGN (CrysAtom) 0.0164 ( -3.52 ) 0.1530 ( -1.86 )

(a)

log_kvrh log_gvrh

Methods MAE MAE

coNGN 0.0491 0.0670

coNGN (CrysAtom) 0.0485 ( -1.22 ) 0.0664 ( -0.89 )

(b)

Property CHGNet CHGNet
(CrysAtom)

Ehull 0.376 ( -12.8 ) 0.431

Bandgap (MBJ) 0.612 ( -14.6 ) 0.717

Bulk Modulus (Kv) 24.85 ( -10.34 ) 27.72

Shear Modulus (Gv) 16.31 ( -7.5 ) 17.64

(c)
Table 2: Comparison of prediction performance (MAE) between CrysAtom and vanilla versions of coGN/-
coNGN on MatBench properties: (a) e_form and gap, and (b) log_kvrh and log_gvrh. (c) Comparison of MAE
for JARVIS-DFT properties between CrysAtom and vanilla CHGNet. Best results are shown in bold, with
percentage decrease in MAE for CrysAtom relative to the vanilla model indicated in brackets.

Downstream Task Analysis. In relation to RQ-1, we compare five different SOTA frameworks
for crystal property prediction such as CGCNN [5], CrysXPP [7], ALIGNN [10], Matformer [11],
M3GNet [22], CHGNet [23], coGN/coNGN [34], and PotNet [12]. To train these methods for property
prediction, we use the 200-dimensional dense vectors obtained for each atom using Algorithm 1.
These vectors serve as input atom features, which are initialized as non-trainable node features. For
each property, we trained on 80%, validated on 10% and evaluated on 10% of the data. In Table 1, we
report mean absolute error (MAE) score (lower the MAE, higher the improvement) for the property
prediction task. We observe that the SOTA models, when trained using CrysAtom generated vector
representation as input, outperform their counterparts on the Materials Project and JARVIS-DFT
datasets. Specifically, the average improvements of vanilla SOTA models such as CGCNN, CrysXPP,
ALIGNN, Matformer, and PotNet are 21.92%, 23.40%, 8.63%, 6.49%, and 5.21%, respectively.
These improvements are significant, considering the overall architecture of these property predictor
models remain unchanged, while in the input space, we introduce CrysAtom generated feature vectors
to train these models on various downstream tasks. Additionally, it is to be noted that the average
relative improvement across all properties for ALIGNN (8.63%), Matformer (6.49%) and PotNet
(5.21%) is lesser compared to CGCNN (21.92%) and CrysXPP (23.40%). The likely reason is that
ALIGNN, Matformer, and PotNet are more complex models with higher parameter counts (97.8
MB for ALIGNN and 68.42 MB for Matformer) compared to CGCNN and CrysXPP. ALIGNN
learns three-body interactions, Matformer captures periodic invariance, and PotNet incorporates
interatomic potentials. Coversely, CGCNN and CrysXPP use simpler encoder architectures, primarily
applying GCN layers to multi-graph crystal structures. Complex models often learn intrinsic features
of crystal structures, so introducing atom vector representation alone doesn’t significantly enhance
performance. In contrast, simpler models benefit more from dense features as inputs for downstream
tasks. Another interesting observation from Table 1 is that all SOTA models achieve an average
improvement of 17.03% in formation energy prediction, when trained using CrysAtom generated
atom vector representation. This improvement is likely because the formation energy of a crystal,
defined as the difference between the energy of a unit cell composed of N chemical species and
the sum of their chemical potentials (with units of eV/atom), depends on its node features [16].
In contrast to that, However, the improvement is suboptimal for mechanical properties like bulk
(9.99%) and shear modulus (7.18%), as these depend more on structural information such as lattice
structure and symmetry [39] than on chemical properties. In Table 1, we report the performance of
M3GNet [22] trained on CrysAtom generated vectors, showing an average improvement of 12.17%
over vanilla M3GNet. Similarly, in Tables 2a and 2b, we present MAE results on the MatBench
dataset [37], where coGN/coNGN [34], trained on CrysAtom vectors, outperforms their vanilla
versions. Additionally, in Table 2c, CHGNet [23] trained with CrysAtom vectors also surpasses
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Property CGCNN Distilled Fine-tuned CrysXPP Pre-trained

(CrysAtom) CGCNN CrysGNN GNN

Formation Energy 0.040 ( -14.9 ) 0.047 0.056 0.062 0.764

Bandgap (OPT) 0.143 ( -10.6 ) 0.160 0.183 0.190 0.688

Total Energy 0.043 ( -18.9 ) 0.053 0.069 0.072 1.451

Ehull 0.124 ( +2.4 ) 0.121 0.130 0.139 1.112

Bandgap (MBJ) 0.333 ( -2.1 ) 0.340 0.371 0.378 1.493

Bulk Modulus (Kv) 12.37 ( +0.5 ) 12.31 13.42 13.61 20.34

Shear Modulus (Gv) 10.45 ( -3.9 ) 10.87 11.07 11.20 16.51

(a)

Property CGCNN CGCNN CGCNN CGCNN
(CrysAtom) (SkipAtom) (Atom2Vec) (Random)

Formation Energy 0.040 ( -34.4 ) 0.061 0.070 0.075

Bandgap (OPT) 0.143 ( -27.0 ) 0.196 0.251 0.263

Total Energy 0.043 ( -38.6 ) 0.070 0.076 0.089

Ehull 0.124 ( -18.9 ) 0.153 0.160 0.164

Bandgap (MBJ) 0.333 ( -20.7 ) 0.420 0.529 0.569

Bulk Modulus (Kv) 12.37 ( -13.9 ) 14.36 15.41 15.99

Shear Modulus (Gv) 10.45 ( -9.8 ) 11.58 12.09 13.52

(b)
Table 3: (a) Comparison of prediction performance (MAE) for the seven properties in JARVIS-DFT between
CrysAtom version of the CGCNN, Distilled CGCNN and other SOTA pre-trained/fine-tuned models. (b)
Comparison of prediction performance (MAE) for the seven properties in JARVIS-DFT between variants of
CGCNN with different dense vector representations, namely, CrysAtom, SkipAtom, Atom2Vec and Random.
Both for (a) and (b), the best results have been shown in bold and the second best results have been underlined.
Both for (a) and (b), percentage of decrease in MAE for CrysAtom, with respect to the best performing model
from the rest, has been mentioned within the bracket.

vanilla CHGNet in the property prediction task on the JARVIS-DFT dataset.
Comparison with Existing Distilled and Pre-trained Models. To address the second part of RQ-1,
we investigate the efficacy of utilizing a fixed atom feature vector representation in input space
rather than applying resource intensive approaches such as knowledge distillation and task specific
fine-tuning. As the encoder module of CGCNN, CrysGNN [16] and CrysXPP [7] are variants of GCN,
we have shown performance comparison between these frameworks (as shown in Table 3a), where
we have used CrysAtom generated dense vector representation only for CGCNN. Additionally, we
consider pre-trained GNN [40], which is widely used for pre-training property predictor models. We
pre-train GNN [16, 40] on 800K untagged crystal data and fine-tune it on seven different properties,
as shown in Table 3a. For fine-tuned CrysGNN framework, we consider the pre-trained encoder
of CrysGNN followed by a feed-forward neural network to predict a specific property. Similarly,
for distilled CGCNN framework, we apply knowledge distillation using pre-trained CrysGNN
model [16]. We observe that CGCNN (CrysAtom) outperforms fine-tuned CrysGNN, CrysXPP
and Pre-trained GNN with a significant margin over all properties. We also notice that CGCNN
(CrysAtom) outperforms distilled CGCNN by a large margin for formation energy, bandgap (OPT),
total energy, bandgap (MBJ) and shear modulus. However, it produces comparable results for ehull
and bulk modulus (Kv). The reason behind it could be use of a relatively small dataset of 139K
untagged crystals to generate a fixed vector representation of atoms using CrysAtom model, whereas
the pre-training of CrysGNN is done on a large dataset of size 800K. Descriptions of Distilled
CGCNN, Fine-tuned CrysGNN, and Pre-trained GNN methods are provided in Appendix F (Table 9).
Comparison with Existing Dense Representations. In RQ-2, we compare the performance of our
dense vector representation, generated by CrysAtom, against the existing dense representations of
atoms. Here, we have considered CGCNN as the encoder module to conduct necessary experiments.
We train CGCNN using our 200-dimensional atom vector representations, including Random3,
Atom2Vec and SkipAtom on seven properties from the JARVIS-DFT dataset and reported MAE
values in Table 3b. Our results show that CGCNN, when combined with CrysAtom, significantly
outperforms SkipAtom, Atom2Vec, and Random aided versions across all the properties. The
Random version performs the worst, as its dense representations fail to capture essential chemical
features. The Atom2Vec version also underperforms, due to its inability to capture the topological
complexity of crystal materials. The SkipAtom version, which captures atomic context better than
SVD-based methods, performs slightly better than Atom2Vec but still falls short due to its limitations
in comprehending complex structures.

Experiment Settings CGCNN CGCNN CrysXPP CrysXPP ALIGNN ALIGNN Matformer Matformer PotNet PotNet
(CrysAtom) (CrysAtom) (CrysAtom) (CrysAtom) (CrysAtom)

Train on DFT
Test on Experimental

0.265 0.241 ( -9.06 ) 0.243 0.222 ( -8.6 ) 0.220 0.212 ( -3.6 ) 0.218 0.213 ( -2.3 ) 0.217 0.211 ( -2.8 )

Train on DFT and 20 % Experimental
Test on 80 % Experimental

0.144 0.111 ( -22.9 ) 0.138 0.115 ( -16.7 ) 0.099 0.093 ( -6.1 ) 0.098 0.094 ( -4.1 ) 0.097 0.093 ( -4.1 )

Train on DFT and 80 % Experimental
Test on 20 % Experimental

0.094 0.072 ( -23.4 ) 0.087 0.071 ( -18.4 ) 0.073 0.068 ( -6.8 ) 0.072 0.069 ( -4.2 ) 0.070 0.067 ( -4.3 )

Table 4: MAE of predicting experimental values by different SOTA models and their CrysAtom versions
with full DFT data and different percentages of experimental data for formation energy in OQMD-EXP dataset.
Percentage of decrease in MAE for CrysAtom is mentioned in bracket.

Removal of DFT Error Bias using CrysAtom. In this section we discuss RQ-3 to understand how

3We randomly select vector representations from Rn. We use normal distribution for randomly drawing the
values to populate the initial vector representation.
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we can remove DFT error bias using experimental data with the help of dense vector representations
of atoms obtained from CrysAtom. One of the fundamental issues in material science is that
the experimental data instances, as described in Section 4.1, for crystal properties are scarce [7].
Hence, existing SOTA models highly rely on DFT calculated data to train its parameters. However,
mathematical approximations in DFT calculation lead to erroneous prediction (error bias) in contrast
to the actual experimental data [16]. Hence, DFT error bias is a common problem present in the
existing SOTA frameworks. Das et.al. [7] have shown that pre-training plays a significant role in
mitigating error bias when fine-tuned with experimental data. Consequently, we investigate whether
DFT error bias in SOTA models can be reduced with the help of our novel atom vector representation,
using a small set of experimental data instances. Here, we consider OQMD-EXP [38] dataset to
conduct the relevant experiments for formation energy prediction task. We train all SOTA models
and their CrysAtom variants with the complete DFT data in addition to a part of the experimental
data. We report the MAE of different SOTA models and its CrysAtom variants in Table 4, where the
evaluation is performed on gold standard experimental data. From Table 4, we can conclude that DFT
bias error in the SOTA models have reduced with the application of CrysAtom generated vectors.
Preserving Periodic Properties of Elements using CrysAtom. In this section, we focus on RQ-
4 to determine if the proposed dense representations embed equivalent atomic information. To
understand the chemical significance of these vector representations, we visualize them using a
lower-dimensional projection. The illustration in Figure 3, which is present in Appendix, significantly
aids in qualitatively examining the chemical properties of the vector representations in relation to
the periodic table. We produce 200-dimensional dense representations only for 89 atoms as shown
in Figure 3. Remaining 29 atoms are rare elements and the more details is given in Appendix C.1.
Our illustration shows that group-I alkali metals (Li, Na, K, Rb, Cs) form a single cluster, indicating
our vector representation captures their similarity in terms of chemical properties, such as high
reactivity and single valence electron [41–44]. Similarly, group-II alkaline earth metals (Ca, Sr, Mg,
Ba) cluster together, indicating their lesser reactivity and electrical conductivity. Additionally, our
representation, though not illustrating Be’s alkaline properties, captures its diagonal relationship
with Al, indicating their tendency to form covalent bonds and tetrahedral structures [41–44]. All
reactive non-metals (C, N, O, F, Cl, Br, I, P, Se, and S) form a single cluster. This cluster spans
groups VIA (halogens) and VIIA (chalcogens) of the periodic table due to their shared properties
like reactivity and anion formation. Within this cluster, O and P are close in the embedding space,
both binding with Hydrogen to form water and phosphine, respectively. Additionally, P and C
exhibit a diagonal relationship [42, 44]. The figure shows that metalloid elements like Silicon (Si),
Germanium (Ge), Boron (B), Antimony (Sb), and Tellurium (Te) cluster together, indicating that our
vector representation captures their high semiconductivity and semi-metallic nature. Additionally,
Boron and Silicon’s similarity, in terms of electronegativity, allows them to form covalent bonds,
showcasing their diagonal relationship. Lead (Pb), Tin (Sn), and Thallium (Tl) also form a cluster,
representing post-transition metals, with Pb and Sn in close proximity due to the inert pair effect. Our
representation, groups all noble gases (Ne, Ar, Kr, Xe) and captures properties of transition metals (V,
Cr, Fe, Co, Ni, Cu). Lanthanides and Actinides (e.g., La, Ce, Pr, Nd, Sm, Tb, Eu, Gd, Dy, Np, Ho, Pu,
Pm, Pa, U, Th, Ac, Yb, Lu, Er) cluster due to their radioactive nature. Notably, Pb and Sn also exhibit
diagonal relationship properties [41–44]. Also, we visualize the other two principal components
namely third and fourth principal components, which is present in Appendix H.
Ablation study. We analyze the effect of increasing dimensions (50, 100, 200) of the CrysAtom
vector in Appendix I.1, the combination of UL and SSL approaches in Appendix I.2, the efficiency
of the CrysAtom variant in combination with SOTA models in Appendix I.3, and the impact of
increasing dataset size which helps CrysAtom to generate dense vectors in Appendix I.4.
5 Conclusion
In this study, we introduce a novel framework, CrysAtom, designed to create dense vector representa-
tions for crystal atoms. These vectors play a pivotal role for different graph neural network-based
crystal property prediction tasks. Our approach uniquely combines UL and SSL techniques to
generate these dense representations. Additionally, we propose a novel way to extract the generalized
feature vector representation from the latent space of the encoder module of CrysAtom framework.
Our empirical results demonstrate that CrysAtom significantly enhances the performance of existing
neural property predictors. Experiments show that our proposed framework generates a robust and
unbiased dense vector representation for atoms, effectively capturing periodic properties and chemical
significance of atoms. Future directions for extending our work could be incorporating many-body
interactions as a part of the system, aiming to achieve performance improvements across complex
state-of-the-art models.
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A Notations

Notation Terms
u Source node
v Target node
Vi Set of atoms present in the unit cell
nuv No. of edges between u and v
Ei A multiset of node pairs
χi Node features
Fi Collection of edge weights
r Radius
M Cross-correlation matrix

READOUT Global pooling function
Random Vector representations drawn from Rn using normal distribution
LBT Barlow Twins Loss
LFR Feature reconstruction loss
LCR Connection reconstruction loss
MAE Mean Absolute Error

Table 5: Important notations used in the paper.

B Training Setup / Hyper-parameter Details / Computational Resources used.

Training Setup/
Hyper-parameter details/ Value
Computational Resources

r 8
Convolution Layers Five convolution layers [5]

Epochs 110
Optimizer Adam [46]

Learning Rate 0.03
Embedding Dimension 200 (can be 50 and 100-dimensional dense vectors)

Batch Size 128
Weightage for α 0.25
Weightage for β 0.25
Weightage for γ 0.50 (for convex sum)

Optimizer Adam [46]
Epochs 1000

Learning Rate Default learning rates used in the vanilla versions
Batch Size 64
Seed Value 123

Train, Valid, Test Splits 80%, 10%, 10%

Implementation Framework PyTorch
Computational Resources one NVIDIA A6000 48GB GPU and one NVIDIA A100 80GB GPU

Table 6: Summary of hyper-parameter details in CrysAtom (top), CrysAtom variant of all SOTA
models (middle) and computational resources (bottom) used in this work.

In this work, we employ five convolution layers [5] of the encoder model to train our framework
CrysAtom. Then we train it for 110 epochs using Adam [46] for optimization with a learning rate of
0.03. We keep the embedding dimension for each node as 200 (it can be 50 and 100-dimensional
dense vectors please set the embedding dimension accordingly), the batch size of 128, and equal
weightage (0.25) for α, β and weightage (0.50) for γ (for convex sum) of Equation 9 (In the main
manuscript). In the downstream property prediction tasks we also use the Adam [46] optimizer with
weight decay [47] of 1e-5 and one cycle learning rate scheduler [48] to train our vanilla property
predictors. We utilize batch size of 64 and seed value of 123. We use mean squared error as the
objective function to train and mean absolute error as the evaluation metric to validate and test. We
utilize PyTorch framework for our implementation. We use one NVIDIA A6000 48GB GPU, and one
NVIDIA A100 80GB GPU to generate 200 dimensional-dense representation of atoms and perform
the downstream property prediction task using vanilla property predictors using our generated dense
vector. Training setup and hyper-parameter details are stated in detailed in Table 6.
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C Datasets

C.1 Dataset used for Vector Creation

Task Datasets Graph Num. Structural Info. Properties Count Data Type

Dense Vector Creation MP 139K ✓ × DFT Calculated

Property
Prediction

MP 2018.6.1 69K ✓ 4 DFT Calculated
JARVIS-DFT 55K ✓ 7 DFT Calculated

MatBench 132K ✓ 4 DFT Calculated
OQMD-EXP 1.5K ✓ 1 Experimental

Table 7: Datasets used for both dense vector creation and downstream tasks.

In this work, we use 139,308 untagged inorganic compounds obtained from Materials Project
Database [35] to propose the 200 dimensional dense representation of chemical atoms. The number
of atom elements present in our dataset is 89. These atoms are Hydrogen (H), Helium (He), Lithium
(Li), Beryllium (Be), Boron (B), Carbon (C), Nitrogen (N), Oxygen (O), Fluorine (F), Neon (Ne),
Sodium (Na), Magnesium (Mg), Aluminum (Al), Silicon (Si), Phosphorus (P), Sulfur (S), Chlorine
(Cl), Argon (Ar), Potassium (K), Calcium (Ca), Scandium (Sc), Titanium (Ti), Vanadium (V),
Chromium (Cr), Manganese (Mg), Iron (Fe), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn),
Gallium (Ga), Germanium (Ge), Arsenic (As), Selenium (Se), Bromine (Br), Krypton (Kr), Rubidium
(Rb), Strontium (Sr), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium
(Tc), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Indium (In), Tin
(Sn), Antimony (Sb), Tellurium (Te), Iodine (I), Xenon (Xe), Cesium (Cs), Barium (Ba), Lanthanum
(La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Promethium (Pm), Samarium (Sm),
Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er),
Thulium (Tm), Ytterbium (Yb), Lutetium (Lu), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium
(Re), Osmium (Os), Iridium (Ir), Platinum (Pt), Gold (Au), Mercury (Hg), Thallium (Tl), Lead (Pb),
Bismuth (Bi), Actinium (Ac), Thorium (Th), Protactinium (Pa), Uranium (U), Neptunium (Np),
Plutonium (Pu). We produce 200-dimensional feature vectors only for these 89 atoms. In this
work, we have not employed the atoms for training our novel atom vector extractor framework
such as Polonium (Po), Astatine (At), Radon (Rn), Francium (Fr), Radium (Ra), Actinium (Ac),
Rutherfordium (Rf), Dubnium (Db), Seaborgium (Sg), Bohrium (Bh), Hassium (Hs), Meitnerium
(Mt), Darmstadtium (Ds), Roentgenium (Rg), Copernicium (Cn), Nihonium (Nh), Flerovium (Fl),
Moscovium (Mc), Livermorium (Lv), Tennessine (Ts), Oganesson (Og), Americium (Am), Curium
(Cm), Berkelium (Bk), Californium (Cf), Einsteinium (Es), Fermium (Fm), Mendelevium (Md),
Nobelium (No), Lawrencium (Lr). The main reason behind not including these atoms are due to the
unavailability of these atoms in compounds form. Table 7 shows the dataset statistics used for both
pretraining and the downstream tasks.

Property Unit Data-size

Formation Energy eV/(atom) 69239
Bandgap (OPT) eV 69239

Bulk Modulus (Kv) log(GPa) 5450
Shear Modulus (Gv) log(GPa) 5450

Formation Energy eV/(atom) 55723
Bandgap (OPT) eV 55723
Total_Energy eV/(atom) 55723

Ehull eV 55371
Bandgap (MBJ) eV 18172

Bulk Modulus (Kv) GPa 19680
Shear Modulus (Gv) GPa 19680

e_form eV/(atom) 132752
gap eV 106113

log_kvrh log(GPa) 10987
log_gvrh log(GPa) 10987

Table 8: Summary of different crystal properties in Materials Project (top), JARVIS-DFT (middle)
datasets, and MatBench (bottom) datasets.
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C.2 Datasets Used for Downstream Property Prediction Task

Materials Project (MP): This database is publicly accessible and provides a repository of crystal
structures and corresponding materials properties that have been calculated [35]. The dataset is made
from the result obtained with density functional theory-based calculations. The dataset is composed
of electronic structure, thermodynamics, mechanical, and dielectric properties. It also has a visual
web-based interface4. Table 8 shows statistics of the Materials Project dataset.
JARVIS: JARVIS5 (Joint Automated Repository for Various Integrated Simulations) [36] is a data
repository that incorporates not only DFT-based calculations but also data from the classical force
fields and machine learning techniques. The database is free and public. Table 8 shows statistics of
the JARVIS dataset.
MatBench: MatBench6 [37] is a an automated learderboard for benchmarking SOTA machine
learning algorithms predicting a diverse range of solid materials properties. This repository is
maintained by Materials Project [35]. The database is free and publicly available. Table 8 shows
statistics of the MatBench dataset.

D Definitions

Diagonal Relationship Diagonal relationship refers to the observation that elements located at
diagonally opposite corners of the periodic table possess similarities in physical and chemical
properties.
Inert Pair Effect This phenomenon describes how certain elements tend to display oxidation states
that are lower than what one would expect based on their location in the periodic table.

E Baseline Representations

Atom2Vec [13] Atom2Vec proposed a singular value decomposition (SVD) based framework to
generate distributed feature representation of molecular atoms to address the problem of one-hot
representation.
SkipAtom [9] SkipAtom proposed framework that utilizes skip-gram [15] technique to generate
dense representation of atoms.

F Baseline Property Predictors

Methods Approaches Pre-trained
Datasets

Fine-tuned
CrysGNN

In this method, we take the pre-trained encoder of CrysGNN [16], which is
pre-trained using CGCNN as an encoder module [5] by incorporating UL and
SSL techniques.

Materials project & OQMD (800K)

Pre-trained
GNN

Here, we consider the Pre-trained GNN, which is a popular pre-training al-
gorithm for molecules proposed by Hu et al. [40]. This approach typically
leverages techniques such as Attribute Masking and Supervised Attribute Pre-
diction etc. In our work, we extend this by passing the multi-graph structure
of the crystal into the Pre-trained GNN, experimenting with different combi-
nations of node-level pre-training strategies alongside graph-level supervised
pre-training.

Materials project & OQMD (800K)

Table 9: Detailed description, Fine-tuned CrysGNN, and Pre-trained GNN.

4https://materialsproject.org/
5https://jarvis.nist.gov/
6https://matbench.materialsproject.org/
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To evaluate the effectiveness of our dense 200-dimensional vector we use CGCNN7, CrysXPP8,
ALIGNN9, M3GNet [22]10, Matformer11, PotNet12, coGN13, and CHGNet14 as our base property
predictor.
CGCNN [5] This research develops a multi-graph representation for crystals derived from inorganic
materials and establishes a supervised model based on graph convolution to predict a range of crystal
properties. Here we directly use the publicly available code of CGCNN and we change the input
feature dimension to 200 to feed our 200-dimensional dense vector representation of atoms.
CrysXPP [7] In this study, the researchers develop an autoencoder named CrysAE, training it on
a vast collection of unlabelled crystal graphs. The insights gained are then leveraged to prime the
encoder of CrysXPP, which undergoes further refinement using data tagged with specific properties.
Additionally, they create a feature selector to aid in understanding the predictions made by the
model. Here we directly use the publicly available code of CrysXPP and we change the input feature
dimension to 200 to feed our 200-dimensional dense vector representation of atoms.
ALIGNN [10] This study introduces line graph neural networks as a novel approach to incorporate
angular information into the convolution layer by alternating message passing between the bond
graph and its bond-angle line graph. Here we directly use the publicly available code of ALIGNN and
we change the input feature dimension to 200 to feed our 200-dimensional dense vector representation
of atoms.
M3GNet [22] This work proposed an architecture which considers the universal interatomic potentials
for crystal representation learning. Here we directly use the publicly available code of M3GNet and
we change the input feature dimension to 200 to feed our 200-dimensional dense vector representation
of atoms.
Matformer [11] This work proposes a periodic graph transformer called Matformer, which incorpo-
rates periodic invariance and periodic pattern encoding for crystal representation learning, achieving
better performance than baseline methods on various tasks and highlighting the importance of both
periodic invariance and periodic pattern encoding in crystal representation learning. Here we directly
use the publicly available code of Matformer and we change the input feature dimension to 200 to
feed our 200-dimensional dense vector representation of atoms.
PotNet [12] This work proposed an architecture PotNet which considers the interatomic potentials
for crystal representation learning, achieving better performance than baseline methods on various
task and highlighting the importance of interatomic potentials in crystal representation learning. Here
we directly use the publicly available code for PotNet and we change the input feature dimension to
200 to feed our 200-dimensional dense vector representation of atoms.
coGN [34] This work proposed an architecture named coGN and coNGN, which incorporates con-
nectivity optimized crystal graph network from message passing and line graph templates, which
produces SOTA results on various tasks of crystals property prediction task15. Here we directly use
the publicly available code for coGN/coNGN and we change the input feature dimension to 200 to
feed our 200-dimensional dense vector representation of atoms.
CHGNet [23] This work proposed a pre-trained universal neural network potential for atomistic
modelling of crystal materials. Here we directly use the publicly available code of CHGNet and
the released pre-trained model and we change the input feature dimension to 200 to feed our 200-
dimensional dense vector representation of atoms.

7https://github.com/txie-93/cgcnn.git
8https://github.com/kdmsit/crysxpp
9https://github.com/usnistgov/alignn.git

10https://github.com/materialsvirtuallab/m3gnet
11https://github.com/YKQ98/Matformer
12https://github.com/divelab/AIRS/tree/main/OpenMat/PotNet
13https://github.com/aimat-lab/gcnn_keras/tree/v3.0.1/kgcnn/literature/

coGN
14https://github.com/CederGroupHub/chgnet/tree/main
15https://matbench.materialsproject.org/
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G Preserving Periodic Properties of Elements using CrysAtom

Cs

LiK
Na

RbSr
Ca

Mg

Ba

Be

O

F

P

Se

S

Cl

  I

    Br

 N

 C

 H

 Si

 Ge

  B

  Te

 Sb

 As

 Al

Ga

 Bi

 Sn

Pb   Tl

Cr

Cu

  V

Nb Mo

Ni
Fe

Co

Cd

Ag

Au

Ta

Ti Mn

 W

Re
Rh

Pt
Ru

 Ir

Hg

Zn
Os

Pd

 Zr

Sc

Lu

Dy
Sm

Nd

 PrTb

La

Ho
Np

Ac

ThPu
Pm

Pa

 Er
Gd

Eu

Ce
Yb

 U

Tm

 In

 Xe  Kr

Ne  Ar

 He

Alkali metals

Alkaline earth metals

Reactive non-metals

Metalloids

Post-transition metals

Transition metals

 Y

 

Hf

Tc

Actinides & Lanthanides

Noble gases

-4 -2 0 2        4 6

-6

-4

-2

0

2

4

6

8

First Principal Component

Se
co

nd
 P

ri
nc

ip
al

 C
om

p
on

en
t

Figure 3: Dimensionally-reduced atomic vectors were obtained from 200-dimensional vectors.
Subsequently, these vectors were further reduced to two dimensions using t-SNE [49] for visualization.
This plot shows an approximate position of the atomic vector representations of atoms in two
dimensional (first and second principal components) Euclidean space.

H Visualization of Our 200-dimensional Atom Vectors Along Third and
Fourth Principal Components
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Figure 4: Dimensionally-reduced atomic vectors were obtained from 200-dimensional vectors.
Subsequently, these vectors were further reduced to two dimensions using t-SNE [49] for visualization.
This plot shows an approximate position of the atomic vector representations of atoms in two
dimensional (third and fourth principal components) Euclidean space .

Figure 4 visualize the dense representation of our atom vectors using t-SNE [49]. Here we reduced
our 200-dimensional dense vector and plot them using the other two principal components namely
third and fourth. From Figure 4, we observe that the projection over the third and fourth principal
components is extremely noisy. There appears to be no discernible pattern beyond the first two
principal components.
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I Ablation Study

Property CGCNN CGCNN CGCNN
(200-dim CrysAtom) (100-dim CrysAtom) (50-dim CrysAtom)

Formation Energy 0.040 0.044 0.046
Bandgap (OPT) 0.143 0.160 0.165

Total Energy 0.043 0.049 0.053
Ehull 0.124 0.127 0.130

Bandgap (MBJ) 0.333 0.349 0.356
Bulk Modulus (Kv) 12.37 13.29 13.60
Shear Modulus (Gv) 10.45 10.75 10.99

(a)

Property UL + UL + UL + UL
SSL (BT) SSL (VICREG) SSL (NTXent)

Formation Energy 0.040 0.042 0.042 0.043
Bandgap (OPT) 0.143 0.156 0.155 0.158

Total Energy 0.043 0.045 0.047 0.048
Ehull 0.124 0.130 0.126 0.127

Bandgap (MBJ) 0.333 0.369 0.340 0.345
Bulk Modulus (Kv) 12.37 13.20 13.20 13.24
Shear Modulus (Gv) 10.45 10.65 10.68 10.71

(b)
Table 10: (a) Performance comparison (MAE) of various versions of CGCNN equipped with different
dimensional vector representations (such as 50-dim, 100-dim, and 200-dim) obtained from CrysAtom.
(b) Performance comparison (MAE) of our CrysAtom framework by introducing different SSL loss
functions such as BT, VICREG, NTXent and UL (without using SSL loss). Here we use CGCNN as
our encoder model to conduct the experiments. The best results have been shown in bold and the
second best results have been underlined.

In this section, we demonstrate the effect of variation in the dimension of the dense vector representa-
tion on its capability to encode the chemical properties of an atom. We also analyze the influence of
combining UL and SSL on CrysAtom performance and efficiency of different variants of CrysAtom
aided SOTA models by designing the following set of ablation studies:

1. Does increase in dimensions of the vector representation entail better performance in downstream
property prediction task?

2. Does hybrid learning strategy perform well when UL is aided with SSL?

3. What is efficiency of different CrysAtom versions of SOTA models?

4. Does increasing the dataset size, which is used to generate dense vector representation, impacts
the performance on the baseline property predictor?

I.1 Impact of Increasing Dimensions

Results in Table 10a leads to the conclusion that increase in the dimension of the dense vectors
improves the performance of the property predictor model (here, CGCNN). Our conclusion is
aligned with earlier findings by Antunes et. al [9]. However, increasing dimension size of the vector
representation beyond a certain point may lead to exponential growth in computational resources and
may prove to be an impediment in terms of model training.

I.2 Impact of Combining UL and SSL

Table 10b demonstrates how effectively we can combine our UL and SSL based approaches in JARVIS-
DFT dataset for seven properties. We observe that combination of SSL and UL based frameworks
equipped with Barlow Twins [31] loss helps the existing property predictors significantly to achieve
SOTA performance on downstream task, when compared with NTXent [50] and VICREG [51]
losses. The common intuition is that, while training a model using Barlow Twins loss, it generates
the hard negative samples by masking the nodes and edges internally for a graph to capture the
overall topological structure. Whereas, SSL loss functions such as NTXent, VICREG take necessary
negative samples by considering external properties such as space group information. SSL strategies,
in isolation, are not used for generative tasks, thereby preventing us from using such strategies for
generation of dense vector representations. However, UL is applied together with SSL, leading to a
generative loss for generating a dense vector representation as a subtask of graph generation.
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Method Time/Epoch Total Training Time Total Testing Time Model Para.

CGCNN (CrysAtom) 0.189 s 3.12 h 0.04 s 1.1 MB
CrysXPP (CrysAtom) 0.195 s 3.25 h 0.07 s 1.1 MB
ALIGNN (CrysAtom) 140.4 s 39 h 80.4 s 97.8 MB
Matformer (CrysAtom) 80.4 s 22 h 1.04 s 68.42 MB
PotNet (CrysAtom) 42 s 11 h 31s 42.9 MB

Table 11: Training time per epoch, total training time, total testing time, and model complexity compared
with CGCNN (CrysAtom), CrysXPP (CrysAtom), ALIGNN (CrysAtom), Matformer (CrysAtom) and PotNet
(CrysAtom) for formation energy on JARVIS-DFT dataset.

I.3 Efficiency of CrysAtom Variant of the SOTA Models

Table 11 shows comparison of CGCNN (CrysAtom), CrysXPP (CrysAtom), ALIGNN (CrysAtom),
Matformer (CrysAtom) and PotNet (CrysAtom) in terms of training time per epoch, total training
time, total testing time and model complexity for formation energy on JARVIS-DFT dataset. We
clearly observe that CGCNN (CrysAtom) is the fastest model among all the CrysAtom variant of
SOTA models. It uses less number of parameters compared to the other models. This led us to
consider CGCNN as our encoder model to conduct the necessary experiments in ablation study which
is present in the main manuscript.

Property CGCNN CGCNN
(CrysAtom pre-trained on MP (139K)) (CrysAtom pre-trained on MP+OQMD (800K))

Formation Energy 0.040 0.042
Bandgap (OPT) 0.143 0.147

Total Energy 0.043 0.045
Ehull 0.124 0.128

Bandgap (MBJ) 0.333 0.338
Bulk Modulus (Kv) 12.37 12.54
Shear Modulus (Gv) 10.45 10.59

Table 12: Performance comparison between CGCNN models using a 200-dimensional CrysAtom vector
representation pre-trained on 139K MP instances and a 200-dimensional CrysAtom vector representation pre-
trained on 800K MP+OQMD instances across various property prediction tasks. The CGCNN model with
CrysAtom pre-trained on 139K MP instances consistently outperforms the one pre-trained on 800K MP+OQMD
instances in all tasks.

I.4 Impact of Dataset Size on Dense Vector Generation during CrysAtom Pre-training

Table 12 presents the performance comparison between CGCNN using a 200-dimensional
CrysAtom vector representation pre-trained on 139K MP instances, and CGCNN using a 200-
dimensional CrysAtom vector representation pre-trained on 800K MP and OQMD instances. It is
evident that CGCNN with CrysAtom pre-trained on 139K instances consistently outperforms CGCNN
with CrysAtom pre-trained on 800K instances across various property prediction tasks. A possible
reason for this outcome could be that the additional data from the OQMD dataset may introduce
noise or irrelevant features that are not as beneficial for the specific property prediction tasks. The
MP dataset is more closely aligned with our target properties, leading to better generalization when
pre-trained on a smaller but more relevant dataset (139K MP instances). In contrast, the inclusion of
OQMD data (800K instances) might result in a more diverse but less focused representation, which
could hinder the model’s performance on tasks that require the specific characteristics captured by the
MP dataset. Therefore, we select the CrysAtom vector representation pre-trained exclusively on the
MP dataset as our best representation. The running time of each epoch of the training of CrysAtom
(using Algorithm 1) on MP+OQMD (800K) is approximately 1 hours 30 minutes and the number of
parameters used by CrysAtom is 5.5 MB.
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