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Abstract

While Vision Transformer (ViT) have achieved success across various machine
learning tasks, deploying them in real-world scenarios faces a critical challenge:
generalizing under Out-of-Distribution (OoD) shifts. A crucial research gap re-
mains in understanding how to design ViT architectures – both manually and
automatically – to excel in OoD generalization. To address this gap, we introduce
OoD-ViT-NAS, the first systematic benchmark for ViT Neural Architecture Search
(NAS) focused on OoD generalization. This comprehensive benchmark includes
3, 000 ViT architectures of varying model computational budgets evaluated on 8
common large-scale OoD datasets. With this comprehensive benchmark at hand,
we analyze the factors that contribute to the OoD generalization of ViT architecture.
Our analysis uncovers several key insights. Firstly, we show that ViT architecture
designs have a considerable impact on OoD generalization. Secondly, we observe
that In-Distribution (ID) accuracy might not be a very good indicator of OoD accu-
racy. This underscores the risk that ViT architectures optimized for ID accuracy
might not perform well under OoD shifts. Thirdly, we conduct the first study to
explore NAS for ViT’s OoD robustness. Specifically, we study 9 Training-free NAS
for their OoD generalization performance on our benchmark. We observe that ex-
isting Training-free NAS are largely ineffective in predicting OoD accuracy despite
their effectiveness at predicting ID accuracy. Moreover, simple proxies like #Param
or #Flop surprisingly outperform more complex Training-free NAS in predicting
ViTs OoD accuracy. Finally, we study how ViT architectural attributes impact
OoD generalization. We discover that increasing embedding dimensions of a ViT
architecture generally can improve the OoD generalization. We show that ViT archi-
tectures in our benchmark exhibit a wide range of OoD accuracy, with up to 11.85%
for some OoD shift, prompting the importance to study ViT architecture design for
OoD. We firmly believe that our OoD-ViT-NAS benchmark and our analysis can
catalyze and streamline important research on understanding how ViT architecture
designs influence OoD generalization. Our OoD-NAS-ViT benchmark and code
are available at https://hosytuyen.github.io/projects/OoD-ViT-NAS

1 Introduction

Vision Transformers (ViT) [1] have recently achieved impressive results and become a major area
of research in computer vision, with significant efforts towards understanding how ViT works.
These efforts have led to the proposal of both manually designed architectures [1, 2, 3, 4, 5] or
automated-searched architectures [6, 7, 8, 9, 10, 11, 12] to advance ViT architectures.
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Figure 1: We propose, OoD-ViT-NAS, the first comprehensive benchmark for NAS on OoD
generalization of ViT architectures. Then, we comprehensively investigate OoD generalization
for ViT. The detailed of 8 OoD datasets in our investigation can be found in Tab. 1. In this figure,
we show the Kendall τ ranking correlation between OoD accuracy of different datasets on the left
and different quantities at the bottom. Our analysis uncovers several key insights. (a) ID as an
indicator for ViT OoD Generalization (Sec. 4.2) We show that the correlation between ID accuracy
and OoD accuracy is not very high. This suggests that current architectural insights based on ID
accuracy might not translate well to OoD generalization. (b) Training-free NAS for ViT OoD
Generalization. (Sec. 4.3) We conduct the first study of NAS for ViT’s OoD generalization, showing
that their effectiveness significantly weakens in predicting OoD accuracy. (c) OoD Generalization
ViT Architectural Attributes. (Sec. 4.4) Our first study on the impact of ViT architectural attributes
on OoD generalization shows that the embedding dimension generally has the highest correlation
with OoD accuracy among ViT architectural attributes. Additional results can be found in the Appx.

Research Gap. Existing research on ViT architectures focuses on maximizing In-Distribution (ID) ac-
curacy, while studies on the impact of ViT architectures on Out-of-Distribution (OoD) generalization
are limited. Initial works [13], [14], and [15] evaluate sets of 3, 10 and 22 human-designed ViT archi-
tectures under OoD settings, respectively, and provide coarse insights into which models exhibit better
OoD generalization. However, with very limited ViT architectures studied in previous works, the in-
fluence of ViT structural attributes (e.g., embedding dimension, number of heads, MLP ratio, number
of layers) on OoD generalization remains unclear. Besides, in the context of ViT Neural Architecture
Search (NAS), while there are various ViT NAS for ID accuracy [6, 7, 16, 8, 10, 11, 17, 18, 19, 20, 9],
there is no study on ViT NAS for OoD generalization.

In this paper, we address existing research gaps by introducing OoD-ViT-NAS, the first compre-
hensive benchmark specifically designed for ViT’s OoD generalization. Building NAS benchmarks
is notoriously time-consuming and expensive due to the need to train and evaluate every candidate
architecture. This challenge is particularly acute for ViT, known for its high computational demands
and memory usage [21, 22, 23]. To overcome this bottleneck, we propose leveraging One-Shot
NAS, specifically AutoFormer [6], a widely used ViT search space.We sample a diverse set of
sub-architectures (models) to populate our benchmark. Importantly, these subnets inherit the weights
from the pre-trained supernets, and their performance has been shown to be comparable to, or
even superior to, that of architectures trained alone [20, 6] This approach enables us to efficiently
acquire a large pool of ViT architectures for OoD generalization analysis. Using OoD-ViT-NAS, we
conduct extensive OoD generalization analysis and gain several key insights. Additionally, with our
benchmark, our work is the first to explore (training-free) NAS for ViT’s OoD generalization. Our
contributions are summarized below:

• We introduce OoD-ViT-NAS, the first comprehensive benchmark designed for NAS research
on ViT’s OOD generalization. This benchmark includes 3, 000 diverse ViT architectures
sampled from the widely used ViT search space [6]. These architectures span a wide range
of computational budgets. To thoroughly benchmark OoD generalization, these architectures
are evaluated on the 8 most common and state-of-the-art (SOTA) OoD datasets: ImageNet-C
[24], ImageNet-A [25], ImageNet-O [25], ImageNet-P [24], ImageNet-D [26], ImageNet-R
[27], ImageNet-Sketch [28], and Stylized ImageNet [29] (Sec. 3)
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• Our analysis demonstrates the significant influence of ViT architectural designs on OoD
accuracy. This observation encourages future research to focus more on ViT architecture
research for OoD generalization (Sec. 4.1)

• We show that high In-Distribution (ID) accuracy is not a very good indicator of OoD
accuracy. This suggests that current architectural insights based on ID accuracy might not
translate well to OoD generalization (Sec. 4.2)

• We conduct the first study to explore NAS for ViT’s OoD generalization. We study 9
Training-free NAS for their OOD generalization performance on our benchmark. We observe
that despite their prediction accuracy for ID, their effectiveness significantly weakens when
predicting OoD accuracy. Furthermore, simple proxies such as the number of parameters
(#Param) or the number of floating point operations (#Flop) surprisingly outperform more
complex Training-free NAS in predicting ViTs OoD accuracy (Sec. 4.3)

• We study the impact of ViT architecture design on OoD generalization and demonstrate
that careful design of ViT architectures can significantly improve OoD generalization.
Specifically, increasing the embedding dimensions of a ViT architecture generally can
improve its OoD generalization. (Sec. 4.4) We show that architectures with comparable
ID accuracy (within an averaging range of 1.39%) exhibit a wider range of OoD accuracy,
averaging 3.80% and reaching highs of 11.85%, being comparable or even outperforming
state-of-the-art (SOTA) training OoD generalization method, such as those based on domain
invariant representation learning [30, 31]. For example, under the same OoD setting, the
SOTA method [30] shows an improvement of 1.9% OoD accuracy.

2 Related Work

Out-of-Distribution (OoD) Generalization. Addressing Out-of-distribution (OoD) generalization
is a challenge, particularly in computer vision. Various approaches have been proposed to tackle
this issue. A common strategy focuses on learning features that remain consistent across different
domains, thereby promoting generalizability [31, 32, 33, 34, 35, 36, 37]. Other directions explore
distributional robustness [38, 39], model ensembles [40, 41], test-time adaptation [42, 43], data aug-
mentation techniques [44, 45, 46, 47, 48, 49, 50], and meta learning [51, 52] for OoD generalization.
From an architectural perspective, a few attempts investigate the impact of network architecture
on OoD generalization. Early work [53] shows that over-parameterized networks can hinder OoD
performance due to overfitting. This raises an intriguing question: can sub-networks within such
architectures achieve better OoD performance? Inspired by the Lottery Ticket Hypothesis (LTH)
[54], the Functional LTH has been explored and shown that over-parameterized networks harbor
sub-networks with better OoD performance. Techniques like Modular Risk Minimization [55] and
Debiased Contrastive Weight Pruning [56] aim to identify these winning tickets. Another direction
[57, 14] leverages Neural Architecture Search (NAS) to analyze the OoD robust architectures. How-
ever, these studies primarily focus on CNNs. While ViTs have achieved success in various visual
recognition, investigations into their OoD generalization are limited. Initial works [13], [14], and [15]
evaluate sets of 3, 10, and 22 human-designed ViT architectures respectively, under OoD settings.
Their results provide coarse insights into which models exhibit better OoD performance. However,
the influence of ViT architectural attributes on OoD robustness remains unclear.

Neural Architecture Search (NAS). NAS is a promising approach that has achieved remarkable
success in automatically searching efficient and effective architectures for ID performance [58, 20,
59, 60]. Recently, NAS has been explored in the context of adversarial robustness for CNNs as well
[61, 62, 63]. With the rise of Vision Transformers (ViTs), several NAS approaches have been applied
to improve ViT architectures, including Autoformer [6], S3 [16], ViTAS [8], ElasticViT [9], DSS
[10], Auto-Prox [17] and GLiT [64]. Additionally, hybrid CNN-ViT architectures like HR-NAS
[18], UniNet [19], and NASViT [12] have also been explored. These efforts have shown promising
results in terms of ID accuracy. However, there has not been any work on NAS for ViT architectures
specifically for OoD generalization.

3 OoD-ViT-NAS: NAS Benchmark for ViT’s OoD Generalization

In this section, we describe the construction of our OoD-ViT-NAS benchmark with details on the
search spaces, datasets, evaluation metrics, and protocol. Our comprehensive benchmark includes
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Figure 2: Our analysis of the OoD accuracy range highlights the significant influence of ViT
architectural designs on OoD accuracy. (Sec. 4.1) The numbers within each violin plot for each
sub-figure (e.g., IN-D 9.79 (1.06), 9.65 (2.25), and 7.99 (0.56)) denote the corresponding OoD (ID)
accuracy range of architectures sampled from Autoformer-Tiny/Small/Base search space, respectively.
See Appx. G for additional plots and results on other OoD shifts. For a fair comparison, we fix the
same range for the x-axis across all sub-figures. We include the ID accuracy range in the top-left
sub-figure for reference. On average, the OoD accuracy across all shifts is 3.8%/4.86%/2.74% for
the search spaces in our OoD-ViT-NAS benchmark. This range is comparable to and even surpasses
the current SOTA method based on domain-invariant representation learning [30], which achieved a
1.9% improvement in OoD accuracy under similar settings.

3, 000 ViT architectures of varying sizes evaluated on 8 widely used large-scale, high-resolution, and
SOTA OoD datasets. Our OoD-ViT-NAS benchmark is summarized in the Tab. 1

Search Space. We construct our benchmark based on Autoformer [6] search space. This search
space is currently a widely used search space in the ViT NAS community for ID data [7, 65, 60,
10, 11, 17, 66, 67]. Autoformer search space is a large vision transformer search space including
five architectural attributes that define the building block. Embedding Dimension: This determines
the input feature representation size and is typically consistent across layers in ViT architectures.
Q-K-V Dimension: This specifies the size of the query, key, and value vectors used in the attention
mechanism. Number of Heads: This defines the number of parallel attention computations performed
within a single attention block. MLP Ratio: This controls the dimensionality of the feed-forward
network within each transformer block. Unlike embedding dimension, in Autoformer search space,
Q-K-V Dimension, Number of Heads, and MLP Ratio can be varied across layers. Network Depth:
This refers to the total number of transformer layers stacked in the architecture. It is important to
note that Autoformer maintains a fixed ratio between the Q-K-V dimension and the number of heads
in each block. This ensures that the scaling factor in the attention calculation remains constant. This
helps stabilize the gradients of different heads during the training [6]. We strictly follow Autoformer
search space. The details can be found in the Appx. E.1.

Dataset. Our benchmark consists of the evaluation on large-scale, high-resolution, and most SOTA
OoD datasets, including ImageNet-1k [68], ImageNet-C [24], ImageNet-P [24], ImageNet-A [25],
ImageNet-O [25], ImageNet-R [27], ImageNet-Sketch [28], Stylized ImageNet [29], and ImageNet-D
[26]. These datasets capture a comprehensive range of OoD shifts such as common corruptions
(blur, noise, digital, weather), Stable-Diffusion-based OoD shifts, and natural OoD shifts. A detailed
description of these datasets can be found in the Appx. E.2.

Metrics. Following the previous OoD generalization methods [57, 30, 31, 15], we employ three
metrics to construct our benchmark:
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Table 1: An overview of comprehensive setups to construct our OoD-ViT-NAS benchmark. We
utilize the widely used ViT NAS search space, Autoformer [6], which includes three different search
spaces Autoformer-Tiny/Small/Base to cover a broad range of model sizes. We randomly sample
3, 000 architectures from these search spaces to populate our benchmark. To ensure comprehensive-
ness, we evaluate these architectures across 8 of the most common SOTA OoD datasets. Following
prior OoD generalization works [57, 30, 31, 15], we employ three metrics for our benchmark: ID
Accuracy, OoD Accuracy, and Area Under the Precision-Recall Curve (AUPR).

Search Space Dataset #Classes #Images #OoD Shifts OoD Shift Type Metrics

Autoformer-Tiny [6]/

Autoformer-Small [6]/

Autoformer-Base [6]

ImageNet-1K (IN-1K) [68] 1K 50K - - -

ImageNet-C (IN-C) [24] 1K 3.75M 15

Algorithmic

ID Acc/

OoD Acc

ImageNet-P (IN-P) [24] 1K 1M 9

ImageNet-D (IN-D) [26] 113 4.8K 3

Stylized ImageNet (Stylized IN) [29] 1K 50K 1

ImageNet-R (IN-R) [27] 200 30K 1

Natural
ImageNet-Sketch (IN-Sketch) [28] 1K 50K 1

ImageNet-A (IN-A) [25] 200 7.5K 1

ImageNet-O (IN-O) [25] 200 2K 1
ID Acc/

AUPR

• ID Classification Accuracy (ID Acc): This metric measures the model performance on
In-Distribution (ID) data, typically the data it was trained on (e.g., ImageNet). A higher ID
Acc indicates the model’s ability to learn training data’s distribution.

• OoD Classification Accuracy (OoD Acc): This metric measures the model performance on
Out-of-Distribution (OoD) data, which could differ significantly from the training data. A
higher OoD Acc indicates a better generalization of the model to handle the OoD shifts.

• For the specific case of ImageNet-O, [24], we use the Area Under the Precision-Recall
Curve (AUPR) metric. A higher AUPR indicates a better generalization of the model to
handle the OoD detection.

Protocol. Neural Architecture Search (NAS) is notorious for its computationally expensive nature,
requiring the training and evaluation of numerous candidate architectures. To address this challenge
and efficiently obtain the large number of architectures needed for our benchmark (i.e., 3, 000), we
make use of the One-Shot NAS approach [58, 20, 59, 12, 6, 7].

In One-shot NAS, a single supernet is first constructed. This supernet contains all possible archi-
tectures within the defined search space and is trained only once. Then, during evaluation, various
architectures (i.e., subnets) can be efficiently extracted from the supernet. Importantly, these subnets
inherit the weights from the pre-trained supernet, and their performance has been shown to be
comparable or even superior to that of architectures trained alone [20, 6].

To support a wide range of model sizes, we leverage three supernets: Autoformer-Tiny/Small/Base,
which were previously proposed for ID accuracy [6]. We randomly sample 1, 000 architectures from
each supernet, resulting in a total of 3, 000 architectures in our OoD-ViT-NAS benchmark. Once
obtained, these architectures are evaluated on 8 aforementioned OoD datasets.

4 Investigation on Out-of-Distribution Generalization of ViT

In this section, we provide the first comprehensive investigation of how ViT architectures affect
OoD generalization using our OoD-ViT-NAS benchmark. In Sec. 4.1, we first demonstrate that ViT
architectures considerably impact OoD accuracy. In Sec. 4.2, while existing works [2, 3, 6, 7, 8, 9,
12, 18] have made significant strides in improving ViT’s ID accuracy, their findings could not be
applicable for ViT’s OoD generalization due to the not very high correlation between ViT’s ID and
OoD accuracy. In Sec. 4.3, we conduct the first study to explore NAS for ViT’s OoD generalization.
Specifically, we study 9 Training-free NAS based on their OoD generalization performance on our
benchmark. Finally, in Sec. 4.4, we analyze the influence of individual ViT architectural attributes
(i.e., embedding dimension, number of heads, MLP ratio, number of layers) on OoD generalization.
Additional results of these analysis can be found in Appx. G, H, I, J, L

4.1 ViT architecture designs have a considerable impact on OoD generalization

In this section, we highlight that ViT architectures considerably impact OoD accuracy. This observa-
tion encourages future research to put more focus on ViT architecture research for OoD generalization.
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Figure 3: Visualization of OoD accuracy range across OoD shift severity. We conduct the analysis on
1, 000 architectures in Autoformer-Small search space within our OoD-NAS-ViT benchmarks. Level
0 denotes the clean examples. All corruptions can be found in Fig. G.6, in Appx. G. We generally
observe that the range of OoD accuracy widens as the severity of the OoD shift increases.

Experimental Setups. To show how ViT architecture designs impact OoD generalization, we
compute the range of OoD accuracy for each search space on an OoD dataset. This range reflects
the variation in OoD performance for different architectures within a search space. For example, in
Fig. 2, each sub-plot represents the range of OoD accuracy for three different search spaces in our
OoD-ViT-NAS benchmark on one OoD dataset. We compute the average OoD accuracy range across
all datasets as general statistics. For reference, the range of ID accuracy is also included.

Results. The results are shown in Fig. 2. Additional results can be found in the Appx.G. The average
range of OoD accuracy across the three search spaces in our benchmark is 3.81%/4.86%/2.74%,
which is comparable to or even outperforming state-of-the-art (SOTA) training OoD generalization
method, such as those based on domain invariant representation learning [30, 31]. For example, under
a similar OoD setting, the current SOTA [30] shows an improvement of 1.9% OoD accuracy. This
observation highlights the significant influence of ViT architectural designs on OoD accuracy. By
carefully designing ViT architecture, the OoD accuracy could improve significantly.

We further explore how the severity of the OoD shift affects the range of ViT’s OoD accuracy. We
conduct similar experimental setups as before, analyzing 1, 000 architectures from the Autoformer-
Small search space within our OoD-ViT-NAS benchmark for 1, 000 architectures in Autoformer-Small
search space within our benchmark on IN-C. The results are visualized in Fig. 3. We observe that the
range of OoD accuracy widens as the severity of the OoD shift increases. This suggests that under
stronger OoD shifts, the architecture design becomes even more critical for OoD generalization.

When visualizing OoD accuracy, we observe a bimodal distribution. We figure out that the embedding
dimension, as the primary ViT structural attribute, influences this bimodality. For example, among
architectures from the Autoformer-Small search space of our benchmark, most architectures with
a lower embedding dimension (320) fall within the lower OoD accuracy mode, while those with
higher dimensions (384 and 448) tend to reside in the higher accuracy mode. This observation will
be further discussed in detail in Sec. 4.4.

4.2 Can ID accuracy serve as a good indication for OoD accuracy?

While existing works [2, 3, 6, 7, 8, 9, 12, 18] study the impact of ViT architectures to ID accuracy,
studies on OoD accuracy are limited. To what extent can we directly apply existing findings of ViT
architecture insights for ID to OoD accuracy? To answer this question, we investigate the relationship
between ViT ID and ViT OoD accuracy.

Several studies [69, 70, 71, 72] investigates the relationship between ID and OoD accuracy for the
CNNs model. However, there is no work on such study particularly for ViT. Utilizing our OoD-ViT-
NAS benchmark, we provide the first comprehensive study on the relationship between ViT ID and
OoD accuracy. Through our investigation, we find that the correlation between ViT ID and ViT OoD
accuracy is not very high. This suggests that architectural insights optimized for ViT ID accuracy, as
presented in previous work [2, 3, 6, 7, 8, 9, 12, 18] may not be applicable for ViT OoD generalization.

Experimental Setup. Following previous work [71], we use Kendall’s τ rank correlation coefficient
to compute the correlation between OoD and ID accuracy of all 1, 000 architectures from a search
space on one OoD dataset. Our examination comprehensively computes the correlations across all 8
OoD datasets, 3 search spaces, and 3, 000 architectures within our OoD-ViT-NAS benchmark. We
compute the average correlations across search spaces and datasets as general statistics.
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Figure 4: Analysis of OoD Generalization Performance of Pareto Architectures for ID accuracy.
Blue dots represent architectures in the search space, while red dots represent the ID Pareto
architectures. See Appx. I for additional results. We find that Pareto architectures for ID accuracy
generally perform sub-optimally under OoD shift.

Besides the investigation of the correlation of various architectures, we further study the relationship
between ViT ID and ViT OoD accuracy for Pareto architectures, representing the top-performing
architectures for a certain model size. As shown in Fig. 4-a, the red dots represent Pareto architec-
tures for ID accuracy In this study, we analyze 1, 000 architectures from the Autofomer-Small search
space within our OoD-ViT-NAS benchmark. To identify Pareto architectures for ID accuracy, we
divide the total parameter budget into 30 equal intervals and select the architecture with the best ID
performance within each interval.

Results. The correlation results are illustrated in Fig. 1-a. The individual correlations can be found in
the Appx. H. We show that the correlation between ID and OoD accuracy is generally not very high.
This suggests that current architectural insights based solely on ID accuracy might not effectively
translate to OoD generalization.

Among all OoD datasets, the IN-P dataset exhibits the strongest correlation with ID accuracy. This
can be attributed to its weaker OoD shift compared to other datasets (see the visualization in Appx. E).
As a result, the OoD examples in IN-P are not very different from ID examples, leading to a relatively
high correlation between OoD and ID performance. For the remaining seven datasets with stronger
OoD shifts, the correlations remain relatively low.

The results of the Pareto architectures analysis are illustrated in Fig. 4. Additional results can be found
in the Appx. I. We observe that Pareto architectures for ID accuracy generally perform sub-optimally
under the OoD shift. This observation further supports our previous finding that ID accuracy might
not be a very good indicator of OoD accuracy.

4.3 Explore Training-free NAS for OoD Generalization

Recently, there has been a new research focus on Training-free NAS, aimed at identifying high-
performing architectures without the computational expense of training each candidate. To do
so, [10, 11, 17, 62, 60, 73, 74] propose zero-cost proxies to predict the performance of candidate
architectures in the initialization or the first training iteration, significantly accelerating NAS. While
these works focus on ID accuracy, a few attempts have been made in searching for architectures
robust against adversarial attacks [62, 75]. However, there is no work to explore Training-free NAS
for ViT for OoD generalization.

Experimental Setup. To address this gap, we comprehensively explore the existing 9 Training-free
NAS for OoD generalization on 3, 000 ViT architectures within our OoD-ViT-NAS benchmark. Our
study includes common and SOTA Training-free NAS originally proposed for CNNs for ID Acc
(Grasp [74], SNIP [73], MeCo [60]), ViTs for ID Acc (DSS [10], AutoProx [17]), and CNNs for
adversarial robustness (Jacobian [75], CroZe [62]). We complement this study on Training-free
NAS to our OoD-ViT-NAS benchmark to equip the NAS research community with valuable tools to
develop more effective Training-free NAS for OoD generalization.

Results. Our exploration provides several practical insights for designing a Training-free NAS for
ViT for OoD generalization. The results of Kendall τ [76] ranking correlation between the OoD
accuracy and Training-free NAS proxies on 8 common large OoD datasets are illustrated in Tab. 2.
The average OoD accuracy is computed across OoD datasets and search spaces. Detailed results can
be found in Fig. 1 and Appx. J.
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Table 2: Comparison of Kendall τ ranking correlation between the OoD accuracies and the Training-
free NAS proxies values on 8 common large OoD datasets using our OoD-ViT-NAS benchmark.
Bold and underline stand for the best and second, respectively. We show that existing Training-free
NAS’s predictability in ViT OoD accuracy is limited, E.g., the very recently proposed Auto-Prox
only achieves 0.3303 correlation. Furthermore, we make the first observation that simple proxies like
#Param or #Flops outperform other more complex proxies in predicting both ViT OoD/ID accuracy.

Training-free NAS Originally Proposed For Correlation with ID Acc Correlation with OoD AccPerformance Architecture
Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1207 ± 0.1575
SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.2889 ± 0.2274
MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.0975 ± 0.0819
CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.2951 ± 0.2223
Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.0841 ± 0.1232
DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.3421 ± 0.2365
AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.3303 ± 0.2384
#Param - - 0.4607 ± 0.3318 0.3600 ± 0.2321
#Flops - - 0.4705 ± 0.3391 0.3537 ± 0.2327

We observe that existing Training-free NAS are largely ineffective in predicting OoD accuracy. Even
recent Training-free NAS designed for ViT (i.e., DSS [10] and AutoProx-A [17] ) or Training-free
NAS designed adversarial robustness [62] struggle with predicting OoD accuracy.

Surprisingly, simple zero-cost proxies such as #Param or #Flops outperform all existing, more
complex proxies in predicting both OoD accuracy for ViTs. This finding poses a challenge to the
Training-free NAS research community: to devise a Training-free NAS that surpasses #Params or
#Flops in OoD Acc prediction for ViT.

From Fig. 1-b, we observe that all Training-free NAS methods consistently fail to predict IN-D
performance. This is due to the IN-D dataset’s unique generation process using Stable Diffusion,
which creates images labelled with object names and varying nuisances like background, texture,
and material variations. Only the most challenging images are retained, resulting in highly difficult
examples, such as distorted images and unrealistic object-background placements (see Fig. E.2).
These examples degrade ViT model performance significantly [26] and cause unpredictable behaviour.

Our investigation into ID accuracy for ViTs also reveals a surprising observation. While proposals for
Training-free NAS designed for ViTs (i.e., DSS [10] and AutoProx-A [17]), improve the prediction
of ID accuracy compared to counterparts designed for CNNs. Our study marks the first attempt to
explore simple Training-free NAS like #Param or #Flops. The ID prediction of such simple proxies
surprisingly outperforms SOTA Training-free NAS designed for predicting ID accuracy for ViT.

4.4 ViT Structural Attributes on OoD Generalization: Increasing Embedding Dimension is
Generally Helpful

Our OoD-ViT-NAS benchmark with 3, 000 ViT architectures covers diverse design choices in ViT
structural attributes, including embedding dimension (Embed_Dim), network depth, number of heads
(#Heads), and MLP ratio (MLP_Ratio), which allows for finding a wide range of ViT with different
structures and complexities. Utilizing our comprehensive benchmark, we are the first to provide an
analysis of the impact of these ViT structural attributes. We investigate which structural attributes
in ViTs could lead to better OoD generalization. Through our analysis, we find that increasing
the embedding dimension of a ViT architecture can generally improve OoD generalization. The
additional analysis on another search space [1] further confirms our finding. The details for this
additional analysis can be found in Appx. C

Experimental Setup. To verify the effectiveness of ViT architectural attributes on our OoD gener-
alization benchmark, we present the results from two perspectives: (1) an analysis of rank correlation
for our OoD-ViT-NAS benchmark and (2) a comparison of OoD accuracy across different embedding
dimensions. To gain insights into the relationship between embedding dimension (Embed_Dim) and
OoD performance, we created the visualizations for all architectures in our OoD-ViT-NAS benchmark.
These visualizations compare the average OoD accuracies across different ViT architectures with
varying embedding dimensions and depths. Examples of these visualizations are shown in Fig. 5.
Additional results can be found in the App.K.

Results. In Fig. 1-c, we find that the embedding dimension generally has the highest correlation
with OoD accuracy among all ViT architectural attributes. This positive correlation indicates that Em-
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Figure 5: The effect of #Embed_Dim on robustness generalization of ViTs. The numbers denote the
mean OoD accuracy across ViT architectures with specific colour-coded embedding dimensions and
depths. The data points with blue , orange , and green colours represent ViT architectures with
an embedding dimension of 320, 384, and 448, respectively. Generally, a higher OoD accuracy is
obtained when the embedding dimension of ViT architectures increases for most OoD shifts.
See Fig. M.25 and M.26 in Appx. K for additional plots and results on other OoD shifts.

bed_Dim could play a crucial role in achieving OoD generalization performance. Our comprehensive
OoD-ViT-NAS benchmark sheds light on a previously unknown relationship: the potential impact of
embedding dimension (Embed_Dim) on OoD generalization in ViTs. This trend holds across most
OoD shifts in our benchmark (Fig. 5), suggesting that among other architectural attributes, the design
choice of Embed_Dim might significantly influence a model’s OoD generalization.

Our experiments yield several intriguing phenomena. Based on Fig. 1-c, we observe that network
depth has a slight impact on overall OoD generalization performance (correlation: 0.19). Also, as
shown in Fig. 5, for a given embedding dimension (represented by a distinct colour), we report the
mean OoD accuracy, showing how the mean OoD accuracy changes among ViT architectures of
varying depths, which aligns with our empirical insight. Fig. 5 shows that while increasing depth can
be beneficial for improving ViT’s OoD generalization in some cases, there exist shallower models
that tend to perform better in terms of OoD accuracy compared to those with deeper models.

It is evident from Fig. 1-c, where both the MLP ratio (0.09) and the number of heads (0.07) exhibit
very low correlation values with overall OoD performance. These findings highlight that increasing
the MLP ratio and the number of heads may not substantially enhance a model’s robustness to OoD
data. Due to space constraints, we defer additional experiments to the Appx. L, showing that the
network depth, MLP ratio, and #Heads might have non-obvious impacts on OoD generalization.

Increasing Embedding Dimension help ViT learn more high-frequency patterns, leading to
improve OOD generalization. In this section, we design a frequency study to understand our finding:
why increasing ViT Embedding Dimension can generally improve ViT’s OOD generalization. In
the literature, the models obtain higher performance on preserving High-Frequency-Component
(HFC) samples tend to learn more HFC [77, 78]. By learning more HFC, the models improve OOD
generalization [77, 79]. Our hypothesis is that Increasing embedding dimension helps ViTs learn
more HFC resulting in improving OOD generalization. We adapt the experiment from [77] to verify
our hypothesis. The details on this experimental setup can be found in the Appx. D. In a nutshell, we
filter HFC by hyper-parameter radius r, where the higher the r, the lesser HFC. As shown in Fig. 6,
we observe that when increasing Embedding Dimension, the performances obtained on filtering-HFC
samples are improved. This observation holds true across setups varying radius r, supporting that
increasing Embedding Dimension helps ViT learn more HFC. In contrast, increasing other ViT
structural attributes does not help improve ViT learn more HFC.

Robust ViT architectures designed by our finding. Our study provides significant insights for
guiding the design of ViT architectures. Specifically, among ViT structural attributes, increasing
embedding dimension can generally improve OoD generalisation of ViT architectures. Our insight
leads to a simple method which can achieve ViT architectures that can outperform well-established
human-designed. We demonstrate the superiority of ViT based on our insights in Tab. 3. Scaling up
ViT architecture (e.g., from ViT-B-32 to ViT-L-32) by humans typically involves compound scaling
of various ViT structural attributes. However, our findings suggest that not all ViT structural attributes
need to be increased to benefit OoD generalisation. Among these attributes, increasing the embedding
dimension is the most crucial factor for improving OoD generalisation. By only increasing the
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Table 3: Comparison of ViT architectures designed based on our insights (Embedding Dimension)
and well-established ViT designed by humans in [3, 1].

Architecture Embed
Dim Depth #Head MLP

Ratio
Latency

(ms)
#Param

(M)
IN-R

OoD Acc ∆ wrt Latency ↑ ∆ wrt #Param ↑

ViT-B-32 768 12 12 4.0 105.00 87.53 41.58 - -

Ours 840 12 12 4.0 113.32 98.64 48.28 0.8054 0.6032

ViT-L-32 [1] 1024 16 24 4.0 258.83 305.61 44.33 0.0179 0.0126

Swin-T 96 12 32 4.0 100.31 28.29 46.22 - -

Ours 128 12 32 4.0 165.80 49.91 48.28 0.0315 0.0954

Swin-S [3] 96 24 32 4.0 184.48 49.60 47.77 0.0184 0.0725

Figure 6: Following setting in [77, 80, 79], the ViTs which were trained on original ID data, are
now tested on high frequency components (HFC) of OoD samples, with r as the radius for frequency
filtering. The higher the OoD accuracy, the more HFC learned in the model.

embedding dimension, ours ViT architectures (e.g., Increasing embedding dimension of ViT-B-32)
are significantly more efficient and outperform compound scaling architectures (e.g., ViT-L-32).

5 Conclusion

In this work, we introduce OoD-ViT-NAS, the first comprehensive benchmark for NAS on OoD
generalization of ViT architectures. Using this benchmark, we conduct a comprehensive investigation
on OoD generalization for ViT. Firstly, we show that ViT architecture design significantly impacts
OoD accuracy. Secondly, we show that the architectural findings from existing works for ID
performance could not apply to OoD generalization due to the low correlation between ID and OoD
accuracy. Thirdly, we conduct the first study of NAS for ViT’s OoD generalization and show that
existing Training-free NAS methods struggle with OoD prediction. Surprisingly, simple proxies
like #Param or #Flops outperform other complex Training-free NAS. Finally, we conduct the first
study on the impact of ViT architectural attributes on OoD generalization. Our study reveals that
increasing a ViT architecture’s embedding dimensions can generally improve OoD generalization.
We believe our benchmark OoD-ViT-NAS and comprehensive analysis will catalyze and streamline
future research on understanding how ViT architecture design influences OoD generalization.
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B Limitations and Broader Impact

Given the extensive set of experiments presented in this work, the evaluation of training-free NAS
proxies is significantly dependent on the initial robust benchmarks, which can be costly and resource
intensive to create in the first place.

As this work studies the robustness of ViT architectures to OoD shift, we could demonstrate that
carefully designed ViT architectures can significantly enhance OoD generalization. Our approach
focuses on evaluating training-free NAS for ViT architectures, offering valuable insights that can
complement research exploring the effects of robust architectural design. Finally, we publicly release
our OoD-NAS-ViT and code base for future research.

C Analysis on Human-design ViT Search Space

Our findings on embedding dimensions are derived from analysing ViT architectures sampled through
AutoFormer. To further validate these results, we also investigate the impact of ViT structural
attributes on OoD generalisation within the human-designed ViT search space [1].

Table C.1: We conduct additional experiments on human design ViT to further confirm our main
findings that, among ViT structural attributes, embedding dimension is the most important ViT
structural attribute to OoD generalisation. We train each architecture from on IN-100 and evaluate on
IN-R. The trade-off between OoD Acc and computational metrics (i.e., Latency and #Param)
is quantifies by ∆, which is the ratio of increase in OoD Acc and increase in computational
metrics. Higher ∆ is better. Note that increasing #Head remains the same #Param but increases
Latency in ViT setup [1].

Architecture
Configuration Latency

(ms)

#Param

(M)

OoD Acc ∆ wrt Latency ↑ ∆ wrt #Param ↑
Embed

Dim #Head Depth MLP
Ratio

Vanila 768 12 12 3072 105.00 87.53 41.58 - -

Increased
Embed-Dim 840 12 12 3072 113.32 98.64 48.28 0.8053 0.6032

Increased
#Head 768 128 12 3072 120.44 87.53 43.47 0.1224 -

Increased
Depth 768 12 16 3072 137.36 115.88 37.80 -0.1168 -0.1333

Increased
MLP-Ratio 768 12 12 3840 120.05 101.70 42.61 0.0685 0.0728

Experimental setup. We begin with the vanilla ViT-B-32 architecture [1], varying each structural
attribute independently. For the altered ViT architectures, we increase these attributes to ensure that
the capacities of the altered models remain comparable. Each architecture is trained on IN-100 and
evaluated on IN-R.

Results. As shown in Tab. C.1, the results further confirms our findings that embedding dimension is
the most important ViT structural attribute to OoD generalisation.

D Detailed description of the Frequency Analysis Setup

We adapt the experiment from [77] to verify our hypothesis. We quantify how the amount of HFC
learnt in the ViTs changes if the embedding dimension of ViTs changes. Particularly, we first filter
HFC from testing images of IN-R following [77, 79, 80] then evaluate the performance of 1000 ViTs
in our search space on IN-R with filtering data points. Following [80] to generate HFC-preserving
images, we first convert original images to FFT images. Then, we filter HFC by hyper-parameter
radius r (r is set to 4, 8, 12, 16 in our experiments). In a nutshell, the higher the r, the lesser HFC.
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E The details for our benchmark OoD-ViT-NAS

E.1 Detailed description of Autoformer Search Space

We strictly follow the search space in Autoformer [6] to construct our OoD-ViT-NAS. The variable
factors of basic transformer blocks include the embedding dimension, Q-K-V dimension, number of
heads, MLP ratio, and network depth. The detailed search spaces are illustrated in Tab. E.2

Table E.2: Detailed search space used to construct our OoD-ViT-NAS. We strictly follow the search
space in Autoformer [6].

Embedding Dim Q-K-V Dim MLP Ratio Head Num Depth Num

Supernet-Tiny
Max 192 192 3.5 3 12

Min 240 256 4 4 14

Step 24 64 0.5 1 1

Supernet-Small
Max 320 320 3 5 12

Min 448 448 4 7 14

Step 64 64 0.5 1 1

Supernet-Base
Max 528 512 3 8 14

Min 624 640 4 10 16

Step 48 64 0.5 1 1

E.2 Detailed description of OoD Datasets

Figure E.1: Visualization of different OoD shifts across 8 datasets used to construct our OoD-ViT-
NAS benchmark. The description of each dataset can be found in Sec. E.

To construct OoD-ViT-NAS benchmark, we evaluate 3,000 architectures within our benchmark on
common and most SOTA OoD datasets, including:

• ImageNet-1k [68]: This is a large and common image dataset widely used in computer
vision research. It contains over 1.3 million labeled high-resolution images belonging to
1,000 different object categories (classes). Each image is labeled with a class (e.g., "cat",
"airplane", "chair").

• ImageNet-C [24]: This dataset builds upon the original ImageNet test set by applied algo-
rithmically corruptions. These corruptions simulate real-world factors that can deviate data
from the training set, such as blur, noise, digital, and weather effects. ImageNet-C offers
a comprehensive OoD scenarios with 15 different corruption types, each with 5 severity
levels, resulting in a total of 75 unique OoD setups.

• ImageNet-P [24]: This benchmark is constructed similarly to Imagnet-C. The difference is
that ImageNet-P utilizes perturbation sequences generated from each ImageNet validation
image.
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• ImageNet-A [25]: This dataset is a real-world OoD scenarios by leveraging adversarially
filtered images that are highly likely to fool current image classifiers. ImageNet-A selects a
200 classes out of 1,000 classes from ImageNet-1K so that errors among these 200 classes
would be considered egregious [68].

• ImageNet-O [25]: Similar to ImageNet-A, this dataset includes adversarially filtered exam-
ples specifically designed to challenge OoD detectors trained on ImageNet. ImageNet-O
selects a 200 classes out of 1,000 classes from ImageNet-1K.

• ImageNet-R [27]: This dataset is a rendition of ImageNet, containing images with manipu-
lated textures and local image statistics.

• ImageNet-Sketch [28]: This dataset introduces a unique OoD challenge by providing black-
and-white sketch images corresponding to the ImageNet-1K test set. This significant
divergence in visual representation tests a model’s ability to generalize beyond photographic
data.

• Stylized ImageNet [29]: This dataset consists of a stylized version of ImageNet generated
through techniques like AdaIN [81] style transfer, resulting in variations like greyscale,
silhouettes, and edges. This dataset assesses a model’s ability to handle data with different
artistic interpretations.

• ImageNet-D [26]: This dataset is a variation of ImageNet generated through diffusion
models. These models aim at creating images with rich diversity in backgrounds, textures,
and materials.

Figure E.2: Examples from ImageNet-D [26]. These examples are generated by Stable Diffusion
[82] and only hard examples are kept. These examples could be distorted or unrealistic in object-
background placements.

We visualize a few examples of OoD datasets in Fig. E.1. For ImageNet-C, we provide the visualiza-
tion of different OoD shift severity in Fig. E.3.
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Figure E.3: Visualization of different corruptions and 5 different OoD shift severity for ImageNet-C
[24]. We note that level 0 means clean examples from ImageNet [68]
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F Overview of using the OoD-NAS-ViT benchmark

Our OoD-NAS-ViT benchmark consists of multiple json individual files. Each file includes the
evaluation of one search space (Autoformer-Tiny/Small/Base [6]) on 8 most common and state-of-the-
art (SOTA) OoD datasets: ImageNet-C [24], ImageNet-A [25], ImageNet-O [25], ImageNet-P [24],
ImageNet-D [26], ImageNet-R [27], ImageNet-Sketch [28], and Stylized ImageNet [29] (Sec. 3).

We further provide a merged json file for each search space. The structure of each merged json

is illustrated as in Fig. F.4. Specifically, each merged json file includes 1,000 ViT architectures
denoted by the index. Each architecture consists of:

• net_setting: ViT structural attributes information:

– layer_num: network depth

– mlp_ration: MLP ration each layer, can be varied among layers

– num_heads: number of attention heads each layer, can be varied among layers

– embed_dim: embedding dimension heads each layer, fixed among layers

• params: number of parameters

• flops: number of flops

• performance: performance on different dataset:

Imagenet: performance on IN-based datasets:

– clean: performance on IN

– sketch: performance on IN

– stylized-imagenet: performance on IN

– imagenet-R: performance on IN

– imagenet-O: performance on IN

– imagenet-A: performance on IN-A

– corruption: performance on IN-C

* Fog: performance on one out of 15 corruption in IN-C: Fog, Gaussian Noise,
Fog, Snow, Elastic Transform, Jpeg Compression, Frost, Motion Blur, Brightness,
Defocus Blur, Glass Blur, Impulse Noise, Shot Noise, Zoom Blur, Constrast,
Pixelate
· 1: performance at OoD shift severity level 1. There are total 5 level of OoD shift

severity for each corruption in IN-C

– corruption_P: performance on IN-P

* Brightness: performance on one out of 10 corruption in IN-P: Brightness, Motion
Blur, Rotate, Scale, Shot Noise, Snow, Tilt, Translate, Zoom Blur, Gaussian Noise

– imagenet-D: performance on IN-D

* background: performance on one out of 3 nuisances in IN-D: background, material,
texture

With our the provided a merged json file for each search space, we can easily retrieve the OoD shift
performance of various ViT architectures and their OoD performance on 8 prevelent and SOTA OoD
datasets.
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Figure F.4: The structure of the merged json file for our OoD-ViT-NAS benchmark for Autoformer-

Small search space. The structures of the merged json files for Autoformer-Tiny/Base are similars.

G Additional results on the analysis of OoD accuracy range

In the main paper, we visualize 11 OoD accuracy ranges and ID accuracy range for reference. In this
Appx. section, we provide the visualization of the remaining OoD accuracy ranges. The results are
illustrated in Fig. G.5. Our observation on other OoD accuracy ranges are generally consistent with
our findings in Sec. 4.1.
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Figure G.5: As in Figure 2, our analysis on the OoD accuracy range highlights the significant
influence of ViT architectural designs on OoD accuracy. The numbers within each violin plot for each
sub-figures (e.g., IN-D Material 8.99 (1.06), 8.50 (2.25), and 8.72 (0.56)) denote the corresponding
OoD(ID) accuracy range of architectures sampled from AutoFormer-Tiny/Small/Base search space,
respectively.
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Figure G.6: Visualization of OoD accuracy range across IN-C OoD shift severity. The experiments
are conducted on 1, 000 architectures in Autoformer-Small search space within our OoD-NAS-ViT
benchmarks. Level 0 denotes the clean examples. We generally observe that the range of OoD
accuracy widens as the severity of the OoD shift increases.

H Additional results on the analysis of the correlation between ID and OoD
accuracy

In the main paper, we provide the Kendall τ correlation between ID accuracy and 8 OoD datasets.
For some OoD datasets with different OoD shift types, we average the correlation with ID accuracy
of different OoD shift types to obtain average correlation with ID accuracy for that OoD dataset. In
this Appx. section, we provide the detailed correlations with ID accuracy of each OoD shifts in such
OoD data. Specifically, we provide the detailed correlation for IN-C, IN-D, and IN-P in Fig. H.7,
Fig. H.8, and Fig. H.9, respectively.

Furthermore, we provide a comprehensive correlation between OoD accuracy and ID accuracy in
Fig. H.10.

24



Figure H.7: Kendall τ rank correlation coefficient between ID and OoD accuracies computed on
all 3000 architectures in our OoD-ViT-NAS benchmark. Measurements are computed on different
corruptions of IN-C.

Figure H.8: Kendall τ rank correlation coefficient between ID and OoD accuracies computed on all
3000 architectures in our OoD-ViT-NAS benchmark. Measurements are computed on various IN-D
OoD shifts.

I Additional results on the analysis of OoD Performance of Pareto
architectures for ID

In the main paper, due to space constraints, we only provide the Pareto analysis results on a few
representative OoD datasets. In this Appx. section, we provide additional results on this Pareto
architecture analysis in Fig. M.24, M.19, M.20, M.21, M.22, M.23. In the following scatter plots,
blue dots represent architectures in the search space, while red dots represent the ID Pareto
architectures.
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Figure H.9: Kendall τ rank correlation coefficient between ID and OoD accuracies computed on all
3000 architectures in our OoD-ViT-NAS benchmark. Measurements are computed on various IN-P
OoD shifts.

J Additional Results for Benchmarking Zero-cost Proxies

In the main submission, we provides the comparison of Kendall τ ranking correlation between the
ID/OoD accuracies and the zero-cost proxy values across all OoD datasets. In this section, we
provides the correlation for each dataset for a detailed observation. The results can be found in
Tab. J.3, J.4, J.5, J.6, J.7, J.8, J.9, J.10. Our observations on individual OoD datasets are consistent
with our findings in Sec. 4.3.

Table J.3: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-C datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1179 ± 0.1713

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.2371 ± 0.2579

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.0392 ± 0.1206

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.2356 ± 0.2593

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.0894 ± 0.1369

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.2454 ± 0.2630

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.2271 ± 0.2758

#Param - - 0.4607 ± 0.3318 0.2651 ± 0.2546

#Flops - - 0.4705 ± 0.3391 0.2656 ± 0.2572
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Figure H.10: Kendall rank correlation coefficient between ID and OoD performance computed on all
3000 architectures in our OoD-ViT-NAS benchmark. Measurements are computed on different OoD
tasks including IN-C, IN-D, IN-P, IN-A, IN-R, IN-O, Stylized-IN, and IN-Sketch.

K Additional Figures of ViT Structural Attributes: Embedding Dimension
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Table J.4: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-P datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1373 ± 0.1907

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.3652 ± 0.3306

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.1324 ± 0.2240

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.3698 ± 0.3307

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.1142 ± 0.1590

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.4128 ± 0.3621

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.3975 ± 0.3888

#Param - - 0.4607 ± 0.3318 0.4487 ± 0.3475

#Flops - - 0.4705 ± 0.3391 0.4592 ± 0.3547

Table J.5: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-D datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 -0.0306 ± 0.0307

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 -0.0863 ± 0.0887
MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 -0.0518 ± 0.0486

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 -0.0818 ± 0.0906

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 -0.0090 ± 0.0318

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 -0.0743 ± 0.1131

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 -0.0742 ± 0.1066

#Param - - 0.4607 ± 0.3318 -0.0837 ± 0.1117

#Flops - - 0.4705 ± 0.3391 -0.0827 ± 0.1133

L Additional Analysis of ViT Structural Attributes on OoD Generalization

L.1 Ablation Study on the Impact of ViT Architectural Attributes to OoD Generalization

In this section, we demonstrate the effectiveness of each ViT architectural attribute on OoD accuracy
from the ablation study perspective. All ablation studies are based on 1,000 ViT architectures
sampled from Autoformer-Small search space in our OoD-ViT-NAS benchmark. Through our general
analysis in Sec. 4.4 in the main and ablation study, we show that the embedding dimension has the
highest impact among ViT architectural attributes, while network depth has a slight impact on OoD
generalization.

Experimental Setups. We conduct the ablation study on the impact of ViT architectural attributes on
OoD generalization. Particularly, for each ablation study of one ViT architectural attribute, we vary
that attribute while keeping all other attributes fixed. Then, we compute Kendall’s τ rank correlation
coefficient between each attribute and different OoD shifts. While we can directly adjust the depth
and embedding dimension, adjusting MLP_Ration and #Head is challenging. This is because these
two attributes for each ViT arch are in the form of a list with depth elements. Each element is selected
among 3 choices. This results in a huge combination. To deal with this difficulty, we first compute
the means of MLP_Ration/#Head for each architecture. Then, during the ablation study, we explore a
range of values for MLP ratio and the number of heads (mean #Head = 6± 0.05, mean MLP_Ratio =
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Table J.6: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on Stylized-ImageNet datasets in the Autoformer search space. Bold and
underline stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1413 ± 0.1854

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.3175 ± 0.2658

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.0937 ± 0.1739

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.3091 ± 0.2620

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.1017 ± 0.1442

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.3800 ± 0.3294

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.3619 ± 0.3573

#Param - - 0.4607 ± 0.3318 0.3899 ± 0.3004

#Flops - - 0.4705 ± 0.3391 0.3905 ± 0.3094

Table J.7: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-Sketch datasets in the Autoformer search space. Bold and
underline stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1395 ± 0.2299

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.3434 ± 0.3696

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.0896 ± 0.1112

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.3610 ± 0.3616

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.0871 ± 0.1872

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.3885 ± 0.4021

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.3599 ± 0.3939

#Param - - 0.4607 ± 0.3318 0.4317 ± 0.4013
#Flops - - 0.4705 ± 0.3391 0.4060 ± 0.3917

3.5± 0.05) to capture the impact of these more nuanced architectural variations. We note that this
range of values is small, allowing us to approximately fix these two attributes.

First, we assess the impact of embedding dimension on OoD generalization by fixing the configu-
rations of all other ViT structural attributes (i.e., network depth = 13, mean #Head = 6± 0.05, and
mean MLP_Ratio = 3.5 ± 0.05). The correlation results are shown in Fig. L.11. We observe an
overall positive correlation of 0.65. This further supports our observation in Sec. 4.4 that increasing
the embedding dimension generally could lead to better OoD performance across most OoD shifts
for these ViT architectures.
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Table J.8: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-R datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1435 ± 0.1956

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.3576 ± 0.3416

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.1224 ± 0.1820

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.3751 ± 0.3342

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.0935 ± 0.1518

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.4364 ± 0.4047

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.4164 ± 0.4027

#Param - - 0.4607 ± 0.3318 0.4773 ± 0.4179
#Flops - - 0.4705 ± 0.3391 0.4507 ± 0.4028

Table J.9: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-A datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1663 ± 0.1483

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.4588 ± 0.1477

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.2495 ± 0.0180

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.4642 ± 0.1415

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.1050 ± 0.1172

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.5930 ± 0.1021

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.6048 ± 0.0794
#Param - - 0.4607 ± 0.3318 0.5923 ± 0.1288

#Flops - - 0.4705 ± 0.3391 0.5959 ± 0.1230

Figure L.11: Kendall’s τ rank correlation coefficient between varying Embed_Dim and OoD accuracy.

To demonstrate how the number of layers (i.e., network depth) in a ViT architecture affects the
model’s OoD generalization, we fix other ViT architectural attributes (i.e., Embed_Dim = 384, mean
#Head = 6± 0.05, and mean MLP_Ratio = 3.5± 0.05). The ranking correlation for all architectures
between depth and OoD accuracy in Fig. L.12 suggests a weak correlation between the ViT network
depth and OoD accuracy. This observation is consistent with our finding in Sec. 4.4 that the depth
has a minimal influence on OoD generalization.
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Table J.10: Comparison of Kendall τ ranking correlation between the ID/OoD accuracies and the
zero-cost proxy values on ImageNet-O datasets in the Autoformer search space. Bold and underline
stands for the best and second, respectively.

Training-free NAS
Originally Proposed For

Correlation with ID Acc Correlation with OoD Acc
Performance Architecture

Grasp [74] ID Acc CNNs 0.1490 ± 0.1951 0.1503 ± 0.1638

SNIP [73] ID Acc CNNs 0.3750 ± 0.3023 0.3178 ± 0.3219

MeCo [60] ID Acc CNNs 0.1440 ± 0.2371 0.1049 ± 0.2860

CroZe [62] Adv Robustness CNNs 0.3823 ± 0.3046 0.3277 ± 0.3307

Jacobian [75] Adv Robustness CNNs 0.1053 ± 0.1509 0.0911 ± 0.1242

DSS [10] ID Acc ViTs 0.4165 ± 0.3461 0.3546 ± 0.3478

AutoProx-A [17] ID Acc ViTs 0.4023 ± 0.3827 0.3490 ± 0.3915

#Param - - 0.4607 ± 0.3318 0.3583 ± 0.3559
#Flops - - 0.4705 ± 0.3391 0.3445 ± 0.3887

Figure L.12: Kendall’s τ rank correlation coefficient between varying network depth and all OoD
accuracy.

For MLP_Ratio and #Heads, we observe that the rank correlation coefficients of MLP_Ratio and
#Heads in Fig. L.13 and L.14, respectively, reveals a weak correlation between the #Heads/MLP_Ratio
and OoD generalization. This suggests that within the explored range, these two architectural
attributes have a non-obvious impact on the model’s OoD generalization. To delve deeper into this
observation, Section L.2 presents a layer-wise analysis of these two architectural attributes in ViT
models.

Figure L.13: Kendall’s τ rank correlation coefficient between mean MLP ratio and all OoD accuracy.
We fix Embed_Dim = 384, Depth = 13, and mean #Head = 6± 0.05.
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Figure L.14: Kendall’s τ rank correlation coefficient between the mean number of heads and all OoD
accuracy. We fix Embed_Dim = 384, Depth = 13, and mean MLP_Ratio = 3.5± 0.05.

L.2 Layer-Wise Analysis

The number of heads and MLP ratio vary across layers, which allows for searching more diverse ar-
chitectures. In this section, we provide the layer-wise analysis of the influence of MLP_Ratio/#Heads
in each layer on OoD generalization.

Experimental Setups: In Autoformer-Small search space, the MLP ratio at any given layer —
referred to as the i-th layer — can be set to 3.0, 3.5, or 4. In addition to architectures in our benchmark,
we create a set of 108 sampled architectures from Autoformer-Small. These architectures are fixed
with three architectural design attributes: (Depth = 12, Embed_Dim = 320, #Heads for all layers
= 5). With these parameters fixed, the total number of potential MLP_Tatio configurations is still
extensive (i.e., 312), making it impractical to absolutely fix the MLP_Ration in our ablation study.
To specifically assess the influence of the MLP_Ration at the i-th layer, we further fix a constant
MLP_Ration across all other layers. For example, Fig. M.18 depicts the nine configurations of
MLP_Ration to analyze the impact of 5-th layer.

We carry out a similar layer-wise analysis to demonstrate the effect of #Heads at a specific layer
(i-th layer). In addition to architectures in our benchmark, we create a set of 108 sampled from
Autoformer-Small. These architectures are fixed with three architectural design attributes: (Depth
= 12, Embed_Dim =320, #MLP_Ratio for all layers =3.0). To specifically assess the influence of
the #Head at the i-th layer, we further fix a constant #Head across all other layers. For example,
Fig. M.18 depicts the nine configurations of #Head to analyze the impact of 3-th layer.

Results. The layer-wise analysis for MLP_Ratio are shown in Fig. L.15. Each sub-figure demonstrates
the change in OoD Accuracy when varying MLP_Ratio at a particular layer. While increasing it
improved OoD accuracy in some layers, it decreased it in others. This aligns with our observations in
Sec. 4.4, suggesting no clear overall impact of MLP_Ratio on OoD generalization.

The layer-wise analysis for #Head is illustrated in Fig. L.16. Similar to our observation in the
layer-wise analysis for MLP_Ratio, the impact of #Head is non-obvious, which is consistent with our
finding in Sec. 4.4.

32



Figure L.15: A visualization on the effect of changing MLP ratio per layer to OoD accuracy in 108
architectures sampled from Autoformer-Small in the layer-wise study. To evaluate the effect of layer
i-th, we fix the MLP ratio = 4.0 for the remaining layers. We observe that a slightly higher OoD
accuracy range can be obtained by changing the MLP ratio at layers 4 and 5.

Figure L.16: A visualization on the effect of changing #Heads per layer to OoD accuracy in 108
architectures sampled from Autoformer-Small in the layer-wise study. To evaluate the effect of layer
i-th, we fix the #Heads = 6 for the remaining layers.
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M Reproducibility

Figure M.17: The possible configurations of #Heads at 3rd layer of 108 architectures sampled from
Autoformer-Small in layer-wise analysis.

Figure M.18: The possible configurations of MLP ratio at 5-th layer of 108 architectures sampled
from Autoformer-Small in the layer-wise study.
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M.1 Hyper-parameters

Table M.11: Hyper-parameters for Evaluation on 8 common large-scale OoD datasets. In total, we
evaluate 3,000 diverse ViT architectures in our OoD-NAS-ViT benchmark sampled from Autoformer-
Tiny/Small/Base search spaces [6]. Input resolution is set to 224×224 pixels, with mean and standard
deviation normalization applied using ImageNet statistics (mean = [0.485, 0.456, 0.406], std =
[0.229, 0.224, 0.225]). Transformations follow the Standard ImageNet preprocessing, including
resize and center crop.

IN-C IN-P IN-A IN-O IN-R IN-Sketch Stylized-IN IN-D

Batch Size 256 256 256 64 256 256 256 100

Number of workers 10 10 10 4 10 10 10 10

To ensure reproducibility, we provide a detailed description of the hyper-parameters used for eval-
uating 3,000 ViT architectures in our OoD-NAS-ViT benchmarks on 8 common large-scale OoD
datasets: ImageNet-C [24], ImageNet-A [25] [24], ImageNet-O [25], ImageNet-P [24], ImageNet-D
[26], ImageNet-R [27], ImageNet-Sketch [28], and Stylized ImageNet [29]. The evaluation for
ImageNet-D, ImageNet-O and Stylized ImageNet strictly follows previous works [26, 25, 29] to
ensure consistency and comparability. The details of the evaluation are shown in Table M.11. The
evaluated architectures are sampled on AutoFormer-Tiny/Small/Base Search Spaces [6].

M.2 Compute Resource

All our experiments are conducted using NVIDIA RTX A6000 GPUs. We utilized 2 GPUs for
each experiment. The substantial computational resources required for these evaluations underscore
the complexity and scale of our work. Detailed information on the GPU-hour consumed for all
experiments to construct our OoD-ViT-NAS Benchmark can be found in Table M.12. In total, the
experiments demanded a significant investment of approximately 3900 GPU-hours, reflecting the
extensive computational effort involved.

Table M.12: GPU-Hour for Computational Resources. In total, we evaluate 3,000 diverse ViT
architectures in our OoD-NAS-ViT benchmark sampled from Autoformer-Tiny/Small/Base search
spaces [6].

IN-C IN-P IN-A IN-O IN-R IN-Sketch Stylized-IN IN-D Total

GPU-Hour 2958 672 12 93 28 53 37 50 3903
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Figure M.19: As in Figure 4, we show that lower OoD accuracy can be obtained for the higher ID
accuracy in the Pareto architectures of Autoformer-Small. The left panels show the ID accuracy, and
each panel on columns 2 to 4 shows results from the OoD accuracy of IN-P, IN-A, IN-R, IN-Sketch,
Stylized-IN, and AUPR of IN-O.
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Figure M.20: Visualization of Pareto architectures in Autoformer-Base. The left panels show the ID
accuracy, and each panel on columns 2 to 4 shows results from the OoD accuracy of IN-C common
corruptions and IN-D.
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Figure M.21: Visualization of Pareto architectures in Autoformer-Base. The left panels show the ID
accuracy, and each panel on columns 2 to 4 shows results from the OoD accuracy of IN-P, IN-A,
IN-R, IN-Sketch, Stylized-IN, and AUPR of IN-O.
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Figure M.22: Visualization of Pareto architectures in Autoformer-Tiny. The left panels show the ID
accuracy, and each panel on columns 2 to 4 shows results from the OoD accuracy of IN-C common
corruptions and IN-D.
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Figure M.23: Visualization of Pareto architectures in Autoformer-Tiny. The left panels show the ID
accuracy, and each panel on columns 2 to 4 shows results from the OoD accuracy of IN-P, IN-A,
IN-R, IN-Sketch, Stylized-IN, and AUPR of IN-O.
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Figure M.24: As in Figure 4, we show that lower OoD accuracy can be obtained for the higher ID
accuracy in the Pareto architectures of Autoformer-Small. The left panels show the ID accuracy, and
each panel in columns 2 to 4 shows results from OoD accuracy of IN-C common corruptions and
IN-D. We observe that architectural designs have a greater effect on OoD accuracy than ID accuracy,
especially when OoD shifts become more severe.
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Figure M.25: As in Figure 5, we show the potential impact of embedding dimension (Embed_Dim) on
OoD generalization in ViTs architectures sampled from Autoformer-Small. The numbers denote the
average OoD performance, and The data points with blue , orange , and green colours represent
ViT architectures with the embedding dimension of 320, 384, and 448, respectively. Each panel
shows results from the OoD accuracy of IN-C common corruptions and IN-D.
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Figure M.26: As in Figure 5, we show the potential impact of embedding dimension (Embed_Dim) on
OoD generalization in ViTs architectures sampled from Autoformer-Small. The numbers denote the
average OoD performance, and The data points with blue , orange , and green colours represent
ViT architectures with the embedding dimension of 320, 384, and 448, respectively. Each panel
shows results from the OoD accuracy of IN-P, IN-A, IN-R, IN-Sketch, Stylized-IN, and AUPR of
IN-O.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Sec. 3 for our OoD-ViT-NAS benchmark, and Sec. 4 for our analysis. The
summary can be found in Fig. 2, Fig. 1, and Tab. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] ,
Justification: See Appx. B
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appx. M
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See Appx. A

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appx. M

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Tab. 2. Our benchmark and analysis are conducted across datasets and
search space.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appx. M, ∼ 3900 GPU hours on a single Nvidia RTX A6000

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appx. B

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appx. E and Appx. M for description of dataset and experimental setups,
respectively. We do not mention the license of the assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Appx. A for our OoD-ViT-NAS benchmark. See Sec. 3, and Appx. E for
the description of the benchmark.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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