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Abstract
The decreasing cost of single-cell RNA sequenc-
ing (scRNA-seq) has enabled the collection of
massive scRNA-seq datasets, which are now be-
ing used to train transformer-based cell founda-
tion models (FMs). One of the most promising
applications of these FMs is perturbation response
modeling. This task aims to forecast how cells
will respond to drugs or genetic interventions. Ac-
curate perturbation response models could dras-
tically accelerate drug discovery by reducing the
space of interventions that need to be tested in
the wet lab. However, recent studies have shown
that FM-based models often struggle to outper-
form simpler baselines for perturbation response
prediction. A key obstacle is the lack of under-
standing of the components driving performance
in FM-based perturbation response models. In
this work, we conduct the first systematic pan-
modal study of perturbation embeddings, with an
emphasis on those derived from biological FMs.
We benchmark their predictive accuracy, analyze
patterns in their predictions, and identify the most
successful representation learning strategies. Our
findings offer insights into what FMs are learn-
ing and provide practical guidance for improving
perturbation response modeling.

1. Introduction
Recent advancements in scRNA-seq technology have made
it relatively inexpensive to profile the gene expression of vast
numbers of individual cells (Svensson et al., 2018). It is now
possible to profile 100M cells in a matter of weeks (Zhang
et al., 2025). As the available data has grown, so has interest
in training large foundation models (FMs) using scRNA-
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Figure 1. Distribution of embedding ranks in our benchmarks over
20 different trained models (4 cell lines, 5-fold cross-validation).
Lower is better. Bars are colored by the type of source information
used to learn the embeddings. See Fig. 2 for per-cell-line results.

seq data. One of the most exciting capabilities these FMs
may unlock is highly accurate perturbation response mod-
els, which would allow us to simulate how cells would
respond to drugs or genetic interventions (Gavriilidis et al.,
2024). Such models would allow computational searches
for promising therapies, dramatically reducing the time and
expense required for wet lab experiments (Bunne et al.,
2024).

So far, accurate FM-driven perturbation models have proved
elusive. Several studies have found that cell FMs perform
no better than much simpler models for perturbation re-
sponse prediction (Ahlmann-Eltze et al., 2024; Kernfeld
et al., 2023). The reasons for this performance gap are not
well understood. It is unknown whether performance is lim-
ited by the perturbation embeddings, the models built on top
of them, dataset size, or other factors. For instance, few prior
works have systematically studied the contributions of the
perturbation embeddings separately from the perturbation
response model itself. In this work, we fix the perturbation
response model and study perturbation embeddings from a
diverse collection of modalities and representation learning
strategies. This reveals new insights into what different FMs
are learning and which representation learning methods are
most useful for perturbation response prediction.

1



Multimodal Benchmarking of Foundation Model Representations for Cellular Perturbation Response Prediction

4.
0

4.
5

5.
0

L2

AIDO.Cell (3M)
AIDO.Cell (10M)

AIDO.Cell (100M)
Geneformer

scGPT
scPRINT

TranscriptFormer
AIDO.DNA

AIDO.StructureTokenizer
AIDO.ProteinIF-16B

ESM2
STRING-SPACE (sequence)

STRING-SPACE (network)
STRING-GNN (NBFNet)

STRING-GNN (WaveGC)
GenotypeVAE

scGenePT (GO Biological Process)
scGenePT (GO Cellular Component)
scGenePT (GO Molecular Function)

scGenePT (GO all)
scGenePT (NCBI+UniProt)

No Change
Random

PCA
Idealized Baseline

Cell Line = K-562

6.
0

6.
5

7.
0

7.
5

L2

Cell Line = Hep-G2

5.
5

6.
0

6.
5

L2

Cell Line = Jurkat

6 7 8 9

L2

Cell Line = hTERT-RPE1

Expression
DNA
StructureTokenizer
Network
Prior Knowledge
Baselines

Figure 2. 5-fold cross-validated prediction error for perturbation embeddings in four cell lines. All results are for kNN regression models
with identical training and hyperparameter tuning protocols. The red dashed line corresponds to the performance of random embeddings.
Bars are colored by the type of source information used to learn the embeddings.

Our main contributions are: (i) We evaluate the predictive
utility of perturbation embeddings separately from down-
stream perturbation response models, removing confounders
and revealing which embedding representations are most
useful. (ii) We conduct the first comprehensive assessment
of perturbation embeddings from different modalities and
models: expression-based FMs, protein FMs, DNA FMs,
and embeddings based on structured biological knowledge.
(iii) We introduce a novel, biologically interpretable formu-
lation of perturbation response modeling based on predicting
functional annotations (GO terms) of each perturbation.

2. Related Work
There is considerable interest in the idea of using biologi-
cal FMs to simulate cellular behavior (Bunne et al., 2024;
Song et al., 2024). There are several works that focus on
evaluating FMs in the context of perturbation response mod-
eling (Kernfeld et al., 2023; Li et al., 2024b; Ahlmann-Eltze
et al., 2024; Li et al., 2024a; Csendes et al., 2025). How-
ever, when using the FMs, all of these studies use bespoke,
end-to-end approaches that entangle perturbation representa-
tion with downstream prediction. This coupling introduces
substantial complexity and confounding, making it difficult
to isolate whether performance gains stem from superior
perturbation representations or other model use protocols.
Some prior works have used a fixed predictive model (Chen
& Zou, 2024a; Wenteler et al., 2024), but they considered
much narrower collections of FMs.

This work focuses on evaluating the utility of different per-
turbation embeddings. We explicitly decouple perturba-

tion representation from perturbation response prediction.
This clean separation enables rigorous, controlled evalua-
tion of the utility of gene embeddings generated by each
FM. Furthermore, our benchmarks cover a more diverse
set of models and modalities, offering a more comprehen-
sive assessment of the perturbation representation landscape.
There are many specialized perturbation response models
one could use on top of such embeddings (e.g. Roohani
et al. (2024), Lotfollahi et al. (2023), Piran et al. (2024)),
but those models are beyond the scope of our work, which
intentionally fixes a single model with a consistent training
protocol. Other works focus on benchmarking different
classes of perturbation response models, such as Wu et al.
(2024); Velez-Arce et al. (2024).

3. Problem Formulation
Suppose we are given a collection of scRNA-seq profiles
from a perturbation experiment in which K different per-
turbations P1, . . . , PK are tested. If G ∈ N is the number
of genes we measure, then our data consists of N control
cells XC ∈ RN×G and Mk perturbed cells XPk ∈ RMk×G

where 1 ≤ k ≤ K. Denote the mean post-perturbation
expression as X̄Pk = 1

Mk

∑Mk

i=1 X
Pk
i where XPk

i ∈ RG is
the ith row of XPk . Similarly, let X̄C ∈ RG denote the
mean control expression.

Our first task is to predict how a perturbation alters gene
expression, by regressing from its embedding to the average
change in gene expression relative to control. We call this
the pseudobulk residual expression prediction formulation
of perturbation response modeling. Formally, suppose we

2



Multimodal Benchmarking of Foundation Model Representations for Cellular Perturbation Response Prediction

Figure 3. Clustermap of per-gene ℓ2 error on the K562 cell line for
all embeddings. Values are z-scored within each gene (column),
indicating whether the gene is predicted relatively well (blue) or
poorly (red) compared to other methods. Embeddings with similar
gene-wise error profiles will cluster together even if their overall
performance differs. Color scale is clipped to [-2, 2] for contrast.

have an embedding Ek ∈ Rp for each perturbation Pk. (In
this work we focus on genetic perturbations, so Ek would
correspond to the gene being targeted.) Then the goal is to
learn a model fθ : Rp → RG such that

fθ(Ek) ≈ X̄Pk − X̄C ≜ ∆Pk (1)

where ∆Pk is the mean residual expression relative to con-
trol. This work always considers one cell type at a time, so
our formulation does not include a parameterization of cell
type. See Figs. 1, 2, 3 for results for this formulation.

We also introduce a complementary formulation of perturba-
tion response prediction which, to the best of our knowledge,
has not been studied before: function prediction. Instead
of predicting post-perturbation gene expression values, we
(i) compute differentially expressed (DE) genes for each
perturbation and (ii) perform gene set enrichment analysis
(GSEA) against the gene ontology (GO) terms. For pertur-
bation Pk, this yields a binary vector yk ∈ {0, 1}V which
indicates the presence or absence of V GO terms. We then
train a multi-label linear classifier

gϕ(Ek) ≈ yk (2)

which optimizes a class-balanced binary cross-entropy loss.
Results for this formulation are presented in Fig. 4.

4. Methods
Benchmarking protocols. Here we briefly summarize our
benchmarking protocols. Full details are left to Appendix B.
We work with Perturb-Seq data from Nadig et al. (2024). For
each cell line, perturbations are randomly split into train and
test sets. We train two types of models: expression predic-
tion (k-nearest neighbors) and function prediction (logistic

regression). We use nested cross-validation: 5-fold cross-
validation to robustly assess generalization performance,
and 5-fold cross-validation for hyperparameter tuning.

Metrics. For expression prediction, we measure predictive
performance using average ℓ2 error, defined as:

1

K

K∑
k=1

∥fθ(Ek)−∆Pk∥2. (3)

While ℓ2 error has limitations (e.g. all genes treated equally,
sensitivity to outliers), we found that more complex met-
rics (e.g. average ℓ2 error on per-perturbation DE genes
only, cosine similarity, Spearman correlation) did not lead
to significantly different results. For function prediction, we
report macro-F1. All test metrics are computed using 5-fold
cross validation.

We now describe the five categories of embeddings we
benchmark. Full details can be found in Appendix C.

Baselines. We include two negative control baselines to
identify worst-case performance. In the random baseline,
we generate perturbation embeddings as Ek ∼ U([0, 1]p).
These perturbation embeddings carry no information about
relationships between perturbations. The no change
baseline simply predicts that the perturbed expression is
identical to the control expression. The idealized
baseline is a positive control baseline which has unreal-
istic access to ground truth information. We build the matrix
of perturbed expression profiles [X̄P1 , ..., X̄PK ] ∈ RK×G

and perform PCA. This collection of embeddings reflects
the ground-truth similarity between all K perturbations. Fi-
nally, we include a simple baseline (PCA) that forms gene
embeddings by performing PCA on the transpose of XC .

Expression-based cell FMs. We extract gene embeddings
from several recent cell foundation models: AIDO.Cell
(3M, 10M, and 100M parameter variants) (Ho et al.,
2024), Transcriptformer (Sapiens) (Pearce et al., 2025),
scPRINT (Kalfon et al., 2025), Geneformer (98M parameter
variant) (Chen et al., 2024), and scGPT (Cui et al., 2024).

DNA FMs. We use the AIDO.DNA model (Ellington et al.,
2024) to compute gene embeddings based on the nucleotide
sequence. For each gene, we run inference on a 4kbp win-
dow centered at the transcription start site. This yields
per-nucleotide embeddings, which are then mean pooled to
form gene embeddings.

Protein FMs. We consider four models:
AIDO.StructureTokenizer (Zhang et al., 2024),
AIDO.ProteinIF-16B (Sun et al., 2024), ESM-2 (Lin
et al., 2022), and STRING-SPACE (sequence) (Hu et al.,
2024a). For AIDO.StructureTokenizer and AIDO.ProteinIF-
16B, we obtain an embedding for each residue and mean
pool, averaging over proteins if multiple are available for a
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gene. For ESM-2, we obtained gene embeddings from the
scPRINT API (Kalfon et al., 2025).

Prior knowledge. We include 5 variants of embeddings
from GenePT (Chen & Zou, 2024b), each trained on a dif-
ferent text data source. GenotypeVAE (Yu & Welch, 2022)
is trained to embed genes based on the associated GO an-
notations. Note that all of these embeddings do not vary
between cell lines.

Networks. We consider 3 network-based embeddings de-
rived from the STRING database (Szklarczyk et al., 2025),
including one from Hu et al. (2024a), STRING-SPACE (net-
work), and 2 that we trained for this study, STRING-GNN
(WaveGC) and STRING-GNN (NBFNet).

5. Results
Models based on biological knowledge perform the best.
In Fig. 2 we see that the best-performing models are all
based on structured prior knowledge, such as descriptive
text or knowledge graphs. Models based on gene expression,
DNA sequences, or protein structure perform worse.

Some cell FMs outperform PCA. Our results in Fig. 1 indi-
cate that some cell FMS outperform a simple PCA baseline.
Prior works (Kernfeld et al., 2023; Ahlmann-Eltze et al.,
2024; Wenteler et al., 2024), which studied narrower collec-
tions of FMs using different protocols, did not find evidence
that cell FMs could outperform simple baselines. The two
cell FMs that outperform PCA (AIDO, scGPT) are the only
ones that use relatively simple masked expression prediction
objectives, suggesting that such objectives may be better for
learning functional relationships between genes.

AIDO.Cell shows evidence of scaling. We study variants
of AIDO.Cell with different parameter counts (3M, 10M,
100M). As model size increases, we see a small but con-
sistent improvement in performance. Model scaling may
therefore be one way to improve performance for this task.

ESM2 is the best molecular embedding. The other pro-
tein models and AIDO.DNA perform on par with random
embeddings. Interestingly, AIDO.ProteinIF-16B (which
learns from both protein sequence and structure information)
consistently outperforms AIDO.StructureTokenizer (which
learns from structure alone). We also observe that scPRINT
(which uses ESM2 embeddings as inputs) performs on par
with ESM2 embeddings.

Prediction similarity is driven by modality more than
model. Fig. 3 shows that embeddings learned from similar
modalities tend to cluster (e.g. ESM2 and AIDO.ProteinIF-
16B, or the AIDO.Cell models, scGPT, and scPRINT). Ex-
ceptions include the embeddings whose performance is
close to random, which all cluster together regardless of
modality.
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Figure 4. Function prediction results for the K562 cell line, sorted
by average performance. Bars are colored by the type of source
information used to learn the embeddings.

Non-cross-validated results are unreliable. The error
bars in Fig. 2 show that there is significant split-to-split
variability, even when we tune the hyperparameters for each
split individually. This reinforces the importance of our
robust evaluation protocols, without which it would be easy
to draw incorrect conclusions.

Model rankings are similar for expression prediction
and function prediction. Fig. 4 shows multi-label classi-
fication results for our function prediction formulation of
perturbation response modeling. Comparing with Fig. 1,
which summarizes embedding performance for expression
prediction, we see that the best-performing models are the
same in both cases (embeddings based on biological knowl-
edge or networks). Note that some of these embeddings
were trained with GO terms, which is likely advantageous
for this task. The protein models seem to perform slightly
better than the expression models for function prediction,
while the reverse is true for expression prediction.

6. Conclusion
In this study, we systematically evaluated gene embeddings
derived from various families of FMs and network-based
approaches on the task of perturbation response predic-
tion. We assessed their utility both in terms of predict-
ing gene expression changes following perturbation and
in a multilabel classification task involving the prediction
of perturbation-specific functional terms. Our results in-
dicate that expression-based FMs do not yet consistently
outperform more standard embedding approaches, such as
those based on gene interaction networks or curated textual
knowledge. Further investigation is needed to determine the
biological relevance and utility of these FMs at the level of
individual perturbations. See Appendix A for the limitations
of this study.
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A. Limitations
By design, our study uses only one type of perturbation response model. This allows us to evaluate the effect of perturbation
embeddings in isolation. We chose kNN regression for its simplicity and efficiency. It is possible that different perturbation
response models exhibit different trends. However, prior work indicates that simple baselines tend to outperform more
complex models (Ahlmann-Eltze et al., 2024).

In addition, our study focuses on predicting the average perturbation response of a collection of cells. Perturbation modeling
can also be performed at the single-cell level (Bunne et al., 2023), and performance trends may be different in that setting.

Fine-tuning may also lead to performance improvements; we consider only fixed embeddings in this work.

Finally, we acknowledge that one model may be better than another without any of the models being “good enough” to
be useful for drug discovery. The ultimate test of any perturbation response model must be wet lab validation of their
predictions.

B. Benchmarking Protocol Details
Here we describe details of our benchmarking protocol that were omitted from the main paper.

Perturbation data. We construct our benchmarks using Perturb-Seq data from four cell lines: K562 (lymphoblast from
individual with chronic myelogenous leukemia), RPE1 (retinal pigment epithelial cell from a healthy individual), Jurkat (T
cell from individual with leukemia), HepG2 (epithelial cell from an individual with hepatocellular carcinoma). In particular,
we use the “essential” gene knockout data from Nadig et al. (2024).

Splits. We split uniformly at random by perturbation. Test perturbations are never seen during training.

Perturbation set selection. In general, each collection of perturbation embeddings can cover a different set of genes
for each cell line. For each cell line, we only benchmark the perturbations (i.e. genes) that are present in all embedding
collections. All other perturbations are discarded. For K562, we retain 1534 / 2053 perturbations (∼ 75%) . For the other
three cell lines, we retain 1752 / 2386 perturbations (∼ 73%).

Embedding preprocessing. Different models produce embeddings of different dimensionality, and higher-dimensional
embeddings tend to be more expressive. To control for this confounder, we compute PCA for each embedding and project to
100 dimensions. Features are standardized via z-scaling prior to PCA.

Expression prediction model. For our expresion prediction formulation, we train k-nearest neighbor regressors as
implemented in scikit-learn. We tune the number of neighbors nb using 5-fold cross-validation. We consider
nb ∈ [20, 40, 60, 80, 100] and select the model with the lowest ℓ2 error. All other parameters are left at their default values.

Function prediction model. For our function prediction formulation, we train logistic regression models as implemented in
scikit-learn. In particular, we use MultiOutputClassifier with LogisticRegression and n iters =
500. All other parameters are left at their default values.

Gene set enrichment analysis. We restrict our analysis of function prediction to the K-562 cell line, since the ranking of
different embeddings is consistent across all four lines. For each perturbation k ∈ [K], we compare the expression values of
XPk against 5000 randomly sampled control cells XC using gene-wise t-tests. Genes with significant enrichment (FDR
≤ 0.05, Benjamini Hochberg correction (Benjamini & Hochberg, 1995)) are passed to gene set enrichment analysis (GSEA)
(Subramanian et al., 2005) using gene ontology (GO) annotations (Ashburner et al., 2000), as implemented in GSEApy
(Fang et al., 2023). We encode each perturbation k as a multilabel vector of GO terms that reach FDR ≤ 0.05. We discard
terms associated with fewer than 20 perturbations, which yields a final label set of 966 GO terms for our function-prediction
benchmark.

C. Embedding Generation
This section gives additional details for some embedding generation protocols that were not fully described in the main text.
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C.1. Prior Knowledge

GenotypeVAE. The original GenotypeVAE was trained with a latent dimension of 10 (Yu & Welch, 2022). For the
embeddings in this work, we retrained the model with a latent dimension of 128. Additionally, we used the latest gene
annotations from functionome (Feuermann et al., 2025) to encode genes. All hyperparameters were identical to those
from Yu & Welch (2022).

C.2. Networks

We evaluated four network-based protein embedding strategies, grouped into two categories: (1) STRING-SPACE
embeddings directly adopted from prior work, and (2) STRING-GNN embeddings developed and trained in this study using
a shared framework based on STRING networks and contrastive edge learning.

C.3. STRING-SPACE

We adopted two pretrained embeddings from the SPACE framework by Hu et al. (Hu et al., 2024b): STRING-SPACE
(sequence) and STRING-SPACE (network). Sequence-based embeddings were generated using the transformer model
ProtT5-XL-UniRef50 (Elnaggar et al., 2022), in which residue-level embeddings were extracted from full-length protein
sequences and mean-pooled to produce a 1024-dimensional vector per protein. Network-based embeddings were obtained by
applying weighted node2vec to species-specific STRING protein-protein association networks, resulting in 128-dimensional
node representations. These were aligned across over 1,300 species using a modified FedCoder framework, which projects
species-specific embeddings into a unified 512-dimensional latent space via orthology-guided autoencoders.

C.4. STRING-GNN

We trained two GNN-based models—STRING-GNN (WaveGC) and STRING-GNN (NBFNet)—on the human STRING
network (v11.5), using combined scores as edge weights and a shared contrastive training objective. In both models, input
node features were initialized with the 1024-dimensional STRING-SPACE (sequence) embeddings, then projected to 128
dimensions using a learnable linear layer. Final node embeddings were passed into an MLP edge decoder and optimized
using an InfoNCE contrastive loss over observed (positive) and sampled (negative) edges.

STRING-GNN (WaveGC) employs spectral graph convolution via learnable graph wavelets (Liu et al., 2024). The model
applies 2 layers of WaveGC using 3 wavelet scales and 7 Chebyshev terms, enabling multi-resolution filtering that captures
both local and long-range interactions. Parameters were learned using Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 1e−3 for 200 training epochs and early stopping with a tolerance of 30 epochs based on validation loss.

STRING-GNN (NBFNet) uses the Neural Bellman-Ford framework (Zhu et al., 2021), which generalizes classical
path-based link prediction by learning INDICATOR, MESSAGE, and AGGREGATE functions. The model performs 2
message-passing iterations to build node-pair representations, which are scored using the same MLP decoder and InfoNCE
loss, with identical optimization settings as in STRING-GNN (WaveGC).

C.5. Cell FMs

Embedding generation protocols for different cell FMs are identified in Tab. 1 and defined below. For Transcriptformer,
scPRINT, Geneformer, and scGPT we compute per-gene embeddings by computing the average embedding for each gene
across all control cells for each cell line. For AIDO.Cell, we compute the gene embeddings using the K562 control cells
from Norman et al. (2019). This means that the AIDO.Cell embeddings are at a disadvantage for the other three cell lines.

Fixed gene set protocol. Some models (e.g. AIDO.Cell) have fixed gene sets – for every cell, they produce embeddings
of the same set of genes. For these models, it is straightforward to generate gene embeddings. For each cell line, we pass
all control cells through the model. This yields an embedding for each gene. We average these gene embeddings over all
control cells.

Variable gene set protocol. Some models (e.g. TranscriptFormer) have variable gene sets. These models apply some sort of
selection rule to the genes of each cell and provide embeddings for those genes only. For each cell line, we pass all control
cells through the model. This yields a collection of (gene, embedding) pairs. We average the embeddings for each gene to
produce final gene embeddings. Note that, due to the variable gene sets, some gene embeddings may be derived from more
cells than others.
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Model Protocol
AIDO.Cell 3M Fixed
AIDO.Cell 10M Fixed

AIDO.Cell 100M Fixed
Geneformer Variable

scGPT Fixed
scPRINT Fixed

Transcriptformer Variable

Table 1. Embedding generation protocols used for different cell FMs.
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