
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLING SEQUENCE MEMORIZATION AND
GENERAL CAPABILITY IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Verbatim memorization in large language models remains a persistent and un-
solved challenge, raising critical concerns for privacy, copyright, and responsible
deployment. Existing research suggests that effective unlearning requires target-
ing the specific neurons responsible for memorization, as broad model updates fail
to erase content reliably. However, we show that even these approaches rest on a
flawed premise. Through controlled experiments, we demonstrate that memorized
sequences are not naturally isolated to specific neurons during training, except in
cases where the sequences are highly atypical. In this work, we put forward a
new training paradigm that attempts to isolate memorization to specific neurons
by design. The core challenge is that gradients from the repeated sequences en-
tangle both “generalizing” features that improve general capability, in addition to
sequence-specific memorization. We show that a simple change to standard train-
ing can implicitly disentangle these by leveraging metadata that identifies repeated
sequences. We verify the efficacy of our method (SeqTD) in a proof-of-concept
natural language setting and unveil the mechanism by which this disentanglement
is possible through the training dynamics of memorization. We conclude by dis-
cussing the practical considerations of the deployment of SeqTD and highlight
potential avenues for incorporating it into large-scale settings.

1 INTRODUCTION

Large language models are known to memorize sequences that they observe frequently during pre-
training (Carlini et al., 2023; Nasr et al., 2023). As a result, it remains possible to extract private
information, copyrighted content, and infer the membership of sequences in the training dataset.
Due to the legal and ethical risks of these possibilities, significant research has investigated tech-
niques for identifying and removing such memorized sequences (Maini et al., 2024; Patil et al.,
2023; Barbulescu & Triantafillou, 2024). Extensive prior research has aimed to identify the parts
of a model responsible for memorization and selectively remove them (Chang et al., 2024b; Chen
et al., 2024; Bayazit et al., 2024; Guo et al., 2024). These methods rest on a critical assumption: that
memorization is confined to specific neurons that play little role in broader language modeling. But
does standard training actually produce such neatly isolated memorization neurons? Surprisingly,
this fundamental question remains largely unexplored.

In Section 3, we perform a controlled study and find that existing localization methods struggle
when memorized sequences are typical (linguistically similar to the broader training distribution).
Many undesirable cases of memorization fall in this class: copyrighted books and articles generally
include broadly applicable linguistic patterns. Our findings challenge the underlying premise of
post-hoc localization—in many cases, cleanly isolated memorization neurons may not exist.

If standard pretraining techniques do not induce isolation, are there alternative strategies that
promote it?

A potentially “obvious” approach is to route repeated sequences to their own set of neurons, es-
sentially creating memorization neurons by design. In Section 4, we show a critical flaw of this
approach: it inhibits learning general linguistic patterns across sequences, undermining the fun-
damental goal of pretraining. Thus, it appears some neurons must be “shared” (allowed to learn
from all sequences) to maximally pick up generalizing patterns. This presents a dilemma: if we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Conceptual Intution of SeqTD. We conceptually partition the learning signal from
each example to into “generalization” and “memorization” components. On the left, we show that
standard training can store memorization signal in any neurons. In SeqTD, we provide a set of
memorization neurons which are shielded from forgetting induced by other examples. As a result, (a)
memorization accumulates in these neurons and (b) once these neurons fit the memorized sequence
well, memorization is no longer reinforced in shared neurons.

allow shared neurons, they could implement memorization—leading us back to the failure mode
of standard training. Could we somehow decompose what a model learns into “generalizing” and
“memorizing” components and direct them to different neurons? This is a daunting task; it is diffi-
cult to even precisely delineate these components. However, we show that it is indeed possible, by
carefully leveraging the training dynamics of memorization.

We introduce Sequence-Tied Dropout (SeqTD) which splits hidden-layer neurons in MLP layers
of transformers into two groups: a pool of “shared” neurons that all examples can update, and a
set of “memorization” neurons that each repeated sequence consistently activates (Section 5). By
ensuring each repeated sequence drops out all but a fixed subset of the memorization neurons, we
let memorization accumulate in that subset while shielding shared neurons from repeatedly hav-
ing memorization reinforced. This design is inspired from Maini et al. (2023), and leverages the
learning-and-forgetting cycles of memorization (Toneva et al., 2018): repeated text is systematically
“forgotten” in the shared parameters due to interference from other examples, while memorization
neurons that only see a small subset of data become stable long-term storage. Crucially, this al-
lows partial parameter sharing so that repeated text can contribute general linguistic signals to the
model. In contrast, other strategies for enforcing localization (Chang et al., 2024b) fail to preserve
this property (Section 4.1).

On a modified TinyStories pretraining setup, we show that SeqTD isolates memorization signif-
icantly better than post-hoc localization—at equal or better validation accuracy/perplexity. After
training, simply zeroing out the memorization neurons suffices to “unlearn” repeated sequences
without noticeably harming the model’s performance on other data (Section 5.1). We then investi-
gate the two main practical requirements for applying SeqTD: the accuracy of sequence metadata
and model size (Section 5.2). We find SeqTD is capable of withstanding some amount of noise in
sequence metadata (up to 10%) and can isolate memorization across a wide range of model sizes.
Finally, we investigate the mechanism by which SeqTD isolates memorization and provide experi-
mental evidence of the role of learning-forgetting dynamics in its success (Section 5.3). Ultimately,
we present a principled approach for the intricate, yet crucial puzzle of disentangling memorization
from the general capabilities of LLMs.

2 RELATED WORKS

Forgetting Memorized Sequences. A large body of work has focused on unlearning or forgetting
memorized information from neural models, especially in the classification domain. This includes
methods such as SISA (Bourtoule et al., 2021) that exactly unlearn information by maintaining mul-
tiple model copies, and a recent influx of approximate unlearning approaches (Triantafillou et al.,
2023) that aim to perform post-hoc procedures on a model in order to remove information in ques-
tion. More recently, with the discovery of memorization of sequences in large language models
(Carlini et al., 2023; Nasr et al., 2023), there has been interest in techniques to remove these se-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

quences post-hoc. One class of methods involves further updates of all language model parameters
to reduce the likelihood of a memorized sequence Thudi et al. (2022); Liu et al. (2022); Zhang et al.
(2024); Yao et al. (2024). Thudi et al. (2022) presents the technique of simply training to increase the
loss of memorized examples. Liu et al. (2022) further regularizes this by concurrently minimizing
the loss on a retain set of validation set examples. Another class of methods focuses on identifying
model components responsible for storing memorized sequences and removing them Chang et al.
(2024b); Chen et al. (2024); Stoehr et al. (2024); Bayazit et al. (2024); Guo et al. (2024). However,
currently all such unlearning methods are prone to degrading general model capabilities, beyond the
desired unlearning target (Maini et al., 2023; Zhang et al., 2024). Here, we propose a pretraining
technique to better enable removal of memorized content without harming model capability.

Understanding Memorization. There has also been significant interest in understanding the dy-
namics and mechanisms of sequence memorization. Tirumala et al. (2022); Carlini et al. (2019)
showed that sequence memorization in LLMs often occurs before overfitting. Leybzon & Kervadec
(2024); Chang et al. (2024a); Toneva et al. (2018) demonstrate that memorization often occurs in
cycles of learning and forgetting throughout training. Geva et al. (2021); Dai et al. (2022) study
the mechanistic implementation of memorization, finding MLP layers function as key-value mem-
ories. Huang et al. (2024) demonstrate that the decoding of memorized sequences may not be
causally driven by a single memorization trigger, rather depending partially on certain likely next-
token predictions. As a result, they argue that memorization can be highly “entangled” with general
capabilities. In Section 3, we extend this finding, showing even when memorization significantly
changes the models output (i.e. memorized sequences incur much lower loss than the validation set),
identifying the neurons responsible for memorization can be infeasible.

3 PITFALLS OF POST-HOC LOCALIZATION

Prior works have put forward localization as a means to remove memorization. These proposals
employ heuristics to measure the contribution of each neuron to memorization and subsequently
remove the top scoring ones. This paradigm assumes sequence memorization is sufficiently isolated
in the neurons. Specifically, memorization must be implemented by some subset of neurons and
these neurons must also not contribute to the model’s general capabilities. In this section, we study
whether standard training naturally satisfies these requirements by examining the performance of
two classes of localization methods: pruning and gradient attribution. We defer additional details of
both methods to Appendix B.

3.1 EXPERIMENTAL SETTING

We train models on two controlled settings designed to induce different types of memorization:
highly atypical canaries and sequences that resemble normal test. We then test the ability of the two
post-hoc methods to remove these sequences without harming the model.

Datasets. We conduct our experiments in a controlled setting using a subset of the TinyStories
dataset (Eldan & Li, 2023). In many real-world settings, memorization arises because sequences are
repeatedly seen during training. To simulate this, we randomly sample 100 stories from the TinyS-
tories training set and repeat them 128 times (TS-Repetition). Here, memorized sequences
are “typical” and come from the same distribution as other training sequences and the validation
set. As a comparison, we study a second setting where memorized sequences may be more atypical
(TS-Canary). We concatenate random sequences of tokens (Canaries) to 100 stories and repeat
them 128 times in training. While TS-Canary more closely resembles memorization of label
noise or atypical examples in supervised settings, it may be less representative of memorization in
language models. In both cases, we additionally include 20,000 un-repeated TinyStories sequences.

Evaluation Metrics. We measure sequence forgetting as the difference in loss on repeated se-
quences before and after localization and dropout (higher is better). We measure the model degra-
dation as the difference between the validation loss before and after removal (higher is better). This
reflects that we hope to avoid increases in validation loss when removing memorization.

We present details of model training and localization in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Learning Curve (b) Pruning (c) Integrated Gradients

Figure 2: Study of Localization (a) Loss curve when training on TS-Repetition. We observe
that memorization decreases alongside the validation loss, indicating that the model gains capability
even as it memorizes sequences (b) We plot the unlearning-model degradation tradeoff of pruning
by varying the number of dropped out neurons and demonstrate the method struggles to unlearn
sequences of both kinds (c) We plot the performance of integrated gradients and demonstrate that
although it mitigates model degradation in both cases, it struggles with removing typical sequences.

3.2 EMPIRICAL OBSERVATIONS

We show the results of our analysis in Figure 2. We observe that both post-hoc methods
achieve limited success and struggle particularly to remove typical memorized sequences from
TS-Repetition.

Memorization and Generalization Occur Simultaneously. In Figure 2(a), we plot the valida-
tion and memorization of a model trained on TS-Repetition. We see that the loss on repeated
sequences and the validation set descend simultaneously. Our observations are supported by prior
works, such as Tirumala et al. (2022), that observe memorization of sequences occurs prior to over-
fitting. The simultaneous learning of memorization and generalization illustrates the challenge of
avoiding memorization: simply removing repeated sequences can harm model capability.

Localization Methods Achieve Partial Success. In Figure 2(b) we show the trade-off in sequence
forgetting and model degradation of pruning. We observe in both settings that dropping out the
identified neurons leads to an increase in the memorized sequence’s loss, suggesting some success
in localization. There are similar trends in Figure 2(c) for integrated gradients, although we observe
it generally produces less model degradation than pruning. Additionally, we see that integrated gra-
dients is less effective in removing memorization in TS-Repetition, while being highly effective
in TS-Canary.

Typical Sequence are Difficult to Remove Post-hoc. Across both methods, we find that applying
post hoc methods to TS-Repetition results in greater model degradation than TS-Canary.
This difference is particularly pronounced for integrated gradients. Recall that the memorized se-
quences in TS-Repetition are “typical”– similar to the non-repeated training data and the vali-
dation set. Our results suggest the memorization of typical sequences may not be isolated in neurons.

In summary, our controlled study suggests that while highly atypical memorized sequences appear
to be isolated by standard training, the same is not true for more typical sequences. In particular,
the model degradation experienced on typical sequences suggests that some neurons contribute both
to memorization and general capabilities. Our findings challenge the feasibility of simply removing
memorization post-hoc and suggest the need for a new paradigm that explicitly promotes isolation
during pre-training.

4 INSUFFICIENCY OF ENFORCING LOCALIZATION

In Section 3, we observed that identifying and removing memorization neurons from a standard
pretrained model is not always feasible. This motivates a more direct approach: enforce the creation
of memorization neurons during pretraining. A simple way to achieve this is to restrict repeated
sequences to update a known and separate set of neurons from all other sequences. This would
appear to guarantee the existence of memorization neurons by definition: we control exactly which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

neurons changed as a result of observing a given sequence. For this reason, variants of this technique
have been proposed in prior works to guarantee localization (Chang et al., 2024b; Cloud et al., 2024).

However, we find that this rigid approach both (a) hinders learning general features across sequences
and (b) fails to truly isolate memorization. This reveals that simply “forcing” localization can do
more harm than good: memorization can continue to become entangled with general capability,
while desirable cross-sequence learning is inhibited.

4.1 GRADIENT MASKING

Implementation. We adopt a similar methodology to Cloud et al. (2024). In each layer we
partition the intermediate neurons in the MLP into generalization and memorization neurons. During
training, the gradients in the MLP layer from repeated sequences are masked to only modify weights
corresponding to memorization neurons and conversely, non-repeated sqeuences have their gradients
routed to the generalization neurons. We provide complete experimental details in Appendix C.

4.1.1 EXPERIMENTAL RESULTS

Figure 3: Impact of Gradient-Masked Train-
ing on Validation Performance. We compare the
validation loss of gradient-masked training with
(Gradient Mask-Dropout) and without (Gradient
Mask-Keepall) memorization neurons removed to
a standard training run (Standard: With Rep). We
observe that (a) gradient-masked training achieves
a significantly worse validation loss and (b) drop-
ping out memorization neurons further degrades
validation performance as training progresses.

Gradient Masking Hinders Cross-Sequence
Learning. We observe that the performance
of gradient masking is inferior to a standard
model, even before memorization neurons are
removed (Figure 3). This observation ren-
ders gradient masking impractical, as it signif-
icantly worsens the model’s general capabili-
ties. This finding suggests that it is essential
for some “shared” neurons to be updated by all
sequences to aggregate general features.

Gradient Masking Does Not Fully Isolate
Memorization. In Figure 3, we see remov-
ing memorization neurons further degrades val-
idation performance. This indicates that gra-
dient masking also fails to fully isolate memo-
rization from general capabilities. Even though
the dropped out neurons only received “memo-
rization” gradients, the forward pass leaks acti-
vations between memorization neurons and the
rest of the model. As a result, even general
capabilities become sensitive to the removal of
memorization neurons during training.

In summary, shared neurons are necessary to facilitate the learning of general linguistic capabilities
across all sequences. Moreover, isolation must go beyond simply forcing memorization to separate
neurons: sensitivity to the removal of memorization neurons can develop simply from leakage in the
forward pass. Is it possible to simultaneously resolve both challenges? In the next section, we show
how carefully leveraging the dynamics of memorization can cause isolation to naturally arise, even
in the presence of shared neurons.

5 SEQUENCE-TIED DROPOUT (SEQTD)

To address the challenge of isolating memorization and generalization signal in LLMs, we propose
a novel pretraining strategy for transformers called Sequence-Tied Dropout (SeqTD), to simultane-
ously achieve two goals:

1. Preserve cross-sequence learning. Memorized and non-memorized examples still share some
parameters, so that memorized examples can contribute linguistic or domain-specific information
to the entire model.

2. Enforce effective isolation. Memorized examples are consistently routed to a small pool of
memorization neurons that experience less forgetting and thus naturally accumulate memoriza-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

tion. Moreover, memorization neurons are dropped out during training, disincentivizing general
capabilities from relying on them.

Under standard training, sequence memorization undergoes learning and forgetting cycles (Toneva
et al., 2018; Maini et al., 2022). Thus, on each repetition of a memorized sequence, it is reinforced
throughout the model. If we could ensure that a set of memorization neurons experienced less forget-
ting, (a) memorization would accumulate quickly in those neurons and (b) this accumulation would
reduce future reinforcement of memorization throughout the model. Since forgetting is driven by
interfering gradient updates, we can selectively suppress it in memorization neurons by ensuring that
they are updated by a smaller subset of sequences. Crucially, this relies on the same memorization
neurons being activated across repetitions of a sequence. To satisfy both requirements, we propose to
maintain a pool of memorization neurons and assign each sequence a subset of them to be activated.
As a result, any given memorization neuron is deactivated on most other sequences (insulating them
from forgetting), while remaining consistent across repetitions of the same sequence. We instantiate
this training procedure in the next section, terming it Sequence-Tied Dropout (SeqTD).

SeqTD extends prior work on localizing memorization (Maini et al., 2023) in three key ways:

1. We position the localization of memorization in the realistic scenario of typical sequence memo-
rization (like copyrighted books), as opposed to atypical examples (such as mislabeled examples
in image classification), which have been a focal point of prior work. Our results in Section 3
have demonstrated that it is significantly harder to localize memorization in the typical example
scenario, making the goal much more challenging.

2. We make crucial design decisions that allow us to implement localization in the transformer
architecture for language modeling task (as opposed to past work in the image classification
paradigm). This includes implementing SeqTD in synergy with key-value memory stores in the
MLP layers of transformers as found by Nanda et al. (2023); Geva et al. (2021).

3. We explain the phenomenon of isolation of memorization by dropout-based regularizers in Sec-
tion 5.3, which was an open question in the work of Maini et al. (2023).

Implementation. We partition the MLP neurons in each layer into shared neurons which are
activated across all sequences, and memorization neurons of which only a fraction are activated
on any given example (where the fraction is controlled by the memorization neuron dropout ratio
p). We assign each sequence in pre-training data a sequence ID and use this as a seed to generate
memorization neuron dropout masks. This enables us to ensure the consistency of dropout masks
across repetitions of a sequence without precomputing and storing them in advance. We further
emphasize that sequence IDs can be arbitrarily assigned (as long as repetitions of a sequence have
the same ID). Thus, sequence ID can be generated “on the fly” for example by hashing the sequence.

Experimental Details. We train a GPT Medium model (same as all previous experiments), where
70% of MLP neurons are shared and the remaining 30% are allocated to the pool of memorization
neurons. We emphasize that there are far less memorization neurons than total sequences. Thus,
we do not assume each sequence can be allocated its own memorization neurons. We set the mem-
orization neuron dropout ratio p = 0.3, but explore other choices in Section 5.3. We train on the
TS-Repetition dataset from Section 3.

5.1 EMPIRICAL RESULTS

Sequence-Tied Dropout Enables Learning Across Sequences. In Figure 4(a), we compare
the validation loss of sequence-tied dropout with standard training with and without repeated doc-
uments. Firstly, note that standard training with repeated sequences outperforms filtering them
out. This indicates that the model does learn general capabilities from observing documents re-
peated multiple times in our setting. Next, we compare the standard trained models with Sequence-
Tied Dropout. We observe that when evaluating without the memorization neurons, sequence-tied
dropout achieves comparable validation loss to standard training with repetition.

Dropping Out Memorization Neurons Forgets Memorized Examples. In Figure 4(b), we show
the loss on the repeated TinyStories documents. A standard trained model memorizes these se-
quences during training, achieving close to 0 loss on them. We observe that dropping out the mem-
orization neurons significantly increases the loss on these sequences, increasing the loss to roughly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Validation Loss (b) Loss on Memorized Examples (c) Unlearning-Degradation Trade-
off

Figure 4: Performance of SeqTD (a) We find that SeqTD achieves a comparable validation loss to
a normally trained model on TS-Repetition, outperforming a model trained without repeated
sequences. (b) We show the loss of SeqTD on the repeated sequences, showing that it memorizes
significantly less than a normally trained model. (c) We compare the sequence forgetting-model
degradation tradeoff of SeqTD, relative to the post-hoc methods tested in Section 3, finding SeqTD
outperforms both. We compute the model degradation for SeqTD and Standard: No Rep as the
difference in the validation loss relative to a standard trained model on TS-Repetition.

(a) Sequence ID Noise (b) Model Size (c) Mem. Neuron Overlap

Figure 5: Practicality of SeqTD (a) We study the impact sequence ID noise d, where a fraction
of repeated documents have an inconsistent ID. SeqTD withstands small amounts of noise (up
to 10%) (b) We examine the performance of SeqTD across model sizes, where we measure the
model degradation as the change in validation loss relative to a standard model and the sequence
forgetting as the loss on repeated sequences, we find that SeqTD works across scales but smaller
models experience greater degradation from dropout (c) We study the impact of the fraction of
memorization neurons activated (p) on any given sequence. We find that the model is generally
robust to this choice, but activating too many can interfere in the isolation of memorization.

66% of a standard trained model that does not memorize. Interestingly, we observe that in the latter
part of training, the loss of sequence-tied dropout on memorized sequences begins to increase. This
suggests that while shared neurons may initially implement some memorization, further training
forgets it. We further examine this finding in Section 5.3.

Sequence-Tied Dropout Enables Superior Sequence Forgetting-Model Degradation Tradeoff.
In Figure 4(c), we compare SeqTD’s tradeoff between sequence forgetting and model degrada-
tion, compared to the post-hoc methods from Section 3. We show that SeqTD achieves the best
tradeoff relative to post-hoc methods, achieving a higher loss on memorized sequences with signifi-
cantly lower impact on validation performance. In particular, SeqTD achieves the closest sequence
forgetting to a model trained without repeated sequences (Standard: No Rep), while significantly
outperforming that model in validation loss. This underscores SeqTD ‘s capability to learn from
repeated sequences, while simultaneously isolating memorization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 PRACTICALITY OF SEQTD

There are two crucical requirements in deploying SeqTD: (a) accurate metadata that identifies re-
peated sequences and (b) the presence of memorization neurons which activate only on a subset of
sequences. In this section, we study the sensitivity of SeqTD to these requirements.

Noisy Metadata. SeqTD requires every repetition of a sequence to be presented with a consistent
ID, so that the same set of memorization neurons are activated across repetitions. This implies
accurate metadata which consistently identifies repetitions of sequences. However, in uncurated
large-scale pretraining corpora, metadata can often be noisy or incomplete. We test the robustness
of SeqTD when some repetitions are assigned inconsistent IDs. Concretely, whenever a repeated
sequence is encountered, we randomly perturb its ID with probability d. Our results show that
SeqTD is robust to relatively small values of d, up to 10%. This suggests that having some amount
of noise in the sequence IDs is permissible. On the other hand, when sequence IDs are highly
inconsistent across repetitions (50% noise), SeqTD fails to isolate memorization as effectively. This
verifies that consistency of sequence IDs across repetitions is an important factor behind its success.

Impact of Model Size. Another concern is that SeqTD could necessitate using significantly larger
models. In Figure 5(b), we test the performance of SeqTD on a range of model sizes and find that it is
capable of isolating memorization across model scales—as indicated by the comparably high losses
on repeated sequences (relative to a normally trained model which attains nearly 0 loss). On the
other hand, we find that model degradation (the increase in validation loss compared to a standard
trained model of the same size) does grow as the model architecture becomes smaller. However,
even on smaller models SeqTD outperforms post-hoc methods as shown in Figure 4(c). Thus, while
model size plays a role in the success of SeqTD, the method has benefits in small models as well.

Overlap in Memorization Neurons. As noted previously, it is impractical for each sequence to
have neurons allocated exclusively for it. Thus, there will be some level of “sharing” between the
neurons activated across sequences and this will result in some forgetting even in memorization neu-
rons. In Figure 5(c), we study the role of this impact by testing the choice of different memorization
neuron dropout ratios p. At higher values of p, more neurons activate per sequence, resulting in
more overlap. We find that SeqTD is robust to some degree of overlap, but levels that are too high
can cause isolation to break down. The findings on overlap can also explain the impact of metadata
noise and model size. A decreasing model size corresponds to less available memorization neurons
(and more overlap). Similarly, metadata noise forces more overlap between the neurons used on the
repeated sequences. We examine the role of memorization neuron overlap further in Section 5.3.

5.3 HOW DOES SEQTD ISOLATE MEMORIZATION?

In this section, we investigate the mechanisms behind SeqTD’s ability to isolate memorization.
Recall our hypothesis: having a set of neurons that (a) activate consistently across repetitions of
a sequence and (b) activate on only a subset of other sequences would allow sequence-specific
memorization to accumulate in these neurons and prevent it from being reinforced in shared neurons.
Is this actually how SeqTD works?

Testing the Role of Memorization Neurons. We empirically test the hypothesis that memoriza-
tion neurons in SeqTD are shielded from forgetting. For simplicity, we reran TinyStories pretraining
setup with a single repeated sequence that is observed every 40 gradient steps. We track the training
loss on this sequence for standard training and SeqTD (Figure 6). Recall that in SeqTD, the training
loss on a sequence uses a forward pass with shared neurons and the sequence’s assigned memoriza-
tion neurons activated. Later in training, standard training continues to experience high-amplitude
learning/forgetting cycles. SeqTD, on the other hand experiences less such fluctuations, maintain-
ing a lower train loss on the repeated sequence. This provides evidence that memorization neurons
have a shielding effect from the forgetting dynamics.

Why Can Memorization Neurons Tolerate Overlap? We hypothesized that SeqTD insulates
memorization neurons from interference and forgetting. However, this insulation is not perfect: as
the number of neurons is much smaller than the number of sequences, there must be overlap between
the memorization neurons assigned to different sequences. In Figure 5(c), we observe that when p is
set high (increasing the amount of overlap across sequences), the isolation effects of SeqTD do break
down. For more moderate values of p, SeqTD is fairly robust. We note that it is not necessary to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

perfectly isolate memorization neurons from interference. Rather we must simply ensure that these
neurons experience relatively less interference than shared neurons. In Theorem 3, we formalize
this argument in a simplified setting, showing that different values of p control the accumulation of
memorization in shared versus memorization neurons.

Figure 6: Learning and Forgetting Dynamics of
SeqTD. We study a controlled setting where a
specific TinyStories example is inserted every 10
gradient steps and compare the training loss on
this sequence for standard training and SeqTD.
We observe that SeqTD experiences lower loss
and less forgetting spikes than standard train-
ing. This suggests that memorization neurons
may provide insulated, long-term storage for re-
peated sequences.

Unlearning in Shared Neurons. In Sections
5.1 and 5.2, the loss on repeated sequences in-
creases later in training. This suggests that
some amount of memorization initially takes
place in the shared neurons and is progres-
sively “forgotten” later in training. We hypoth-
esize that once the memorization neurons suf-
ficiently“fit” the repeated sequences, additional
observations no longer reinforce memorization
in the shared neurons. Meanwhile, updates
from other sequences remove memorization in
the shared neurons, due to standard forgetting
dynamics. This contrasts with standard training
where any forgetting that occurs between obser-
vations of a sequence is reinforced throughout
the entire model on subsequent encounters.

6 DISCUSSION

Contribution. Our work addresses a signifi-
cant open problem: Can memorization be dis-
entangled from general model capabilities? In
a controlled setting, we demonstrate that stan-
dard training can fail to do this—particularly in
the practically impactful setting of typical se-
quences. Our findings extend and support hypotheses in prior work on the “entanglement” of mem-
orization with general capabilities. However, we present a way to naturally promote disentanglement
in pre-training by carefully leveraging the learning dynamics of memorization (SeqTD). In a small-
scale setting, we verify that our method induces the isolation of memorization without compromis-
ing the learning of general capabilities. Moreover, we unveil the underlying mechanisms of SeqTD,
which can inspire future techniques to promote isolation and modularity in LLM pretraining.

Practical Considerations. There are practical considerations on the way to deploying SeqTD
in real-world settings. Firstly, SeqTD can increase the size of model required for learning: it is
necessary to have a model large enough to maintain appropriately sized shared and memorization
neuron pools. Future work can examine memory efficient ways to implement the memorization
neuron pool, for example finding ways to offload the bulk of their parameters to inactive memory by
taking advantage of their sparsity. Secondly, SeqTD relies crucially on correct metadata to ensure
that repeated sequences get routed to the right memorization neurons. Having access to this metadata
can be challenging when repetitions of a sequence may be ‘embedded” within different surrounding
contexts. Thus, future work can examine efficient techniques for generating and correcting meta-
data annotations based off of the semantic contents of sequences.

Extensions Beyond Memorization. A promising area for future investigation is applying SeqTD
for cases beyond sequence memorization. For example, SeqTD could be applied to promote iso-
lation in the storage of factual knowledge. This could enable more specific editing, as well as
more effective test-time control over parametric knowledge. Similarly, extending SeqTD to operate
on domain metadata could enable robust removal of harmful capabilities downstream–potentially
avoiding the pitfalls of fine-tuning based safety-training. Ultimately, we hypothesize that SeqTD
can be flexibly applied given multiple forms of metadata to promote disentanglement and improve
the downstream adaptability of foundation models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

George-Octavian Barbulescu and Peter Triantafillou. To each (textual sequence) its own: Improving
memorized-data unlearning in large language models, 2024. URL https://arxiv.org/
abs/2405.03097.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models, 2024. URL https://arxiv.
org/abs/2310.03084.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks, 2019. URL https://
arxiv.org/abs/1802.08232.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models, 2023. URL https:
//arxiv.org/abs/2202.07646.

Hoyeon Chang, Jinho Park, Seonghyeon Ye, Sohee Yang, Youngkyung Seo, Du-Seong Chang, and
Minjoon Seo. How do large language models acquire factual knowledge during pretraining?,
2024a. URL https://arxiv.org/abs/2406.11813.

Ting-Yun Chang, Jesse Thomason, and Robin Jia. Do localization methods actually localize mem-
orized data in llms? a tale of two benchmarks, 2024b. URL https://arxiv.org/abs/
2311.09060.

Ruizhe Chen, Tianxiang Hu, Yang Feng, and Zuozhu Liu. Learnable privacy neurons localization
in language models, 2024. URL https://arxiv.org/abs/2405.10989.

Alex Cloud, Jacob Goldman-Wetzler, Evžen Wybitul, Joseph Miller, and Alexander Matt Turner.
Gradient routing: Masking gradients to localize computation in neural networks, 2024. URL
https://arxiv.org/abs/2410.04332.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers, 2022. URL https://arxiv.org/abs/2104.08696.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446/.

Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite. Mech-
anistic unlearning: Robust knowledge unlearning and editing via mechanistic localization, 2024.
URL https://arxiv.org/abs/2410.12949.

Jing Huang, Diyi Yang, and Christopher Potts. Demystifying verbatim memorization in large lan-
guage models, 2024. URL https://arxiv.org/abs/2407.17817.

Danny D. Leybzon and Corentin Kervadec. Learning, forgetting, remembering: Insights from track-
ing LLM memorization during training. In Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Ho-
sein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 43–57, Miami, Florida,
US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
blackboxnlp-1.4. URL https://aclanthology.org/2024.blackboxnlp-1.4/.

10

https://arxiv.org/abs/2405.03097
https://arxiv.org/abs/2405.03097
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/1802.08232
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2406.11813
https://arxiv.org/abs/2311.09060
https://arxiv.org/abs/2311.09060
https://arxiv.org/abs/2405.10989
https://arxiv.org/abs/2410.04332
https://arxiv.org/abs/2104.08696
https://arxiv.org/abs/2305.07759
https://aclanthology.org/2021.emnlp-main.446/
https://arxiv.org/abs/2410.12949
https://arxiv.org/abs/2407.17817
https://aclanthology.org/2024.blackboxnlp-1.4/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022. URL https:
//arxiv.org/abs/2203.12817.

Pratyush Maini, Saurabh Garg, Zachary Lipton, and J. Zico Kolter. Characteriz-
ing datapoints via second-split forgetting. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Process-
ing Systems, volume 35, pp. 30044–30057. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
c20447998d6c624b4b97d4466a3bfff5-Paper-Conference.pdf.

Pratyush Maini, Michael C. Mozer, Hanie Sedghi, Zachary C. Lipton, J. Zico Kolter, and Chiyuan
Zhang. Can neural network memorization be localized?, 2023. URL https://arxiv.org/
abs/2307.09542.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task
of fictitious unlearning for llms, 2024. URL https://arxiv.org/abs/2401.06121.

Neel Nanda, Senthooran Rajamanoharan, Janos Kramar, and Rohin Shah. Fact find-
ing: Attempting to reverse-engineer factual recall on the neuron level, Dec 2023.
URL https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/
fact-finding-attempting-to-reverse-engineer-factual-recall.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne
Ippolito, Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee.
Scalable extraction of training data from (production) language models, 2023. URL https:
//arxiv.org/abs/2311.17035.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms? ob-
jectives for defending against extraction attacks, 2023. URL https://arxiv.org/abs/
2309.17410.

Niklas Stoehr, Mitchell Gordon, Chiyuan Zhang, and Owen Lewis. Localizing paragraph memo-
rization in language models, 2024. URL https://arxiv.org/abs/2403.19851.

Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd: Under-
standing factors influencing machine unlearning, 2022. URL https://arxiv.org/abs/
2109.13398.

Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memoriza-
tion without overfitting: Analyzing the training dynamics of large language models, 2022. URL
https://arxiv.org/abs/2205.10770.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Eleni Triantafillou, Fabian Pedregosa, Jamie Hayes, Peter Kairouz, Isabelle Guyon, Meghdad Kur-
manji, Gintare Karolina Dziugaite, Peter Triantafillou, Kairan Zhao, Lisheng Sun Hosoya, Julio C.
S. Jacques Junior, Vincent Dumoulin, Ioannis Mitliagkas, Sergio Escalera, Jun Wan, Sohier Dane,
Maggie Demkin, and Walter Reade. Neurips 2023 - machine unlearning. https://kaggle.
com/competitions/neurips-2023-machine-unlearning, 2023. Kaggle.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=8Dy42ThoNe.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
trophic collapse to effective unlearning, 2024. URL https://arxiv.org/abs/2404.
05868.

11

https://arxiv.org/abs/2203.12817
https://arxiv.org/abs/2203.12817
https://proceedings.neurips.cc/paper_files/paper/2022/file/c20447998d6c624b4b97d4466a3bfff5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c20447998d6c624b4b97d4466a3bfff5-Paper-Conference.pdf
https://arxiv.org/abs/2307.09542
https://arxiv.org/abs/2307.09542
https://arxiv.org/abs/2401.06121
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://arxiv.org/abs/2311.17035
https://arxiv.org/abs/2311.17035
https://arxiv.org/abs/2309.17410
https://arxiv.org/abs/2309.17410
https://arxiv.org/abs/2403.19851
https://arxiv.org/abs/2109.13398
https://arxiv.org/abs/2109.13398
https://arxiv.org/abs/2205.10770
https://kaggle.com/competitions/neurips-2023-machine-unlearning
https://kaggle.com/competitions/neurips-2023-machine-unlearning
https://openreview.net/forum?id=8Dy42ThoNe
https://openreview.net/forum?id=8Dy42ThoNe
https://arxiv.org/abs/2404.05868
https://arxiv.org/abs/2404.05868

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS OF TINYSTORIES TRAINING

Implementation and Architecture. We use the nanoGPT library to perform standard pretraining
of the models. We train a GPT-2-Medium like architecture with embedding dimension 1024 and a
4 times expansion in the MLP layer. We used 24 layers, the resulting model had approximately 344
M parameters.

Table 1: Hyperparameter Tuning for Standard Training
Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps

Hyperparameter Tuning. We set the hyperparameters for our training as shown in Table 1. For
parameters denoted in sets, we tuned over choices of these parameters relative to the validation loss.
We also performed early stopping on the validation loss, but generally found that overfitting did not
occur.

B IMPLEMENTATION DETAILS OF POST-HOC LOCALIZATION TECHNIQUES

We examine the following variants We generally follow the methodology used in Chang et al.
(2024b) and directly used their code as released online. We restrict our attention to their Hard-
Concrete and Integrated Gradients methods presented in the papers.

Hyperparameters: Hard Concrete. We tuned λ, the ℓ1 loss coefficient used in training the pruning
mask M over the values {100, 500, 1000} on a tuning set of 5 sequences. Additionally, we tuned the
number of pruning iterations in the range {1000, 2000, 4000}. The remainder of hyperparameters
were set to the optimal values reported by Chang et al. (2024a). We tuned relative to the lowest
validation loss achieved after dropping out the identified neurons.

Hyperparameters: Integrated Gradients. For Integrated Gradients, the only hyperparameter was
the number of IG steps. As a result, we set this to the value reported in the paper, 16.

Dropout Procedure. Following the computation of mask scores by either Hard Concrete or attri-
bution scores by Integrated Gradients, we sorted the neurons in each layer by these scores. Given a
dropout parameter r, we dropped out an r proportion of the neurons in each layer, as was performed
in Chang et al. (2024a).

C IMPLEMENTATION OF GRADIENT MASKING

We generally follow the implementation outlined in Cloud et al. (2024). We partition each MLP
layer into memorization and generalization neurons. We tune this delineation of memorization and
generalization neurons by the proportion of generalization neurons g. We additionally partition
our dataset into examples seen once and the repeated examples. During training, we mask the
gradients in each MLP layer such that the gradients from the repeated examples update only a the
memorization block, whereas gradients of all other examples are routed to the generalization block.

Hyperparameter Tuning. We show the hyperparameters tuned for this method in Table 2. Hyper-
parameter denoted in sets are tuned relative to the validation loss before dropping out memorization
neurons.

D IMPLEMENTATION OF SEQTD

Model Architecture and Implementation. We used the same model architecture as reported in
Appendix A. We set the first g fraction of neurons in each MLP as the “shared neurons” and left the

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameter Tuning for Sequence-Tied Dropout
Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
g {0.7,0.9,0.95}

Table 3: Hyperparameter Tuning for Sequence-Tied Dropout
Parameter Values

Max Learning Rate {6e-5,6e-4,6e-3}
Weight Decay {1e-5,1e-3,1e-1}
Min Learning Rate Max Learning Rate

10
LR Decay Steps Total Training Steps
g {0.1,0.3,0.5,0.7}
p {0.1,0.3,0.5,0.7}

remaining 1 − g fraction as the memorization neuron pool. We applied the dropout layer after the
GeLU activation function, prior to the downprojection layer.

Assignment of Sequence IDs. We sequentially numbered the sequences in the TinyStories training
set and use these indices as the sequence IDs.

Hyperparameter Tuning. In Table 3, we show the hyperparameter ranges tuned over for SeqTD.
Hyperparameters denoted in sets were tuned over using the validation loss when the memorization
is dropped out.

E ANALYSIS OF SEQ-TIED DROPOUT

E.1 FORMALIZATION OF TRAINING PROCESS

Architecture. For simplicity, we study the training dynamics of an MLP layer f(x) = WprojWfcx,
where Wproj ∈ Rdh×demb , Wfc ∈ Rdemb×dh . Here, demb refers to the embedding size of the model
and dh refers to the number of hidden neurons in the MLP. Given a sequence s, we consider that f
takes in the final position embedding of s, which we denote ϕ(s) and directly outputs the logits of
the next token (i.e. softmax(f(ϕ(s))) is a probability distribution over the next token in sequence s.

For convenience, we will denote the hidden activations of sequence s as z(s). In our analysis, we will
assume that the activation space of z(s) can be split into two subspaces z(s) = [z(s)shared z(s)mem].
These components will correspond to our choice of shared and memorization neurons. We will
additionally consider Wfc frozen throughout training and mainly study the training dynamics of
Wproj. Thus for convenience, we will also decompose Wfc into two column-blocks (corresponding
to the shared and memorization neurons, respectively): Wproj =

[
Wshared

proj Wmem
proj

]
Data Setup. We will treat our data as (embedding, next token) pairs. We consider we have a
repeated sequence smem with corresponding next token emem. Next, we will assume we have a large
dataset of sequences seen only once during training Donce = {(s(1), e(1)), ..., (s(N), e(N)})}. For sim-
plicity, we will consider the case where ∀i e(i) ̸= emem. Since we treat Wproj as frozen, we will also
define ϵshared = min z(smem)⊤sharedz(s

(i))shared and likewise that ϵmem = mini z(s
mem)⊤memz(s

(i))mem.
Intuitively, these quantities lower bound how similar the activations in the shared and memorization
neurons are between the repeated example and any other example. For simplicity we will assume
that the ||z(i)||2 = 1 for all z(i) and that the parameter ||Wproj||2 <

Cproj

2 remains bounded through-
out training. Finally we assume that the ouput embeddings e are mutually orthogonal.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Training Process. In standard training, we study the training trajectory (with learning rate γ) of
minimizing the cross entropy loss with respect to the parameter Wproj. We consider training with
batch size 1.

E.2 FORGETTING UNDER NORMAL TRAINING DYNAMICS

To begin, we introduce a result on the softmax with bounded inputs
Theorem 1 (Softmax on ℓ∞ bounded vectors). Consider x ∈ Rd and suppose x∞ ≤ C. Then
maxi(σ(x))i ≤ e2k

d−1 and mini(σ(x))i ≥ e−2k

d

Proof. σ(x)i = exp(xi)∑
j∈d

exp(xj)
≤ exp(C)

exp(C)+(d−1) exp(−C) = exp(2C)
exp(2C)+(d−1) ≤ exp(2C)

d−1 . Likewise

σ(x)i ≥ exp(−C)
exp(−C)+(d−1) exp(C) =

exp(−2C)
exp(−2C)+(d−1) ≥

exp(−2C)
d .

Given our assumption that ||z(i)||2 = 1 and the bounded parameter norm assumption ||Wproj||2 <
Cproj

2 , it follows that ||Wprojz
(i)||∞ ≤ CV

2 . By Theorem 1, we have that the entries of exp(−Cproj)
demb

≤
σ(f(z(i)) ≤ exp(Cproj)

demb−1 , element wise. In the remainder of the theory, we denote cmin =
exp(−Cproj)

demb

and cmax =
exp(Cproj)
demb−1

.

We will first show that the memorization of the repeated sequence smem is forgotten when we take in-
tervening steps on non-repeated sequences xs(i), ..., s(i+n). Formally, we have the following propo-
sition. Formally, suppose that at after step i, we have just seen s(mem). Then we will show that the
logit e(mem) decreases during subsequent training steps i through i + n. For this analysis, we will
focus on the dynamics the shared neurons.
Theorem 2 (Forgetting in Standard Training). Suppose we take a gradient step on s(mem) at gradient
step i and subsequently make gradient updates on non-repeated sequences s(i), ..., s(i+m). After the
m gradient steps, we have that (emem)⊤f (i+m)(zmem) ≤ (emem)⊤f (i)(zmem)− γmϵcmin.

Proof. Only the parameter Wproj changes throughout training, so we can restrict our attention to its
dynamics. We have that the gradient of Wproj on the sequence-next token pair (z, e)

∂L

∂Wproj
= (e− σ(f(z))z⊤

Now let Wproj
(i) denote the parameter value of Wproj after the i-th observation. We have that

Wproj
(i+m) = Wproj

(i) + γ

m∑
j=1

(e(j) − σ(f (j+i)(z(i))z(i)
⊤

(1)

where we will denote f (j+i) as the model with parameter Wproj. Then, we have that the logit on the
correct next token for memorized example zmem is

(emem)⊤f (i+m)(zmem) = (emem)⊤f (i)(zmem)+(emem)⊤γ

m∑
j=1

(e(j)−(zmem)σ(f (j+i)(z(i))z(i)
⊤
(zmem)

Now, since we have that the token embeddings are orthogonal, we can rewrite this as

(emem)⊤f (i+m)(zmem) = (emem)⊤f (i)(zmem)− (emem)⊤γ

m∑
j=1

σ(f (j+i)(z(i))z(i)
⊤
(zmem)

Note that by the assumption of bounded norm for Wproj. we have that (emem)⊤σ(f (j+i)(z(i)) ≥
cmin (defined earlier). Note also the assumption that z(i)

⊤
(zmem) ≥ ϵ ∀i. This implies that

(emem)⊤f (i+m)(zmem) ≤ (emem)⊤f (i)(zmem)− γ

m∑
j=1

ϵcmin (2)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This immediately yields our desired claim.

Next, we will show that the seqTD accumulates memorization in the memorization neurons, as
formalized in the following theorem. This theorem also crystalizes some key quantities relating
to gradient interference. First of all, we see that the forgetting depends on the number of further
gradient steps taken after seeing smem. Secondly, we observe that the impact of forgetting dynamics
is influcned by how similar the activation of neurons are amongst different examples: controlled by
ϵ. The first observation immediately suggests that if some neurons were activated less often, then
those neurons would be effectively “store” more memorization.

E.3 ANALYSIS OF SEQTD

Theorem 3 (SeqTD Accumulates Memorization in Memorization Neurons). Consider training
SeqTD, where the memorization neurons are activated on a p fraction of non-repeated examples.
We will assume that the model is trained from 0 initialization. Denote the MLP fmem-dropped as the
model with memorization neurons dropped out and fgen-dropped as the model with the generalization
neurons dropped out. Suppose that the model is trained for N total steps and the repeated sequence
smem is observed k times. Then we have at the end of training

1. (emem)⊤f
(n)
gen-only(ϕ(s

mem)) ≤ γk(1− cmin)− γ(N − k)ϵsharedcmin

2. (emem)⊤f
(n)
mem-only(ϕ(s

mem)) ≥ γk(1− cmax)− γ(N − k)ρϵmemcmax

where cmin and cmax are constants depending on an upper bound of the parameter norm of Wproj.

Proof. Our argument resembles the proof of Theorem 2, and we will rely on the intuition therein.
For reference, we will write the gradients for the components of Wproj below.

∂L

∂Wshared
proj

= (e− σ(f(z))z⊤shared

and likewise
∂L

∂Wmem
proj

= (e− σ(f(z))z⊤mem

We will first examine (emem)⊤f
(n)
gen−only(z

mem). At any point in training, recall that we can up-
per and lower bound the value cmin ≤ (e(i))⊤σ(f(zmem)) ≤ cmax. As such, observe that
(e(i))⊤σ(f(zmem)) received k updates upper bounded by γ(1 − cmin) (from the k obervations of
zmem and (N−k) updates upper bounded by γϵsharedcmin (from the remaining (N−k) observations
of the z(i). This yields the desired claim for (1).

Now, for claim (2) observe that the component (emem)⊤f
(n)
mem−only(z

mem) receives k updates lower
bounded by (1 − cmax) (again, from the k observations of zmem, but only p(N − k) updates from
other observations, which can likewise be lower bounded by γϵmemcmax This immediately implies
the desired claim in (2)

This theorem formalizes the notion that memorization “accumulates” in the memorization neurons
when they are shielded from the interference of other sequences sufficiently. In our theory, the extent
to which this occurs is dependent on two quantities (1) the fraction of non-repeated sequences for
which the memorization neurons are active and (2) the similarity of activations of the repeated
example and non-repeated example in the memorization neurons. Relative to algorithm design,
however, we will generally only have control over ρ and so we will consider ϵshared = ϵmem out
of convenience. Our analysis demonstrates that when ρ is set appropriately low. Some calculation
demonstrates that when ρ < cmin

cmax
− k

(N−k) (cmax − cmin), then we will have a seperation in the
logits of smem where the memorization neurons primarily contain the memorized example.

15

	Introduction
	Related Works
	Pitfalls of Post-Hoc Localization
	Experimental Setting
	Empirical Observations

	Insufficiency of Enforcing Localization
	Gradient Masking
	Experimental Results

	Sequence-Tied Dropout (SeqTD)
	Empirical Results
	Practicality of SeqTD
	How does SeqTD Isolate Memorization?

	Discussion
	Implementation Details of TinyStories Training
	Implementation Details of Post-hoc Localization Techniques
	Implementation of Gradient Masking
	Implementation of SeqTD
	Analysis of Seq-Tied Dropout
	Formalization of Training Process
	Forgetting Under Normal Training Dynamics
	Analysis of SeqTD

