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Abstract

Cross-lingual transfer (XLT) driven by mas-001
sively multilingual language models (mmLMs)002
has been shown largely ineffective for low-003
resource (LR) target languages with little (or004
no) representation in mmLM’s pretraining, es-005
pecially if they are linguistically distant from006
the high-resource (HR) source language. Much007
of the recent focus in XLT research has been008
dedicated to LR language families, i.e., fami-009
lies without any HR languages (e.g., families010
of African languages or indigenous languages011
of the Americas). In this work, in contrast, we012
investigate a configuration that is arguably of013
practical relevance for more of the world’s lan-014
guages: XLT to LR languages that do have a015
close HR relative. To explore the extent to016
which a HR language can facilitate transfer017
to its LR relatives, we (1) introduce Kardeş-018
NLU,1 an evaluation benchmark with language019
understanding datasets in five LR Turkic lan-020
guages: Azerbaijani, Kazakh, Kyrgyz, Uzbek,021
and Uyghur; and (2) investigate (a) intermedi-022
ate training and (b) fine-tuning strategies that023
leverage Turkish in XLT to these target lan-024
guages. Our experimental results show that025
both - integrating Turkish in intermediate train-026
ing and in downstream fine-tuning - yield sub-027
stantial improvements in XLT to LR Turkic028
languages. Finally, we benchmark cutting-edge029
instruction-tuned large language models on030
Kardeş-NLU, showing that their performance031
is highly task- and language-dependent.032

1 Introduction033

Transformer-based massively multilingual lan-034

guage models (mmLMs), such as mBERT (De-035

vlin et al., 2019), XLM-R (Conneau et al., 2020a),036

and mT5 (Xue et al., 2021), have substantially ad-037

vanced multilingual NLP. These models have en-038

abled rapid development of language technologies039

1Kardeş-NLU will be publicly available.

for a wide range of low-resource (LR) languages by 040

means of cross-lingual transfer (XLT) from high- 041

resource (HR) languages, using zero-shot (Wu and 042

Dredze, 2019; Karthikeyan et al., 2020) or few-shot 043

transfer techniques (Lauscher et al., 2020; Schmidt 044

et al., 2022). mmLMs are, however, biased towards 045

HR languages and XLT with mmLMs yields es- 046

pecially poor transfer performance for LR target 047

languages that are (i) underrepresented in mmLMs’ 048

pretraining corpora and (ii) linguistically distant 049

from the source language (Lauscher et al., 2020). 050

Besides these reasons, such poor XLT is also a con- 051

sequence of the curse of multilinguality (Conneau 052

et al., 2020a; Pfeiffer et al., 2022), i.e., a reduced 053

representational quality of supported languages, 054

stemming from mmLMs’ parameters being shared 055

by many linguistically diverse languages. 056

In recent years, a large body of work focused 057

on improving XLT abilities of mmLMs, ranging 058

from models that aim to better align representation 059

subspaces of source and target language with cross- 060

lingual supervision (Cao et al., 2020; Hu et al., 061

2021; Conneau et al., 2020b; Minixhofer et al., 062

2022; Wang et al., 2022) to those that improve the 063

mmLMs’ representational capacity for individual, 064

mostly LR languages (Pfeiffer et al., 2020; Parović 065

et al., 2022; Ansell et al., 2021; Pfeiffer et al., 2022). 066

At the same time, an incredible amount of effort has 067

also been dedicated to the creation of new multilin- 068

gual evaluation benchmarks that either encompass 069

sets of linguistically diverse languages (Clark et al., 070

2020; Ponti et al., 2020; Ruder et al., 2021) or fo- 071

cus on LR languages (Adelani et al., 2021; Muham- 072

mad et al., 2022; Ebrahimi et al., 2022; Armstrong 073

et al., 2022; Winata et al., 2023; Khanuja et al., 074

2023, inter alia). The vast majority of existing 075

work, however, assumes (i) zero-shot downstream 076

transfer from (ii) English as the source. That is 077

primarily because, on the one hand, for most tasks, 078

training data is only available in English. On the 079
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other hand, many of the recent benchmarks cover080

LR language families, i.e., families without any HR081

languages (e.g., some African language families or082

indigenous languages of the Americas): this pre-083

vents the creation of high-quality silver-standard084

training data in a (closely) related HR language085

(e.g., via machine translation (MT)), as no such086

language exists.087

Contributions. 1) In this work, we contribute088

to the body of evaluation resources for LR XLT089

with Kardeş-NLU,2 an evaluation benchmark cov-090

ering three natural language understanding (NLU)091

tasks – natural language inference (NLI), semantic092

text similarity (STS), and commonsense reason-093

ing, in particular choice of plausible alternatives094

(COPA) – for five Turkic languages – Azerbaijani095

(az), Kazakh (kk), Kyrgyz (ky), Uyghur (ug), and096

Uzbek (uz). We focus on Turkic languages because,097

unlike most concurrent work, we aim to explore098

a highly underinvestigated XLT research question:099

to what extent can LR languages that do have a100

linguistically and genealogically (close) HR rel-101

atives profit from those relatives (Snæbjarnarson102

et al., 2023). 2) We extend a number of estab-103

lished (i) intermediate training and (ii) fine-tuning104

approaches (covering both zero-shot and few-shot105

XLT) for improving LR XLT by incorporating Turk-106

ish as the HR sibling of the Kardeş-NLU languages;107

and show that the mixture of incorporating Turkish108

in intermediate training and in task-specific fine-109

tuning results in substantial performance gains. 3)110

Given the praised generalization abilities of large111

instruction-based language models (LLMs) (Chung112

et al., 2022; Ahuja et al., 2023; Asai et al., 2023),113

we additionally evaluate (zero-shot) two multilin-114

gual LLMs on Kardeş-NLU– the open mT0 (Muen-115

nighoff et al., 2023) and commercial ChatGPT,116

showing that their performance is highly task- and117

language-dependent and in some cases substan-118

tially trails that of XLT with traditionally fine-tuned119

“small” mmLMs.120

2 Kardeş-NLU Benchmark121

Language and Task Selection. We selected lan-122

guages for Kardeş-NLU based on two criteria: (i)123

linguistic and genealogical diversity within the Tur-124

kic language family and (ii) availability of native125

2kardeş is a Turkish gender-neutral word for sibling. Refer-
ring to a brother (erkek kardeş) or sister (kız kardeş), requires
an additional gender denotation: kız (girl) or erkek (boy).

speakers of those languages who are also fluent 126

in English.3 Our final selection contains five lan- 127

guages from the Common Turkic branch, covering 128

three different sub-branches: Western Oghuz lan- 129

guages (Azerbaijani; Turkish, as the HR language 130

in our experiments, also belongs to this branch), 131

Kipchak languages (Kazakh and Kyrgyz) and Kar- 132

luk languages (Uzbek and Uyghur). Moreover, 133

Kardeş-NLU covers languages with two different 134

scripts: Latin (Azerbaijani and Uzbek) and Cyrillic 135

(Kazakh, Kyrgyz, and Uyghur).4 136

We select three tasks that are (i) among the most 137

prominent NLU tasks, included in popular NLU 138

benchmarks (Wang et al., 2018, 2019), and (ii) al- 139

ready have existing evaluation datasets in a number 140

of languages (commonly translations of an origi- 141

nal English dataset): NLI (Conneau et al., 2018; 142

Aggarwal et al., 2022; Ebrahimi et al., 2022), STS 143

(Cer et al., 2017), and COPA (Gordon et al., 2012; 144

Ponti et al., 2020). 145

Dataset Translation. We adopt a widely used two- 146

step translation approach to obtain translations in 147

which a native speaker of the target language, fluent 148

in English, post-edits the output of MT.5 This way, 149

we translated English instances from the follow- 150

ing datasets: XNLI (Conneau et al., 2018) (2000 151

instances from the test portion and 1000 instances 152

from the validation portion), STS-Benchmark (Cer 153

et al., 2017) (800 test instances and 200 validation 154

instances), and XCOPA (Ponti et al., 2020) (500 155

test instances and 100 validation instances). We ini- 156

tially manually compared, on a small subsample of 157

instances from all three datasets, translation (i) with 158

Google Translate (GT) vs. the open Turkic Inter- 159

lingua MT models (Mirzakhalov et al., 2021) and 160

(ii) from English vs. from Turkish (with Turkish in- 161

stances that were, in turn, machine translated from 162

English) and have found that GT from English pro- 163

duces the best output. Due to MT in the first step, 164

we instructed the annotators to pay special atten- 165

tion to the idiomaticity of the source English sen- 166

tences during post-editing. This particularly refers 167

to finding suitable translations for culture-specific 168

concepts that do not have a direct translation (e.g., 169

3For example, we wanted to include Chuvash, the only
living language of the Oghur branch of Turkic languages, but
we could not find annotators native in that language.

4While Uyghur is more commonly written in the Arabic
script (e.g., in CC-100 or Wikipedia), our Uyghur annotator
was unfamiliar with it and was only able to produce Uyghur
translations in the Cyrillic script.

5We hired one annotator per target language.
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“passing for white” has no direct translation in our170

target languages since racial passing is not a native171

concept in respective cultures). Table 1 displays172

several instances from Kardeş-NLU.173

Annotation Costs. Given the high post-editing174

costs, Kardeş-NLU contains only subsets of the175

original English development and test portions of176

STS-B and XNLI. All of our annotators were uni-177

versity students who were paid the equivalent of178

14$ per hour for their effort. On average, post-179

editing took 92 hours per language, bringing the180

total cost of creating Kardeş-NLU to 6,440$.181

3 Kardeş Transfer: Leveraging Turkish182

We next attempt to improve XLT to LR Kardeş-183

NLU languages by explicitly incorporating Turkish184

as the close HR relative into the process. We try185

to (1) increase mmLMs’ capacity for the target lan-186

guages as well as their alignment with Turkish via187

intermediate LM training and (2) leverage Turkish188

as an additional source language in downstream189

zero-shot and few-shot transfer.190

3.1 Intermediate Language Modeling191

Adapting pretrained mmLMs to target distribu-192

tions – different languages, domains, or datasets –193

through further LM-ing can bring significant per-194

formance gains (Howard and Ruder, 2018; Guru-195

rangan et al., 2020; Muller et al., 2021; Wang et al.,196

2022; Hung et al., 2022). Building upon these197

findings, we investigate the benefit of additional198

LM-ing in transfer to LR Kardeş-NLU languages.199

Specifically, we explore the potential benefits of200

incorporating Turkish into the mmLM adaptation201

process and the extent to which this inclusion can202

improve the downstream performance for LR Tur-203

kic languages. We experiment with three different204

intermediate training strategies detailed below: in205

all cases, we (1) use the standard masked language206

modeling (MLM) as the training objective and (2)207

update all of the mmLM’s pretrained weights.208

Target Language LM-ing (TLLM). In this case,209

we perform additional MLM-ing only on the210

limited-size corpora of the target language. Turk-211

ish, as the HR relative, is not leveraged in TLLM.212

Bilingual Alternating LM-ing (BALM). Here we213

alternately update the mmLM by MLM-ing on214

one batch of target language data, followed by 215

one batch of Turkish data. BALM is similar to 216

the bilingual training procedure of Parović et al. 217

(2022): they, however, opt for parameter-efficient 218

training with adapters, whereas we update all of 219

the mmLM’s parameters. 220

Bilingual Joint LM-in (BJLM). Like BALM, in 221

BJLM we perform bilingual MLM-ing on both 222

the LR target language and the related HR lan- 223

guage (Turkish). However, while in BALM mono- 224

lingual batches are alternated, in BJLM batches 225

are bilingual, i.e., they consist of instances of both 226

languages. Importantly, both languages have the 227

same number of instances in each batch (i.e., B/2 228

with B as the batch size). Although such balanc- 229

ing leads to frequent repetition of instances from 230

the LR language corpus, these repeating instances 231

are, in different batches, “regularized” with dif- 232

ferent source-language instances, which prevents 233

overfitting to small-sized corpora of LR languages. 234

Schmidt et al. (2022) demonstrate the effectiveness 235

of BJLM in task-specific few-shot fine-tuning; here, 236

we test it in intermediate MLM-ing. 237

Parameter-Efficient LM-ing. Besides full fine- 238

tuning, we also carried out intermediate training 239

(for TLLM and BALM) in a parameter-efficient 240

manner with adapters (Houlsby et al., 2019) in 241

the vein of prior work on XLT (Pfeiffer et al., 242

2020; Parović et al., 2022). Adapter-based variants 243

yielded consistently weaker performance compared 244

to tuning all mmLM’s parameters. For brevity, we 245

report these results in the Appendix (§C). 246

3.2 Downstream Cross-Lingual Transfer 247

We investigate two common setups for downstream 248

cross-lingual transfer: (1) zero-shot XLT, in which 249

we assume that we do not have any labeled task 250

instances in the target language, and (2) few-shot 251

transfer, in which a small number of labeled in- 252

stances in the target language exists. We follow 253

the fair XLT evaluation procedure of Schmidt et al. 254

(2022), which does not allow for model selection 255

based on target-language validation data. Relying 256

on target-language validation violates the assump- 257

tion of true zero-shot XLT. Moreover, Schmidt et al. 258

(2022) show that any labeled target-language in- 259

stances are better leveraged for training. We thus 260

use the validation portions of Kardeş-NLU only for 261

training in few-shot XLT. 262
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Language Task Instance Label

Azerbaijani NLI
Premise: Bütün hallarda müşt@rinin iddialarına x@l@l g@tirm@m@k üçün mühüm addımlar atılmalıdır.

Neutral(In all cases, significant steps would have to be taken to avoid prejudicing the client’s claims.)
Hypothesis: Bu addımlara müşt@ril@rin h@qiqi ş@xsiyy@tinin müst@ntiql@rd@n gizl@dilm@si daxildir
(These steps include hiding the real identity of clients from investigators.)

Kazakh STS Sent. 1: Бiр адам қазанға күрiш слаып жатыр. (A man pours rice into a pot.) 4.2Sent. 2: Ер адам табаққа күрiш салып жатыр. (A man is putting rice in a bowling pot.)

Kyrgyz COPA
Premise: Кыз кодду жаттап калды. (The girl memorized the code.)

Choice 1Choice 1 (Cause): Ал өзүнө өзү окуду. (She recited it to herself.)
Choice 2 (Cause): Ал муну жазууну унутуп калды. (She forgot to write it down.)

Uzbek STS Sent. 1: Okapi daraxtdan yemoqda. (An okapi is eating from a tree.) 0.3Sent. 2: Sichqon suv purkagichdan ichadi. (A moose drinks from a sprinkler.)

Uyghur COPA
Premise: Дәрәх йопурмақлирини төкти. (The tree shed its leaves.)

Choice 2Choice 1 (Effect): Йопурмақ рәңгигә боялди. (The leaves turned colors.)
Choice 2 (Effect): Йопурмақлар йәргә йиғилип қалди. (The leaves accumulated on the ground.)

Table 1: Examples from Kardeş-NLU one for each language and at least one for each task.

Zero-Shot Transfer. We explore three zero-shot263

XLT setups: (i) monolingual training on English264

data, (ii) monolingual training on Turkish data, ma-265

chine translated from the original English training266

data, and (iii) bilingual training on both English267

and machine-translated Turkish data, with joint268

bilingual batches.269

Few-Shot Transfer. In few-shot fine-tuning, we270

additionally train on a small number of instances271

in the target language. We evaluate two different272

few-shot fine-tuning strategies: (1) in sequential273

transfer (Lauscher et al., 2020; Zhao et al., 2021),274

large(r)-scale fine-tuning on data from the source275

language(s) – in our case, English, Turkish, or bilin-276

gually English and Turkish – is followed by effi-277

cient target-language fine-tuning on the few shots;278

(2) in joint fine-tuning, we follow Schmidt et al.279

(2022) and, after initial source-only training, inter-280

leave source- and target-language instances at the281

batch level – the final batch loss is then the macro-282

average of the language-specific losses. Note that283

this results in joint trilingual fine-tuning when the284

source datasets are both English and Turkish.285

4 Experimental Setup286

Data. We carry out intermediate training for287

five Kardeş-NLU languages, monolingually (i.e.,288

TLLM) or bilingually with Turkish (BALM and289

BAJM, see §3.1) using Wikipedias of the respec-290

tive languages. Table 2 summarizes the base statis-291

tics of Wikipedias of Kardeş-NLU languages,6 to-292

gether with the size of their corresponding mono-293

6The Wikipedia dumps were obtained from https://
dumps.wikimedia.org/ on 10.12.2022. The text is extracted
using the standard wikiextractor script.

az kk ky ug uz

script Latin Cyrillic Cyrillic Arabic Latin

monolingual corpus sizes (in bytes)

CC-100 1.3G 889M 173M 46M 155M
Wiki 315M 354M 126M 36M 136M

Avg no. tokens in test instances (XLM-R tokenizer)

NLI 44 46 47 79 52
COPA 22 24 24 34 26
STS 34 36 36 56 40

Table 2: Dataset statistics for Wikipedias and CC-100
portions of Kardeş-NLU languages along with average
no. tokens in the test instances of Kardeş-NLU (as per
XLM-R tokenizer)

lingual corpora in CC-100.7 The sizes of the Turk- 294

ish Wikipedia and Turkish CC-100 portions are 295

631MB and 5.4GB, respectively. Table 2 addi- 296

tionally shows the average number of tokens in 297

test instances after XLM-R tokenization. Uyghur 298

yields substantially more tokens than the other four 299

languages. This is because most of Uyghur’s pre- 300

training corpus in XLM-R’s is in the Arabic script, 301

whereas Uyghur instances in Kardeş-NLU are writ- 302

ten in Cyrillic. 303

In downstream XLT, we use the existing train- 304

ing data in English and respective automatic trans- 305

lations to Turkish. For NLI, we train on MNLI 306

(Williams et al., 2018) and (automatically trans- 307

lated) Turkish training data from XNLI (Conneau 308

et al., 2018). For STS, we train on the English 309

training portions of STS-B (Cer et al., 2017) and its 310

existing (automatic) translation to Turkish.8 Due to 311

the small size of the English training data for COPA 312

7We report CC-100 portions, as XLM-R – the mmLM that
we use in our experiments – was pretrained on it.

8https://huggingface.co/datasets/emrecan/
stsb-mt-turkish
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(400 instances) (Gordon et al., 2012), reported to313

hinder convergence of mmLM-based models (Sap314

et al., 2019; Ponti et al., 2020), we follow this prior315

work and first fine-tune on (English) SocialIQa316

(SIQA) – a closely related causal commonsense317

reasoning dataset (Sap et al., 2019) before fine-318

tuning on (English and/or Turkish) COPA data9.319

Intermediate Training Details. In all our main320

experiments, we use XLM-R (Base size) (Con-321

neau et al., 2020a) as our mmLM. For the bilin-322

gual intermediate training procedure (e.g., BALM323

and BJLM), we train for a full epoch on Turkish324

Wikipedia: this results in multiple passes over the325

target language Wikipedias, given that those are326

substantially smaller. Thus, in the interest of fair327

evaluation, we train TLLM for multiple epochs:328

2 for Azerbaijani and Kazakh, 5 for Kyrgyz and329

Uzbek, and 18 for Uyghur. We set the batch size to330

32 and limit the sequence length to 128 tokens. We331

use the AdamW optimizer (Loshchilov and Hutter,332

2019) with a fixed learning rate of 5e−5.333

Downstream Training Details. We adopt standard334

fine-tuning and add a task-specific classifier on top335

of the mmLM. Unless explicitly said otherwise, we336

perform full fine-tuning updating all parameters of337

the encoder together with the classifier’s parame-338

ters. For NLI and STS, we encode the pair of sen-339

tences with the mmLM and feed the transformed340

representation of the [CLS] token to the classifier.341

For the multiple-choice tasks – COPA and SIQA342

(which we use as a “pre-fine-tuning” task to stabi-343

lize COPA training) – we face a varying number of344

answer choices per dataset (i.e., there are 3 possi-345

ble answers in SIQA and 2 in COPA). We follow346

prior work Sap et al. 2019; Ponti et al. 2020 and en-347

code the premise together with each answer choice.348

We feed the resulting output [CLS] token into a349

feed-forward regressor that produces a single score350

for each answer choice. Afterwards, the individual351

scores of all choices are concatenated and fed to352

the softmax classifier.353

We train the models for 10 epochs with mixed354

precision using AdamW (Loshchilov and Hutter,355

2019) with a weight decay of 0.05 and the initial356

learning rate set to 2e−5. We use a linear scheduler357

with 10% linear warm-up and decay. We deviate358

from this configuration (i) in the joint few-shot359

fine-tuning, where we train for 50 epochs without a360

9We translate the COPA training set to Turkish with GT.

scheduler, following recommendations of (Schmidt 361

et al., 2022), and (ii) for all NLI experiments, where 362

we train for 5 epochs due to the size of the MNLI 363

training data (ca. 400K instances). The sequence 364

length is limited to 128 tokens for all tasks, match- 365

ing the input size of the intermediate MLM-ing. We 366

fine-tune with a batch size of 32, except in the trilin- 367

gual joint few-shot fine-tuning (English-Turkish- 368

target language), where we sample 10 instances per 369

language (i.e., batch size 30). For each experiment, 370

we execute three runs with different random seeds 371

and report the average performance (accuracy for 372

NLI and COPA and Pearson correlation for STS). 373

In zero-shot XLT, we report the performance of the 374

last checkpoint obtained at the end of the training. 375

In few-shot XLT, we start training from the last 376

snapshot of the source training (English, Turkish, 377

or English and Turkish) and select the last snapshot 378

of the second – sequential or joint – training step. 379

5 Results and Discussion 380

Zero-Shot Transfer. Table 3 displays the zero- 381

shot XLT performance for all five Kardeş-NLU 382

languages on NLI, COPA and STS. Generally, 383

we reach the best performance when Turkish is 384

integrated into both intermediate training (rows 385

BALM and BAJM) and as the source language 386

in fine-tuning (columns TR and EN,TR). On av- 387

erage, across all five languages, BJLM combined 388

with source fine-tuning on concatenated English 389

and Turkish instances (EN,TR) yields a 6.6% and 390

2.1% boost over zero-shot XLT from English only 391

with the vanilla XLM-R (Base) on NLI and COPA, 392

respectively. On these two tasks, this observation 393

holds for all individual languages except Kazakh. 394

The gains over the vanilla zero-shot XLT for STS, 395

however, are much smaller, with only BALM com- 396

bined with English and Turkish fine-tuning sur- 397

passing the default zero-shot XLT performance of 398

XLM-R (Base, EN) and that by a narrower mar- 399

gin (+0.6). We speculate that this is because (i) 400

fine-grained sentence similarity is more sensitive 401

to slight semantic misalignment and (ii) while our 402

bilingual intermediate training improves the seman- 403

tic links between Turkish and the target language, it 404

is not of an adequate scale to establish alignments 405

of such semantic precision. 406

Including Turkish as a fine-tuning source lan- 407

guage (TR and EN,TR) brings consistent gains 408

over transfer from English only, regardless of the 409
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intermediate training strategy. The best results are410

almost always obtained when we fine-tune on both411

English and Turkish (EN,TR): we hypothesize that412

such fine-tuning establishes task-specific represen-413

tational associations between the two languages414

and allows the transfer to benefit from both (i)415

XLM-R’s unmatched representational quality for416

English and (ii) proximity of Turkish to the tar-417

get languages. The effect is then further amplified418

when intermediate training (BALM and BJLM)419

increases the XLM-R’s capacity for Turkish and420

the target language and strengthens the alignments421

between them. This is confirmed by the fact that422

intermediate training on the target language alone423

(TLLM) brings downstream gains (compared to424

Base) for NLI but not for the other two tasks.425

Looking at individual languages, we observe426

the least (and smallest) gains for Azerbaijani and427

Kazakh, the two most-resourced Kardeş-NLU lan-428

guages, and the most (and largest) gains for the429

three less-resourced languages: Uyghur, Uzbek,430

and Kyrgyz (e.g., compared to Base transfer from431

EN on NLI, BJLM with transfer from EN,TR leads432

to gains of 5.0% for Kyrgyz, 5.1% for Uzbek, and433

17.2% for Uyghur). We see the largest gains (by434

a wide margin) for Uyghur, despite the script mis-435

match between the intermediate training (Arabic436

script) and evaluation (Uyghur in Cyrillic script).437

The intermediate bilingual training for Uyghur,438

which improves representations of Arabic-script439

tokens, would thus likely yield even larger gains if440

the Uyghur test instances were in the Arabic script.441

Few-Shot Transfer. Table 4 summarizes the few-442

shot XLT results. We observe mixed results com-443

pared to the strongest zero-shot approaches: while444

there is a small improvement on STS (+1.0% ), we445

see virtually no gains for COPA (+0.1%) and NLI446

(-0.3%). Consistent with zero-shot XLT findings,447

few-shot XLT yields best results when we start448

the few-shot target language training from mod-449

els trained on both English and Turkish (EN,TR).450

Additionally, we observe that few-shot XLT with451

models that were intermediately trained on Turkish452

and the target languages (BALM, BAJM) yields453

stronger performance than with those MLM-ed on454

the target language alone (TLLM). Nonetheless,455

there is no bilingual intermediate training strategy456

that is consistently best: BJLM yields better scores457

on COPA, whereas BALM reaches better STS per-458

formance; on NLI, both strategies perform compa-459

rably. Concerning the number of target language 460

shots, we observe that we typically need at least 50 461

shots to match or surpass the zero-shot XLT perfor- 462

mance. Comparing few-shot transfer procedures, 463

we observe task-dependent variability. On NLI, se- 464

quential fine-tuning substantially outperforms the 465

joint approach. Conversely, on COPA and STS, 466

joint few-shot transfer shows better performance, 467

with a more pronounced gap on STS. 468

Kardeş-NLU: A Difficult Few-Shot XLT Bench- 469

mark. Not only does the comparison of zero-shot 470

and few-shot results in Table 4 render Kardeş-NLU 471

as a difficult few-shot XLT benchmark but also 472

does Kardeş-NLU involve two tasks – STS and 473

COPA – that are underrepresented in the current 474

body of work on (few-shot) XLT (Lauscher et al., 475

2020; Zhao et al., 2021; Schmidt et al., 2022). This 476

makes Kardeş-NLU a valuable evaluation resource 477

for XLT research. 478

Instruction-Based LLMs on Kardeş-NLU. Given 479

the recent popularity of instruction-tuned LLMs 480

as competent “generalizers” (Ouyang et al., 2022; 481

Ahuja et al., 2023), we additionally evaluate (zero- 482

shot) two state-of-the-art multilingual LLMs on 483

Kardeş-NLU:10 mT0 (Muennighoff et al., 2023), 484

as the open model tuned on instructions derived 485

from NLP tasks, and ChatGPT, as the commercial 486

model tuned from human instructions and feedback. 487

To this end, we slightly modify the instructions 488

and prompts proposed by Ahuja et al. (2023): we 489

provide further details in the Appendix §A. 490

Figure 1 compares the best zero-shot XLT perfor- 491

mance (based on XLM-R) for each language from 492

Table 3 against zero-shot inference with mT0 and 493

ChatGPT. The NLI results, in which both LLMs 494

dramatically underperform our language-adapted 495

zero-shot XLT (-23.9% and -15.1% for ChatGPT 496

and mT0, respectively), diametrically oppose those 497

on COPA, where both LLMs (and especially mT0) 498

excel and surpass our best zero-shot XLT (the gap 499

is full 10% in favor of mT0, albeit only 1.1% for 500

ChatGPT). We believe that this is because mT0 501

was instruction-tuned, multilingually, on a large 502

number of different multi-choice QA datasets (in- 503

cluding, e.g., SIQA). ChatGPT, in contrast, being 504

fine-tuned based on open-ended instruction-reply 505

pairs, has a weaker inductive bias for both COPA 506

10Regression (i.e., score prediction) tasks are inherently
difficult to cast as text generation tasks; we thus omit STS
from this evaluation.
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Azerbaijani Kazakh Kyrgyz Uyghur Uzbek Average

EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR

NLI

Base 76.5 80.1 79.6 73.8 76.3 77.3 70.4 73.9 74.1 42.2 44.4 42.9 70.7 72.0 71.8 66.7 69.4 69.1
TLLM 77.3 79.0 79.2 75.3 76.3 76.8 72.4 74.1 74.4 56.7 57.1 56.9 73.1 74.3 74.8 71.0 72.2 72.4
BALM 77.3 78.8 79.3 74.4 75.3 77.0 71.6 73.4 74.0 57.4 58.7 58.0 73.1 74.5 75.0 70.8 72.1 72.7
BJLM 76.4 78.4 79.3 74.9 75.1 76.8 71.9 74.3 75.5 57.2 59.2 59.4 73.4 74.6 75.7 70.7 72.3 73.3

COPA

Base 60.1 61.1 60.9 60.7 60.8 59.9 59.7 60.0 59.4 51.8 52.7 52.7 57.3 59.5 60.1 57.9 58.8 58.6
TLLM 62.1 62.1 61.5 55.7 55.8 56.1 57.5 59.7 58.9 49.9 50.3 49.3 62.9 63.2 62.5 57.6 58.2 57.7
BALM 57.2 58.3 59.4 59.1 59.5 59.7 56.1 59.9 59.1 51.1 53.9 52.5 60.5 61.7 61.9 56.8 58.6 58.5
BJLM 61.8 63.3 63.3 58.4 58.6 57.7 56.8 61.5 62.0 50.9 52.2 53.9 61.7 60.5 62.9 57.9 59.2 60.0

STS

Base 80.3 78.9 80.4 85.8 84.1 84.8 78.2 77.9 78.7 69.2 64.8 64.2 78.3 77.2 77.1 78.4 76.6 77.1
TLLM 75.8 75.5 78.1 80.6 80.1 81.9 71.3 71.8 74.2 70.6 69.3 71.3 70.6 67.0 76.9 73.8 72.7 76.5
BALM 72.7 78.7 79.7 81.4 83.2 83.9 71.1 77.3 78.3 72.8 72.3 73.5 72.5 77.6 79.3 74.1 77.8 79.0
BJLM 69.3 77.0 78.3 78.6 83.2 84.6 69.9 75.1 77.3 65.7 66.9 69.0 71.1 76.8 77.3 70.9 75.8 77.3

Table 3: Zero-Shot XLT results on Kardeş-NLU for three intermediate LM-ing strategies (TLLM, BALM, and
BJLM) and source fine-tuning datasets (English only, Turkish only, and English and Turkish combined). The best
results for each language-task pair are shown in bold.

Zero-Shot Few-Shot

Sequential Joint

EN TR EN,TR EN TR EN,TR EN TR EN,TR

Shots - - - 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

NLI

Base 66.7 69.4 69.1 63.5 67.9 68.1 65.7 69.0 69.3 66.0 69.5 70.1 65.0 66.2 66.4 67.0 67.4 67.5 66.7 68.0 69.0
TLLM 71.0 72.2 72.4 68.1 70.7 71.7 69.3 71.9 72.3 70.6 72.6 72.5 69.3 70.3 70.7 70.1 71.3 70.7 70.4 71.2 71.9
BALM 70.8 72.1 72.7 67.9 70.9 71.2 69.0 71.8 72.0 70.0 72.6 73.0 69.1 70.0 70.4 70.5 71.5 71.3 70.5 71.0 71.6
BJLM 70.7 72.3 73.3 67.5 71.0 71.3 69.2 71.7 71.5 69.9 72.7 73.0 69.4 70.3 69.9 70.7 71.3 71.2 70.6 71.5 71.8

COPA

Base 57.9 58.8 58.6 56.4 57.9 58.8 56.8 57.6 58.2 57.0 57.8 58.3 57.6 57.9 59.0 58.7 58.5 58.5 59.0 59.0 59.5
TLLM 57.6 58.2 57.7 56.8 57.4 58.4 57.1 57.9 59.5 56.7 58.0 58.9 57.2 57.5 58.3 58.1 58.7 58.6 58.6 59.0 59.8
BALM 56.8 58.6 58.5 56.6 57.2 58.1 56.8 58.0 58.5 57.6 58.0 58.4 56.8 57.8 57.2 59.0 58.7 58.2 59.1 59.4 58.3
BJLM 57.9 59.2 60.0 57.2 58.6 59.3 58.0 59.3 59.7 58.0 59.8 59.8 58.1 58.8 58.8 58.9 59.9 59.3 60.1 59.9 59.8

STS

Base 78.4 76.6 77.1 73.5 75.5 75.4 74.5 76.5 75.7 75.4 77.1 77.1 76.3 77.6 77.6 77.0 78.9 78.9 77.1 79.0 79.3
TLLM 73.8 72.7 76.5 73.6 75.3 75.6 74.9 76.1 76.2 76.4 77.3 77.6 75.1 76.8 76.9 75.2 77.0 77.6 77.2 78.5 78.8
BALM 74.1 77.8 79.0 74.5 76.0 76.3 76.2 77.6 77.8 77.3 78.6 78.4 77.1 77.2 76.9 78.3 79.4 79.6 79.4 80.0 80.0
BJLM 70.9 75.8 77.3 72.8 74.9 75.4 75.2 76.9 76.8 76.1 77.7 78.1 74.0 76.2 76.6 76.8 78.3 78.5 77.9 79.3 79.4

Table 4: Results of sequential and joint few-shot XLT on Kardeş-NLU: performance with 10, 50, and 100 target-
language shots. The best zero-shot result per task is shown in bold, the best few-shot result is underlined.

and NLI. The two LLMs yield the best performance507

on both tasks for Azerbaijani, the most resourced508

language in Kardeş-NLU– the performance drops509

for the remaining languages are drastic, especially510

for ChatGPT. This is in line with findings from con-511

current work (Ahuja et al., 2023; Asai et al., 2023)512

and shows that even the largest instruction-tuned513

LLMs are bound by the language distribution of514

their (pre)training data, indicating that there is still515

a long way to go to enable truly multilingual NLP.516

6 Related Work517

Multilingual Evaluation Benchmarks. Reliable518

evaluation of the multilingual abilities of mmLMs519

requires that they are tested against a large set520

of diverse languages (Joshi et al., 2020). On the521

one hand, multilingual benchmarks that encom-522

pass many tasks, such as XGLUE (Liang et al.,523

2020) and XTREME (Hu et al., 2020; Ruder et al., 524

2021), comprise diverse but predominantly highly 525

or moderately resourced languages: their coverage 526

of LR languages is small and varies across tasks. 527

On the other hand, many recent efforts introduce 528

dedicated benchmarks for specific families of LR 529

languages (Armstrong et al., 2022; Adelani et al., 530

2022; Ebrahimi et al., 2022; Winata et al., 2023, 531

inter alia). While these target truly underrepre- 532

sented languages, they typically focus on a single 533

task only, e.g., NLI or NER. With Kardeş-NLU we, 534

(i) cover multiple languages from an underrepre- 535

sented language family while (ii) including various 536

tasks (NLI, COPA, and STS) that require different 537

degrees of precision in language understanding. 538

Cross-Lingual Transfer with mmLMs. mmLMs 539

still play an important role in multilingual NLU 540

and XLT, exhibiting good performance in zero-shot 541

7
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Figure 1: Performance of mT0-XXL, chatGPT, and our best performing zero-shot XLT strategy on NLI and COPA.

XLT (Wu and Dredze, 2019; Hu et al., 2020) to HR542

languages. They, however, perform much worse in543

XLT to LR languages distant from English (as the544

common source). The body of work on improving545

XLT is threefold. The first line of work seeks to546

improve XLT via post-hoc alignment of represen-547

tational subspaces of individual languages, guided548

by parallel data (Cao et al., 2020; Conneau et al.,549

2020b; Hu et al., 2021; Wang et al., 2022; Minix-550

hofer et al., 2022, inter alia) and driven by cross-551

lingual supervision. These efforts, however, offer552

little gain for LR languages, whose representational553

subspaces are of low semantic quality, to begin554

with. The second line of work seeks to improve the555

representational quality for LR languages through556

additional language modeling training (Pfeiffer557

et al., 2020; Ansell et al., 2021; Parović et al., 2022;558

Pfeiffer et al., 2022), resulting in moderate down-559

stream performance gains. Finally, the third line of560

work (Lauscher et al., 2020; Zhao et al., 2021; Xu561

and Murray, 2022; Schmidt et al., 2022) focuses562

on the actual downstream transfer, rather than the563

task-agnostic adaptation of mmLMs, investigating564

how to best utilize the limited number of annotated565

task-specific target-language instances (Lauscher566

et al., 2020; Schmidt et al., 2022) or how to tai-567

lor source-language instances to resemble those of568

target languages (Xu and Murray, 2022).569

In this work, we adopt the latter two ideas and570

seek to improve XLT to Turkic LR languages via571

both intermediate LM-ing and few-shot XLT: un-572

like most existing work, however, we seek to lever-573

age a close HR language (Turkish) to facilitate the574

transfer. The work of Snæbjarnarson et al. (2023)575

is conceptually most similar; they, however, target576

a single LR language (Faroese) from a HR family577

(Germanic branch of the Indo-European family)578

with many HR relatives (Scandinavian languages). 579

7 Conclusion 580

In this work, we contribute to the body of evalua- 581

tion resources for low-resource (LR) cross-lingual 582

transfer (XLT) by introducing Kardeş-NLU, an 583

evaluation benchmark covering three NLU tasks 584

(NLI, STS, and COPA) - for five Turkic languages: 585

Azerbaijani, Kazakh, Kyrgyz, Uyghur, and Uzbek. 586

Kardeş-NLU allows investigation of an understud- 587

ied XLT approach: leveraging a high-resource (HR) 588

language to improve transfer to linguistically and 589

genealogically related LR languages. We extend 590

existing intermediate training and fine-tuning ap- 591

proaches for improving LR XLT to integrate Turk- 592

ish as the HR “sibling” of the Kardeş-NLU lan- 593

guages. Through comprehensive experimentation 594

and analysis, we demonstrated that adding Turkish 595

in task-specific fine-tuning can provide significant 596

XLT gains for Kardeş-NLU languages that are fur- 597

ther amplified by incorporating Turkish in bilingual 598

intermediate training strategies. What is more, we 599

also find that Kardeş-NLU is a difficult benchmark 600

for few-shot XLT, observing that established few- 601

shot transfer methods are not effective. Finally, 602

we evaluated two cutting-edge instruction-tuned 603

large language models – mT0 and chatGPT – on 604

Kardeş-NLU, showing that their (zero-shot) perfor- 605

mance is inferior on lower-resourced Kardeş-NLU 606

languages (Uyghur, Uzbek, Kyrgyz) and greatly 607

varies across tasks. This proves that there is still a 608

long way to (truly) multilingual NLP. In our sub- 609

sequent efforts, we will not only seek to extend 610

Kardeş-NLU with additional LR Turkic languages, 611

but also explore how to leverage HR siblings in LR 612

XLT for other language families. 613

8



8 Limitations614

We strove for both a representative NLU bench-615

mark for Turkic languages and a comprehensive616

study of XLT to LR target languages with the help617

of a closely related HR language. Nonetheless, our618

work is limited in several aspects. Out of 23 live619

Turkic languages, Kardeş-NLU covers only five.620

Two main factors determined the set of initially621

included languages: a limited annotation budget622

and the ability to find native speakers. The latter is623

why we ended up with languages that are among624

the largest Turkic languages in terms of number625

of native speakers (Kyrgyz, as the smallest, has626

ca. 5M native speakers). Further, there is a mis-627

match between the more common Arabic script628

used for Uyghur and the Cyrillic script we use for629

it in Kardeş-NLU because our Uyghur annotator630

was unfamiliar with the Arabic script.631

Next, we employed Wikipedias as corpora632

for our intermediate pretraining. Albeit curated,633

Wikipedia content is subject to biased, missing or634

simply incorrect information that can lead to unde-635

sired behavior in the resulting models.636

Concerning the methodology, we limited our637

study exclusively to mainstream approaches: (i)638

intermediate LM-ing for improving the representa-639

tional quality of mmLMs for a language of inter-640

est and (ii) established protocols for downstream641

zero-shot and few-shot XLT. We acknowledge the642

existence of more sophisticated (and more recent)643

XLT methods based, e.g., on gradient manipulation644

(Wang and Tsvetkov, 2021; Xu and Murray, 2022)645

or dedicated representational alignment of lexical646

units (i.e., embedding spaces) (Minixhofer et al.,647

2022). We hope the research community will use648

Kardeş-NLU to evaluate and profile existing and649

future state-of-the-art XLT approaches.650

Finally, for the prompt-based evaluation of651

LLMs, we experiment only with a single instruc-652

tion (i.e., prompt) adapted from Ahuja et al. (2023).653

It is reasonable to expect that some prompt engi-654

neering effort yields better results.655
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A LLMs: mT0 and ChatGPT1095

For mT0, we only use the instance-based prompts,1096

without the task instruction, following Ahuja et al.1097

(2023) (and accept exact matches as correct an-1098

swers only):1099

NLI. {PREMISE} Question: {HYPOTHESIS}1100

True, False, or Neither?1101

COPA. {PREMISE} {% if question == “cause"1102

%} This happened because... {% else %} As a1103

consequence... {% endif %} Help me pick the more1104

plausible option: -{CHOICE1}-{CHOICE2}1105

For ChatGPT, we slightly modify the prompts1106

from Ahuja et al. (2023) due to the fact that they1107

perform in-context few-shot learning, whereas we1108

carry out zero-shot prediction:1109

NLI. You are an NLP assistant whose purpose is1110

to solve Natural Language Inference (NLI) prob-1111

lems. NLI is the task of determining the inference1112

relation between two (short, ordered) texts. For1113

the given two sentences, you need to predict one1114

of the following: 1. Entailment, 2. Contradiction,1115

or 3. Neither (Neutral). Sentence 1: {PREMISE}.1116

Sentence 2: {HYPOTHESIS}. Answer:1117

COPA. You are an AI assistant whose purpose is1118

to perform open-domain commonsense causal rea-1119

soning. You will be provided a premise and two1120

alternatives, where the task is to select the alter-1121

native that more plausibly has a causal relation1122

with the premise. Answer as concisely as possible.1123

PREMISE {% if question == “cause" %} This hap-1124

pened because... {% else %} As a consequence...1125

{% endif %}: Alternative 1: CHOICE1 Alternative1126

2: CHOICE21127

For NLI, the model’s output is compared directly1128

against the target label (True, False, or Neither).1129

For COPA, it is compared against the correct alter-1130

native ({CHOICE1} or {CHOICE2}). Since the1131

models are free to generate any text, they can theo-1132

retically perform below the random baseline (33%1133

for NLI and 50% for COPA).1134

Table 5 displays per language and average re-1135

sults for zero-shot evaluations on NLI and COPA1136

for the XLM-R base versions that we experiment1137

with, mT0 of various sizes, and ChatGPT. We also1138

experiment with the templates that are translated to1139

the target language using Google Translate. How-1140

ever, those versions overall performed worse than1141

the English versions, most likely because of the 1142

low translation quality. We can see that mT0’s 1143

performance on COPA improves drastically when 1144

it is scaled to XL and XXL versions. It should 1145

be noted that mT0’s instruction tuning dataset in- 1146

cludes the Social IQA dataset, which is similar to 1147

the COPA dataset. This might explain the larger 1148

model’s strong performance on this dataset outper- 1149

forms zero-shot XLM-R variants. 1150

B Computational Resources 1151

All the experiments were run on a single V100 1152

with 32GB VRAM. We roughly estimate that total 1153

GPU time accumulates to 2800 hours across all 1154

experiments. 1155

C Adapter Fine-Tuning Experiments 1156

In preliminary experiments, we investigated the 1157

adapter-based equivalents to TLLM and BALM 1158

(on STS and NLI) (Pfeiffer et al., 2020; Parović 1159

et al., 2022). We report per-language and averaged 1160

scores in Table 6. Full fine-tuning of the mmLM 1161

outperformed the adapter-based tuning, especially 1162

on lower-resourced languages. 1163

Target Language LM-ing Adapters (TLLM- 1164

AD). We first train monolingual language adapters 1165

on target languages via MLM-ing. We then stack 1166

a task adapter on top and fine-tune it on the corre- 1167

sponding downstream data - English, Turkish or 1168

English and Turkish jointly – while keeping the 1169

language adapter frozen. 1170

Bilingual Alternating LM-ing Adapters (BALM- 1171

AD). Here, we stick to Parović et al. 2022 and up- 1172

date the language adapter´s parameters alternately 1173

by one batch on the target language data followed 1174

by one batch on Turkish data. Afterwards, we 1175

fine-tune task adapters on either English, Turkish 1176

or English and Turkish jointly, while keeping the 1177

language adapter frozen. 1178

Adapter Training Details. We trained monolin- 1179

gual language adapters for 25000 steps and bilin- 1180

gual ones for 50000. We set the learning rate to 1181

1e−4 and the batch size to 64. For task adapters, 1182

we applied the same hyperparameters used for our 1183

full fine-tuning experiments explained in section 4 1184

but lowered the learning rate to 1e−4, as suggested 1185

by Pfeiffer et al. 2020. 1186
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Azerbaijani Kazakh Kyrgyz Uyghur Uzbek Average

EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR

NLI

Base 76.5 80.1 79.6 73.8 76.3 77.3 70.4 73.9 74.1 42.2 44.4 42.9 70.7 72.0 71.8 66.7 69.4 69.1
TLM 77.3 79.0 79.2 75.3 76.3 76.8 72.4 74.1 74.4 56.7 57.1 56.9 73.1 74.3 74.8 71.0 72.2 72.4
BALM 77.3 78.8 79.3 74.4 75.3 77.0 71.6 73.4 74.0 57.4 58.7 58.0 73.1 74.5 75.0 70.8 72.1 72.7
BJLM 76.4 78.4 79.3 74.9 75.1 76.8 71.9 74.3 75.5 57.2 59.2 59.4 73.4 74.6 75.7 70.7 72.3 73.3

mT0small 35.3 34.9 36.8 36.6 35.3 35.8
mT0base 40.5 40.3 39.8 38.3 40.4 39.8
mT0large 40.8 42.5 42.0 41.9 41.2 41.7
mT0XL 56.9 55.7 53.0 49.4 55.6 54.1
mT0XXL 60.7 59.4 58.1 54.3 58.9 58.2

chatGPT 56.4 48.0 47.1 47.7 47.9 49.4

COPA

Base 60.1 61.1 60.9 60.7 60.8 59.9 59.7 60.0 59.4 51.8 52.7 52.7 57.3 59.5 60.1 57.9 58.8 58.6
TLM 62.1 62.1 61.5 55.7 55.8 56.1 57.5 59.7 58.9 49.9 50.3 49.3 62.9 63.2 62.5 57.6 58.2 57.7
BALM 57.2 58.3 59.4 59.1 59.5 59.7 56.1 59.9 59.1 51.1 53.9 52.5 60.5 61.7 61.9 56.8 58.6 57.9
BJLM 61.8 63.3 63.3 58.4 58.6 57.7 56.8 61.5 62.0 50.9 52.2 53.9 61.7 60.5 62.9 57.9 59.2 60.0

mT0small 34.2 7.6 3.4 5.6 43.6 18.8
mT0base 32.0 3.6 5.8 4.2 39.8 17.1
mT0large 38.0 38.2 30.4 24.2 38.4 33.8
mT0XL 60.4 62.8 50.4 47.6 63.2 56.9
mT0XXL 81.2 74.6 57.8 61.4 80.6 71.1

chatGPT 73.0 63.4 56.6 57.0 55.6 61.1

Table 5: Zero-Shot results for the target languages and the average results across the five languages for XLM-R
base, mT0 and chatGPT models. The best results for each language-task pair are shown in bold.

Azerbaijani Kazakh Kyrgyz Uyghur Uzbek Average

EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR EN TR EN,TR

NLI

TLLM 77.3 79.0 79.2 75.3 76.3 76.8 72.4 74.1 74.4 56.7 57.1 56.9 73.1 74.3 74.8 71.0 72.2 72.4
BALM 77.3 78.8 79.3 74.4 75.3 77.0 71.6 73.4 74.0 57.4 58.7 58.0 73.1 74.5 75.0 70.8 72.1 72.7

TLLM-AD 77.1 78.2 80.3 74.0 74.8 76.8 70.1 72.7 74.5 48.3 47.0 48.3 71.1 71.1 73.4 68.1 68.8 70.6
BALM-AD 77.9 78.0 80.1 73.3 75.2 77.6 70.7 73.2 74.7 47.8 46.4 46.8 70.5 71.8 73.1 68.1 69.0 70.5

STS

TLLM 75.8 75.5 78.1 80.6 80.1 81.9 71.3 71.8 74.2 70.6 69.3 71.3 70.6 67.0 76.9 73.8 72.7 76.5
BALM 72.7 78.7 79.7 81.4 83.2 83.9 71.1 77.3 78.3 72.8 72.3 73.5 72.5 77.6 79.3 74.1 77.8 79.0

TLLM-AD 76.1 77.5 79.5 82.0 81.4 84.3 74.0 75.4 77.8 69.7 68.4 70.5 75.2 75.5 77.4 75.4 75.6 77.9
BALM-AD 76.2 77.5 79.9 82.3 81.6 84.1 73.2 75.5 77.3 68.2 67.3 70.0 75.1 75.0 77.3 75.1 75.4 77.7

Table 6: Zero-Shot XLT results on Kardeş-NLU (NLI and STS) for two adapter strategies (TLLM-AD and BALM-
AD) and source fine-tuning datasets (English only, Turkish only, and English and Turkish combined). The best
results for each language-task pair are shown in bold.
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D Few-Shot Results
Zero-Shot Few-Shot

Sequential Joint

EN TR EN,TR EN TR EN,TR EN TR EN,TR

Shots - - - 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

Azerbaijani

Base 76.5 80.1 79.6 73.3 76.6 76.3 74.9 78.5 77.9 75.2 78.8 79.0 75.0 74.7 74.1 77.7 76.9 76.8 76.7 77.1 77.3
TLM 77.3 79.0 79.2 75.7 77.7 77.8 75.7 78.7 79.3 76.9 79.1 78.9 76.4 77.0 76.7 77.8 77.7 77.2 78.0 78.3 78.2
BALM 77.3 79.0 79.2 75.4 77.2 77.3 76.5 78.1 78.1 76.7 78.9 79.2 74.8 76.0 76.3 78.0 78.4 78.1 77.6 77.5 78.0
BJLM 77.3 78.8 79.3 72.3 77.5 77.3 75.8 78.7 78.3 77.3 79.1 79.2 76.6 76.9 75.7 77.8 78.2 77.3 78.3 78.4 77.7

Kazakh

Base 73.8 76.3 77.3 69.7 73.6 73.5 72.0 75.0 75.3 73.3 75.5 76.0 71.1 71.5 71.4 74.3 73.0 72.7 74.6 74.4 74.3
TLM 75.3 76.3 76.8 72.4 75.5 76.3 75.1 75.9 75.7 74.8 76.8 76.1 73.8 75.2 74.8 75.2 75.6 74.6 76.0 75.8 76.4
BALM 74.4 75.3 77.0 72.8 75.3 74.7 72.9 75.8 75.7 75.1 76.4 76.9 73.8 73.8 74.5 74.6 74.8 74.2 74.9 74.7 75.8
BJLM 74.9 75.1 76.8 73.2 74.8 75.0 73.0 74.5 74.6 74.5 76.8 76.4 73.3 74.1 73.6 74.1 75.0 74.3 75.2 75.2 74.7

Kyrgyz

Base 70.4 73.9 74.1 66.6 70.6 70.5 69.4 72.3 72.7 70.3 73.1 73.6 68.9 69.7 69.2 70.7 69.4 69.5 70.8 70.5 71.7
TLM 72.4 74.1 74.4 71.0 73.6 73.1 72.2 73.6 74.0 72.9 75.4 75.4 71.4 71.6 71.9 72.4 73.4 72.6 72.8 73.0 73.2
BALM 71.6 73.4 74.0 69.2 73.2 72.6 71.2 73.4 73.0 73.0 74.5 74.7 71.0 71.4 71.8 71.7 72.3 71.9 73.0 73.2 73.0
BJLM 71.9 74.3 75.5 71.7 73.1 73.3 72.9 74.0 73.5 73.7 75.8 75.7 72.0 72.8 72.0 73.4 72.8 73.6 72.6 73.6 73.8

Uyghur

Base 42.2 44.4 42.9 41.5 49.2 50.1 45.0 47.9 50.5 43.5 48.6 49.6 43.2 47.8 49.9 43.8 48.4 49.8 42.2 47.9 48.3
TLM 56.7 57.1 56.9 50.1 53.7 58.0 52.1 57.3 58.8 55.3 56.8 57.9 52.6 54.6 56.6 52.9 56.5 56.2 52.4 55.7 58.1
BALM 57.4 58.7 58.0 51.4 57.0 58.3 53.0 58.0 59.5 51.9 58.3 59.4 53.7 56.3 55.8 54.9 57.9 58.9 54.0 56.4 57.4
BJLM 57.2 59.2 59.4 51.1 56.4 57.8 52.8 57.3 57.3 51.6 57.0 58.8 52.8 54.4 55.9 54.5 56.4 57.1 54.0 56.1 57.9

Uzbek

Base 70.7 72.0 71.8 66.5 69.5 69.8 67.1 71.6 70.2 67.6 71.3 72.3 66.5 67.5 67.4 68.6 69.0 68.6 67.9 68.6 69.0
TLM 73.1 74.3 74.8 71.3 73.3 73.4 71.3 74.1 73.9 73.1 74.9 74.4 72.4 73.1 73.3 72.4 73.2 72.9 72.7 73.2 73.5
BALM 73.1 74.5 75.0 70.9 71.6 73.4 71.4 73.9 73.8 73.3 74.7 75.1 72.1 72.4 73.5 73.4 73.9 73.2 73.1 73.2 73.7
BJLM 73.4 74.6 75.7 69.3 73.1 73.3 71.4 74.0 74.0 72.2 74.8 75.0 72.4 73.4 72.3 73.4 74.1 73.7 73.1 74.0 75.1

Table 7: Per-language results of sequential and joint transfer on Kardeş-NLI.

Zero-Shot Few-Shot

Squential Joint

EN TR EN,TR EN TR EN,TR EN TR EN,TR

Shots - - - 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

Azerbaijani

Base 60.1 61.1 60.9 62.3 62.5 63.8 61.5 61.3 62.5 61.9 62.3 62.5 60.3 62.2 61.9 62.3 62.8 62.7 61.7 62.8 62.9
TLM 62.1 62.1 61.5 60.1 60.7 60.6 60.3 60.3 62.1 59.9 60.8 61.1 60.8 61.2 62.1 62.3 60.8 60.6 61.6 61.7 62.6
BALM 57.2 58.3 59.4 58.5 58.3 59.2 58.8 58.0 59.2 60.1 58.7 59.8 59.5 59.8 57.7 58.9 59.3 59.1 62.7 60.6 59.3
BJLM 61.8 63.3 63.3 61.1 62.4 62.1 62.5 61.9 62.9 61.0 62.1 61.7 62.0 62.8 61.9 62.1 63.7 61.9 61.9 62.3 62.4

Kazakh

Base 60.7 60.8 59.9 55.6 59.3 60.1 57.6 60.7 60.3 56.7 60.4 60.3 58.7 59.2 60.8 60.2 60.7 60.9 60.7 60.8 61.9
TLM 55.7 55.8 56.1 54.4 56.1 57.2 54.8 55.5 57.9 54.9 56.5 57.9 55.4 56.4 56.5 56.3 57.6 58.4 56.6 58.3 59.5
BALM 59.1 59.5 59.7 58.6 59.4 60.3 55.9 59.5 59.5 57.1 58.7 59.9 57.5 57.9 60.3 60.0 59.3 59.8 59.9 60.7 59.3
BJLM 58.4 58.6 57.7 56.0 57.9 60.1 58.3 58.9 60.5 58.3 59.5 60.5 57.5 59.8 58.9 58.5 59.5 59.2 59.6 59.8 59.7

Kyrgyz

Base 59.7 60.0 59.4 56.6 59.0 59.7 58.0 58.5 59.0 59.3 59.3 59.7 60.1 60.1 61.1 61.1 60.5 60.2 61.3 61.1 61.1
TLM 57.5 59.7 58.9 58.5 58.9 61.2 59.7 60.9 61.9 58.7 60.0 60.2 58.7 58.2 59.7 60.1 60.6 59.5 61.3 61.5 61.7
BALM 56.1 59.9 59.1 57.6 58.1 58.3 58.1 61.7 60.7 57.6 59.8 60.3 56.1 58.1 57.7 60.7 61.7 60.1 58.5 60.9 58.9
BJLM 56.8 61.5 62.0 57.3 59.5 60.8 60.5 63.1 61.3 60.1 62.4 62.1 59.5 59.3 60.1 61.3 61.9 62.3 62.2 62.9 60.9

Uyghur

Base 51.8 52.7 52.7 51.7 50.7 52.5 51.3 50.3 51.9 50.7 51.3 51.7 51.3 50.9 52.4 51.1 50.5 50.1 51.5 50.6 51.7
TLM 49.9 50.3 49.3 50.9 48.1 50.5 48.6 49.1 52.7 48.7 49.7 51.1 49.2 49.9 50.2 49.9 49.9 50.4 49.5 49.8 52.3
BALM 51.1 53.9 52.5 51.1 49.4 50.7 53.3 51.2 51.7 52.9 51.2 50.7 50.8 50.9 49.6 54.2 52.5 51.5 52.5 52.5 51.7
BJLM 50.9 52.2 53.9 50.7 49.9 51.5 49.7 50.6 51.6 49.5 50.7 52.4 50.6 50.1 50.5 51.0 51.9 51.4 52.9 51.9 51.7

Uzbek

Base 57.3 59.5 60.1 55.9 57.9 57.6 55.7 57.1 57.1 56.6 55.9 57.1 57.3 57.2 58.7 58.9 58.0 58.6 59.5 59.6 59.7
TLM 62.9 63.2 62.5 59.9 63.1 62.7 62.1 63.5 63.1 61.1 62.8 64.1 62.1 61.7 63.1 61.9 64.7 64.1 63.9 63.7 62.8
BALM 60.5 61.7 61.9 56.9 60.7 62.3 58.2 59.8 61.3 60.3 61.4 61.2 60.3 62.3 60.6 61.3 60.9 60.3 61.7 62.3 62.1
BJLM 61.7 60.5 62.9 60.7 63.3 62.1 59.3 61.9 62.4 61.2 64.2 62.3 60.9 61.9 62.7 61.5 62.3 61.7 63.9 62.7 64.4

Table 8: Per-language results of sequential and joint few-shot transfer on Kardeş-COPA.
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Zero-Shot Few-Shot

Squential Joint

EN TR EN,TR EN TR EN,TR EN TR EN,TR

Shots - - - 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100 10 50 100

Azerbaijani

Base 80.3 78.9 80.4 74.5 76.7 76.9 75.7 77.2 77.0 77.6 78.8 78.2 79.3 78.8 79.2 79.7 80.2 80.0 80.4 80.8 80.8
TLM 75.8 75.5 78.1 75.0 76.2 76.3 75.1 76.6 77.2 77.5 78.0 78.9 77.5 77.4 78.0 76.2 77.4 77.9 78.8 79.2 79.7
BALM 72.7 78.7 79.7 75.6 76.3 76.3 76.0 77.2 78.1 77.6 78.7 79.4 75.8 76.4 77.1 79.4 79.6 80.1 80.1 80.6 80.5
BJLM 69.3 77.0 78.3 73.9 74.8 75.6 76.6 77.5 77.9 77.3 78.2 78.5 75.3 75.9 76.4 78.1 79.1 79.5 79.6 80.2 80.5

Kazakh

Base 85.8 84.1 84.8 81.6 82.1 82.4 81.2 82.3 82.3 82.5 83.1 83.8 84.5 84.4 84.9 84.5 85.1 85.4 85.0 85.6 85.6
TLM 80.6 80.1 81.9 81.1 82.0 82.2 81.2 81.2 81.9 82.5 84.0 83.8 81.8 83.2 83.5 80.9 82.6 83.3 82.6 84.0 84.3
BALM 81.4 83.2 83.9 81.5 82.7 82.6 82.0 83.2 84.3 82.5 84.6 84.4 82.6 83.7 84.2 83.9 84.7 85.0 84.7 85.6 85.9
BJLM 78.6 83.2 84.6 79.6 81.5 82.0 80.9 83.1 83.3 82.4 83.7 84.5 80.5 82.3 82.6 83.9 84.5 84.9 85.1 85.6 85.8

Kyrgyz

Base 78.2 77.9 78.7 71.3 72.1 73.3 73.7 74.7 73.4 74.0 75.1 75.9 76.4 76.0 75.8 78.7 79.5 79.4 78.8 79.8 79.5
TLM 71.3 71.8 74.2 71.2 70.8 71.6 72.5 73.6 73.4 73.4 73.2 73.6 72.7 73.8 73.8 74.1 75.7 76.8 76.0 77.2 77.1
BALM 71.1 77.3 78.3 69.4 71.3 72.3 74.5 76.5 75.5 75.7 77.0 75.4 72.3 72.8 73.6 77.7 78.6 78.4 78.1 78.7 79.3
BJLM 69.9 75.1 77.3 68.8 70.6 72.4 73.6 75.0 74.1 74.8 75.8 76.1 71.7 73.3 74.3 76.4 77.2 76.9 77.4 77.9 78.0

Uyghur

Base 69.2 64.8 64.2 65.7 71.2 69.2 67.4 71.8 69.7 66.1 71.1 70.9 64.7 71.1 71.3 64.2 70.9 70.9 63.7 70.0 71.5
TLM 70.6 69.3 71.3 68.4 71.8 72.4 71.5 72.6 72.0 71.9 73.0 73.8 69.3 72.5 72.6 69.6 72.1 72.7 70.8 73.2 73.6
BALM 72.8 72.3 73.5 71.5 74.1 74.3 72.8 74.2 74.2 73.2 74.5 74.8 71.3 74.7 74.6 71.7 74.9 75.0 72.9 75.3 75.6
BJLM 65.7 66.9 69.0 69.0 72.7 71.7 70.5 72.1 71.4 70.4 73.2 73.1 68.5 73.3 73.2 68.3 72.4 72.4 69.8 73.7 73.7

Uzbek

Base 78.3 77.2 77.1 74.2 75.4 75.2 74.6 76.2 75.7 76.6 77.6 76.7 76.7 77.5 77.1 77.9 78.7 78.5 77.8 78.8 78.9
TLM 70.6 67.0 76.9 72.5 75.6 75.5 74.2 75.6 76.1 77.0 78.2 78.0 74.1 77.0 76.7 75.4 77.2 77.2 77.8 79.0 79.2
BALM 72.5 77.6 79.3 74.4 75.7 76.1 75.9 76.9 76.9 77.4 78.1 78.1 75.4 77.2 77.6 78.6 79.3 79.3 79.9 80.3 80.5
BJLM 71.1 76.8 77.3 72.6 74.7 75.2 74.5 76.8 77.3 75.7 77.8 78.1 74.0 76.1 76.4 77.1 78.5 78.7 77.8 79.0 79.1

Table 9: Per-language results of sequential and joint few-shot transfer on Kardeş-STS.
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