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Abstract: Legged robots are able to overcome challenging terrains through di-
verse gaits formed by contact sequences. However, environments characterized
by discrete footholds present significant challenges. In this paper, we tackle the
problem of free gait motion planning for hexapod robots walking in randomly
generated plum blossom pile environments. Specifically, we first address the com-
plexity of multi-leg coordination in discrete environments by treating each leg of
the hexapod robot as an individual agent. Then, we propose the Hybrid action
space Multi-Agent Soft Actor Critic (Hybrid-MASAC) algorithm capable of han-
dling both discrete and continuous actions. Finally, we present an integrated free
gait motion planning method based on Hybrid-MASAC, streamlining gait, Center
of Mass (COM), and foothold sequences planning into a single model. Compara-
tive and ablation experiments in both of the simulated and real plum blossom pile
environments demonstrate the feasibility and efficiency of our method.

Keywords: Free Gait, Hexapod Robot, Hybrid Action Space, Multi-agent Rein-
forcement Learning

1 Introduction

Legged robots can navigate challenging environments using a variety of gaits defined by contact se-
quences [1, 2, 3]. Compared to bipedal and quadrupedal robots, hexapod robots possess advantages
such as more flexible gaits and higher stability, making them applicable to a variety of fields, such as
disaster rescue, material transportation, planet exploration, and more [4, 5, 6]. However, in extreme
conditions like discrete environments, these robots encounter a major challenge due to the limited
foothold choices, and need meticulous planning for selecting reliable gait, Center of Mass (COM),
and foothold sequences. In this paper, we address the challenge of automatically generating reliable
gait, COM, and foothold sequences for hexapod robots in uneven plum blossom pile environments
with a single model.

During locomotion, each leg of the hexapod robot undergoes alternating support and swing phases,
generating diverse gait patterns through phase combinations. These gaits are categorized into pe-
riodic and aperiodic types based on their movement rhythm [7]. Gait planning for hexapod robots
often involves formulating sequences based on rules or heuristics [8]. Additionally, biologically
inspired methods like the Central Pattern Generator (CPG) can control gait rhythmically without
sensory or descending inputs [9, 10]. However, these approaches typically demand significant man-
ual design effort. In COM trajectory planning, methods usually fall into two categories: discrete
search and continuous optimization. Discrete search methods involve a successor set and a list of
possible poses for one state relative to another, forming a tree of trajectories explored to find a path
from start to goal [11, 12]. While, in high-dimensional spaces, these methods encounter significant
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challenges, termed the “curse of dimensionality”. On the contrary, continuous optimization aims to
find optimal motion trajectories by solving a set of optimization objectives and constraints, typically
assuming convexity [13, 14]. However, it is difficult to establish an accurate mathematical model of
the problem or find a feasible solution based on these methods. [15].

In recent years, Deep Reinforcement Learning (DRL) algorithms, along with Multi-Agent Rein-
forcement Learning (MARL), have shown great potential for intelligent decision-making in high-
dimensional state-action spaces, and have been widely used in the field of robotics [16, 17, 18,
19, 20, 21]. For instance, Tsounis et al. [22] combined DRL with model-based motion planning,
formulating the MDP by evaluating dynamic feasibility criteria instead of relying on physical sim-
ulation for motion planning in challenging terrains. Fu et al. [23] achieved multi-contact motion
planning for a hexapod robot in uneven plum blossom pile environments, demonstrating feasibility
in both simulation and reality. However, these methods, relying on fixed gait patterns, may result
in poor passibility in complex environments. Recently, some researchers addressed the free gait
motion planning problem for hexapod robots in the plum blossom pile environment using a hierar-
chical framework, utilizing the DRL method to generate the COM sequence and pre-defined rules
to select the foothold sequence [24, 25]. Yet, most existing methods plan gait, COM, and foothold
sequences independently, presenting two primary challenges in planning the overall motion of hexa-
pod robots in complex environments. Firstly, decision variables encompass both discrete actions
(e.g., leg phases) and continuous actions (e.g., COM position, foothold), making most RL algo-
rithms unsuitable. Secondly, the numerous combinations of foothold points in the environment lead
to an exponential growth of the action space with the number of robot legs.

In this paper, we address the challenge of free gait motion planning for hexapod robots in uneven
plum blossom pile environments using a unified model. To simplify the complex action space, each
leg is treated as an independent agent, resulting in an action space independent of the number of legs.
These agents aim to collaborate to guide the robot’s COM to a designated target area. We model
the motion of all legs as a Markov game with a state transition function determined by the free gait
Transition Feasibility Model (free gait TFM). Based on the Soft Actor Critic (SAC) algorithm [26],
we propose the Hybrid action space Multi-Agent Soft Actor Critic (Hybrid-MASAC) algorithm,
capable of handling both discrete and continuous actions in the free gait motion planning process.
Finally, we present an integrated free gait motion planning method based on Hybrid-MASAC for
hexapod robots moving in uneven plum blossom pile environments. Experimental results demon-
strate that our method outperforms state-of-the-art fixed gait and free gait motion planning algo-
rithms. Videos are shown at http://www.hexapod.cn/marlhexa.html. The contributions of
this paper are threefold:

1. We formulate the free gait motion planning of the hexapod robot as a Markov game, and
solve the optimization problem to generate optimal gait, COM, and foothold sequences.

2. We propose the Hybrid-MASAC algorithm to solve the multi-contact motion planning
problem in the hybrid action space and the multi-agent framework.

3. We test the trained policies in different settings of plum blossom pile environments and
compare the proposed Hybrid-MASAC-based motion planning method with the baseline
methods. Both simulation and real-world experimental results demonstrate the feasibility
and efficiency of the proposed method.

2 Preliminaries and Problem Description

2.1 Markov Game in Hybrid Action Space

The motion of the hexapod robot in the plum blossom pile environment can be formulated as
a Markov game of a 6-tuple ⟨N,S,A,T,R,O⟩, where S represents the state space containing
the local observation of N agents {O1, · · · ,ON} and other environmental information. A =
{A1, · · · ,AN} is the action space of N agents. The state transition function T : S × A1 ×
. . . × AN → P (S) defines the distribution of the next state given the current state and the ac-
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tion. R : S × A1 × . . . × AN → R is the reward function. Each agent needs to learn a policy
πi : Oi → P (Ai) to map the local observation Oi to the action distribution P (Ai). The goal is
to learn a policy πi that maximize the cumulative discounted returns Git =

∑T−t
k=0 γ

kRit+k, where
γ ∈ [0, 1] is the discount factor and T is the time horizon.

When both the discrete action ad and the continuous action ac are included in the action space,
the hybrid action space of the agent i is defined as AH

i = {adi ,aci}, where adi = {adi1, · · · ,adiD}
consists of D discrete components and aci = {aci1, · · · ,aciC} consists of C continuous components.
We assume that actions of the same type (discrete or continuous) are independent of each other, and
the hybrid policy of the agent i is decomposed as

π(adi ,a
c
i | oi) = πd(adi | oi)π

c(aci | oi,a
d) =

D∏
j=1

πd(adij | oi)

C∏
j=1

πc(acij | oi,a
d). (1)

In this paper, we represent each component of the discrete policy as a categorical distribution of
K possible categories and represent each component of the continuous policy as a M -dimensional
diagonal Gaussian distribution.

2.2 Problem Description

The robot consists of an unactuated floating base and 6 legs, each with 3 actuated rotational joints,
and the goal is to move from a random initial point Pinitial to a random target area Ptarget with the
shortest possible trajectory, while fulfilling all the kinematic and dynamic constraints. At each time
step t, the state of the hexapod robot is defined as st := ⟨ψt,p

r
t ⟩ , where ψt := ⟨rBt,θBt,p

c
t , ct⟩ is

the proprioceptive information of the hexapod robot, rBt ∈ R3 is the COM coordinates of the body,
θBt ∈ R2 represents the roll and pitch Euler angles of the body, pc

t := ⟨pc
1t, · · · ,pc

6t⟩ represents the
foot position of the legs at time step t, ct is the binary historical phase of each leg in the last three
timesteps, where 0 indicates the swing phase and 1 indicates the support phase, and pr

t = pc
t − pg

t

represents the relative position of the current foot position and the target foot position.

The hybrid action at consists of the discrete action adit and the continuous action acit := ⟨acsit ,accit ⟩
of the leg i, i ∈ {1, · · · , 6}. When adit = 0, the i-th leg is in swing phase, and the corresponding
continuous action acsit determines the next foothold position. When adit = 1, the i-th leg is in support
phase, and the corresponding continuous action accit determines the next position and the next Euler
angles of the body. Distinct phase combinations give rise to various gait types. The objective is to
find an optimal policy that outputs hybrid actions for the hexapod robot, so as to generate optimal
gait, COM, and foothold sequences.

To ensure the traceability of the output trajectory sequences, we expand upon the fixed gait Tran-
sition Feasibility Model (fixed gait TFM) proposed by Fu et al. [23] to create a free gait version.
This free gait TFM, denoted as T (st,at, s′t+1), evaluates whether two adjacent states can be transi-
tioned. T (st,at, s′t+1) = 1 indicates that the state transition is feasible, and the robot successfully
progresses to the next state st+1. Conversely, T (st,at, s′t+1) = 0 indicates that the state transition
is unfeasible, and the robot returns to the last state st (please refer to the Appendix C for further
details). The agents collectively aim to guide the robot’s COM to a designated target area within the
Markov game framework, while satisfying all kinematic and dynamic constraints.

3 Methodology

3.1 Overall Control Structure

The hexapod robot aims to navigate from an initial point to a target area in the uneven plum blossom
pile environment, utilizing a free gait while minimizing the traveled distance. Each leg of the hexa-
pod robot undergoes alternating support and swing phases, where swing phase legs select the next
foothold position, while support phase legs adjust the body’s direction and step size. This iterative
process generates sequences for gait, COM, and footholds. The overall control structure is illustrated

3



2

1

34

5

6

Environment
Free gait TFM

tr

Agent set

KNN

1

d
a

6

d
a

1

cs
a

1

cc
a

6

cs
a

6

cc
a

ta

ts

1t+
s

1t+s

ts

ts

1t+
s

1t+
s

1t+
s

Figure 1: Overview of the proposed control structure. Each leg of the hexapod robot is regarded as
an independent agent with a policy symbolized as πi, i ∈ {1, · · · , 6}.

in Fig. 1. Each agent, denoted as πi, i ∈ {1, · · · , 6}, receives local observations oi and generates
corresponding actions ai. To determine the phase of each agent i within a step cycle, πi initially
produces the discrete action adi , parameterized as a categorical distribution with two possible cate-
gories. If adi = 0, agent i enters the swing phase, and πi generates the corresponding continuous
action acsi , governing the selection of the next foothold. Conversely, if adi = 1, agent i enters the
support phase, and πi produces the relevant continuous action acci , controlling the movement of the
COM. These discrete and continuous actions collectively form the hybrid action at. Based on at,
the environment calculates the position of each foot in the swing phase, then employs the K-Nearest
Neighbor (KNN) algorithm to identify the nearest plum blossom pile as the target foothold. Subse-
quently, the next COM position and Euler angles are determined based on the actions generated by
all support phases. The resulting next pending state s′t+1 for the hexapod robot is then generated.

Given the current state st and the next pending state s′t+1, a free gait Transition Feasibility Model
(free gait TFM), denoted as T (st,at, s′t+1), assesses the transition feasibility between the two states.
More details about the free gait TFM can be found in Appendix C. A feasible transition allows the
hexapod robot to advance to the next state, st+1 = s′t+1, while an unfeasible transition prompts the
robot to revert to the previous state, st+1 = st. Finally, the environment outputs the next state st+1

and computes the reward rt. When reaching the target area or surpassing the maximum number
of steps, the current episode is terminated, and the hexapod robot is reset to a new initial point,
with a new target area generated to start a new episode. The optimal policy π∗

i of each agent is
trained by the proposed Hybrid-MASAC algorithm, detailed in Subsection 3.2, and the optimal gait,
COM, and foothold sequences of the hexapod robot are finally output by the optimal policy set
π∗ := ⟨π∗

1 , · · · , π∗
6⟩.

3.2 Hybrid-MASAC for Free Gait Motion Planning

In multi-agent environment, each agent updates its policy independently during the learning process,
resulting in a non-stationary environment that violates the MDP hypothesis conditions. Thus, we
use the framework of Centralized Training with Decentralized Execution (CTDE) [27] to solve this
problem. Furthermore, to address the decision making problem in the hybrid action space that
includes both discrete and continuous actions, we draw inspiration from the work of Delalleau et
al.[28], and further perform the hybrid policy iteration within the multi-agent framework, yielding
the Hybrid action space Multi-agent Soft Actor Critic (Hybrid-MASAC) algorithm. The network
architecture is illustrated in Figure 2, and the pseudocode of the integrated Hybrid-MASAC-based
free gait motion planning method is detailed in Algorithm 1.

In the Hybrid-MASAC algorithm, the hybrid policy is defined as

π(a | s) = π(ac,ad | s) = πc(ac | s,ad)πd(ad | s), (2)
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Figure 2: Hybrid-MASAC architecture. The
policy πi initially outputs the discrete action
adi , and the parameters of the continuous ac-
tion distribution µc

i ,σ
c
i , based on the input

observation oi. Next, all the observation and
continuous action pairs are fed into the self-
attention mechanism, and the resulting output
features are added to the observation and con-
tinuous action pairs as the input of the MLP.
Finally, the Q-value Qi (s, ·,ac1, · · · ,ac6) is
output by the MLP.

where ad represents the discrete actions, ac repre-
sents the continuous actions, πd is the discrete pol-
icy distribution, and πc is the continuous policy dis-
tribution. The joint entropy of the hybrid policy is
calculated as

πd (· | s)T H
(
πc

(
· | s,ad

))
+H

(
πd (· | s)

)
. (3)

Based on the hybrid policy, the joint entropy, and the
multi-agent framework, we redefine the soft state-
value function of the SAC for the i-th agent as

Vθi
(ot) =Eac

t∼πc

[
πd
ϕi

(· | oit)
T
(Qθi (ot, ·,act)

− αd
i log π

d
ϕi

(· | oit)

−αc
i log π

c
ϕi

(
acit | oit,a

d
it

))]
,

(4)
where πϕd

i
is the discrete policy, πϕc

i
is the con-

tinuous policy, θi and ϕi are Q-network param-
eters and policy network parameters respectively,
o = {o1, · · · ,oN} is the local observation set,
ad = {ad1, · · · ,adN} is the discrete action set, ac =
{ac1, · · · ,acN} is the continuous action set, αd

i is the
temperature for the discrete policy, and αc

i is the
temperature for the continuous policy.

We incorporate an attention mechanism [29] to allo-
cate attention within the Q-network to different agent behaviors. The Q-function, enhanced by this
attention mechanism, is computed as follows:

Qθi
(o, ·,ac) = fi (gi (oi, ·,aci ) ,vi) , (5)

where gi is a single-layer fully connected network, which outputs state-action feature vectors ac-
cording to the state-action pair of the agent i, fi is a two-layer fully connected network that outputs
Q-values according to the feature vectors concatenating by vi and gi (oi, ·,aci ), vi is the weighted
sum of the state-action feature vectors of all agents except agent i, which is calculated as

vi =
∑
j ̸=i

αi,jgi
(
oj , ·,acj

)
, (6)

The attention weight αi,j is calculated as

αi,j =
exp (βi,j)∑
j ̸=i exp (βi,j)

, βi,j = gTi (oi, ·,aci )WT
k Wqgi

(
oj , ·,acj

)
, (7)

where βi,j represents the correlation between the state-action feature vectors of agent i and other
agents, Wk and Wq are the weight matrices to be learned, αi,j is the result of softmax on βi,j .

The policy evaluation of the Hybrid-MASAC is performed by minimizing the redefined Behrman
residuals:

JQ(θi) =E(ot,ad
t ,a

c
t)∼D

[
1

2

(
Qθi

(
ot,a

d
t ,a

c
t

)
−

(
rit + γEot+1∼p

[
Vθ̄i

(ot+1)
]))2]

, (8)

where Vθ̄i
(ot+1) is calculated by the target value network parameters θ̄i and target policy network

parameters ϕ̄i. The target function in the policy improvement of the Hybrid-MASAC is redefined
as

Jπ(ϕi) =Eot∼D

[
Eac

t∼πc

[
πd
ϕi
(·|oit)

T
(
αd
i log π

d
ϕi

(· | oit)

+αc
i log π

c
ϕi

(
acit | oit,a

d
it

)
−Qθi (ot, ·,act)

)]]
.

(9)
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The choice of the temperatures αd and αc directly impact the resulting policy. To enable an auto-
matic adjustment of these temperatures, we draw inspiration from the temperature update method
introduced by Haarnoja et al. [26] and extend it to accommodate the multi-agent framework and
hybrid action space. For agent i, the temperature target functions for the continuous and discrete
policies are defined as follows:

J(αd
i ) = πd

ϕi
(· | oit)

T (−αd
i (log π

d
ϕi
(· | oit) + H̄d)), (10)

J(αc
i ) = Eac

it∼πc
ϕi
[−αc

i (log π
c
ϕi
(acit | oit,a

d
it) + H̄c)], (11)

where H̄d and H̄c represent two hyperparameters for discrete and continuous policy, respectively.
In our experiments, we set H̄d = 0.25 and H̄c = −0.25.

4 Experiments

4.1 Training Setup

Three different types of simulated plum blossom pile environments, denoted as E1, E2, E3, and a
real plum blossom pile environment, E4, are constructed to evaluate the proposed Hybrid-MASAC-
based free gait motion planning method, as illustrated in Fig. 3. Each environment has dimensions
of 1.2m in length and width. The number of plum blossom piles in each environment is denoted as
Np. For each simulated environment, we set Np to be 300, 200, and 150, respectively, resulting in a
total of 9 different simulated environments.

We use 3 metrics to evaluate the performance of the proposed motion planning method: Average
Episode Reward (AER), Average Episode Step (AES) and Average Success Rate (ASR). AER is
calculated as the ratio of the total reward to the total number of steps in an episode. AES is deter-
mined as the ratio of the total steps to the distance between the initial point and the target area. ASR
represents the average success rate observed in the last 200 episodes.

(a) (b) (c) (d) 

Figure 3: Different types of plum blossom pile environment with Np = 150. (a) Randomly dis-
tributed plum blossom piles with the same height E1. (b) Randomly distributed plum blossom piles
with random height E2. (c) Stair shape plum blossom pile environment E3. (d) A simplified version
of E3 in the real-world E4. The transparent blue polyhedrons in the simulated environments are the
simplified foot workspace.

4.2 Experimental Results

We use the proposed Hybrid-MASAC algorithm to train the optimal hybrid policies in 9 different
simulated environments. Fig. 4 shows the top view of the plum blossom pile environment used
in the training process. Where, the green block is the initial point, the red circle is the target area,
yellow dots represent plum blossom piles, red dots represent footholds and CoM sequences, and blue
wireframes represent the body of the hexapod robot. As training progresses, all agents gradually
learn to cooperate in guiding the robot to the target area, resulting in higher average rewards, fewer
steps taken on average, and an increasing average success rate, as shown in Fig. 5. At the end of the
training, the optimal policy can leads the hexapod robot to the target area with the shortest trajectory
as shown in Fig. 4(b).
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(a) (b)

initial point target area plum blossom piles

footholds COM body

Figure 4: Top view of the plum blossom pile
environment used in the training process. (a)
The beginning of the training. (b) The end of
the training.

To evaluate the trained policies, we randomly set
100 groups of initial points and target areas in each
environment, and compute the corresponding AER,
AES and ASR metrics. The results are shown in
Table 1. The optimal hybrid policies trained with
Hybrid-MASAC can generate effective sequences of
gait, COM, and foothold, and guide the hexapod
robot to the target area with ASR exceeding 80%.
When the number of plum blossom piles exceeds
200, the ASR approaches 100%. Conversely, as the
number of plum blossom piles decreases, the ASR
decreases due to the lack of suitable footholds for
certain legs.

To comprehensively evaluate the performance of the
proposed Hybrid-MASAC algorithm, we conduct a
comparative analysis against several baseline meth-
ods. These include 2 traditional graph-based methods: (a) A*-Tripod and (b) A*-Free, as well as
4 DRL-based methods: (c) Multi-agent Soft Actor Critic (MASAC) [30], a simplified counterpart
to Hybrid-MASAC in the continuous action space, (d) Single-agent Soft Actor Critic with free gait
(SAC-Free) [26], (e) Single-agent Soft Actor Critic with tripod gait (SAC-Tripod), and (f) HFG-
DRL [24], a hierarchical DRL-based algorithm for free gait motion planning. More details about
the above methods can be found in Appendix D.
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Figure 5: Learning curves of E3 with Np = 150 (5 random seeds). (a) The learning curve of AER.
(b) The learning curve of AES. (c) The learning curve of ASR.

Table 1: Metrics of the trained policies in 9 different types of environments using Hybrid-MASAC.

Np Metrics E1 E2 E3

300
AER 1.196±0.460 2.575±0.514 4.131±0.469

AES 0.071±0.022 0.057±0.012 0.042±0.017

ASR 98%±1% 100%±0% 100%±0%

200

AER 1.798±0.329 2.311±0.513 2.628±0.290

AES 0.079±0.025 0.063±0.021 0.057±0.016

ASR 97%±2% 99%±1% 99%±1%

150

AER 0.504±0.358 1.805±0.412 1.867±0.422

AES 0.133±0.058 0.091±0.021 0.085±0.014

ASR 83%±9% 92%±5% 96%±2%

For a fair comparison with the motion planning method proposed by Fu et al. [23], we substitute the
PPO algorithm with the SAC algorithm in the tripod gait case. The evaluation takes place within
identical environmental conditions, maintaining consistent hyperparameters, such as learning rate,
temperature, discount factor, et al. Table 2 presents a comparison of the metrics between baseline
methods. For each experiments, we perform training with 5 different random seeds and use 100
groups of initial points and target areas for evaluation. The A*-Free algorithm benefits from free
gait and achieves a higher success rate compared to A*-Tripod; however, due to the COM being
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Table 2: Comparison of Hybrid MASAC and baseline methods in E3 with Np = 150.

Algorithms AER AES ASR
A*-Tripod - 0.257±0.021 21%±5%

A*-Free - 0.189±0.018 42%±3%

MASAC [30] -0.696±0.223 0.215±0.013 46%±5%

SAC-Free [26] -0.911±0.180 0.231±0.019 32%±9%

SAC-Tripod [23] 1.652±0.385 0.122±0.018 90%±4%

HFG-DRL [24] 0.355±0.266 0.202±0.015 58%±5%

Hybrid-MASAC (Ours) 1.867±0.422 0.085±0.014 96%±2%

represented as discrete grids, the success rates of such algorithms are generally low. The HFG-DRL
algorithm also has a relatively low success rate when the number of piles is only 150, as it selects
gaits based on rules. The proposed Hybrid-MASAC algorithm outperforms all the baseline methods
across all metrics, showcasing the feasibility and efficiency of our method in the planning of free
gait motion for the hexapod robot walking in complex plum blossom pile environments.

Finally, we conducted the experiment in the real-world environment E4. The video can be found
in http://www.hexapod.cn/marlhexa.html. We assume access to environmental information
and global COM coordinates. The trained hybrid policy enables the generation of optimal gait,
COM, and foothold sequences for the hexapod robot. The target joint rotation angles for each time
step are calculated by inverse kinematics. Subsequently, a PD controller guides each joint of the
hexapod robot to follow the target trajectory. An inherent challenge stems from error accumulation
during prolonged movements in the real environment. Nevertheless, in our experiment, the size of
the environment is relatively small, where cumulative errors remain within acceptable thresholds.
Worthy of note, the random plum blossom pile environments can characterize any non-structured
environment to a certain extent. Our method holds promise for deployment in more challenging
real-world environments, offering safer and more reliable motion reference trajectories.

5 Limitations

In the real world experiment, we assume the environmental information is known; however, for
dynamic real-world scenarios, real-time environmental perception and localization are necessary. To
tackle this issue, advanced techniques such as Simultaneous Localization and Mapping (SLAM) can
be introduced for precise mapping and positioning, although this falls beyond the scope of our paper.
It’s important to highlight that the motion planning method outlined in this paper holds applicability
to quadruped and biped robots as well. We can adapt the approach by adjusting the state space,
action space, and transition feasibility model accordingly. However, advanced and robust control
methodologies such as Model Predictive Control (MPC), Linear Quadratic Regulator (LQR), and
various trajectory tracking techniques is needed to accurately track the output trajectory sequences.

6 Conclusion

A free gait motion planning method is proposed in this paper, where each leg of the hexapod robot
is regarded as an independent agent, with the common objective of moving the COM from a initial
point to a designated target area in the uneven plum blossom pile environment. The motion of all legs
is modeled as a Markov game with a specific state transition function determined by the proposed
free gait TFM. Based on the multi-agent framework and the hybrid action space, we propose the
Hybrid-MASAC algorithm to train and generate the optimal hybrid policy for each agent. These
trained policies enable the generation of optimal gait, COM, and foothold sequences for the hexapod
robot, while fulfilling all the kinematic and dynamic constraints. All the experimental results in both
simulation and real-world demonstrate the feasibility and efficiency of the proposed method. Our
future work will focus on training more robust policies and combining the proposed method with
localization and map-building methods.
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A Pseudocode of Hybrid-MASAC for Free Gait Motion Planning

The integrated Hybrid-MASAC based free gait multi-contact motion planning algorithm is shown
as in Algorithm 1.

Algorithm 1: Hybrid-MASAC for Free Gait Motion Planning
1: Initialize network parameters ϕ, θ, replay buffer D.
2: Initialize target network parameters ϕ̄← ϕ, θ̄ ← θ.
3: for episode k = 0, 1, 2, ...,M do
4: Randomly initialize Pinitial and Ptarget.
5: Reset the hexapod robot and obtain the state s0 and observation set o0.
6: for step t = 0, 1, 2, ..., T do
7: for agent i = 1, · · · , 6 do
8: Sample discrete actions adit ∼ πd

ϕi

(
adit|oit

)
.

9: Sample continuous actions acit ∼ πc
ϕi

(
acit|oit,a

d
it

)
.

10: end for
11: Perform the hybrid action at and obtain the

pending state s′t+1.
12: if transition feasibility T (st,at, s

′
t+1) = 1 then

13: st+1 = s′t+1, obtain ot+1 and rt.
14: else
15: st+1 = st, obtain ot+1 and rt.
16: end if
17: Store experience (ot, at, rt, ot+1) in Dk.
18: end for
19: for agent i = 1, · · · , 6 do
20: θi ← θi − λQ∇̂θi

JQ (θi),
21: ϕi ← ϕi − λπ∇̂ϕi

Jπ(ϕi),
22: αd

i ← αd
i − λ∇̂αd

i
J(αd

i ), α
c
i ← αc

i − λ∇̂αc
i
J(αc

i ),
23: θ̄i ← τθi + (1− τ)θ̄i, ϕ̄i ← τϕi + (1− τ)ϕ̄i.
24: end for
25: end for

B Markov Game Formulation

B.1 Observation Space

The observation o of the hexapod robot is composed of 6 local observations {o1, · · · ,o6}, which is
a subset of the state space. The local observation oi ∈ s is defined as

oi := ⟨ψ,pr
i ⟩ , (12)

where ψ := ⟨rB ,θB ,pc, ci⟩ represents the proprioceptive information of the hexapod robot. pr
i =

pc
i −pg

i is the relative position between the current position pc
i of the i-th foot and its corresponding

target position pg
i in the world frame. pg

i is generated according to the coordinate of the target area.

B.2 Action Space

Under the multi-agent framework, each leg of the hexapod robot is defined as an independent agent.
At each time step t, the agent i needs to choose the current discrete phase and the corresponding
continuous action that should be performed under that phase. The action ai of agent i, generated by
its corresponding policy πi, is defined as

ai :=
〈
adi ,a

cs
i ,acci

〉
, (13)
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where the discrete action adi ∈ {0, 1} represents the next phase of the i-th leg. When adi = 0, leg i is
in swing phase, otherwise leg i is in support phase. acsi := ∆rFi represents the continuous action de-
noting the coordinate change of the swing phase, and acci := ⟨∆rBi,∆θBi⟩ is the continuous action
of the support phase. The coordinate change of the COM is calculated as ∆rB = 1

Nc

∑Nc

i=0 ∆rBi,

and the Euler angle change of the body is calculated as ∆θB = 1
Nc

∑Nc

i=0 ∆θBi, where Nc is the
number of the support phase, and the yaw angle is assumed to remain unchanged in the motion
process.

B.3 Reward Function

For all agents, the objective is to work together to move the COM from an initial point to a target
area via the shortest trajectory, while fulfilling all the kinematic and dynamic constraints. To achieve
this task, the reward ri is defined as

ri,t = rw,t + rk,t + rf,t + rs,t + rhi,t + rdi,t + rg,t, (14)

where rw,t penalizes the improper combination of support phases, including two cases: the number
of total support phases Nc,t ≤ 2, and there is no support phase in the adjacent three legs. rk,t
penalizes the hexapod robot for any leg that does not meet the kinematics constraint in the next
state. rf,t penalizes the unfeasible state transition of hexapod robot according to the free gait TFM.
rs,t penalizes the hexapod robot for every step it takes. rhi,t penalizes the leg i for more than three
consecutive time steps in the same phase to prevent the hexapod robot from standing still. rdi,t
rewards the agent i for moving towards the target area. rg,t rewards the hexapod robot for reaching
the target area.

C Free gait Transition Feasibility Model

Referring to the fixed gait Transition Feasibility Model (TFM) of hexapod robots [23], we propose
a free gait TFM T (st,at, s

′
t+1) to determine whether the transition between two adjacent states can

be completed under all the kinematic and dynamic constraints, which includes three parts:

• Tc(p
c
t): Check for illegal phase combinations. For example, the number of total support

phases is less than 3, or there is no support phase in the three adjacent feet.

• Tk(ψt,ψ
′
t+1): Check for kinematic constraints.

• Td(ψt,ψ
′
t+1): Check for dynamic constraints.

where s′t+1 represents the next pending state. We formulate the transition feasibility as a nonlinear
constrained optimization problem using the direct multiple shooting method and solve it by an open-
source tool for nonlinear optimization, CasADi1. In CasADi, it uses interior point method to find
the solution, and when the problem has no solution or the number of optimization steps reaches the
preset maximum, we consider the problem to be infeasible.

C.1 Phase Combination Constraints

The hexapod robot can use three or more support phases to form a support polygon to maintain good
static stability. Thus, for the current state st, we set phase combination constraints to filter out illegal
phase combinations, including the number of total support phases Nc ≤ 2 and the support phase
number for the three adjacent feet should not be zero.

C.2 Kinematic Constraints

For the initial state s0 and each pending state s′t+1, the kinematic constraints are set up to avoid the
robot’s behavior violating the physical constraints of its own structure. The dimension parameters

1https://web.casadi.org/
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Table 3: Dimensional parameters and joint rotation ranges of the hexapod robot.

Parameter Body Coxa Femur Tibia
Length/mm 240 60 120 145

Range/◦ - [-45, 45] [-45, 45] [-135, -45]

1p

2p

3p
4p

5p

6p

7p

8p

9p

10p

11p
12p

1p

2p

3p
4p

5p

6p

7p

8p

9p

10p

11p
12p

(a) (b)

i

Figure 6: The foot workspace of the hexapod robot. (a) The point cloud of original foot workspace.
(b) Simplified foot workspace which is represented as a polyhedron.

and joint rotation ranges of the hexapod robot are shown in Table 3. By sampling within the joint
rotation range, we can obtain the point cloud of the original foot workspace, as shown in Fig. 6(a).
Since the original foot workspace is highly nonlinear and inconvenient for optimization, we con-
servatively simplify the kinematics constraint for leg i as keeping its foot pc

i within the polyhedron
workspace Ri, as shown in Fig. 6(b). For each plane in the polyhedron, we can find its normal
vector n given the coordinates of three points. Here, we take p1, p2 and p3 in Fig. 6(b) as an
example, the normal vector of this plane n = (p2 − p1) × (p3 − p1). To keep the foot pc

i inside
the polyhedron, pc

i needs to be on the right side of the plane, yielding the following constraint:

RZ (αi)
[(

B
WRpc

i − p1

)
· n

]
> 0, (15)

where B
WR is the rotation matrix from the world frame to the body frame. Note that the polyhedron

is described in the body frame and pc
i is described in the world frame. RZ(αi) is the z-axis rotation

matrix and αi is the z-axis deflection angle of the coxa frame to the body frame.

Each simplified foot workspace polyhedron consists of 12 planes. For each foot, there are a total of
12 kinematic constraints.

C.3 Dynamic Constraints

In order to determine whether the hexapod robot can transfer from the current state st to the next
pending state s′t+1, we set up the corresponding dynamic constraints and solve the problem as a
mathematical feasibility problem using existing optimization tools. Specifically, we need to find a
set of decision variables such as the COM position rB ∈ R3, the body Euler angles θ ∈ R3, the
foot contact force f ∈ R6×3 et al., which fulfill all the constraints given st and s′t+1. The dynamic
constraints include three parts: the dynamic model of the hexapod robot, the pushing force constraint
and the friction cone constraint.

The dynamic model represents the time-dependent aspects of the system, and we approximate it
by Single Rigid Body Dynamics (SRBD) [31]. Then, we get the Newton-Euler equations of the
hexapod robot, which is defined as the SRBD:

mr̈B =

N∑
i=1

fi +mg, (16a)

Iω̇ + ω × Iω =

N∑
i=1

fi × (rB − pc
i ) , (16b)

where m is the mass of the hexapod robot, fi ∈ R3 is the contact force of foot i, g ∈ R3 is the
acceleration of gravity, ω ∈ R3 is the angular velocity of the body, I ∈ R3×3 is the inertia tensor
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of the hexapod robot in the world frame, which can be calculated by the inertia tensor in the body
frame IB and the rotation matrix W

B R: I = W
B RIB

W
B RT . N is the number of the support foot. With

free gait, N = 6 and we constrain the contact force of the swing phase to zero.

Using the SRBD, the state of the hexapod robot can be expressed by an ordinary differential equation
ẋ = F(x, f), where x = [rB , ṙB ,θB ,ω]

T is the state of the body which is only affected by the
contact force. The rates of the Euler angles ˙θB can be calculated by the optimized Euler angles θB
and the angular velocities ω̇:

θ̇B = C(θB)ω̇ =

[
1 0 − sin θy
0 cos θx sin θx cos θy
0 − sin θx cos θx cos θy

]
ω̇. (17)

Using numerical integration methods, such as trapezoidal quadrature, we obtain the discrete dynamic
constraint formula of the ordinary differential equation:

xk+1 − xk ≈
1

2
(tk+1 − tk)(F(xk+1, fk+1) + F(xk, fk)). (18)

The pushing force constraints restrict the force provided by the environment to the hexapod robot
can only be thrust:

fi · n (pc
i ) ≥ 0, (19)

where n (pc
i ) is the normal vector of the environmental surface at coordinate pc

i .

The friction cone constraint follows from Coulomb’s law that pushing stronger into a surface allows
exerting larger side-ways forces without slipping. Therefore, the resultant force on each support foot
is always in the interior of the friction cone. The linear approximation is as follows:∣∣fi · t{1,2} (pc

i )
∣∣ ≤ µ · fi · n (pc

i ) , (20)

where t{1,2} (p
c
i ) is the tangential vector of the environment at coordinate pc

i and µ is the friction
coefficient.

D Additional Experimental Details

At the beginning of a training episode, an initial point and a target area with a radius of 150mm are
randomly generated, and the distance between them is greater than 300mm. All agents collaborate
to guide the hexapod robot’s COM from the initial point to the target area, and the trained policies
yield the optimal gait, COM, and foothold sequences.

The policy network is trained on a computer with an i7-7700 CPU and a Nvidia GTX 1060ti GPU.
The networks are implemented using Pytorch2, and the transition feasibility model used in the train-
ing process is solved using CasADi. All the simulated environments are built by PyBullet3. The
hyperparameters of the Hybrid-MASAC algorithm are detailed in Table 4.

We conduct a comparative analysis against existing baseline methods: (a) A*-Tripod, an A* al-
gorithm with the fixed tripod gait, using a 20x20 2-dim grid map to represent the robot’s center of
mass position in the plum blossom pile environment, and employing a fixed gait transition feasibility
model to determine whether two nodes are transferable. (b) A*-Free, an A* algorithm with the free
gait, utilizing a free gait transition feasibility model to assess the transferability of two nodes, with
other settings identical to A*-Tripod. (c) Multi-agent Soft Actor Critic (MASAC) [30], a simpli-
fied counterpart to Hybrid-MASAC in the continuous action space, involves each agent i generating
a 10-dimensional continuous action vector, with each agent generating a 10-dimensional contin-
uous action vector including 2 phase actions, 3 swing foot actions, 3 support foot actions, and 2
body Euler angle actions. (d) Single-agent Soft Actor Critic with free gait (SAC-Free) [26] utilizes
a 35-dimensional continuous action vector for free gait motion planning, encompassing 6 groups

2https://pytorch.org/
3https://pybullet.org/
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Table 4: Hybrid-MASAC hyperparameters during training.

Parameter Value
Optimizer Adam

Learning rate 10−2

Discount factor 0.95
Replay buffer size 106

Minibatch size 1024
Target smoothing coefficient 10−2

Maximum number of episode steps 100
Discrete policy target temperature 0.25

Continuous policy target temperature -0.25

of 2-dimensional phase actions, 6 groups of 3-dimensional swing foot actions, alongside 3 COM
actions and 2 body Euler angle actions. (e) Single-agent Soft Actor Critic with tripod gait (SAC-
Tripod) uses a 14-dimensional continuous action vector for tripod gait, involving 3 COM actions,
2 body Euler angle actions, and 3 groups of 3-dimensional swing foot actions. (f) HFG-DRL [24]:
A hierarchical DRL-based algorithm with the free gait, where the upper layer implements center of
mass path planning and the lower layer implements motion planning, selecting gait types based on
some rules.

E Additional Experimental Results

With the free gait generated by the policies, the hexapod robot can adapt to various gait patterns
such as tripod gait, quadruped gait, and wave gait according to the surrounding environment. When
the policy converges to the optimum, the proportion of the above three gaits in each environment
is illustrated in Fig. 7. Notably, in the same environment, as the number of plum blossom piles
decreases, to get a better passibility, the proportion of tripod gait decreases, while the proportion of
wave gait increases. The proportion of the quadruped gait is relatively stable across all environments.
Additionally, the distribution of gait types varies among different environments.

0

0.1
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0.3

0.4

0.5

0.6

Tripod Gait Quadruped Gait Wave Gait

Pr
op
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tio

n

Figure 7: Statistics of gait types in 9 environments with free gait.

Fig. 8 shows the coxa angle curves of the hexapod robot obtained by the trained policy in environ-
ment E3 with Np = 150. Since each state transition of the hexapod robot is checked by the proposed
free gait transition feasibility model, the coxa angle is always within the angle range as shown in
Table 3.

Fig. 9 shows the heat map of the passable area of the optimal free gait policy trained by the Hybrid-
MASAC algorithm and the optimal tripod gait policy trained by the SAC-Tripod algorithm in the
environment E3 with Np = 150. The heat map covers the passable area of the COM in the en-
vironment, and the darker the color, the greater the probability of passability. Fig. 9(a) shows the
heat map of the passable area using free gait, and Fig. 9(b) shows the heat map of the passable area
using tripod gait. It can be observed that the distribution of the passable area with free gait is rela-
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Figure 8: The coxa angles of the robot in E3 with Np = 150.

Table 5: The Average Success Rate (ASR) of the trained policy in E3 when transferred to E1, E2,
and another random E3.

Direct transfer Fine tune for 100 episodes Fine tune for 500 episodes
E1 6%±1% 26%±5% 58%±4%

E2 4%±1% 33%±6% 65%±3%

E3 62%±3% 84%±2% 90%±2%

tively uniform, and there are more impassable areas with fixed tripod gait, which further proves that
the Hybrid-MASAC algorithm is more adaptable to the complex environment than the SAC-Tripod
algorithm.

(a) (b)

Figure 9: Passable areas of COM in (a) free gait and (b) tripod gait.

Table 5 shows the performance comparison of the algorithm trained in E3 when transferred to E1,
E2, and another random E3, with performance evaluated based on whether fine-tuning is conducted.
The trained policy can still achieve a success rate of around 62% in a completely new E3 environ-
ment. After only 100 episodes of fine-tuning, the success rate can reach 84%, further proves the
robustness of our method in the same type of environment. However, when transferred to E1 and
E2, the accuracy of the policy significantly decreases, which may be alleviated by more advanced
transfer learning algorithms. We will leave this as future work.
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