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ABSTRACT

The development of large language models (LLMs) has significantly expanded
model sizes, resulting in substantial GPU memory requirements during inference.
The key and value storage of the attention map in the KV (key-value) cache ac-
counts for more than 80% of this memory consumption. Nowadays, most existing
KV cache compression methods focus on intra-layer compression within a single
Transformer layer but few works consider layer-wise compression. In this paper,
we propose a plug-and-play method called KVSharer, which shares the KV cache
between layers to achieve layer-wise compression. Rather than intuitively shar-
ing based on higher similarity, we discover a counterintuitive phenomenon: shar-
ing dissimilar KV caches better preserves the model performance. Experiments
show that KVSharer can reduce KV cache computation by 30%, thereby lowering
memory consumption without significantly impacting model performance and it
can also achieve at least 1.3 times generation acceleration. Additionally, we ver-
ify that KVSharer is compatible with existing intra-layer KV cache compression
methods, and combining both can further save memory.

1 INTRODUCTION
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Layer-wise sharing of 
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Figure 1: Previous methods primarily focus
on discarding Keys and Values within layers.
In contrast, we share KV caches across lay-
ers based on their dissimilarity, where dis-
similarity refers to the dissimilarity of vec-
tors formed by flattening the KV caches.

Recently, large language models (LLMs) built on
the Transformer (Vaswani et al., 2017) architec-
ture have demonstrated remarkable abilities across a
wide range of tasks (Touvron et al., 2023; Cai et al.,
2024; Yang et al., 2024a; Brown, 2020; Jiang et al.,
2023). However, these impressive capabilities usu-
ally come with a significant increase in model size,
resulting in substantial GPU memory costs during
inference. The memory consumption of LLM dur-
ing inference primarily comes from model parame-
ters and the KV (key-value) cache. The KV cache
is a commonly used technique in the efficient in-
ference of LLM, which stores the keys and values
previously computed in the attention mechanism, al-
lowing for reuse in subsequent generation processes
to improve inference speed. Although the KV cache
greatly helps improve inference speed, it also signif-
icantly pressures memory usage. During the LLM
inference phase, the KV cache typically accounts for
80% of the total memory usage, making it essential
to optimize the KV cache to reduce memory con-
sumption (Yang et al., 2024b; Zhang et al., 2024b).

Recent research has seen a proliferation of methods aimed at compressing KV caches to reduce
memory consumption (Zandieh et al., 2024; Xu et al., 2024; Yang et al., 2024b; Zhang et al.,
2024b;a; Dong et al., 2024). However, these efforts have predominantly focused on intra-layer
KV cache compression within individual Transformer layers of LLM. In contrast, layer-wise KV
cache compression strategies, which calculate the KV cache for only a subset of layers to minimize
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memory usage, remain largely unexplored. The limited existing work on layer-wise KV cache com-
pression typically requires additional training to maintain satisfactory performance (Wu & Tu, 2024;
Liu et al., 2024a).

In this paper, we introduce KVSharer, a plug-and-play method for compressing the KV cache of
well-trained LLMs. Contrary to the intuitive expectation of sharing similar KV caches, i.e., the vec-
tors formed by flattening KV caches being highly identical, our method is based on an empirically
discovered counterintuitive phenomenon: when the KV caches of two layers differ significantly,
sharing one layer’s KV cache with another during inference does not lead to significant performance
degradation. The paradox in this discovery lies in that previous methods for sharing parameters or
activation values have always relied on replacing similar values (Dehghani et al., 2018; Reid et al.,
2021; Cao et al., 2024). In contrast, we are the first to show that, in the context of KV caches, model
performance can be effectively maintained by sharing dissimilar layer-wise KV caches. Leverag-
ing this observation, KVSharer employs a search strategy to identify the KV cache sharing strategy
across different layers during inference. KVSharer significantly reduces GPU memory consumption
while maintaining most of the model performance. For example, it retains over 95% of the model
performance while using only 70% of the original memory. As a layer-wise KV cache compres-
sion technique, KVSharer is compatible with existing intra-layer KV cache compression methods,
offering a complementary approach to memory optimization in LLMs. KVsharer is also a general
method and not task-specific, meaning that once a sharing strategy is found on a general calibration
dataset, it can be directly applied to any downstream task. Our contributions are summarized as
follows:

• We first discover a counterintuitive phenomenon where sharing dissimilar KV caches does
not significantly degrade model performance. Based on this, we introduce KVSharer, a
layer-wise KV cache sharing mechanism for efficient inference without additional training.

• Experiments using PPL (Perplexity) and various downstream benchmarks demonstrate
that KVSharer can effectively reduce memory consumption without significantly affecting
model performance. KVSharer also has the effect of improving generation speed.

• KVSharer is compatible with the current intra-layer KV cache compression methods, en-
abling further memory reduction while maintaining good model performance.

2 RELATED WORK

2.1 KV CACHE COMPRESSION

Most of the existing KV cache compression work is carried out within a single transformer layer,
namely the intra-layer compression. For example, StreamingLLM (Xiao et al., 2023) only retains the
attention sink in the KV cache, avoiding a significant increase in memory demand when generating
long texts. H2O (Zhang et al., 2024b) reduces memory usage by removing the keys and values
stored by unimportant tokens from the full KV cache. Compared to H2O, Scissorhands (Liu et al.,
2024b) discards as many tokens as possible from the KV cache in each round, rather than just one
token. PyramidInfer (Yang et al., 2024b) considers calculating the key-values only for important
tokens during generation. FastGen (Ge et al., 2023) also discards the attention values of certain non-
special tokens in the KV cache but sets a maximum approximation error for the attention matrix
to ensure model performance. SnapKV (Li et al., 2024) builds on the observation that attention
heads tend to consistently focus on certain prompt features, especially those toward the end, to
compress KV caches by selecting key positions for each head. While these methods have shown
effective compression ability, they achieve KV cache sparsification by discarding tokens within a
single layer. However, they do not address layer-wise KV cache compression.

Recently, only a few works have focused on layer-wise compression strategies for the KV cache.
MiniCache (Liu et al., 2024a) merges the KV caches from different layers to enhance throughput.
LCKV (Wu & Tu, 2024) proposes a novel method that computes and caches the KVs for only a small
number of layers, thereby significantly reducing memory consumption and improving inference
throughput. CLA (Brandon et al., 2024) design an inter-layer attention mechanism to share the KV
cache across different layers. YOCO (Sun et al., 2024) designs a decoder-decoder architecture that
enforces the reuse of the lower layer’s KV cache in the higher layers’ KV cache. However, all of
them require further training of the model rather than being plug-and-play on well-trained LLMs.
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Figure 2: An illustration of the strategy searching process of the KVSharer. For a given LLM, pro-
cess (a) performs inference on the calibration dataset and computes the euclidean distance between
flattened KV cache vectors from any two layers, sorting pairs in descending order. (b) KV cache
pairs are sequentially replaced, ensuring the final hidden-state similarity with the original model
exceeds threshold T until the KV cache compression ratio reachesR.

In contrast, we are the first to propose a layer-wise KV cache compression method for well-trained
LLMs without further training. Moreover, our method is directly compatible with the current intra-
layer KV cache compression techniques.

2.2 ATTENTION MAP & PARAMETER SHARING

Since the introduction of Transformer-based pre-trained language models (PLMs) like BERT (De-
vlin et al., 2018), some research has focused on attention map sharing and parameter sharing. Lazy-
former (Ying et al., 2021) reuses attention maps from lower layers in higher layers of the Trans-
former, thereby enhancing the throughput of PLMs. Xiao et al. (2019) directly share the attention
weights across layers, improving inference speed in machine translation tasks. Takase & Kiyono
(2021) design three parameter sharing strategies based on rules within the Transformer architecture,
improving model efficiency in machine translation tasks. Shim et al. (2023) conduct a compre-
hensive evaluation of various attention map sharing strategies. Since the advent of the era of LLMs,
various works utilizing parameter sharing or attention map sharing have been widely adopted. Multi-
Query attention (MQA) (Shazeer, 2019) and Grouped-Query attention (GQA) (Ainslie et al., 2023)
have become standard strategies in modern LLMs, improving model efficiency by sharing attention
queries and keys within a layer. Cao et al. (2024) investigate the similarity of attention maps and
attention parameters in LLMs and propose various attention map sharing strategies to reduce infer-
ence memory consumption. However, none of these works have extended to the KV cache. They
all rely on replacing layers with higher parameter similarity or activation values, which aligns with
intuition, whereas we replace dissimilar KV cache.

3 KVSHARER

The main steps of KVSharer are divided into two parts. First, for a given LLM, it searches a sharing
strategy, a list that specifies which layers’ KV caches should be replaced by those of other specific
layers. Then, during the subsequent prefill and generation processes on all the tasks, the KV caches
of the relevant layers are directly replaced according to this list, enabling efficient inference.

3.1 STRATEGY SEARCHING

To heuristically search for a sharing strategy, our approach is to first perform inference on a calibra-
tion dataset and calculate the euclidean distance between the KV caches of any two layers. Then,
we sort these KV cache pairs in descending order of euclidean distance. Subsequently, we attempt
to replace the corresponding KV caches in sequence, while ensuring that the model’s output remains
as consistent as possible with the original model during the replacement process. The search process
can be referenced in Algorithm 1 and Figure 2.

3
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Algorithm 1 Workflow of Strategy Searching
Require: LLMM, Target Shared KV Cache Layers C, Calibration Dataset D, Threshold for rep-

resentation similarity T
Ensure: Sharing Strategy Z

1: S ← Euclidean KV Dis(M, D) ▷ Perform inference on the calibration dataset D, compute
the euclidean distance between the KV caches of any two layers, and record the corresponding
layer pairs and their distance values as S

2: R ← Descend Rank(S) ▷ Sort the KV cache layer pairs in descending order based on their
euclidean distance

3: Z ← ∅ ▷ Initialize candidate sharing strategy as Z
4: P ← 0 ▷ Initialize current number of shared layers as P
5: for each r inR do
6: Z ← Z ∪ r ▷ Add the current pair r to the candidate set
7: Mtmp ← Sharing KV(M, Z) ▷ Apply layer-wise KV cache sharing toM according to

the current candidate strategy and get candidate modelMtmp

8: s← Avg Cos Sim(Mtmp,M, D) ▷ Compute the similarity of the final layer hidden-state
between the two models on the calibration dataset as s

9: if s <= T then
10: Z ← Z \ r ▷ If the output similarity between the current model and the original model

falls below the threshold, the current pair r is discarded
11: else
12: P ← P + 1 ▷ Find a replacement and increase the shared layers P by 1
13: if P == C then
14: return Z ▷ Return the currently found optimal strategy when the number of

compressed layers reaches the preset value C
15: end if
16: end if
17: end for
18: return None

3.1.1 PREPARATION

For a given LLMM, we set the target number of shared KV cache layers C. We specify a calibration
dataset D, which typically consists of several plain sentences. We conduct forward computations on
D using both the model with shared KV cache and the original model to obtain output representa-
tions, ensuring that the cosine similarity of these representations exceeds the threshold T .

3.1.2 SEARCHING

KV Cache Similarity Calculation & Initialization (1-4) First, we perform a forward pass using
the original modelM on the calibration dataset D, saving the KV cache for each layer during the
forward pass of each sentence. Then, we average the KV cache for each layer across all samples
to obtain the average KV cache for each layer. Finally, we flatten the keys and values of the KV
cache for each layer into a one-dimensional vector, and then average the keys and values separately
to represent the KV cache for that layer. We then calculate the euclidean distance between the KV
cache representations of any two layers to obtain S. We then sort S in descending order to get R,
as a larger euclidean distance indicates lower similarity. Consequently, dissimilar layer pairs are
prioritized. We then set two variables, Z and P , to record the candidate KV cache sharing strategy
and the current number of shared layers.

Sharing Strategy Searching (5-18) Based on the values in R, we sequentially select a pair of
layers r to add to Z for sharing. When sharing, we replace the layer closer to the output with the
one closer to the input, as the layers near the input end in LLMs are more sensitive, and modifying
them could result in significant performance degradation (Cao et al., 2024; Yang et al., 2024c).

We then apply the candidate strategy Z by directly replacing the KV cache of one layer with another
during the forward pass. Using the model with KV cache sharing and the original model, we per-
form inference on the calibration dataset to obtain the output representation from the last layer. We
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then average these representations across different sentences. If the cosine similarity between the
averaged output representations of the two models exceeds the threshold T , we retain the current
pair replacement r; otherwise, we discard it. This iteration continues until the predefined number of
compressed layers C is reached. At the end of the iteration, we obtain an optimal KV cache sharing
strategy Z through the heuristic search.

3.2 INFERENCE WITH KV CACHE SHARING

Transformer KV Shared Transformer

KV Cache1

KV Cache1

KV Cache1

KV Cache3

Layer 1

Layer 2

Layer 3

Layer 4
KV Cache3

KV Cache2

KV Cache1

KV Cache4

Layer 1

Layer 2

Layer 3

Layer 4

Optimal
Sharing Strategy

KV Cache4
Layer 5

KV Cache5
Layer 5

Prefill & Generation Phase

Figure 3: During the inference process of pre-
fill and generation, according to the currently
found optimal sharing strategy, KVSharer di-
rectly copy the result of the KV cache from a
previously computed layer to the current layer
during the forward computation.

After obtaining the KV cache sharing strategy Z ,
we apply it to all subsequent inference tasks, in-
cluding both prefill and generation processes. As il-
lustrated in Figure 3, during forward computations,
when a layer’s KV cache needs to be replaced based
on Z , we directly copy the KV cache from the pre-
viously computed layer. The subsequent computa-
tions then follow the original model’s process.

4 EXPERIMENTS

4.1 MODELS

To evaluate the effectiveness of the proposed
KVSharer, we perform experiments on widely-used
English LLMs, specifically Llama2-7B and 13B (Touvron et al., 2023). We also examine its effec-
tiveness on bilingual LLMs, namely InternLM2-7B and 20B (Cai et al., 2024), which support both
Chinese and English. For main experiments, we utilize the chat versions of Llama2-7B, InternLM2-
7B, InternLM2-20B and Llama2-13B. We choose these two model series because they offer open-
source models in a relatively complete range of different sizes and versions (Base or Chat). Ad-
ditionally, we include experiments on the advanced Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) to
validate the universality of our method.

4.2 BENCHMARKS

To comprehensively evaluate the model’s widely focused capabilities, we utilize the OpenCompass
evaluation framework Contributors (2023). Specifically, we conduct evaluations in five aspects:
Reasoning, Language, Knowledge, Examination and Understanding. We select several benchmarks
from each category. Reasoning: CMNLI Xu et al. (2020), HellaSwag (HeSw) Zellers et al. (2019),
PIQA Bisk et al. (2019). Language: CHID Zheng et al. (2019), WSC Levesque et al. (2012).
Knowledge: CommonSenseQA (CSQA) Talmor et al. (2018), BoolQ Clark et al. (2019). Ex-
amination: MMLU Hendrycks et al. (2021), CMMLU Li et al. (2023). Understanding: Race-
High/Middle (H/M) Lai et al. (2017), XSum Narayan et al. (2018), C3 Sun et al. (2020). We per-
form evaluations using the official scripts from OpenCompass, employing zero-shot or few-shot
approaches without any additional training. Two evaluation modes are employed: perplexity (PPL)
and generation (GEN) 1. The GEN mode is used for CHID and XSum, while both PPL (WSCP) and
GEN (WSCG) modes are applied to the WSC dataset. The remaining benchmarks are assessed using
the PPL mode. OpenCompass then converts the evaluation results for each benchmark into a score,
with higher scores indicating better performance.

4.3 SETTINGS

We configure the compression rates for each model at 12.5%, 25%, and 37.5% by setting the target
shared KV cache layers C, as subsequent results show that the models can maintain relatively good
performance within this range. For all the models, we randomly select 30 sentences from English
Wikipedia as the calibration dataset where each sentence has 64 tokens. We set T to 0.5 for all

1https://opencompass.readthedocs.io/en/latest/get_started/faq.html
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Table 1: The main results of our experiments. “Layer” represents the number of layers where the
KV cache is actually computed. We present the average values of the model across different aspects
of tasks and the average scores of all tasks as percentages relative to the full KV cache.

LLM Layer Average Percent Reasoning Language Knowledge Examination Understanding

Llama2-7B

32 46.55 100% 60.83 40.67 68.67 38.89 33.03
28 52.89 113.6% 60.73 54.41 71.86 36.18 44.73
24 45.58 97.9% 57.74 51.00 60.52 33.12 31.15
20 38.55 82.8% 53.68 38.52 53.90 26.94 25.37

Llama2-13B

40 58.13 100% 62.90 60.56 75.67 46.67 49.67
35 56.32 96.9% 61.31 57.33 74.56 46.16 47.77
30 51.97 89.4% 61.35 47.38 73.66 46.03 40.51
25 40.50 69.7% 57.46 43.75 52.39 35.39 21.97

InternLM2-7B

32 68.63 100% 62.00 71.30 76.37 64.46 69.82
28 66.57 97.0% 60.81 66.99 75.32 60.26 69.36
24 66.59 97.0% 62.19 65.37 74.66 62.70 68.71
20 65.01 94.7% 61.10 63.74 74.28 62.54 65.51

InternLM2-20B

48 70.82 100% 70.66 67.34 77.88 66.26 72.33
42 69.80 98.6% 69.02 66.84 77.39 65.94 70.75
36 68.99 97.4% 66.82 65.55 77.41 65.45 70.76
30 66.96 94.5% 66.58 59.62 77.41 65.07 68.48

Mistral-7B

32 64.13 100% 64.78 62.76 79.03 53.49 62.53
28 61.56 96.0% 64.40 57.88 77.35 50.02 60.05
24 56.67 88.4% 63.28 50.15 76.18 45.23 52.55
20 50.53 78.8% 61.40 49.72 71.50 35.50 40.02

the models 2. All experiments related to the PPL evaluation are conducted on a Wikipedia dataset
consisting of 200 sentences, where the token length of each sentence is set to 2048. We perform
experiments on a server equipped with 4 Nvidia A100 80GB GPUs.

4.4 MAIN RESULT
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Figure 4: The searching time cost by KVSharer for dif-
ferent models. The search time is typically around 60
seconds or less.

We conduct experiments on each dataset,
calculate the average score for each as-
pect, the average score across all tasks, and
the percentage of the average score for all
tasks using KVShare compression relative
to the average score with the full KV cache
in Table 1. Detailed results can be found in
Table 6 of Appendix A.1.

Llama2-7B and InternLM2-7B each
have 32 layers, while Llama2-13B and
InternLM2-20B have 40 and 48 layers,
respectively. To evaluate performance, we
apply different numbers of compressed
layers to the four models at compression
rates of 12.5%, 25%, and 37.5%. Ad-
ditionally, we include models with full
KV cache for comparison. Based on the
main results, KVSharer exhibits minimal
performance degradation compared to
the full KV cache in the vast majority of tasks. Notably, when the compression rate is 25% or
less, the performance remains close to 90%, and in some cases, even exceeds 95%. Furthermore,

2When strategy searching, the similarity of the last layer’s hidden state between the compressed model and
the original model is usually greater than 0.8. We set a threshold of 0.5 to avoid rare cases of model output
collapse. Since this situation is infrequent, we do not perform an ablation study on T .
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Figure 5: The model’s perplexity on the Wikipedia dataset at different compression rates. “+H2O”
and “+Pyr.” refer to the additional use of the H2O and PyramidInfer for intra-layer compression.

the model does not suffer significant performance drops in any specific aspect, as no individual
score approaches zero. These results demonstrate that KVSharer effectively preserves the model’s
overall and task-specific performance. To present the results in Table 1 more intuitively, we
show the average performance of each model across all tasks at different compression rates, as
illustrated in Appendix A.1 Figure 7. It can also be observed that KVSharer can maintain the
model’s performance well with a compression rate of 25% or less, and even improves the average
performance of the model at a 12.5% compression rate on Llama2-7B.

We also validate the larger Llama2-70B model using several benchmarks and PPL, discovering that
KVSharer is also effective for it, maintaining most of its performance, as detailed in Appendix A.2.

4.5 STRATEGY SEARCHING TIME

To evaluate the time consumption of KVSharer, we also test the time required for the most time-
consuming part of the algorithm, Strategy Searching, as shown in Figure 4. The results show that
searching for a sharing strategy on the models takes approximately one minute or less. This is ex-
pected, as Strategy Searching only requires the model to perform several inferences on a calibration
dataset consisting of a few to several dozen sentences, a process that can be completed within min-
utes on a GPU. Note that our sharing strategy is general rather than task-specific, allowing for only
one search per model, which significantly reduces the time required.

4.6 COMPATIBILITY WITH INTRA-LAYER COMPRESSION

Since KVSharer is a layer-wise KV cache compression method, it is inherently orthogonal to intra-
layer KV cache techniques. Therefore, we explore the effectiveness of combining it with existing
intra-layer KV cache methods. Specifically, we combine it with H2O (Zhang et al., 2024b) and
PyramidInfer (Yang et al., 2024b), which are popular intra-layer compression methods. We conduct
experiments on Llama2-7B and Llama2-13B, first using KVSharer to identify 8 layers for shared KV
cache, effectively calculating the KV cache for only 24 out of the 32 layers. Then, these two layer-
wise compression methods are further applied for additional 20% compression. The reproduction of
PyramidInfer and H2O can be found in the Appendix B. We present the changes in PPL after adding
H2O and PyramidInfer in Figure 5. At 12.5% and 25% KVSharer compression rates, both methods
cause only a slight increase in PPL. The impact of PyramidInfer on PPL is lower compared to H2O,
which is expected since PyramidInfer generally maintains better model performance.

This Figure 5 also shows the PPL of the InternLM2 and Llama2 series under different KVSharer
compression rates, where the PPL is typically below 15, or even 10, at compression rates within
25%, allowing the model to maintain good generation quality. We present some case studies of the
model’s generation results in the Appendix C Table 9.

4.7 MEMORY COST & INFERENCE SPEED

In this section, we aim to explore the memory savings and the impact on inference speed brought
by KVSharer. Specifically, we test the memory consumption, prefill time, and generation speed of
Llama2-13B-Chat under the following settings: Full KV cache, KVSharer with 25% compression,
KVSharer with 25% compression + H2O, and KVSharer with 25% compression + PyramidInfer,
across different input and maximum output lengths. We show the results in Table 2.
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Table 2: Memory usage (MB), prefill time (s) and generation speed (tokens/s) of the Llama2-13B-
Chat. “SeqLen.” represents the “input length” + “maximum output length”.

Full

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory 28461 36095 51639 58177

Prefill 0.088 0.047 0.088 0.193

Generation 11.0 18.0 18.2 18.7

KVSharer (25%)

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory 28257 (99%) 31403 (87%) 37049 (72%) 37231 (64%)

Prefill 0.087 0.046 0.087 0.191

Generation 13.9 (×1.26) 29.8 (×1.66) 30.0 (×1.65) 28.7 (×1.53)

KVSharer (25%) + H2O

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory 24852 (87%) 26195 (73%) 30891 (60%) 31591 (54%)

Prefill 0.090 0.044 0.089 0.190

Generation 14.1 (×1.28) 29.2 (×1.62) 28.3 (×1.55) 27.1 (×1.45)

KVSharer (25%) + Pyr.

SeqLen. 512+32 256+2048 512+2048 1024+4096

Memory 23195 (81%) 26059 (72%) 30141 (58%) 31417 (54%)

Prefill 0.089 0.048 0.089 0.195

Generation 14.5 (×1.31) 33.8 (×1.88) 34.1 (×1.87) 33.4 (×1.79)
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Figure 6: The model’s PPL when using KVSharer with similarity-based sharing (+Sim.) and
dissimilarity-based sharing (+Dis.). The PPL for dissimilarity-based sharing is significantly bet-
ter than for similarity-based sharing.

When the sentence length is relatively short, such as 512+32 tokens, the memory-saving effect of
KVSharer is not significant, as the current memory usage is still primarily due to the model itself. As
the length increases, the memory-reducing effect begins to show. When the length reaches 256+2048
tokens, the memory savings can reach up to 30%.

In terms of speed, although there is no acceleration during the prefill phase, there is a significant
acceleration during the generation phase as our results also show at least 1.2 times acceleration.
When the length reaches 512+2048, it can provide over 1.6 times acceleration during the generation.

After adding PyramidInfer and H2O, the memory usage is further reduced. Additionally, Pyramid-
Infer further accelerates the generation speed.

5 ABLATION STUDY

5.1 SHARING BY KV CACHE SIMILARITY OR DISSIMILARITY?

We adopt a counterintuitive sharing strategy by compressing during inference through sharing dis-
similar KV cache, rather than the intuitive approach of sharing similar KV cache. This section will
experimentally demonstrate that sharing based on KV cache dissimilarity performs better.
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Specifically, we modify Algorithm 1 by changing the descending order based on euclidean distance
to ascending order, so that KV caches are sorted from high to low similarity while keeping all other
steps unchanged. We then conduct experiments on the four models used in the main experiment.

Figure 6 compares the models’ PPL when sharing based on similarity versus dissimilarity. The
results indicate that, for each model, at the given compression rates, the PPL of the similarity-
based sharing strategy is significantly higher, often nearly twice as high or more than that of the
dissimilarity-based strategy. Therefore, the method proposed in this paper is founded on sharing
through dissimilarity.

Table 3: Model performance at a 25% compression rate using Wikipedia and BookCorpus as cali-
bration dataset. For each model, using a subset of the BookCorpus dataset as the calibration dataset
has little impact on KVSharer compared to using a subset of the Wikipedia dataset.

LLM Calibration Dataset BoolQ PIQA HeSw PPL

Llama2-7B Wikipedia 72.39 74.37 63.97 9.39

BookCorpus 72.01 74.10 64.05 9.15

Llama2-13B Wikipedia 78.20 76.71 72.40 9.11

BookCorpus 78.34 76.81 72.18 9.17

InternLM2-7B Wikipedia 80.37 79.49 73.22 9.78

BookCorpus 80.37 79.49 73.22 9.78

InternLM2-20B Wikipedia 80.61 80.96 75.84 7.05

BookCorpus 81.08 80.53 75.46 7.01

5.2 EFFECT OF DIFFERENT CALIBRATION DATASETS

To investigate the impact of different calibration datasets, we replace the Wikipedia dataset with a
randomly selected, equally sized subset of the BookCorpus dataset (Kiros et al., 2015). We set the
compression rate to 25% and rerun the experiments, keeping all other settings unchanged.

The results are shown in Table 3. The findings indicate that using the two different calibration
datasets has almost no impact on model performance, with only minimal differences in performance
across several benchmarks and PPL. For InternLM2-7B, the same sharing strategy is identified with
both datasets, further indicating that KVSharer is not sensitive to the calibration dataset. We also
conduct an ablation study on calibration dataset size in Appendix A.3, Table 8, and find that the size
has little impact.

Table 4: Model performance using KVSharer and random sharing strategies at a 25% compression
rate.

LLM Strategy BoolQ PIQA HeSw PPL

Llama2-7B KVSharer 72.39 74.37 63.97 9.39
Random 50.67 59.15 44.97 21.29

Llama2-13B KVSharer 78.20 76.71 72.40 9.11
Random 40.69 51.21 42.99 51.41

InternLM2-7B KVSharer 80.37 79.49 73.22 9.78
Random 63.33 61.73 58.13 13.58

InternLM2-20B KVSharer 80.61 80.96 75.84 7.05
Random 61.43 64.11 58.39 18.50

9
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5.3 RANDOM SHARING V.S. KVSHARER

KVSharer compresses KV cache through a highly counterintuitive strategy of sharing dissimilar KV
caches, which leads us to explore whether KV caches can be shared arbitrarily to achieve com-
pression effect. Thus, we conduct comparative experiments. Specifically, we randomly select some
layers’ KV caches to replace others, set the compression rate to 25%, keep other settings unchanged,
and evaluate the models’ performance on multiple benchmarks and their PPL. We repeat the exper-
iments three times and take the average of the results.

We present the results in Table 4. The results indicate that, compared to KVSharer’s PPL of under
10, the randomly selected sharing strategy causes a significant increase in the model’s PPL, reaching
as high as 50 for Llama2-13B.

Across different benchmarks, the randomly selected strategy also reduces the model’s performance,
typically by about 30%. This set of experiments demonstrates that a randomly selected sharing
strategy cannot maintain model performance, while KVSharer, with its search-based approach, can
find a more effective sharing strategy.

However, the results also contain some surprising findings. In the case of randomly sharing the
KV cache, the model’s performance does not drop to zero, and the PPL does not explode to over
a hundred. This suggests that there may be redundancy in the KV cache, or that the impact of the
self-attention keys and values on the subsequent hidden-state calculations is not as significant as we
initially thought. We will continue to explore this in the future.

Table 5: Comparison of performance on different benchmarks and PPL between Chat and Base
versions of the models at the same compression rate.

LLM Llama2-7B Llama2-13B InternLM2-7B InternLM2-20B

Version Base Chat Base Chat Base Chat Base Chat

Layer 32 24 32 24 40 30 40 30 32 24 32 24 48 36 48 36

BoolQ 70.67 69.27 70.67 72.39 71.50 65.63 81.56 78.20 71.28 70.40 83.21 80.37 65.44 54.04 81.71 80.61

PIQA 78.18 76.66 78.18 74.37 79.71 75.35 78.24 76.71 80.30 79.00 79.60 79.49 82.10 81.23 81.39 80.96

HeSW 71.28 69.43 71.35 63.97 74.83 67.81 75.41 72.40 73.43 72.46 73.30 73.22 75.46 74.99 76.57 75.84

PPL 5.25 11.13 6.62 9.39 4.32 7.73 5.99 9.11 7.27 10.59 6.99 9.78 5.13 7.38 5.67 7.05

5.4 EFFECT OF KVSHARER ON DIFFERENT MODEL VERSIONS

Since the models used in our main experiments are all Chat versions, we also want to explore
whether KVSharer can be effective on the Base versions of the models. We conduct comparative
experiments using the Base versions of different models, setting the compression rate at 25%, and
also comparing the results with those of the full KV cache.

We show the results in the Table 5. As shown in the result, KVSharer also works for Base models,
as it similarly maintains a minor impact on both various tasks and PPL, comparable to its effect on
the Chat model. This also demonstrates that KVSharer has strong generalizability.

6 CONCLUSION

In this paper, we introduce KVSharer, a layer-wise KV cache sharing method designed for efficient
LLM inference. By counterintuitively sharing dissimilar KV caches, KVSharer reduces memory
usage and boosts prefill speed during inference. Our experiments show that KVSharer maintains
over 90% of the original performance of mainstream LLMs while reducing KV cache computation
by 30%. It can also provide at least 1.3 times acceleration in generation. Additionally, KVSharer
can be integrated with existing intra-layer KV cache compression methods to achieve even greater
memory savings and faster inference. We also explore the effectiveness of the dissimilarity-based
sharing approach and perform ablation studies on several components of the method.
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A SUPPLEMENTARY RESULTS

A.1 MAIN RESULT
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Figure 7: The percentage of the model’s average score at different compression rates relative to the
full KV cache model.

Table 6: The main results of our experiments. “Layer” represents the number of layers where the
KV cache is actually computed.

LLM Layer
Reasoning Language Knowledge Examination Understanding

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Llama2
-7B

32 32.98 71.35 78.18 46.04 37.50 38.46 66.67 70.67 45.92 31.86 35.51 33.15 19.68 43.78

28 35.11 70.37 76.71 42.08 63.46 57.69 69.62 74.10 38.63 33.74 53.95 55.92 23.24 45.81

24 34.89 63.97 74.37 37.62 55.77 59.62 48.65 72.39 38.38 27.87 30.33 31.27 21.30 41.70

20 34.49 55.11 71.44 32.18 52.61 30.77 48.65 59.14 28.46 25.42 22.81 23.19 16.81 38.68

Llama2
-13B

40 35.06 75.41 78.24 48.02 66.35 67.31 69.78 81.56 54.64 38.71 58.46 64.07 25.84 50.30

35 34.27 72.84 76.82 46.04 63.46 62.50 68.71 80.40 53.87 38.44 58.18 64.14 20.30 48.44

30 34.93 72.40 76.71 44.06 53.85 44.23 69.12 78.20 53.88 38.19 53.60 60.45 0.71 47.29

25 34.93 64.07 73.39 33.17 58.65 39.42 39.80 64.98 40.81 29.97 25.13 25.00 0.04 37.70

Intern.
-7B

32 33.09 73.30 79.60 82.18 61.54 70.19 69.53 83.21 65.98 62.94 84.19 89.00 33.56 72.55

28 33.07 72.64 76.71 83.66 51.92 65.38 69.70 80.95 58.12 62.40 83.68 89.00 32.43 72.33

24 33.87 73.22 79.49 81.68 45.19 69.23 68.96 80.37 63.11 62.29 83.33 88.72 30.62 72.16

20 33.44 72.23 77.64 78.71 42.31 70.19 68.47 80.09 63.27 61.81 80.96 86.84 25.14 69.10

Intern.
-20B

48 54.01 76.57 81.39 86.63 50.00 65.38 74.05 81.71 66.55 65.98 86.51 90.25 33.04 79.51

42 50.14 76.17 80.74 85.15 50.00 65.38 73.59 81.19 66.17 65.70 86.48 90.39 26.63 79.51

36 43.65 75.84 80.96 84.16 56.73 55.77 74.20 80.61 65.98 64.92 86.13 90.60 26.47 79.84

30 43.98 75.89 79.87 83.66 42.31 52.88 72.73 82.08 65.32 64.82 86.11 90.67 17.48 79.67

Mistral
-7B

32 32.99 78.59 82.75 48.51 67.31 72.45 74.86 83.21 62.62 44.37 75.30 79.25 34.59 60.99

28 32.99 78.87 81.34 47.03 57.69 68.91 73.55 81.16 58.21 41.83 71.73 77.09 31.38 60.00

24 32.99 76.07 80.79 47.52 36.54 66.39 73.55 78.81 52.61 37.85 57.66 62.19 30.36 60.00

20 32.99 73.62 77.58 47.52 36.54 65.10 66.99 76.02 41.06 29.94 41.02 44.99 28.63 45.42
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A.2 EXPERIMENTS ON LARGE-SIZE LLMS

Due to limitations in computational resources, we only validate the effectiveness of KVSharer on
a subset of benchmarks and using PPL on the Llama2-70B model as shown in Table 7. We set
the compression rates to 12.5% and 25%, and find that KVSharer effectively maintains most of the
model’s performance.

Table 7: The model performance achieved by applying KVSharer with different compression rates
on Llama2-70B.

LLM Layer BoolQ PIQA HeSw PPL

Llama2-70B 80 86.45 79.61 78.49 4.25

70 84.59 76.93 77.01 5.59

60 83.73 75.11 75.57 7.01

A.3 ABLATION STUDY ON CALIBRATION DATASET SIZE

Table 8: Ablation study on calibration dataset size conducted on Llama2-7B under 25% compression
rate.

LLM Calibration Dataset Size BoolQ PIQA HeSw PPL

Llama2-7B 10 72.01 74.21 63.54 9.48

30 72.39 74.37 63.97 9.39

50 72.41 74.00 63.98 9.33

As shown in Table 8, the impact of calibration dataset size on KVSharer is also minimal, as the model
still maintains good performance under a 25% compression rate. To mitigate the potential risk of
obtaining suboptimal sharing strategies due to a smaller calibration dataset size, we recommend
using a larger size.

B DETAILS OF REPRODUCTION

For H2O 3 and PyramidInfer 4, we integrate their official code with our KVSharer. Specifically, we
sparsify the KV caches for each layer sequentially according to their methods. If a particular layer’s
KV cache needs to utilize the sparsified KV cache from a previous layer based on KVSharer, we
directly place the sparsified KV cache from that previous layer into the current layer. This process is
used during both the strategy searching phase and the inference phase of KV sharing in KVSharer.

We first tune their respective hyperparameters on the full attention model to achieve approximately
20% compression rate, and then directly apply these hyperparameters to their combination with
KVSharer.

C CASE STUDY

3https://github.com/FMInference/H2O
4https://github.com/mutonix/pyramidinfer

15

https://github.com/FMInference/H2O
https://github.com/mutonix/pyramidinfer


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Under a 25% KVSharer compression rate, different models respond based on the prompts.
The results show that the model’s responses remain fluent and meaningful.

Prompt

Hello, please give a brief introduction to the Earth.

Llama2-7B

The planet Earth is the third planet from the sun in our solar system
and the only known inhabited world. With a mass of approximately 5.97
x 1worlds, Earth has a radius of about 6,311 kilometers at the equator
and an average surface temperature of around 15 degrees CelsiVCentered
on the axis of rotation, Earth rotates on its axis every 24 hours,
which means it takes approximately 24 hours for the planet to rotate
once on its axis. The planet orbits the sun at an average distance of
about 149.6 million kilometers every 365 days.

Llama2-13B

The Earth is the third planet from the Sun and the fifth largest of
the eight planets in our solar system. It is a terrestrial planet,
meaning it is made up of rock and metal, and has a solid surface that
is suitable for life. The Earth is approximately 93 million miles
(150 million kilometers) away from the Sun and takes 365.25 days to
complete one orbit around the star. The planet is composed of three
main layers: the crust, the mantle, and the core. The crust is the
outermost layer and is made up of a variety of minerals such as granite
and basalt. The mantle is the largest layer and is made up of hot,
viscous rock that can flow over long periods of time. The core is
divided into two layers: the inner core is solid and made up of iron
and nickel, while the outer core is molten and also made up of iron and
nickel.

InternLM2-7B

The earth is an oblate spheroidal planet in our solar system and third
from out of five known as "terrestrial" (rocky) planets. It’s not
quite round; it ’wobbles’ slightly on its axis which we call precession
or wobble for short!

The two main features that you can see with your own eyes are: - A
day/night cycle this means one side will be lighted at all times when
they’re facing their star while other parts have no direct sunlight but
do get some indirect illumination through scattering by gasses & dust.
This also has implications about what timezones people use around here!

InternLM2-20B

The earth is our home and it’s where we live on this planet that has
been around for about four billion years or so according to scientists
who study these things called geologists (people with degrees from
universities). It’s made up of land masses known as continents which
are separated by large bodies of water such as oceans like Pacific
Ocean; there are also smaller seas including the Mediterranean Sea.

There have always existed life forms living here but they were not
human beings until millions upon millions year ago when early humans
first appeared out into open air after evolving over time through
a natural selection process involving genetic mutations occurring
randomly throughout history leading them towards becoming more advanced
than their earlier ancestors had ever dreamed possible!
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