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Abstract

Transformers have achieved great success in
effectively processing sequential data such as
text. Their architecture consisting of several
attention and feedforward blocks can model re-
lations between elements of a sequence in par-
allel manner, which makes them very efficient
to train and effective in sequence modeling.
Even though they have shown strong perfor-
mance in processing sequential data, the size
of their parameters is considerably larger when
compared to other architectures such as RNN
and CNN based models. Therefore, several
approaches have explored parameter sharing
and recurrence in Transformer models to ad-
dress their computational demands. However,
such methods struggle to maintain high perfor-
mance compared to the original Transformer
model. To address this challenge, we propose
our novel approach, RingFormer, which em-
ploys one Transformer layer that processes in-
put repeatedly in a circular, ring-like manner,
while utilizing low-rank matrices to generate
input-dependent level signals. This allows us
to reduce the model parameters substantially
while maintaining high performance in a va-
riety of tasks such as translation and image
classification, as validated in the experiments.

1 Introduction

Transformer models, since their introduction
(Vaswani et al., 2017), have dramatically trans-
formed the landscape of deep learning, particu-
larly excelling in tasks involving sequential data
such as natural language processing (Brown et al.,
2020; Radford et al., 2019) and machine translation
(Ott et al., 2018). Not long after their inception,
they have also shown strong performance in vari-
ous other domains such as reinforcement learning
(Chen et al., 2021), image classification (Dehghani
et al., 2023; Dosovitskiy et al., 2020; Liu et al.,
2021), object detection (Carion et al., 2020) and
image generation (Jiang et al., 2021; Peebles and

Xie, 2022; Zhang et al., 2022). Their core architec-
ture, characterized by self-attention mechanisms
and feedforward neural networks, enables effective
handling of long-range dependencies and parallel
processing of input sequences. The ability of this
architecture to model intricate relationships within
data has led to significant breakthroughs, making
it a foundation model across many modern large-
scale Al systems (Anthropic, 2023; Google, 2024;
OpenAl et al., 2024; Touvron et al., 2023).

However, the impressive capabilities of trans-
former models come with substantial computa-
tional and memory costs (Brown et al., 2020; Doso-
vitskiy et al., 2020). The standard Transformer ar-
chitecture consists of multiple layers, each contain-
ing millions of parameters that need to be trained
and stored. This results in high memory usage and
significant computational demands, often requiring
specialized hardware. Moreover, deploying these
models in resource-constrained environments, such
as mobile devices or edge computing scenarios, be-
comes challenging due to their size and complexity.
These limitations have spurred a growing interest in
developing more parameter-efficient Transformer
architectures (Dehghani et al., 2019; Pires et al.,
2023) that can retain their powerful performance
while being less resource intensive.

In this paper, we introduce a Transformer archi-
tecture that recurrently leverages a single shared
Transformer block in a novel way by integrating
input-dependent level signals at each block itera-
tion, which are shown to be crucial for adapting
the shared block to different stages of the model.
The level signals are generated by depth-specific
low-rank transformations applied to the input in the
attention and feedforward layers within the Trans-
former block. Our RingFormer model can also be
viewed as stacking Transformer layers whose pa-
rameters combine (1) a set of global parameters
shared across all Transformer layers and (2) a set
of local low-rank layer-dependent parameters. This



simple design effectively addresses the trade-off
between reducing the number of model parame-
ters and limiting the model’s capacity to capture
complex patterns.

We validate our model through experiments and
analysis on machine translation and image classi-
fication. The results of experiments and analysis
demonstrate that our model closely replicates the
behavior of the original Transformer model, and it
performs better against existing parameter-matched
recurrence-based Transformer models, underscor-
ing the effectiveness of our approach in maintaining
high performance with fewer parameters.

The contributions of this paper are summarized
as follows:

* We enhance a recurrent Transformer architec-
ture to significantly reduce the model’s pa-
rameter count while maintaining high perfor-
mance.

* We propose novel input-dependent level sig-
nals generated in a parameter-efficient way
using low-rank matrices to improve the adapt-
ability of a recurrent Transformer model, and
show that those signals help the model repli-
cate the behavior of the original model.

* We demonstrate the validity of our approach
through careful analysis and ablation studies,
and show the effectiveness of our model on
tasks such as translation and image classifica-
tion.

2 Background

2.1 Transformer Architecture

The Transformer architecture (Vaswani et al., 2017)
comprises multiple layers of the same structure
stacked together, with each layer consisting of two
main modules: Attention and Feedforward Network
described in Equations (1) and (2), respectively.
Each of these modules is accompanied by residual
connections and layer normalization. In addition,
to provide information about the position of to-
kens in the sequence, the Transformer model adds
static sinusoidal or learnable positional encodings
to the input embeddings. These encodings allow
the model to capture the order within a sequence.
The following equations describe the mechanism
of two main modules:
T

Attention(Q, K,V) = Softmax(Qj%)V (1)

FFN(:E) = O'(.TWup + bup)WdOwn + bdown (2)

Here, ), K, and V" are the results of projecting the
input vectors through their respective matrices. At-
tention module can be classified into self-attention
(when the @), K, and V input vectors are the same)
and cross-attention (when the @) input vector is
different from the K and V input vectors), while
the feedforward block consists of up-projection and
down-projection transformations with non-linearity
function o between them.

It is well known that Transformer architecture
follows a scaling law for both vision tasks and
NLP tasks (Dehghani et al., 2023; Hoffmann et al.,
2022). This scaling law demonstrates that the per-
formance of Transformer models improves pre-
dictably as the model size and computational re-
sources increase. Due to the steep slope of the scal-
ing law, the parameter sizes of Transformer models
have continued to grow, leading to significant ad-
vancements in their capabilities. However, this
growth has also made training and using such mas-
sive models increasingly infeasible without sub-
stantial GPU resources.

2.2 Related Work

To address the challenge of requiring extensive
hardware resources for large Transformer models,
researchers have explored various methods to en-
hance efficiency.

One approach is related to pruning of Trans-
former model layers, which involves removing less
important layers or weights to streamline the model.
It was found that many deep layers in large lan-
guage models are redundant (Gromov et al., 2024),
and by pruning up to half of these layers, it was
possible to significantly reduce the model size with
minimal accuracy degradation.

Another strategy is sharing parameters across
different layers or components in Transformers, re-
ducing the model’s complexity and memory usage.
The Universal Transformers (Dehghani et al., 2019)
introduces a model where parameters are shared
across layers using a recurrent mechanism with
layer-dependent positional encoding, which main-
tains good performance in various NLP tasks while
reducing the number of parameters. People have
also proposed sequence and cycle strategies for
sharing parameters across layers (Takase and Kiy-
ono, 2021), improving efficiency and performance



in tasks like machine translation and speech recog-
nition. Similarly, Subformer (Reid et al., 2021) and
One Wide Feedforward (Pires et al., 2023) inves-
tigate partial weight sharing within layers, show-
ing that significant parameter reductions can be
achieved with little accuracy sacrifice. These mod-
els demonstrate that shared parameters can lead to
efficient and effective Transformer architectures.

To investigate recurrence-based models, we per-
formed a layer representation similarity analysis
using the common CKA (centered kernel align-
ment) (Kornblith et al., 2019) method and mean
attention distance (MAD) (Dosovitskiy et al., 2020)
analysis, and we found that the layer representa-
tions and internal attention behavior of the previ-
ously proposed fully recurrence-based Transformer
model (Dehghani et al., 2019) are considerably
different compared to those of the original Trans-
former model.

We hypothesized that the difference in model
behavior, especially in attention module, might be
the main cause for the gap in performance, and if
we can simulate the behavior of the original model
using a recurrent model with adaptive level signals,
we can also maintain higher performance. Our
proposed methodology is focused on addressing
this difference, narrowing the gap of the model
behavior, and in turn the model performance.

3 Method

3.1 Overview

In this section, we provide a detailed explanation
of our proposed work, covering the specific details
about the structure of our model, which is illus-
trated in Figure 1.

The encoder or decoder Transformer-based mod-
els consist of several layers with the same structure,
where each layer is a combination of sub-layers
such as attention and feedforward layers. Those
models can be formulated in the following way:

F(z) = fn(fn-1(.-fa(f1(2))))
= f(f(..f(f(z,p1),p2)),PN-1), PN)

3

where N, F, f, x and p; denote the number of
layers, entire encoder (or decoder), each encoder
(or decoder) block, input and parameters of each 7"
layer, respectively. The general formulation of the
recurrent Transformer model with level transition
functions can be written as below:

F(z) = fn(fv-1(.-f1(2)))
fi(x) = fr(z, gi(x))

where f,. denotes the recurrent Transformer block
and g;(x) represents a generic level transition func-
tion specific for each level. In Universal Trans-
formers (Dehghani et al., 2019), it was shown
that using static spatio-temporal positional embed-
dings can serve as level transition functions for
the recurrent Transformer layer and have good
model performance. Specifically, in that work,
level transition function g;(x) can be represented
as g;(z) = x+1(i, zp), where [ is a function that re-
turns a positional embedding vector based on level
depth 7 and the position z,, of the vector x, while
the #*" Transformer block function f;(z) can be
represented as f;(x) = fr(gi(x)).

Below, we describe our way of constructing and
integrating level transition function g;(x) to gener-
ate adaptive level signals.

“

3.2 Adaptive Level Signals

To have effective transition between the levels
when using recurrent Transformer block, we make
gi(x) directly dependent on the input in the fol-
lowing way: g;(x) = M; - x, where M is a learn-
able transformation matrix. Since the main role of
level signals is to nudge the input vectors in the
right direction, which is an easier task compared
to the main input transformation done by the re-
current layer, we hypothesize that making the M
matrix low-rank while keeping the recurrent layers
at full-rank will let us have parameter-efficiency
and high performance at the same time. We draw
inspiration for such a low-rank matrix construc-
tion and its weight initialization from the parame-
ter efficient fine-tuning (PEFT) technique, LoRA
(Hu et al., 2021), and decompose M; into two low-
dimensional matrices, A; and B; described in Equa-
tion 5.

M;=A;-BY, A4, B; e R andr < d  (5)

We initialize the A matrices, down-projection pa-
rameter matrices, in level signals with zeros, which
results in those signals gradually contributing for
level adaptation and having stable training. We
found that using non-zero (random) initializations
could lead to less stable training dynamics, likely
due to premature influence of level signals before
meaningful representations are formed.
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Figure 1: Overview of (a) vanilla Transformer (Vaswani et al., 2017), (b) recurrent Transformer (Dehghani et al.,
2019) and (d) our RingFormer architecture. The Transformer block represents either encoder or decoder. In the
RingFormer model, a single Transformer block is itself iterated N times, with each sub-modules having unique layer
normalization and level signals. Each iteration of the shared block includes both attention and feedforward sub-layers
(along with residual connection and normalization), similar to a standard Transformer layer. (c) illustration of the
low-rank matrices representing the level functions, where M ,,,, down-projects the input to a lower dimensional

space and M, up-projects back to the original space.

Since a Transformer layer consists of an atten-
tion block and a feedforward block, we generate
two distinct signals g4;(z) and gp;(z): one for the
attention block and the other for the feedforward
block, respectively. Additionally, since the Trans-
former block also has layer normalization applied
between the sub-layers, for each level, we allo-
cate unique layer normalization in the attention and
feedforward layers. This provides extra input adap-
tation while only slightly increasing the number of
total parameters in the model.

3.2.1 Attention Block

For the attention mechanism, which calculates rele-
vance between elements of a sequence using three
projection matrices (query, key, and value), we gen-
erate level signals for each of those projections
using separate low-rank matrices. We integrate
signals after the projection of the input vector x
by Wg, Wk and Wy matrices (shared across the
levels) in the following way:

Qi = WQ . x"_gAQi(a;)v
Ki =Wk -2+ gag,(z), (6)

Vvi — WV - +gAVi(:L‘)7
where gAQi(x) = MQi “ Ty Ak, (:B) = Mkg; - x,
gay,(x) = My; - z. By incorporating the level
functions separately for Q, K, and V, we enable

fine-grained control over depth-dependent modifi-
cations to each component of the attention mecha-
nism. Also, adding the level signals in this manner
avoids direct input changes to the main recurrent
projections, which was found to be beneficial in
our experiments. This can be because such a direct
input change can interfere with the learning pro-
cess of the recurrent layers in the attention module,
which needs to solely focus on modeling effective
communication between tokens.

3.2.2 Feedforward Block

For feedforward block, the projection of input to
intermediate vector of this module requires rela-
tively large number of parameters. Furthermore,
there have been various explorations regarding the
role of feedforward network in Transformers. One
such study (Geva et al., 2021) argues that the feed-
forward network can be interpreted as a key-value
memory pair, where the matrix of the first linear
layer is involved in the coefficients of input factors,
and the matrix of the second linear layer relates to
information about the training corpus. Considering
parameter-efficiency and the previous finding, in
our approach, for the feedforward network, we add
signals before projecting the input using the up-
projection layer to guide the coefficient formation
of the input in the following way:

FEN(z) = o((x + gri(2)) Wup) Waown  (7)



where gpi(z) = Mp; - x, the function o is a non-
linear function such as GELU (Hendrycks and Gim-
pel, 2023), and the bias terms were omitted for
brevity.

In encoder-decoder models, we reuse a single
Transformer block with attention and feedforward
layers in the encoder, while the decoder shares a
separate block with cross-attention. We omit level
signals in the decoder’s cross-attention, as they
showed no benefit during development, likely be-
cause the cross-attention takes on the output of the
already level-adapted attention module as queries,
while keys and values come from the encoder’s
final level. Hence, we prioritized simplicity and
avoided redundant overhead in cross-attention.

4 Experiments

We evaluate RingFormer and baseline models on
two tasks: WMT-14 German-English translation
(Bojar et al., 2014) and ImageNet-based classifi-
cation (Deng et al., 2009). These benchmarks are
widely used, large enough for reliable performance,
and feasible given our computational constraints.

As RingFormer uses recursive parameter shar-
ing, we compare it to models with similar strategies.
Due to limited research in this area, we selected
two representative methods: Universal Transformer
(Dehghani et al., 2019) (fully recurrent) and One
Wide Feedforward (Pires et al., 2023) (partially
reccurent, with shared feedforward layer). These
models capture the main variants of parameter shar-
ing and offer meaningful comparisons to Ring-
Former and the standard Transformer (Vaswani
et al., 2017).

4.1 Experimental Details

In this section, we describe each downstream task
in detail to support reproducibility. For all models,
the rank of the level signal decomposition is set to
the input hidden dimension divided by 16. Ablation
results for different ranks are shown in Table 4.

Translation As the Transformer was originally
proposed for translation (Vaswani et al., 2017), we
evaluate our model on WMT-14 German-English
(Bojar et al., 2014), which has 4.5M sentence pairs.
We report BLEU scores (Papineni et al., 2002) on
the test set using a bilingual tokenizer with a 52K
BiBERT vocabulary (Xu et al., 2021). Two model
sizes are evaluated (see Table 1), trained for 830K
steps with a batch size of 512 and 6 layers on two
A100 80GB GPUs. We use Adam (Kingma and Ba,

2017) with a cosine scheduler and 40K warm-up
steps, and GELU (Hendrycks and Gimpel, 2023)
as the activation function.

Table 1 shows model hyperparameters and re-
sults. Parameter counts exclude encoder, decoder,
and vocabulary head components, as they are fixed
per model size. For base models, encoder/decoder
embeddings have 26.62M parameters, and the vo-
cabulary head has 26.67M. For large models, these
are 53.24M and 53.30M, respectively.

Image Classification As the ViT (Dosovitskiy
et al., 2020) model became very prevalent in the
vision domain, especially in image classification,
we decided to test our model and other baseline
models on this task. All models use encoder-only
architectures that take image patches with a class
token and predict using the final hidden state of
that token. We follow the original ViT setup, use
sinusoidal spatio-temporal embeddings in Univer-
sal Transformer (Dehghani et al., 2019), and share
only the feedforward layer in One Wide Feedfor-
ward (Pires et al., 2023), keeping attention layers
distinct.

We first train smaller models on a subset of the
original ImageNet-1K dataset (Deng et al., 2009)
for 100 epochs. We randomly chose 100 classes
with the total number of 100K training samples (1K
per each class) from the original training set, and
5K testing samples (50 per each class) from the
original validation set. For easy referencing, we
call that subset ImageNet-small. As the size of the
dataset is relatively small, we decided to train mod-
els having only 6 layers / iterations (in the case of
recurrent models, we say iterations or levels instead
of layers). For bigger size models with 12 layers /
iterations, we trained on the whole ImageNet-1K
for 50 epochs due to limited resources.

The additional training and ImageNet-small
dataset details are given in Appendix A.1 and A.3.
The model hyperparameters, parameter size and ex-
periment results on ImageNet-small and ImageNet-
1K are given in Table 2 and 3.

4.2 Experimental Results

Translation The details of experimental results
on translation are presented in Table 1. Our Ring-
Former model achieves competitive performance
with Vanilla Transformer model (Vaswani et al.,
2017) and One Wide FFN model (Pires et al., 2023)
with less number of parameters for base and large
size models. RingFormer outperforms Universal
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Figure 2: Representation Similarity Analysis using CKA (centered kernel alignment) (Kornblith et al., 2019) for the
base-size models trained on the translation task. The figures on the upper row are for the encoder part. The figures
on the lower row means are for the decoder part. All models have 6 number of layers / iterations. The values on the

figures are between 0 and 1, where higher values indicate more similarity of layers between models.

model | H/FF P* | BLEU %
Vanilla Transformer | 512/2048  44.05M 30.46
One Wide FFN 512/2048  20.98M 29.54
Universal 512/2048  7.34M 29.12
RingFormer 512/2048 8.94M 29.52
Vanilla Transformer | 1024 / 4096 176.18M 30.96
One Wide FFN 1024 /4096 83.91M 29.88
Universal 1024 /4096 29.37M 29.47
RingFormer 1024 /4096 35.71M 29.96

Table 1: Translation results on WMT-14 De-En (Bojar
et al., 2014). We evaluated models based on test dataset
BLEU score (Papineni et al., 2002), which is rounded
to the second decimal place. Bolded score indicates
the highest performance, underlined score indicates the
second highest performance. The H, F'F', and P* rep-
resent the hidden input dimension, feedforward block
dimension, parameter size (except parameters of embed-
ding layer in encoder, decoder and vocabulary head),
respectively.

model (Dehghani et al., 2019), while having sim-
ilar parameter size. These results also imply that
our design choice for level-signals is more effective
than adding input-independent sinusoidal vectors.

Image Classification The experimental results
for image classification are shown in Table 2 and 3.

Using ImageNet-small, we conducted experi-
ments on the ViT (Dosovitskiy et al., 2020) model,
downscaled One Wide FEN (OWF?) (Pires et al.,
2023), UiT (Dehghani et al., 2019) and our Ring-
Former model. The results, presented in the up-

model | H/FF P | Acct
ViT 512/2048 19.36M | 63.66%

UiT 512/2048 3.60M | 58.64%
OWF? 376/1024  4.51M | 58.62%
RingFormer | 512/2048 4.4M 60.66%
ViT¢ 328/1536  8.94M | 62.22%
UiT? 848 /3072 8.84M | 59.38%
OWF 512/2048 8.86M | 61.50%
RingFormer® | 728/3072 8.82M | 62.58%

Table 2: Image classification results on ImageNet-
small (the subset of ImageNet-1K (Deng et al.,
2009)). Bolded score indicates the highest performance,
underlined score indicates the second highest perfor-
mance. The superscripts "d" and "s" represent that the
models are downscaled and upscaled, respectively. The
H, FF, and P represent the hidden input dimension,
feedforward block dimension, and total parameter size,
respectively. The values for P and Acc were rounded
to the second decimal place.

per half of Table 2, indicate that the ViT model
achieves the highest accuracy, which is expected
as it has more than four times the number of pa-
rameters compared to the other models. However,
our RingFormer model has the second best per-
formance, outperforming the other models of the
same size. In the below half of Table 2, where
we scale all the models to the size of One Wide
FFN model, our model shows the best performance,
which shows the effectiveness of our approach.

We observed similar tendency when we trained



model | H/FF P | Acct
ViT 768 /3072  86.42M | 65.65%
OWF 768 /3072  34.45M | 64.31%
UiT 768 /3072 8.45M | 61.63%
RingFormer 768 /3072  12.02M | 63.68%
UiT? 156076240 31.99M | 63.30%
RingFormer® | 1284/5120 31.95M | 65.91%

Table 3: Image classification results on ImageNet-1K
(Deng et al., 2009)). Bolded score indicates the high-
est performance, underlined score indicates the second
highest performance. The superscript "s" represent that
the models are upscaled. The H, F'F, and P represent
the hidden input dimension, feedforward block dimen-
sion, total parameter size, respectively. The values for
P and Acc were rounded to the second decimal place.

bigger size models on the ImageNet-1K dataset,
for which the results are shown in Table 3. When
comparing the models with the same input hidden
dimension and feedforward block dimension, ViT
model showed the best result, but when we up-
scaled our RingFormer model (RingFormer®) to
match the size of OWF model, it outperformed the
two baseline models (OWF and UiT?), and also
showed slightly higher performance compared to
the ViT model.

FLOP Comparison We calculated forward
GFLOPs for ViT, OWF, UiT, and RingFormer
(all with the same H/FF as in Table 3) using
224x224 RGB images with 16x16 patches. ViT,
UiT, and OWF have similar costs (17.64 GFLOPs),
while RingFormer requires slightly more at 19.03
GFLOPs due to its depth- and input-dependent
level signals. However, since these signals are
low-rank, their impact on latency is minimal and
becomes negligible as model size increases, with
recurrent layers dominating computation.

Representation Similarity Analysis To analyze
representations across layers / iterations between
the original Transformer model and other models,
we utilized CKA (Kornblith et al., 2019) method as
shown in Figure 2. We performed this analysis on
base size models, for which we used 3K test source-
target pair of sentences from WMT-14 De-En (Bo-
jar et al., 2014). The similarity scores on the diag-
onal axis in the sub-figures indicate how close the
layers (sharing the same index) are between mod-
els. We found that RingFormer closely matches the
Vanilla Transformer (Vaswani et al., 2017) along
with One Wide FFN (Pires et al., 2023), while Uni-
versal Transformer (Dehghani et al., 2019) shows

lower similarity. We also report the analysis results
for large models in Appendix A.2.

Mean Attention Distance Analysis To study the
qualities of attention heads in the vision models,
we perform MAD analysis, which is conducted in
the original ViT paper (Dosovitskiy et al., 2020).
We first do the analysis on the smaller models
trained on ImageNet-small (ViT, UiT?, OWEF, and
RingFormer® shown in Table 2), and also on the
larger size models trained on ImageNet-1K (ViT,
OWEF, UiT? and RingFormer?® in Table 3). We com-
puted mean attention distances of 500 images ran-
domly taken from the ImageNet-small validation
set and took their average. The MAD analysis plots
for each model above are shown in Figure 3.

We observe that, in the ViT, attention heads show
varying attention distances, indicating use of both
local and global image information. Deeper lay-
ers shift toward more global focus—a pattern also
seen in One Wide FFN, as its attention layers are
non-recurrent. RingFormer shows similar behavior
to ViT, supporting our hypothesis that level signals
effectively guide recurrent models across iterations.
In contrast, Universal Transformer’s signals fail to
replicate this behavior, resulting in attention pat-
terns that differ notably from the ViT model.

4.3 Ablation Study

We perform an ablation study on the translation
task to assess our method’s effectiveness. Training
follows the main setup but uses reduced hidden
and feedforward dimensions. Model settings and
results are shown in Table 4.

First, we train a recurrent Transformer using
static level signals introduced in Universal Trans-
formers (Dehghani et al., 2019), which has the
lowest performance. When we drop either atten-
tion level signals or FFN level signals, “w.o. attn”
and “w.o. FF” in Table 4, the performance degrada-
tion occurs compared with other variations where
those signals are present. Also, we do the following
two ablations: 1) we add level signals “before attn”
projection while keeping our original design for
FF level signals, 2) we add level signals, “inter-FF
signal”, after intermediate feedforward projection
like FFN (x) = 0(xWyp + gri(2)) Waown, while
keeping our original design for attention level sig-
nals. The performances of those two experiments
are almost the same but lower than our design
choice, where additions occur 1) after attention pro-
jection and ii) before the up-projection layer of the
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Figure 3: MAD (mean attention distance) analysis for the models trained on image classification task: ViT,
RingFormer, OWF - One Wide FFN, UiT - Universal Transformer. The smaller models shown on the upper row
have 8 attention heads, and larger models shown on the lower row have 12 attention heads. The points on the plots
represent the mean attention distance of an attention head belonging to a particular Transformer layer.

FF block. When we use a smaller rank, H / 32,
compared to our default rank, H / 16, the perfor-
mance decreases, but when we increase the rank or
make the matrix full-rank to generate level signals,
as expected, the models show better performance.

Notably, our RingFormer model with a default H
/ 16 rank signals uses less than half the parameters
of the full-rank version and achieves comparable
performance. While the absolute gap in parameter
count between full-rank and low-rank signals is
modest for the small hidden dimension in Table 4,
it becomes considerably bigger when scaling up
the input hidden dimension. Thus, we assume that
a good trade-off between performance and total
model size can be achieved by using low-rank de-
composition. Additionally, we can see that even
with twice less core model parameter size, the per-
formance of the full-rank RingFormer model was
very close to that of the vanilla Transformer. There-
fore, we expect that the capacity of our RingFormer
model can be easily scaled with higher ranks while
maintaining efficiency and showing similar perfor-
mance relative to the original Transformer.

5 Conclusion

In this paper, we introduce RingFormer, a
parameter-efficient recurrent Transformer architec-
ture that employs a single Transformer layer recur-
rently while integrating input-dependent signal vec-

model H/F P* | BLEU t
static signal 128 /512 0.46M 23.35
w.0. attn signal 128 /512 0.49M 24.23
w.o. FF signal 128 /512 0.57M 24.37
before attn 128/512 0.56M 24.56
inter-FF signal 128 /512  0.54M 24.58
H /32 rank signal 128/512  0.51M 24.21
H /16 rank signal 128/512  0.56M 24.92
H / 8 rank signal 128/512  0.66M 24.96
full-rank signal 128/512 1.25M 25.37
Vanilla Transformer | 128 /512 275M | 2548

Table 4: Ablation experiment results of translation task
in WMT-14 (Bojar et al., 2014) German-English pairs
with various model-designs. Each model is evaluated by
BLEU (Papineni et al., 2002) score on the test set. The
H, FF, and P* represent the hidden input dimension,
feedforward block dimension, parameter size (except
parameters of embedding layer in encoder, decoder and
vocabulary head), respectively.

tors created using low-rank matrices for each level.
This approach significantly reduces the number of
parameters while maintaining high performance in
tasks such as machine translation and image classi-
fication. We hope that our research on enhancing
recurrent Transformer with adaptive level signals
can enable smaller organizations and research insti-
tutions to train powerful models without the need
for extensive computational resources, thus democ-
ratizing access to advanced Al capabilities.



6 Limitations

Our approach introduces additional computations
compared to the original Transformer due to the
integration of depth-specific and input-dependent
signals. However, the bulk of the compute cost will
be in the recurrent attention and feedforward pro-
jections, and generating low-rank signals remains
efficient since the level-signal rank is much smaller
than the input hidden dimension. We also note
that parameter reduction can reduce memory band-
width overhead, which is often a key bottleneck in
large-scale training or edge deployments, making
RingFormer efficient in many practical scenarios
while maintaining comparable performance with
the original Transformer.

Due to computational constraints, we were not
able to conduct experiments on large-scale lan-
guage modeling tasks, which require significantly
more data and training resources. While our de-
sign choices and positive results across different
model scales in two domains, machine translation
and image classification, with supporting extensive
analysis, suggest that RingFormer should retain its
advantages at larger scales, future work can focus
on further validating its performance on billion-
parameter models and explore its effectiveness in
domains such as language modeling.
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A Appendix

A.1 Implementation Details

Translation Models are trained based on the two
size variations, base size and large size. The base
size models are trained based on the following
model configuration settings: 6 Transformer layers,
8 attention heads, 512 hidden dimension size, 2048
feedforward dimension with maximum sequence
length 50. For training, their maximum learning
rate is 7e-4 with 17K step cosine warm-up sched-
uler and total 210K training steps on two A100
80GB GPUs. The large size models are trained
based on the following model configuration set-
tings: 6 Transformer layers, 16 attention heads,
1024 hidden dimension size, 4096 feedforward di-
mension with maximum sequence length 50. For
training, their maximum learning rate is 2e-4 with
17K step cosine warm-up scheduler and total 210K
training steps on two A100 80GB GPUs.

Image Classification For the models trained
on ImageNet-small dataset, we used 224x224
image resolution, 16x16 patch size, 6 Transformer
layers, 8 attention heads, learning rate of le 3,
cosine learning rate scheduler with 2K warm-up
steps, batch size of 1024, and training for 9775
steps (100 epochs) with one RTX 3090 GPU. For
the models trained on ImageNet-1K dataset, we
used the same image resolution and patch size
as mentioned above, 12 Transformer layers, 12
attention heads, learning rate of 5e~*, cosine
learning rate scheduler with 3128 warm-up
steps (5 epochs), batch size of 4096, 16 gradient
accumulation steps, and training for around 15650
steps (50 epochs) on two RTX 3090 GPUs.

For all models, we used dropout rate of 0.1, gra-
dient clipping of 1.0 during training and GELU
(Hendrycks and Gimpel, 2023) activation function.
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Figure 4: Representation Similarity Analysis using CKA (centered kernel alignment) (Kornblith et al., 2019) for the
large-size models trained on the translation task: Transformer, Ring - RingFormer, OWF - One Wide FFN, Uni -
Universal Transformer. The figures on the upper row are for the encoder part. The figures on the lower row means
are for the decoder part. All models have 6 number of layers / iterations. The values on the figures are between 0
and 1, where higher values indicate more similarity of layers between models.

A.2 Additional Analysis

In Figure 4, we share the representation similar-
ity analysis for big size models in the Translation
task. This analysis also has been conducted under
the same conditions as in the base size case. Sim-
ilar with the results in Figure 2, One Wide FFN
(Pires et al., 2023) and our RingFormer model have
higher layer-wise representations with the Vanilla
Transformer (Vaswani et al., 2017) compared to
Universal Transformer (Dehghani et al., 2019).

A.3 ImageNet-small Dataset

We sampled a subset of ImageNet-1K (Deng et al.,
2009) that contains randomly selected 100 classes,
with 100,000 images for training and 5000 images
for testing, in order to perform experiments on
smaller size models. In the supplimentary code.zip
file, we will share the names of all the sampled
images for training and testing as a json file.
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