
BoolNet: Towards Energy-Efficient Binary Neural Networks Design and
Optimization

Anonymous submission

Abstract

Binary Neural Networks (BNNs) have been advancing towards
bridging the accuracy gap with their 32-bit counterparts, often
by integrating additional 32-bit components. However, such
designs, including the use of 32-bit values for feature maps and
residual shortcuts, pose challenges for hardware accelerators
with constraints on memory, energy, and computing resources.
Addressing the critical question of balancing accuracy with
energy consumption in BNNs, we introduce BoolNet, a novel
BNN architecture minimizing the use of 32-bit components.
BoolNet employs 1-bit values for storing feature maps, achiev-
ing a significant balance between efficiency and performance.
Our experiments on the ImageNet dataset show that BoolNet
attains 63.0% Top-1 accuracy, along with a 2.95-fold reduc-
tion in energy consumption compared to recent state-of-the-art
BNNs. The code and trained models will be made available at:
(URL in final version).

Introduction
The rise of Deep Neural Networks (DNNs) marks a signif-
icant milestone in AI advancements. Yet, their demand for
high-performance computing resources, such as GPUs and
TPUs, leads to substantial energy consumption and CO2

emissions. For instance, training OpenAI’s GPT-3 (Brown
et al. 2020) emits as much CO2 as the lifetime emissions of
43 cars. Their computational requirements also limit their
deployment in resource-constrained environments like mo-
bile phones and IoT devices. Efforts to mitigate these chal-
lenges include network pruning (Han, Mao, and Dally 2015),
knowledge distillation (Crowley, Gray, and Storkey 2018),
compact networks (Howard et al. 2017), and low-bit quanti-
zation (Courbariaux, Bengio, and David 2015). Among these,
Binary Neural Networks (BNNs) (Courbariaux et al. 2016)
represent an extreme case of low-bit quantization, using only
1 bit for weights and activations.

Despite their potential for memory compression and CPU
speedup, as shown in (Rastegari et al. 2016), BNNs histori-
cally suffer from accuracy deficits compared to 32-bit models.
To address this, recent research has focused on architectural
innovations (Liu et al. 2018; Bethge et al. 2020), training
methodologies (Martinez et al. 2020), and leveraging neu-
ral architecture search (Bulat, Martinez, and Tzimiropoulos
2020). However, current efficiency analyses in BNN literature
primarily consider theoretical instruction counts, overlooking

practical aspects like memory usage, hardware efficiency, and
energy consumption. Moreover, the frequent use of 32-bit
components in BNNs for accuracy improvements results in
hardware inefficiencies and increased power usage, as noted
by Fromm et al. (2020).

This paper thoroughly explores the balance between accu-
racy and hardware efficiency in BNNs. We propose a novel
architecture, BoolNet, which significantly reduces the re-
liance on 32-bit components (see Figure 1b). BoolNet ex-
clusively utilizes binary feature maps and fuses BN layers
into the Sign function during inference, thereby reducing the
computational load. Additional modifications include elim-
inating components that require 32-bit operations, such as
PReLU, average pooling, and binary downsampling convo-
lutions. Our novel Multi-slice strategy helps mitigate repre-
sentational capacity loss from these changes. Experimental
results on ImageNet showcase BoolNet’s superior energy effi-
ciency and reasonable accuracy compared to existing BNNs,
as summarized in Figure 1c and detailed in Section .

Our contributions are summarized as follows:
• Analyzing the impact of 32-bit layers in BNNs.
• Introducing BoolNet, a BNN architecture with minimal

32-bit components for enhanced efficiency.
• Proposing a Multi-slice strategy to offset accuracy loss

from binary feature maps.
• Demonstrating a favorable balance between accuracy and

energy consumption, with BoolNet outperforming exist-
ing BNNs in power efficiency and maintaining competi-
tive accuracy.

Related Work
The domain of Efficient Deep Learning has garnered con-
siderable interest in recent years, with researchers exploring
compact network designs (Howard et al. 2017; Zhang et al.
2018), knowledge distillation (Polino, Pascanu, and Alistarh
2018), network pruning (Han, Mao, and Dally 2015; Li et al.
2017), and low-bit quantization (Courbariaux, Bengio, and
David 2015; Rastegari et al. 2016). The evolution of efficient
models has progressed from manual designs to automated
neural architecture search, aiming for optimal performance
on specific hardware (Tan et al. 2019; Howard et al. 2019).

Binary Neural Networks (BNNs), introduced by Cour-
bariaux et al. (2016), initially focused on smaller datasets

+.3 +.1 +.5

-.1 +.2 +.3

-.2 -.5 +.3
Sign

BatchNorm

BinaryConv

+1 +1 +1

-1 +1 +1

-1 -1 +1

+4 +3 +2

-1 +2 +5

-2 -1 -3

+.3 +.2 +.1

-.2 +.1 +.4

-.3 -.2 -.4

+.3 +.1 +.5

-.1 +.2 +.3

-.2 -.5 +.3

Add

m
em

or
y

oc
cu

pi
ed

 d
ur

in
g

pa
th

 e
xe

cu
tio

n

32-bit
operations

32-bit

32-bit

int

32-bit

1-bit

(a) Design in previous work.

Shifted
Sign

+1 -1 +1

-1 +1 +1

-1 -1 +1

BinaryConv
+4 +3 -1

-1 +4 +5

-2 -1 -2

BatchNorm +
Sign merged

during
inference

re
du

ce
d

m
em

or
y

(1
-b

it
fe

at
ur

e
m

ap
) 1-bit

int

+1 +1 -1

-1 +1 +1

-1 -1 -1 1-bit

(b) BoolNet design.

Method Bitwidth
(W/A/F)

Energy
(mJ)

Top-1
Acc.

OPs
(·108)

Bi-Real-Net 1/1/32 3.90 56.4% 1.63
BoolNet (ours) 1/1/4 1.33 63.0% 1.81
BaseNet (ours) 1/1/4 0.83 58.2% 1.54
BaseNet (ours) 1/1/1 0.70 53.3% 1.51

(c) By streamlining the feature map representation and memory
access on hardware, BoolNet reduces the energy consumption
by 2.9− 5.57× compared to Bi-RealNet by (Liu et al. 2018),

while reaching similar or even higher (6.6%) Top-1 accuracy on
ImageNet tasks.

Figure 1: The main differences between previous work and BoolNet. BoolNet uses 1-bit feature maps and a shifted sign function
reducing memory requirements and the need for 32-bit operations.

like MNIST and CIFAR10. Subsequent developments, such
as XNOR-Net (Rastegari et al. 2016), have strived to bridge
the accuracy gap between BNNs and their 32-bit counterparts.
Techniques like channel expansion in WRPN (Mishra et al.
2018), using multiple binary bases in ABC-Net (Lin, Zhao,
and Pan 2017a), and real-valued shortcuts in Bi-RealNet (Liu
et al. 2018) have significantly improved BNN accuracy. Re-
cent approaches like MeliusNet (Bethge et al. 2020) and Re-
ActNet (Liu et al. 2020b) have further advanced this field by
achieving competitive accuracy with efficient architectures.

However, despite these advancements, the literature often
overlooks the aspect of energy consumption in BNN design.
Most studies focus on operation counts and memory usage,
neglecting the practical energy efficiency crucial for real-
world applications. This paper aims to address this oversight
by exploring a balance between accuracy and energy effi-
ciency in BNNs, emphasizing minimal reliance on 32-bit
components to maintain the intrinsic efficiency of BNNs.

BoolNet
In this section, we first revisit the latest BNNs and recap how
they enhanced the accuracy by adding more 32-bit compo-
nents (in Section). Afterwards, we propose to replace most
commonly used 32-bit components from current BNN de-
signs and instead use a fully binary information flow in the
network (in Section). However, abandoning 32-bit informa-
tion flow results in a serious degradation of the representative
capacity of the network. Thus, we also present our strategies
to restore the representative capacity. The focus on boolean
operations and binary feature maps leads to the name of our
network: BoolNet.

Improving Accuracy with Additional 32-bit
Components
Recent works on BNNs have made promising progress in
narrowing the gap to their 32-bit counterparts. The key in-
tention is to enhance the representative capacity by fully
exploiting additional 32-bit components. However, such ad-
ditional 32-bit components significantly reduce the hardware
efficiency (as shown by Fromm et al. (2020) and further dis-
cussed in Section). The following list summarizes the 32-bit
components commonly used in the latest BNNs: (1) The

channel-wise scaling factor was first proposed by Raste-
gari et al. (2016) for approximating the 32-bit parameters. It
increases the value range of activation and weight. (2) Bi-
RealNet (Liu et al. 2018) proposes to use a 32-bit shortcut
for enclosing each binary convolution. The key advantage
is that the network can maintain an almost completely 32-
bit information flow. (3) XNOR-Net (Rastegari et al. 2016)
uses 32-bit 1×1 downsampling convolutions, which is also
used by many subsequent methods (Liu et al. 2018; Martinez
et al. 2020; Bethge et al. 2020). Bethge et al. (2019) shows
that this simple strategy can achieve about 3.6% Top-1 accu-
racy gains on ImageNet based on a binary ResNet-18 model.
(4) Martinez et al. (2020); Bulat, Martinez, and Tzimiropou-
los (2020, 2021) show that PReLU activation effectively
improves accuracy of BNNs. ReActNet (Liu et al. 2020b)
constructs the RPReLU activation function and uses it be-
fore every sign function. (5) Martinez et al. (2020) reuse the
32-bit activation in their Real-to-Binary Net after BN with
a squeeze and excitation (SE) attention mechanism. This
module can adaptively re-scale the outputs of each binary
convolution but needs additional 32-bit operations.

Although these techniques can effectively improve the ac-
curacy, they increase the number of 32-bit values and floating
point operations, making them not particularly efficient on
hardware accelerators. They are closer to mixed-precision
neural networks rather than being highly efficient binary neu-
ral networks, as one might expect.

BaseNet: Replacing 32-bit Components with
Boolean Operations
To better balance accuracy and efficiency, we rethink the
additional 32-bit components (Batch Normalization, 32-bit
feature maps, scaling factors and PReLU) elaborated in the
previous section and propose to remove or replace them
with more efficient operations. We further propose a new
basic convolution block without 32-bit operations, where
we rearranged the order of the convolution basic block as
[BinaryConv, BatchNorm, Sign], so that all feature maps
are binary. These general changes constitute our BoolNet
baseline, in short BaseNet.

Integrating the BatchNorm into the Sign Function
Umuroglu et al. (2017) suggested replacing the BatchNorm

(BN) with a thresholding operation during inference on FP-
GAs. However, their suggestion can not be applied to more
recent work (Hubara et al. 2016; Rastegari et al. 2016; Liu
et al. 2018, 2020b; Bethge et al. 2020), because the layer
order in these works is [Sign, BinaryConv, BN] surrounded
by 32-bit valued shortcuts. Instead, these recent works have
kept the 32-bit BatchNorm layer in both the training and
testing stages. However, using a 32-bit BN right after the 1-
bit convolution layer decreases the computational efficiency
of hardware, using more memory and energy. Thus, in the
following, we propose to fuse the BN layer into the Sign
function during the inference stage and do not use the 32-bit
output of BN layer for shortcut connection.

During the training phase, the batch normalization layer
normalizes feature maps with a running mean µ and a run-
ning variance σ. For inference, it utilizes the constant statistic
mean and variance instead, which in result can be reformu-
lated as a linear process, expressed as:

yi = γ
xi − µ√
∥σ2 + ϵ∥

+ β

=
γ√

∥σ2 + ϵ∥
xi +

(
β − γµ√

∥σ2 + ϵ∥

) (1)

where xi and yi represent the N-dimensional input and
output of a BN layer. γ and β are trainable scale and shift
parameters, which are constant during the inference. || . . . || is
the absolute function. We can therefore simplify the formula
as follows:

yi = axi + b = a

(
xi +

b

a

)
= a (xi + c) , (2)

where a, b, and c denote constants in the formula. By trans-
forming a into its sign and its absolute value, we have

yi = ||a||⊛ Sign (a)⊙ (xi + c) , (3)

As arranged in our basic block, Equation (3) is followed by
a sign function, and Sign(yi) only depends on Sign(a) and
(xi + c). We thus derive a parameterized sign function as:

Sign(yi) = XNOR(Sign(a), Sign(xi + c)) (4)

We further replace ⊙ by using XNOR operator so that only
bit-wise operations are adopted in the inference.

Further Reducing 32-bit Operations We rarely use the
PReLU activation function, which is commonly used in the
recent literature (Liu et al. 2018; Martinez et al. 2020; Bulat,
Martinez, and Tzimiropoulos 2021) and brings a lot of extra
overhead to the hardware implementation (it is only used
once before the final dense layer). We also decided not to
use scaling factors as suggested by Liu et al. (2018); Bethge
et al. (2019). There are two components that use 32-bit op-
erations and parameters in previous work, which are kept in
32-bit in BoolNet: the first convolution and the last dense
layer. Directly replacing them with binary versions leads to
a severe accuracy loss (Rastegari et al. 2016), thus we leave
the investigation of alternatives for these special layers for
future work.

BoolNet: Enhancing Binary Information Flow
The network design changes explained in the previous section,
constitute our BoolNet baseline, called BaseNet. Although it
uses a completely binary information flow which minimizes
the energy and memory consumption, the representative ca-
pacity of BaseNet is drastically degraded compared to its
32-bit counterparts and previous BNN methods, which accu-
mulate information in 32-bit values. To counter this reduction
of representative capacity, we propose the following three
ideas, which constitute our proposed BoolNet.

Multi-slice Binary Convolution (MS-BConv). In contrast
to standard BNNs that use a single 1-bit value per 32-bit value,
our multi-slice approach employs multiple 1-bit values (k
slices) to diminish information loss typically associated with
the sign function. This strategy is analogous to multi-slice
imaging in MRI, enhancing the richness of the feature maps.

We redefine the binarization process as a multi-slice pro-
jection, allowing for the retention of more relative magnitude
information. The modified sign function is formulated as:

xb
i = Sign(xi, bn), (5)

where bn, a set of constant biases, is defined as:

bn =
±2n

k
, where n = 0, 1, . . . , k/2. (6)

This approach effectively expands the channel dimension
without altering the convolution’s parameter count or oper-
ation amount, as the number of groups in the convolution
matches k. The binary projection output xb

i , with dimension
[N,C ∗ k,H,W], is then fed into the subsequent binary con-
volution layer.

Contrasting our work with related studies (Lin, Zhao, and
Pan 2017b; Zhuang et al. 2019; Zhu, Dong, and Su 2019), we
note that while these studies increase both the feature map
and weight bit-width to enhance accuracy, thus multiplying
computation and memory costs, MS-BConv strategically re-
duces memory requirements by replacing 32-bit values with k
1-bit values, maintaining a constant operation count through
grouped convolutions.

Enhancing MS-BConv further, we introduce a Local
Adaptive Shifting module, inspired by FReLU (Ma, Zhang,
and Sun 2020). This module, comprising a binary depth-wise
3× 3 convolution and batch normalization layer, adaptively
adjusts pixel zero points, thereby refining the feature extrac-
tion process. The detailed block design of MS-BConv is
illustrated in Figure 2a.

Strengthening Information Propagation in BoolNet.
Deep neural networks derive their robust representational
capacity from layer-by-layer feature extraction and accumu-
lation. Traditional methods use 32-bit addition operations
for this accumulation, leading to substantial 32-bit data flow,
which contradicts the goal of developing hardware-efficient
binary neural networks. To address this, we enhance Bool-
Net’s BaseNet structure by reusing binary features, thus
avoiding 32-bit data flow.

Inspired by ShuffleNet-V2’s (Ma et al. 2018) approach
to information fusion and retention, where the input tensor
is split and one part is used for feature extraction while the
other is directly concatenated with the extracted features, we

in: 256*k

out: 256

BN +

Multi-Slice Sign

16-bit

1-bit1-bit

out: 256*k

BinaryConv

(groups = k)

in: 256*k

out: 256

BN +

Multi-Slice Sign

16-bit

1-bit

out: 256*k

BinaryConv

(groups = k)

(a) MS-BConv module

Channel Split

MS-BConv

(groups = k)

MS-BConv

(groups = k)

Channel Concate

Channel Shuffle

\\\\\\

in: 512*k

out: 256*k

out: 256*k

out: 256*k

out: 512*k

out: 512*k

(b) BoolNet basic block

C= 512*k

Channel Shuffle

Channel Concate

D
o

w
n

s
a
m

p
le

L
a
y
e

r

MS-BConv

(groups = k)

MS-BConv

(groups = k)

MS-BConv

(groups = k)
out: 512*k

in: 512*k

out: 512*k

out: 1024*k

out: 1024*k

(c) BoolNet downsample block

Figure 2: The detailed architecture of BoolNet. To enhance the information flow, we modify the baseline architecture in two
aspects: a) Reducing information loss with our multi-slices binary convolution. b) Strengthening the information propagation by
using split and concatenate operations.

adopt a similar strategy in BoolNet. This design, illustrated
in Figure 2b, involves splitting the feature extraction branch
into two MS-BConv modules, with one branch remaining
as the identity. The branches are then concatenated and un-
dergo channel shuffling to ensure uniform feature distribution
across layers.

The BoolNet downsampling block, depicted in Figure 2c,
is uniquely designed to double the number of channels with-
out requiring channel splitting. This novel approach to infor-
mation accumulation differentiates BoolNet from BaseNet
and is central to our proposed architecture (as detailed in
Section).

Rethinking the Downsample Branch. Furthermore, we
modify the downsampling block compared to previous meth-
ods, which usually use the layers [2×2 AvgPool (Stride 2),
32-bit 1×1 Conv, BN] in this branch (Liu et al. 2018; Mar-
tinez et al. 2020). Instead, we propose to use the layers [1-bit
1×1 Conv, 2×2 MaxPool (Stride 2), BN, Sign] and replace
the 1-bit 3×3 Conv (stride 2) in the main branch with [1-bit
3×3 Conv, 2×2 MaxPool (stride 2)]. Overall, this removes
all 32-bit operations and 32-bit parameters from the down-
sample block of BoolNet, but due to space limitations, we
discuss the details in the appendix (including alternatives and
experimental results).

Training with Progressive Weight Binarization
Though we intend to build highly efficient BNNs with a fully
binary information flow, this strategy makes the network
more sensitive to weight initialization during training. Tra-
ditional methods tried to alleviate similar problems through
two-stage training (Martinez et al. 2020; Liu et al. 2020b),
which makes the training more complicated. In this paper,
we adopt a progressive binarization technique based on the
traditional Hardtanh-STE method (Courbariaux et al. 2016).
This can be understood as a smooth version of a multi-stage
training approach. Specifically, in the training phase, a differ-
entiable function F (x) is used to replace the sign function.
The slope of this function is adjusted by a single scalar λ.
As the slope increases, the weight gradually changes from
32-bit to 1-bit. During backward propagation, we approxi-
mate F (x/λ) with F (x/1), to avoid the problem of gradients
clipping as λ decreases. In the testing phase, we use the reg-

ular sign function for inference. The whole process can be
formulated as:

F (x, λ) = lim
λ→0

Hardtanh
(x
λ

)
≃ Sign(x). (7)

To smooth the weight binarization process, we schedule λ
during training with an exponential decay strategy λt = σ(t),
where σ < 1 is the exponential decay rate of λ.

Experiments
We evaluated our baseline network BaseNet and our proposed
BoolNet (as described in Sections and , respectively) on the
ImageNet dataset (Deng et al. 2009). In the following section,
we first present the training details for our experiments. After-
wards, we conduct an ablation study on our proposed network
design changes and the Multi-slice convolution (in Section
and), analyze the energy consumption of BoolNet and other
recent work on BNNs (in Section), and compare our model
accuracy to state-of-the-art BNN models (in Section).

Training Details
Our training methodology largely follows the guidelines set
by Bethge et al. (2020), with a few modifications. We extend
the training duration to 256 epochs and adopt the knowl-
edge distillation approach from Liu et al. (2020b), using
a 32-bit ResNet-34 (He et al. 2016) as the teacher model.
Complete hyperparameter specifications, additional details,
and code can be found in the appendix and supplementary
material. In place of the conventional two-stage training em-
ployed in Liu et al. (2020b); Martinez et al. (2020), we in-
troduce progressive weight binarization (refer to Section ,
Equation 7). This approach utilizes a decay factor σ = 0.965,
with λ set as λ = 0.965t, where t denotes the number of
processed samples divided by 256,000 and rounded down.
During validation, the progressive weight binarization is sub-
stituted with the sign function for consistency. Compara-
tive testing between the two-stage training strategy and our
method was conducted using a ResNet-like model with bi-
nary feature maps. The two-stage training, encompassing 60
epochs for each stage (totaling 120 epochs), yielded an accu-
racy of 49.60%. In contrast, our progressive weight binariza-
tion method achieved 48.39% accuracy over 60 epochs, and

Table 1: Our ablation study on ImageNet ((Deng et al. 2009)) regarding accuracy, number of 32-bit operations (FLOPs), 1-bit
operations (BOPs), and model size. (OPs = FLOPs + 1/64·BOPs)

BaseNet BoolNet

Network Configuration
Top 1
Acc.

FLOPs
(·108)

BOPs
(·109)

OPs
(·108)

Model
Size

Top 1
Acc.

FLOPs
(·108)

BOPs
(·109)

OPs
(·108)

Model
Size

Baseline (60 epochs, CE Loss) 47.69% 1.22 1.68 1.49 3.47 MB 54.07% 2.78 1.85 3.07 5.05 MB
+ Multi-Slice strategy (k=4) 52.27% 1.22 1.69 1.49 3.47 MB 56.84% 2.78 1.86 3.07 5.05 MB
+ (1) Modified downsample branch (BaseNet has no downsample branch) 58.66% 1.23 2.48 1.62 3.84 MB
+ (2) Local Adaptive Shifting† 52.08% 1.25 1.69 1.51 3.47 MB 59.56% 1.26 2.48 1.65 3.84 MB
+ (3) MaxPool instead of stride 55.14% 1.23 2.21 1.57 3.47 MB 59.98% 1.26 3.53 1.81 3.84 MB
+ (4) Knowledge distillation‡ 56.84% 1.23 2.21 1.57 3.47 MB 61.98% 1.26 3.53 1.81 3.84 MB
+ Long training (256 epochs) 58.20% 1.23 2.21 1.57 3.47 MB 63.00% 1.26 3.53 1.81 3.84 MB
† Local Adaptive Shifting is not used for the subsequent BaseNet experiments ‡ Replaces the cross-entropy loss with the distributional loss by (Liu et al. 2020b)

BaseNet baseline + (3) + (4) BoolNet baseline + (1) + (2) + (3) + (4)

k
Top 1
Acc.

∆
Top 5
Acc.

FLOPs
(·108)

BOPs
(·109)

OPs
(·108)

Model
Size

Top 1
Acc.

∆
Top 5
Acc.

FLOPs
(·108)

BOPs
(·109)

OPs
(·108)

Model
Size

1 51.74% - 75.39% 1.23 2.20 1.57 3.47 MB 57.62% - 80.47% 1.26 3.05 1.74 3.71 MB
2 55.75% +4.01 79.08% 1.23 2.20 1.57 3.47 MB 60.57% +3.95 82.56% 1.26 3.21 1.76 3.76 MB
4 56.84% +1.09 79.85% 1.23 2.21 1.57 3.47 MB 61.98% +1.41 83.75% 1.26 3.53 1.81 3.84 MB
8 57.19% +0.35 80.33% 1.23 2.22 1.58 3.47 MB 62.54% +0.56 84.14% 1.26 4.16 1.91 4.01 MB

50.19% over 120 epochs. This demonstrates that our train-
ing strategy effectively eliminates the need for a two-stage
approach while delivering comparable or slightly superior
performance within a similar total training duration.

Ablation on Network Design and Training
In our ablation study, detailed in Table 1, we evaluated the
impact of various design changes and training techniques
on BaseNet and BoolNet. The Multi-Slice strategy with
k = 4 notably improved accuracy by 4.58% for BaseNet
and 2.77% for BoolNet, compared to the baseline models
trained for 60 epochs using cross-entropy loss. Transitioning
from BaseNet to BoolNet resulted in an accuracy boost of
4.57% and 6.38% (with and without the Multi-Slice strategy,
respectively). However, BoolNet’s design inherently involves
a higher count of 32-bit operations. By modifying the down-
sample branch (discussed in Section), these additional 32-bit
operations were eliminated, leading to a further 1.82% in-
crease in BoolNet’s accuracy. The Local Adaptive Shifting
module, enhancing BoolNet’s accuracy by 0.90%, did not
show similar benefits for BaseNet, suggesting its limited im-
pact in models lacking traditional shortcut branches in the
downsampling block. In contrast, employing a MaxPool layer
instead of strided convolutions significantly aided BaseNet in
information retention. Regarding training techniques, switch-
ing from cross-entropy loss to knowledge distillation, as pro-
posed by Liu et al. (2020b), added 1.70% to BaseNet’s and
2.00% to BoolNet’s accuracy. Extending the training dura-
tion from 60 to 256 epochs further augmented the accuracy
by 1.36% for BaseNet and 1.02% for BoolNet. In summary,
our results affirm that the proposed network modifications,
coupled with knowledge distillation, effectively enhance the
accuracy of both BaseNet and BoolNet.

Ablation on the Multi-slice Binary Convolution
The previous section has already shown that our Multi-slice
Binary Convolution (see Section) can reduce the accuracy

loss caused by using 1-bit feature maps. However, we further
evaluated the influence of the number of slices k in these
convolutions based on the best configuration of the previous
section but only training for 60 epochs (see the lower half of
Table 1). Our results show that the final accuracy increases
with each increase of k, but there are diminishing returns.
Doubling k from 1 to 2, from 2 to 4, and from 4 to 8 in-
creases accuracy by 3.95%, 1.41%, and 0.56% respectively
(for BoolNet). Based on the increase of the number of opera-
tions, model size, and projected memory consumption, we
use k = 4 for the best trade-off between accuracy and energy
efficiency for our following experiments.

Energy Consumption Evaluation
This section aims to efficiently compare the energy consump-
tion of BoolNet to classic BNN architectures under strictly
fair design conditions. We thus implemented five BNN ac-
celerators (BaseNet, BoolNet, XNOR-Net, Bi-RealNet, Re-
ActNet (based on a Bi-RealNet backbone)). Considering the
scope of this work, we leave the details of further hardware
optimization of individual accelerators for future work.

We designed the five accelerators in the RTL language.
Then, the power and area of computing circuits is given
by Design Compiler (DC) with a TSMC 65nm process and
1GHz clock frequency. We refer to the design and implemen-
tation methods of computing units of Conti, Schiavone, and
Benini (2018); Zhang et al. (2021). For a fair comparison be-
tween the different BNNs, we keep the design of architecture,
data stream, the parallelism of computing units, and total on-
chip cache (192KB for feature maps and 288KB for weights)
consistent and only change the bit-width of the data stream
and computing units. More specifically, the parallelism of
binary convolution is 64×64, and the parallelism of other
units is 64 in all accelerators (except the IntConv module is
8×64). These modules are pipelined and run at 1GHz. When
DRAM bandwidth can be fully utilized, the performance de-
pends on the parallelism and is bounded by the convolution,

Methods Bitwidth
(W/A/F)

Energy
Consumption

Top-1
Acc.

OPs
(·108)

ReActNet (Bi-Real)† 1/1/32 3.93mJ 65.9% 1.63
Bi-RealNet 1/1/32 3.90mJ 56.4% 1.63
XNOR-Net 1/1/32 1.92mJ 51.2% 1.59

BoolNet, k=4 (ours) 1/1/4 1.33mJ 63.0% 1.64
BaseNet, k=4 (ours) 1/1/4 0.83mJ 58.2% 1.54
BaseNet, k=1 (ours) 1/1/1 0.70mJ 53.3% 1.51

(a) The advantage of BoolNet is reduced energy consumption. †The
ReActNet result based on a Bi-RealNet backbone is stated on the

official Github repository (Liu et al. 2020a).

47.2

67.4 71.7

58.7 58.7
110.2

22
50

.8
15

81
.2

22
50

.8
16

06
.5

954.4

919.1

509.3 856.5
265.0
381.9

265.0 368.80
20

00
40

00

XNOR-Net
Bi-RealNet

ReActNet

BaseNet,k=1
BaseNet,k=4

BoolNet,k=4En
er

gy
 C

on
su

m
pt

io
n

(μ
J) Energy used by

computation
SRAM access
DRAM access

(b) Energy consumption regarding computations and
access to DRAM/SRAM.

Figure 3: Comparison between BoolNet and state-of-the-art BNNs. The energy consumption is calculated through hardware
simulations.

so each accelerator has the same peak performance for con-
volution, i.e., 4096 GOPs/s. Therefore, we achieve similar
throughputs between 2044 and 2237 samples per second and
it is reasonable to compare the energy consumption of the
whole inference process.

DC can provide the hierarchical circuit area and power of
computing units, including static power (Ps) and dynamic
power (Pd). For each layer of the network, we know the
amount (A) of each operation. According to the circuit paral-
lelism (Pa), we can calculate the required number of cycles
(Cn = A / Pa) and then the energy consumption according
to the frequency and power (Ec = Cn × (Ps + Pd) / 10−9).
For the operations with fewer cycles, the energy consumption
waiting for other units is estimated by static power (Es =
(Cmax

n - Cn) × Ps / 10−9). Similar to Wang, Zhang, and
Han (2021); Jiang and Zokaee (2021); Li et al. (2021), we
evaluate the energy consumption of on-chip SRAM access
and off-chip DRAM access by using CACTI 6.5 (CACTI)
and the power calculator of DDR provided by Micron (Mi-
cron). According to the cycle accurate simulation above, we
can get the access amount of SRAM and DRAM, then get the
energy consumption. The above components sum the overall
energy consumed by a single inference pass. More details of
simulation and energy estimation can be found in .

Memory access and computation significantly influence
the energy efficiency of hardware accelerators. While tradi-
tional BNN efficiency analyses primarily consider theoretical
instruction counts, the role of memory access is often over-
looked. Studies by Yang et al. (2017) and Han et al. (2015)
reveal that computation energy forms only a fraction (ap-
proximately 10%) of the total energy consumption in 32-
bit networks, with memory access, especially SRAM and
DRAM, being substantially more energy-intensive. In con-
trast to existing BNNs, BoolNet extensively utilizes 1-bit
data streams, reducing memory requirements, particularly in
the network’s early stages (as detailed in Figure 6b in the
appendix). This reduction in memory access contributes sig-
nificantly to BoolNet’s enhanced energy efficiency. Unlike
other BNNs that rely on 32-bit feature map storage, Bool-
Net’s Shifted Sign design allows immediate quantization of
convolution accumulation results to 1 bit, bypassing the need
for extensive cache or DRAM access. This stark difference

in data bit-width and read/write volume leads to notable en-
ergy savings, as depicted in Figure 7. Our results (Figure 3b)
indicate a greater disparity between computing and memory
access energy consumption than previously reported. The
bitwise operations XNOR and popcount in BoolNet further
reduce computational energy share, underscoring the impor-
tance of memory optimization in BNNs for creating highly
energy-efficient AI accelerators.

Comparison to State-of-the-Art BNNs
In our comparison with leading BNNs such as ReActNet, Bi-
RealNet, and XNOR-Net (Liu et al. 2018, 2020b; Rastegari
et al. 2016), BoolNet demonstrated significant energy savings.
We based our comparison on the ReActNet performance, as
reported on its official Github repository (Liu et al. 2020a),
using a similar backbone. Our experiments revealed that by
removing 32-bit components, BaseNet with k=1 achieved
an energy reduction up to 5.6×, albeit with a 12.6% drop
in accuracy. Implementing our Multi-slice strategy (k=4) in
BoolNet mitigated this accuracy decrease by 4.9%, while still
realizing a 4.7× energy reduction. Compared to Bi-RealNet
(Liu et al. 2018), BoolNet with k=4 not only decreased energy
consumption by 2.95× but also improved accuracy by 6.6%.
These results showcase BoolNet’s and BaseNet’s capability
to significantly reduce energy consumption with a relatively
small trade-off in accuracy, marking a notable advancement
in the efficiency of BNN architectures.

Conclusion
This paper presents BoolNet, a novel approach in Binary
Neural Networks (BNNs) focused on optimizing energy ef-
ficiency while maintaining accuracy. By eliminating the re-
liance on 32-bit components, BoolNet demonstrates signifi-
cant improvements in computational and energy efficiency, as
validated through ImageNet experiments and hardware simu-
lations. This work challenges traditional metrics of efficiency
based on theoretical operation counts, offering a practical
perspective towards developing ultra-energy-efficient BNNs.
Our contributions mark a significant step in advancing BNN
technology, aligning it more closely with its core principles
of efficiency.

References
Bethge, J.; Bartz, C.; Yang, H.; and Meinel, C. 2020. Melius-
Net: Can Binary Neural Networks Achieve MobileNet-level
Accuracy? arXiv preprint arXiv:2001.05936.

Bethge, J.; Yang, H.; Bornstein, M.; and Meinel, C. 2019.
BinaryDenseNet: developing an architecture for binary neural
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 0–0.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.;
Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter, C.; Hesse,
C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.;
Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever,
I.; and Amodei, D. 2020. Language Models are Few-Shot
Learners. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan,
M. F.; and Lin, H., eds., Advances in Neural Information Pro-
cessing Systems, volume 33, 1877–1901. Curran Associates,
Inc.

Bulat, A.; Martinez, B.; and Tzimiropoulos, G. 2020. Bats:
Binary architecture search. In European Conference on Com-
puter Vision.

Bulat, A.; Martinez, B.; and Tzimiropoulos, G. 2021. High-
Capacity Expert Binary Networks. In International Confer-
ence on Learning Representations.

CACTI. ???? CACTI. Accessed: 2021-09-29.

Conti, F.; Schiavone, P. D.; and Benini, L. 2018. XNOR neu-
ral engine: A hardware accelerator IP for 21.6-fJ/op binary
neural network inference. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(11):
2940–2951.

Courbariaux, M.; Bengio, Y.; and David, J.-P. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural informa-
tion processing systems, 3123–3131.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks: Training deep
neural networks with weights and activations constrained to+
1 or-1. arXiv preprint arXiv:1602.02830.

Crowley, E. J.; Gray, G.; and Storkey, A. J. 2018. Moonshine:
Distilling with cheap convolutions. In Advances in Neural
Information Processing Systems, 2888–2898.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.

Fromm, J.; Cowan, M.; Philipose, M.; Ceze, L.; and Patel,
S. 2020. Riptide: Fast end-to-end binarized neural networks.
Proceedings of Machine Learning and Systems, 2: 379–389.

Guo, J.; He, H.; He, T.; Lausen, L.; Li, M.; Lin, H.; Shi, X.;
Wang, C.; Xie, J.; Zha, S.; Zhang, A.; Zhang, H.; Zhang, Z.;
Zhang, Z.; and Zheng, S. 2019. GluonCV and GluonNLP:
Deep Learning in Computer Vision and Natural Language
Processing. arXiv preprint arXiv:1907.04433.

Han, S.; Mao, H.; and Dally, W. J. 2015. Deep Com-
pression: Compressing Deep Neural Networks with Prun-
ing, Trained Quantization and Huffman Coding. Cite
arxiv:1510.00149Comment: Published as a conference paper
at ICLR 2016 (oral).
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
In Advances in neural information processing systems, 1135–
1143.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.;
Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al.
2019. Searching for mobilenetv3. In Proceedings of the IEEE
International Conference on Computer Vision, 1314–1324.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In Proceedings
of the 30th International Conference on Neural Information
Processing Systems, 4114–4122.
Jiang, L.; and Zokaee, F. 2021. EXMA: A Genomics Ac-
celerator for Exact-Matching. In 2021 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), 399–411. IEEE.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P.
2017. Pruning Filters for Efficient ConvNets. In 5th In-
ternational Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.
Li, J.; Louri, A.; Karanth, A.; and Bunescu, R. 2021. CSCNN:
Algorithm-hardware Co-design for CNN Accelerators using
Centrosymmetric Filters. In 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA),
612–625. IEEE.
Lin, X.; Zhao, C.; and Pan, W. 2017a. Towards Accurate Bi-
nary Convolutional Neural Network. In Guyon, I.; Luxburg,
U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan,
S.; and Garnett, R., eds., Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Lin, X.; Zhao, C.; and Pan, W. 2017b. Towards accu-
rate binary convolutional neural network. arXiv preprint
arXiv:1711.11294.
Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; and Han,
J. 2019. On the Variance of the Adaptive Learning Rate and
Beyond. arXiv preprint arXiv:1908.03265.
Liu, Z.; Shen, Z.; Savvides, M.; and Cheng, K. 2020a. Official
source code of ReActNet on Github. Accessed: 2021-10-01.
Liu, Z.; Shen, Z.; Savvides, M.; and Cheng, K. 2020b. Re-
ActNet: Towards Precise Binary Neural Network with Gen-
eralized Activation Functions. In Vedaldi, A.; Bischof, H.;
Brox, T.; and Frahm, J., eds., Computer Vision - ECCV 2020

- 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XIV, volume 12359 of Lecture Notes
in Computer Science, 143–159. Springer.
Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; and Cheng, K.-T.
2018. Bi-real net: Enhancing the performance of 1-bit cnns
with improved representational capability and advanced train-
ing algorithm. In Proceedings of the European conference
on computer vision (ECCV), 722–737.
Ma, N.; Zhang, X.; and Sun, J. 2020. Funnel activation for
visual recognition. arXiv preprint arXiv:2007.11824.
Ma, N.; Zhang, X.; Zheng, H. T.; and Sun, J. 2018. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture De-
sign. In European Conference on Computer Vision.
Martinez, B.; Yang, J.; Bulat, A.; and Tzimiropoulos, G.
2020. Training binary neural networks with real-to-binary
convolutions. In International Conference on Learning Rep-
resentations.
Micron. ???? Micron. Accessed: 2021-09-29.
Mishra, A.; Nurvitadhi, E.; Cook, J. J.; and Marr, D. 2018.
WRPN: Wide reduced-precision networks. In International
Conference on Learning Representations (ICLR).
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026–8037.
Polino, A.; Pascanu, R.; and Alistarh, D. 2018. Model com-
pression via distillation and quantization. In ICLR (Poster).
OpenReview.net.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A. 2016.
Xnor-net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision,
525–542. Springer.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2820–2828.
Umuroglu, Y.; Fraser, N. J.; Gambardella, G.; Blott, M.;
Leong, P.; Jahre, M.; and Vissers, K. 2017. Finn: A frame-
work for fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 65–74.
Wang, H.; Zhang, Z.; and Han, S. 2021. SpAtten: Efficient
Sparse Attention Architecture with Cascade Token and Head
Pruning. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 97–110. IEEE.
Yang, T.-J.; Chen, Y.-H.; Emer, J.; and Sze, V. 2017. A
method to estimate the energy consumption of deep neu-
ral networks. In 2017 51st asilomar conference on signals,
systems, and computers, 1916–1920. IEEE.
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shufflenet:
An extremely efficient convolutional neural network for mo-
bile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 6848–6856.

Zhang, Y.; Pan, J.; Liu, X.; Chen, H.; Chen, D.; and
Zhang, Z. 2021. FracBNN: Accurate and FPGA-efficient
binary neural networks with fractional activations. In
The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 171–182.
Zhu, S.; Dong, X.; and Su, H. 2019. Binary ensemble neural
network: More bits per network or more networks per bit?
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 4923–4932.
Zhuang, B.; Shen, C.; Tan, M.; Chen, P.; Liu, L.; and Reid, I.
2019. Structured binary neural networks for image recogni-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, 413–422.

Appendix
Before we present further details in the following sections,
we present an overview on the total amount of computation
that was used during this work. We measured the total GPU
hours for the three experiments in Section of our paper.
These experiments (BaseNet k=1, BaseNet k=4, BoolNet
k=4) required 192, 256, and 336 GPU hours respectively, in
total: 784 GPU hours.

We have recorded more than 7191 GPU hours for our
ablation studies and our intermediate, initial, or discarded
experiments (some of which were not presented in the paper),
but estimate that a further 1500-2000 hours were needed in
experiments before we started measuring the GPU runtime.

Training Details and Further Experimental Results
The training strategy is mostly based on Bethge et al. (2020).
More specifically, we use the RAdam optimizer by Liu et al.
(2019) with a learning rate of 0.002 without weight decay,
use the cosine learning rate decay by Guo et al. (2019), and
train with a batch size of 256 for 60 epochs. We only use
random flipping and cropping of images to a resolution of
224 × 224 for augmentation and finally normalize the data
according to the mean and standard deviation of the dataset.
During validation we resize the images to 256 × 256, and
then crop the center with a size of 224× 224 (and normalize
in the same manner as during training). Our implementation
is based on PyTorch (Paszke et al. 2019), and the code can
be found in the supplementary material ZIP archive. The
implementations of many previous works can not be sped up
with XNOR and popcount (also observed by Fromm et al.
(2020)), since they use padding with zeros, which introduces
a third value ({−1, 0,+1}) in the feature map. To circumvent
this issue, we use Replication padding, which duplicates the
outer-most values of the feature map, thus the values are
limited to {−1,+1}. A further difference to previous work,
is our progressive weight binarization technique to remove
the need for two-stage trainings, as discussed in the following
Section.

Progressive Weight Binarization vs. Two-Stage Training
We have introduced the progressive weight binarization strat-
egy in Section , Equation 7 and discussed the results briefly
in Section . As presented in our main paper, training with
progressive weight binarization leads to a higher accuracy,
if we train for the same total number of epochs. However,
we also conducted an experiment using a linear increase
(λ′

t = 1 − t + ϵ, ϵ = 10−6) instead of our proposed expo-
nential increase (λt = σt) of the slope (see Figure 4). We
chose σ, so the final λ values are equal, i.e. if tmax represents
the final epoch, then λtmax = λ′

tmax
= 10−6. The learning

curves show that our progressive weight binarization gains
the largest advantage by only “initializing” the values during
a brief initial phase of the training.

Ablation Study on the Downsample Structure
As described in Section , we modify the 1× 1 convolution in
the downsampling branch in contrast to many previous works
(Rastegari et al. 2016; Liu et al. 2018, 2020b; Martinez et al.
2020). While being helpful for accuracy, the 32-bit 1 × 1

convolution involves extra computing, memory and energy
consumption, which is in conflict with our motivation. Using
our multi-slice strategy with k = 8, the number of input
channels for the 1× 1 convolution also increases by the same
factor of 8. To counter this increase of 32-bit operations, it
could be an option to use 8 groups in the convolution, which
would keep the number of 32-bit operations constant, com-
pared to previous work. However, this strategy still conflicts
with our motivation to remove most 32-bit operations. Fur-
thermore, the average pooling layer used in previous work,
requires additional 32-bit addition and division operations,
which could be reduced with either using a max pooling layer
or a stride of 2.

Therefore, to find a good downsample module with bi-
nary data flow, we first design the downsample template as
[Convy , x, BN, Sign]. In this template, x indicates the differ-
ent candidate downsample operations (e.g., average pooling,
max pooling, or adding stride=2 to the convolution) and y
the number of bits used for weights and activations in the
convolution.

We conducted a detailed ablation study on the CIFAR100
dataset for both k = 1 and k = 8 (see Table 2). The results
show, that max pooling combined with 1-bit 1× 1 convolu-
tion (groups = 1) has the same Top-1 accuracy as average
pooling combined with 32-bit 1× 1 convolution (groups =
8). Thus, we decide to use max pooling instead of average
pooling, since it does not involve any 32-bit operations, such
as addition and division.

Based on the above analysis, we suggest using the [32-bit
Conv (groups = k), AvgPool2d, BN, Sign] structure for the
downsample branch if we want to increase accuracy. How-
ever, if we intend to build a fully binary data flow, we suggest
using the [1-bit Conv (groups = 1), MaxPool2d, BN, Sign]
structure (independent of k) instead to balance the accuracy
and hardware efficiency. The latter is also the structure we
used for our experiments in the main paper.

More Details About the Energy Consumption
Simulation
In Table 3, we give an example of calculating the memory
consumption among different stages of our network. Com-
pared with regular BNNs with mixed precision data flow,
the fully binary representation of BoolNet significantly low-
ers the memory consumption during inference process. This
change leads to less memory access operations to DRAM
which has a much higher power consumption than the on-
chip SRAM. To the best of our knowledge, our work is the
first one to study the impact of memory access on energy con-
sumption. The details of simulation and energy estimation
are introduced as follow.

Overall hardware architecture. An illustrative graph on
the data flow between the hardware components is provided
in Figure 7. In the typical BNN Bi-RealNet, only the convo-
lution is binary, the shortcut branch adopts high precision,
and other calculations adopt high precision, too. The corre-
sponding accelerators we designed have different computing
modules (but their parallelisms are the same, that is, the com-
puting time of the whole block is roughly the same, and the
binary convolution units are exactly the same). In addition,

AvgPool Acc. (%) MaxPool Acc. (%) Stride=2 Acc. (%)
k Bits Groups Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
21 32 1 63.5 87.8 63.0 87.7 60.7 86.4

1 1 63.1 88.0 62.5 87.2 60.9 86.7
38 32 1 66.0 89.4 67.0 90.0 63.4 87.9

32 8 65.0 88.0 65.3 88.9 62.2 87.0
1 1 64.1 88.5 65.0 89.0 62.6 87.3

Table 2: Our ablation study on CIFAR100 regarding different downsampling methods. The number of bits refers to both the
input activation and weight binarization of the 1× 1 convolution in the shortcut branch.

Table 3: Theoretical minimum memory requirement of all convolution blocks (can differ depending on the implementation). k is
the number of slices. The stages have different input size and thus lead to different memory requirements.

Memory
Usage of

Stage 1 with 64× 56× 56 Stage 2 with 128× 28× 28
BoolNet (k=1) BoolNet (k=4) Regular BNN BoolNet (k=1) BoolNet (k=4) Regular BNN

Weights 36,864 36,864 36,864 147,456 147,456 147,456

Activation 200,704·1
= 200,704

200,704·4
= 802,816

200,704·1
= 200,704

100,352·1
= 100,352

100,352·4
= 401,408

100,352·1
= 100,352

Output &
Features

2·200,704·1
= 401,408

2·200,704·4
= 1,605,632

2·200,704·32
= 12,845,056

2·100,352·1
= 200,704

2·100,352·4
= 802,816

2·100,352·32
= 6,422,528

Total 638,976 2,445,312 13,082,624 448,512 1,351,680 6,670,336
Memory
Usage of

Stage 3 with 256× 14× 14 Stage 4 with 512× 7× 7
BoolNet (k=1) BoolNet (k=4) Regular BNN BoolNet (k=1) BoolNet (k=4) Regular BNN

Weights 589,824 589,824 589,824 2,359,296 2,359,296 2,359,296

Activation 50,176·1
= 50,176

50,176·4
= 200,704

50,176·1
= 50,176

25,088·1
= 25,088

25,088·4
= 100,352

25,088·1
= 25,088

Output &
Features

2·50,176·1
= 100,352

2·50,176·4
= 401,408

2·50,176·32
= 3,211,264

2·25,088·1
= 50,176

2·25,088·4
= 200,704

2·25,088·32
= 1,605,632

Total 740,352 1,191,936 3,851,264 2,434,560 2,660,352 3,990,016

for fair comparison, these accelerators have the same size
of on-chip memory (192KB for feature map and 288KB for
weight) and the same off-chip memory.

Computing unit. The binary convolution units of different
BNN accelerators are exactly the same, but other calculation
units of BoolNet are simpler. The first is the shortcut branch
of downsample blocks. The shortcut branch of traditional
BNNs are high-precision, and the high-precision convolution
downsampling is adopted. Although the convolution on the
shortcut branch accounts only for a small amount of calcula-
tion, the power consumption of a high-precision convolution
is 37 times that of a binary convolution, and the extra con-
volution unit also increases the complexity of the circuit.
Secondly, regarding batch normalization and binarization,
since the shortcut branch has changed from high-precision to
binary, the aggregation position of the shortcut branch and
the main branch has also changed, so that the binarization
and batch normalization can be simplified together, while the
calculation of typical BNN can not be simplified, and their
power consumption is high. In addition, there is a difference
in the complexity of the aggregation operation itself (boolean
logic operation vs. 32-bit addition) and the computational
overhead of non-linear functions (i.e. RPReLU) added in net-
works such as ReActNet. These aspects show the efficiency
of BoolNet.

Energy consumption per unit. The energy consumption
per unit operation of some commonly used components is

shown in Figure 6a. However, since the units are not operated
the same number of times, the total energy consumption
during one inference graph is different. For instance, the
energy consumption of Int8 downsampling convolution is
37× larger than binary downsampling1. Surprisingly, per unit
operation, a 32-bit RPReLU consumes 26% more energy than
a binary convolution, Int8 BN consumes about half of a binary
convolution, and those two components are commonly used
in conjunction with binary convolutions in existing BNNs.

On-chip memory. We use CACTI 6.5 to simulate the
power of on-chip SRAM. According to the requirements of
the computing unit, we configure the on-chip SRAM to meet
the parallelism of the corresponding data reading bandwidth
(64 bits for BoolNet and 2048 bits for traditional BNNs),
while keeping the total storage unchanged. In addition, we
split a large SRAM into multiple SRAMs to meet the require-
ment that the read time is less than the clock cycle (1ns) of
the computing unit. Finally, the simulation software can give
the energy consumption of one read or one write of each
SRAM unit. For each layer of the network, we know the total
number of operations for each type of operation. According
to the circuit parallelism, we can calculate the number of
cycles. Then, according to the amount of data that needs to
be read from (or written to) SRAM in each cycle, we can

137=504×8/108.8, where Int8 Conv has only 1/8 of the parallel
capability of BConv.

get the energy that the accelerator spends to access on-chip
SRAM.

Off-chip memory. Due to the limited amount of on-chip
memory, it is inevitable to save some data to (or read from)
off-chip DRAM in BNN computing. In our BoolNet design,
due to the large total number of weights, all BNN accelera-
tors need to read weights from DRAM and write to SRAM
before the computation of each layer. In addition, for tradi-
tional BNN, the intermediate feature maps are larger, which
cannot be completely cached on-chip. It is also necessary
to save the extra part to DRAM, to read it back in the next
layer. With the amount of read-write operations of data to
(and from) DRAM and SRAM, the power consumption data
of DRAM read-write operations (SRAM has been given by
the CACTI simulation in the previous step) is also needed to
estimate the overall energy consumption. We use the DDR4
Power Calculator provided by Micron, to configure a DDR
UDIMM module composed of four 8Gb x16 chips, which
adopts the speed grade of -075E, and the maximum trans-
mission rate is 2666MT/s. The calculator gives the average
energy consumption of reading and writing data with 64 bits
parallelism.

Detailed throughput. The detailed throughput of the ac-
celerators for BaseNet, BoolNet, BiRealNet, ReActNet, Xnor-
Net are 2125, 2044, 2237, 2237, 2237 samples per second,
respectively.

●
●

●

0.4
7.3

18.7

43.743.5

68.267.0

●

● ●

0.2
7.3

18.6

46.7

71.1

Ours (linear) Ours (exponential)

0 20 40 60 0 20 40 60
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Epoch

● Validation Acc. Train Acc. Validation Acc. (Top K=5) Train Acc. (Top K=5)

Figure 4: The training and validation accuracy curves of our proposed Progressive Weight Binarization. An exponential increase
of the slope leads to much better results, than a linear increase.

● ● ● ●

0.1
9.9

53.3

77.0

●
● ● ●

0.2

15.8

58.2

80.9

● ● ● ●

0.1

13.8

30.0

63.0

84.5

BaseNet (k=1) BaseNet (k=4) BoolNet (k=4)

0 64 128 192 256 0 64 128 192 256 0 64 128 192 256
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Epoch

● Validation Acc. Train Acc. Validation Acc. (Top K=5) Train Acc. (Top K=5)

Figure 5: The training and validation accuracy curves of our trainings discussed in the comparison to the state-of-the-art BNNs
in Section .

Operation Power
(mw)

Area
(um2) Operation Power

(mw)
Area

(um2)
BConv 108.8 131737 Int8 Conv(1/8) 504 836269

- - - Int Agg 43.5 53238
16-bit Sign 1.4 7956 32-bit Sign 3.3 13548

32-bit
RPReLU 137.6 310671 Int8 BN 50.1 274606

(a) Energy consumption per unit operation and circuit area of commonly used
components.

2.
45

e+
06

6.
39

e+
05

6.
67

e+
06

1.
35

e+
06

4.
49

e+
05

3.
85

e+
06

1.
19

e+
06

7.
40

e+
05

3.
99

e+
06

2.
66

e+
06

2.
43

e+
061.
31

e+
07

0e
+0

0
1e

+0
7

Stage 1 Stage 2 Stage 3 Stage 4

M
em

or
y

U
sa

ge
 (b

its
)

BoolNet (k=1) BoolNet (k=4) Regular BNN

(b) Memory usage comparison between blocks of
different stages.

Figure 6: A theoretical memory usage comparison of one convolution block between BoolNet and previous work. Actual numbers
can differ during implementation, but BoolNet shows significantly lower memory usage, especially in early stages, even when
using our Multi-slice strategy with k = 4.

SRAM

DRAM
BNN

Computing Unit
32-bit Inputs

32-bit Zero Points

1-bit Weights

16-bit Weights

32-bit
Residual Connection

32-bit Outputs

Binarization

BinaryConv

Batch
Normalization

Aggregation

SRAM

DRAM
BNN

Computing Unit
32-bit Inputs

32-bit Zero Points

1-bit Weights

16-bit Weights

32-bit
Residual Connection

32-bit Outputs

Binarization

BinaryConv

Batch
Normalization

Aggregation

(a) Bi-RealNet Data Flow on Hardware

SRAM

DRAM
1-bit Inputs

1-bit Weights

16-bit Zero Points

1-bit
Residual Connection

1-bit Outputs

BNN
Computing Unit

Parameterized
Ghost-Sign

BinaryConv

Aggregation

SRAM

DRAM
1-bit Inputs

1-bit Weights

16-bit Zero Points

1-bit
Residual Connection

1-bit Outputs

BNN
Computing Unit

Parameterized
Ghost-Sign

BinaryConv

Aggregation

(b) BoolNet Data Flow on Hardware

Figure 7: Hardware data flow comparison between Bi-RealNet and BoolNet.

