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ABSTRACT
Facing the increasing heterogeneity of data in the real world, multi-

view learning has become a crucial area of research. Graph Convo-

lutional Networks (GCNs) are powerful for modeling both graph

structures and features, making them a focal point in multi-view

learning research. However, these methods typically only account

for static data dependencies within each view separately when

constructing the topology necessary for GCNs, overlooking po-

tential relationships across views in multi-view data. Furthermore,

there is a notable absence of theoretical guidance for constructing

multi-view data topologies, leading to uncertainty regarding the

progression of graph embeddings toward a consistent state. To

tackle these challenges, we introduce a framework named energy-

constrained multi-view graph diffusion. This approach establishes a

mathematical correspondence between multi-view data and GCNs

via graph diffusion. It treats multi-view data as a unified entity and

devises a feature propagation process with inter-view awareness by

accounting for both inter-view and intra-view feature flow across

the entire system. Additionally, an energy function is introduced to

guide the inter- and intra-view diffusion, ensuring the representa-

tions converge towards global consistency. The empirical research

on several benchmark datasets substantiates the benefits of the

proposed method and demonstrates its significant performance

improvement.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Computing methodologies→ Semi-supervised learning settings.

KEYWORDS
Multi-view learning, graph diffusion, graph convolutional networks.

1 INTRODUCTION
The growth in multimedia technology has significantly enhanced

the capability to gather real-world data from diverse sources, lead-

ing to the emergence of multi-view data. This variety of data en-

capsulates richer information by covering multiple facets of the

entities under study. This type of data contains more comprehen-

sive information by encompassing various aspects of the entity

under study. In this context, it is crucial to strategically leverage

a limited set of labeled samples to infer labels of vast amounts of

unlabeled data. Multi-view semi-supervised classification emerges

as a pivotal approach to tackle this challenge. Simultaneously, lever-

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

…

…

…

Pre Construct
Consistent Graph

Multi-view Data

Multi-view Data

Representation

Representation
Intra- and Inter-view
Graph Diffusion

(a)

(b)

Energy Function
Guide

Consistent Representation
GCN

Figure 1: Comparison of GCNs exploring consistency on
multi-view dataset. Subfigure (a) shows previous methods
leveraging pre-constructed topologies and shared represen-
tations for graph embeddings. Subfigure (b) illustrates the
proposed model, which conducts both intra- and inter-view
dynamic interactions and incorporates an energy function
to guide this process.

aging graphs to capture complex, irregular structures across diverse

fields has garnered significant attention. Graphs excel in depicting

intricate relationships, such as those observed among individuals

in social networks [27, 43, 44] and the interactive forces between

molecules [8, 22, 37], and many other domains [17, 20, 36]. Ac-

cordingly, graph-based multi-view semi-supervised classification

augments the model’s potential by leveraging the similarity re-

lationships within data. Among various graph-based multi-view

semi-supervised classification algorithms, the graph convolutional

network based approach meets researchers’ needs for deep models.

Graph Convolutional Networks (GCNs) have garnered consid-

erable attention for their capacity to model both data topology

and feature representation. These capabilities have rendered GCNs

crucial in a diverse array of domains., including bioinformatics

[10, 14, 40], action recognition [21, 25, 41], and traffic forecast-

ing [1, 13, 16]. Researchers have integrated GCNs with multi-view

learning by constructing inter-sample relationships directly from

the data and extracting consistent representations across different

views, as shown in Figure 1 (a). Despite these promising advance-

ments, these methods still face the following challenges: Building a

static data dependency within individual view restricts interactions

to samples within each view, overlooking potential cross-view in-

formation exchange. Additionally, there is still a lack of theoretical

understanding regarding how constructing data dependencies can

guide multi-view representations to achieve consistency.

To address the outlined challenges, we establish a connection

between multi-view learning and GCNs through the lens of graph

neural diffusion. Initially, we conceptualize multi-view data as a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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multivariate heat diffusion system, where heat can freely propagate

within each view and between corresponding points in different

views. We model this process through a graph diffusion equation.

We then propose a system energy function aimed at guiding inter-

view and intra-view diffusion towards a consistent direction for

multi-view representations, as demonstrated in Figure 1 (b). There-

fore, we develop a framework called Energy ConstrainedMulti-view

Graph Diffusion (ECMGD). Specifically, the proposed method ex-

tend graph diffusion to multi-view scenarios by introducing feature

flow across views. We then numerically discretize the modeled dif-

fusion equation to derive an updated formula representing each

view. To achieve global consistency, we introduce a energy function

for multi-view data as a regularization tool. This function ensures

that diffusion paths maintain consistent feature propagation both

within and across views. Through rigorous mathematical analysis,

we demonstrate the intrinsic equivalence between the discretized

form of the proposed multi-view diffusion equation and the dy-

namic minimization of the energy function. A defining characteris-

tic of the proposed framework is its dual diffusion function, which is

guided by the system energy. This includes an intra-view diffusion

function that facilitates feature propagation within the same view

for dynamic instance interactions, as well as an inter-view diffusion

function specifically designed to enable precise feature transfer

across different views of a particular instance. The contribution of

this paper can be summarized as:

• Propose the ECMGD framework to effectively address the

deficiency in inter-view perception when constructing data

dependencies in multi-view data.

• Provide a multi-view energy function to guide the represen-

tation update, and it is mathematically demonstrated that

ECMGD enables movement toward consistency.

• Experimental results demonstrate that the proposed model

achieves promising results in comparison to state-of-the-art

baselines on several datasets.

2 RELATEDWORK
This section briefly reviews the topics related to this work, including

graph-based multi-view learning and graph diffusion models.

2.1 Graph-based Multi-view Learning
Graph-based multi-view learning has emerged as a widely adopted

learning paradigm. Its fundamental objective is to effectively prop-

agate labels across different views of data by leveraging carefully

constructed sample similarity matrics. Satchidanand et al. [28] in-

troduced an approach by employing the extended uncertain random

walk framework to facilitate reasoning about multi-relational data.

Hao et al. [32] proposed to enhance the learning process of indi-

vidual view graph matrices and unified graph matrices, ultimately

leading to the development of a multi-view fusion technique. Fan

et al. [6] proposed a task-directed One2Multi graph autoencoder

clustering framework that effectively reconstructs multiple graph

views by learning node embeddings using one infographic view and

content data. Liang et al. [19] introduced a min-max formulation

for graph-based multi-view clustering. Subsequently, they trans-

formed this formulation into a convex and differentiable objective

function, enabling the utilization of a simplified gradient descent

algorithm to efficiently reach the global optimum. Huang et al. [11]

introduced an attention allocation method to enhance the efficacy

of graph-based multi-view clustering, utilizing both node attribute

similarity and self-supervised information to comprehensively as-

sess node relevance. These methods demonstrate that graph-based

multi-view learning yields superior results compared to traditional

approaches.

2.2 Graph Neural Diffusion
Graph neural diffusion refers to a diffusion process that is guided

by partial differential equations (PDEs). Eliasof et al. [5] drew inspi-

ration from the numerical solution method of PDEs on manifolds to

propose PDE-GCN which aimed at mitigating the oversmoothing

phenomenon observed in graph convolutional networks. Cham-

berlain et al. [2] established a connection between layer structure

and topology with discretized choices of time and space opera-

tors, addressing multiple challenges in graph learning including

depth, oversmoothing, noise perturbations, and bottlenecks. Zhao

et al. [42] put forward an approach to automatically learn the opti-

mal neighborhood size from the data, challenging the traditional

assumption that all GNN layers and feature channels should be

propagated using the same neighborhood size. Song et al. [29] ex-

tensively investigated the use of thermal semigroups to delve into

the enhanced robustness of graph neural PDEs against topologi-

cal perturbations and introduced a generalized graph neural PDE

framework to define a class of robust GNNs. Thorpe et al. [30] in-

troduced graph neural diffusion with source terms, a novel method

for deep learning on graphs with a limited number of labeled nodes

and without oversmoothing. Huang et al. [9] pioneered the devel-

opment of a comprehensive node diffusion model known as NDM

which is adept at capturing the distinct attributes of individual

nodes within the diffusion process, consequently facilitating the

creation of top-notch node representations. Although graph neural

diffusion models have garnered considerable success in various

domains, their extension to complex multi-view learning fields re-

mains challenging due to the intricate coupling among views that

cannot be overlooked.

3 METHOD
In this section, we elaborate on the proposed methodology, begin-

ning with the graph diffusion process and expanding it to encom-

pass multi-view graph diffusion. We propose an energy function for

the multi-view data to guide the representations of views towards

consistency. Figure 2 demonstrates the proposed model in detail.

3.1 Revisiting Graph Diffusion Process
Let G = (A,X) represents the graph, where A ∈ R𝑁×𝑁

and

X = [𝑥1; · · · ;𝑥𝑁 ] ∈ R𝑁×𝐷
. Here, 𝑁 corresponds to the number of

samples and 𝐷 denotes the number of dimensions. Drawing inspira-

tion from thermal diffusion on Riemannian manifolds, all instances

are treated as a cohesive entity and propagated as a continuous flow

of features. The smoothness of feature propagation between two

instances is directly proportional to the disparity in their respective

feature sets. Mathematically, this diffusion process can be formally
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Figure 2: The proposed ECMGD framework facilitates graph embeddings towards lower energy directions by orchestrating
intra- and inter-view diffusion.

described as follows:
𝜕H(𝑡)
𝜕𝑡

= 𝑑𝑖𝑣 (A ⊙ ∇H(𝑡))

H(0) = X,
(1)

where H(𝑡) represents the feature representation at time 𝑡 . The

symbol ⊙ denotes Hadamard product, A𝑖 𝑗 denotes the smoothness

of feature propagation between instances 𝑖 and 𝑗 , ∇ indicates the

difference between instances, and 𝑑𝑖𝑣 (·) represents the cumulative

feature flow. More specifically, for the 𝑖-th instance, the heat flow

per unit of time into its interior corresponds to the summation

of the heat changes over its space. Equation (1) can be written

explicitly as

𝜕h𝑖 (𝑡)
𝜕𝑡

=

𝑁∑︁
𝑗=1

A𝑖 𝑗 (h𝑗 (𝑡) − h𝑖 (𝑡)) . (2)

Since Equation (2) represents continuous dynamics, practical im-

plementation requires the utilization of numerical methods for

its solution. We extend this process to encompass more intricate

multi-view scenarios.

3.2 The Proposed Approach
Denote multi-view data as {X(𝑣) ∈ R𝑁×𝐷𝑣 }𝑉

𝑣=1
, where 𝐷𝑣 is the

dimensions of the 𝑣-th view. Denote heterogeneous graph data

G = {A(1) , · · · ,A(𝑉 ) ,X}, where A(𝑣) ∈ R𝑁×𝑁
represents the 𝑣-

th meta-path. Let Y ∈ RN×c be the label matrix and 𝑐 denotes the

number of classes. | | · | |2 denotes the Euclidean norm of vector

and | | · | |𝐹 represents the Frobenius norm of matrix. The proposed

model begins with a diffusion process that considers the multi-view

dataset as a unified entity, facilitating diffusion within and among

views via the flow of features. Given that each view in the multi-

view data exhibits distinct dimensions, potentially impeding feature

flow, we address this by independently mapping the features of

each view into a shared space. The specifics are outlined below:

H(𝑣) = X(𝑣)W(𝑣) + b(𝑣) , (3)

where W(𝑣) ∈ R𝐷𝑣×𝑑
and b(𝑣) ∈ R𝑑 are trainable weight matrices

and bias. In heterogeneous graph data, there is no need for feature

dimension alignment. Instead, information from multiple meta-

paths is fused into features to create the multi-view format. We can

substitute formula (3) with the subsequent equation:

H(𝑣) = GNN(A(𝑣) ,X), (4)

where GNN(·) can be a simple GNN architecture, such as GCN.

After undergoing the aforementioned process, we expand Equation

(2) into the multi-view formulation. The details can be expressed

as follows:

𝜕H(𝑣)
𝑖

(𝑡)
𝜕𝑡

=

𝑁∑︁
𝑗=1

S(𝑣)
𝑖 𝑗

(𝑡)
(
H(𝑣)
𝑗

(𝑡) − H(𝑣)
𝑖

(𝑡)
)
+

𝑉∑︁
𝑚=1

P𝑣𝑚 (𝑡)
(
H(𝑚)
𝑖

(𝑡) − H(𝑣)
𝑖

(𝑡)
)
,

(5)

where S(𝑣)
𝑖 𝑗

(𝑡) denotes the diffusion flow coefficient between posi-

tions 𝑖 and 𝑗 within the 𝑣-th view at time 𝑡 , while P𝑣𝑚 (𝑡) denotes
the diffusion flow coefficient between the 𝑣-th view and the𝑚-th

view at position 𝑖 at time 𝑡 . The interpretation of Equation (5) is

as follows: it represents the rate of change of feature at position

𝑖 for 𝑣-th view. This change is determined by the summation of

feature fluxes entering position 𝑖 from other positions within the

same view in space, as well as the feature fluxes from position 𝑖

of other views entering position 𝑖 of the given view. We rely on a

variety of ODE solvers for solving differential equations, including

the explicit Euler method, the modified Euler method, and the 4-th

order Runge-Kutta (RK) method. For example, the explicit Euler
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method with step size 𝛼 is as follows:

H(𝑣,𝑘+1) =
[
(1 − 2𝛼)I + 𝛼S(𝑣,𝑘 )

]
H(𝑣,𝑘 )

︸                              ︷︷                              ︸
𝑠𝑒𝑙 𝑓 −𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔

+𝛼
𝑉∑︁
𝑚=1

P(𝑘 )𝑣𝑚H(𝑚,𝑘 )

︸                ︷︷                ︸
𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

.

s.t. S(𝑣,𝑘 )1 = 1, P(𝑘 )1 = 1, P(𝑘 ) = P(𝑘 )
⊤
.

(6)

Theorem 3.1. Equation (6) converges iteratively when 0 < 𝛼 < 1.

Proof. The updating rules defined in Equation (6) can be rewrit-

ten as

H(𝑣,𝑘+1) = Q(𝑣,𝑘 )H(𝑣,𝑘 ) + 𝛼
𝑉∑︁
𝑚=1

P(𝑘 )𝑣𝑚H(𝑚,𝑘 ) , (7)

where Q(𝑣,𝑘 )
and P(𝑘 ) are the intra-view and inter-view diffusion

matrices, respectively. To ensure convergence, the spectral radius 𝜌

of the update matrix must satisfy 𝜌 (·) < 1. For the term involving

Q(𝑣,𝑘 )
, with 𝜆max (S(𝑣,𝑘 ) ) = 1, convergence requires:

| (1 − 2𝛼) + 𝛼𝜆max | < 1 ⇒ 0 < 𝛼 < 1. (8)

This ensures a contraction in the vector space. Given P(𝑘 ) is doubly
stochastic with 𝜆max (P(𝑘 ) ) = 1, it maintains the norm of H(𝑣,𝑘 )

,

thus reinforcing the constraint on 𝛼 to keep 𝜌 of the overall update

matrix below 1. □

Given the distinct nature of multi-view data in comparison to

graph data, it encompasses a broader spectrum of heterogeneous

information yet does not inherently possess a topological structure.

Hence, the development of intra- and inter-view diffusion coeffi-

cients is critical for facilitating a coherent diffusion process. We

define a energy of the multi-view diffusion system as follows:

𝐸 ({H(𝑣) }𝑉𝑣=1) =
1

2

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖, 𝑗

𝜂 (∥H(𝑣)
𝑖

− H(𝑣)
𝑗

∥2
2
)︸                                ︷︷                                ︸

𝑖𝑛𝑡𝑟𝑎−𝑣𝑖𝑒𝑤

+

1

4

𝑉∑︁
𝑚,𝑛

𝛿 (∥H(𝑚) − H(𝑛) ∥2𝐹 )︸                            ︷︷                            ︸
𝑖𝑛𝑡𝑒𝑟−𝑣𝑖𝑒𝑤

,

(9)

where 𝜂 (·) and 𝛿 (·) denote the monotonically increasing concave

functions. The first term quantifies the variance among nodes

within the same view, where a minimal variance correlates with

reduced energy levels. Similarly, the second term quantifies the

disparity between nodes across different views, with the princi-

ple that a lesser disparity also results in decreased energy. This

dual-term representation underlines the system’s equilibrium, em-

phasizing the importance of minimizing both intra- and inter-view

discrepancies to achieve optimal energy efficiency.

H(𝑣,𝑘+1) =
[
(1 − 2𝛼)I + 𝛼S(𝑣,𝑘 )

]
H(𝑣,𝑘 ) + 𝛼

𝑉∑︁
𝑚=1

P(𝑘 )𝑣𝑚H(𝑚,𝑘 ) .

s.t. S(𝑣,𝑘 )1 = 1, P(𝑘 )1 = 1, P(𝑘 ) = P(𝑘 )
⊤
,

𝐸 ({H(𝑣,𝑘 ) }𝑉𝑣=1) < 𝐸 ({H(𝑣,𝑘+1) }𝑉𝑣=1) .

(10)

Addressing the equation presented necessitates navigating through

an extensive array of constraints, posing significant challenges in

deriving appropriate values for S(𝑣,𝑘 ) and P(𝑘 ) . According to [35]

we can learn that the proposed energy upper bound is:

𝐸 ({H(𝑣) }𝑉𝑣=1) =
1

2

𝑉∑︁
𝑣=1

𝑁∑︁
𝑖, 𝑗

[
S(𝑣)
𝑖 𝑗

∥H(𝑣)
𝑖

− H(𝑣)
𝑗

∥2
2
− 𝜂 (S(𝑣)

𝑖 𝑗
)
]

+1
4

𝑉∑︁
𝑚,𝑛

[
P𝑚𝑛 ∥H(𝑚) − H(𝑛) ∥2𝐹 − ˜𝛿 (P𝑚𝑛)

]
,

(11)

where 𝜂 (·) and ˜𝛿 (·) correspond to the conjugate functions of 𝜂 (·)
and 𝛿 (·). The upper bound is realized if and only if the conditions

are satisfied:

S̃(𝑣)
𝑖 𝑗

=
𝜕𝜂 (L2)
𝜕L2

����
L2=∥H(𝑣)

𝑖
−H(𝑣)

𝑗
∥2
2

, P̃𝑚𝑛 =
𝜕𝛿 (G2)
𝜕G2

����
G2=∥H(𝑚)−H(𝑛) ∥2

𝐹

,

(12)

where S(𝑣)
𝑖 𝑗

=
S̃(𝑣)
𝑖 𝑗∑𝑁

𝑗=1 S̃
(𝑣)
𝑖 𝑗

. In this paper, we specify the function 𝜂 (𝑥) =

𝛿 (𝑥) = 𝑥 − 2 log(𝑒
𝑥
2
−1 + 1), and then Equation (12) can be rewrite

as:

S̃(𝑣)
𝑖 𝑗

=
1

1 + 𝑒−𝑓 (H
(𝑣)
𝑖
,H(𝑣)

𝑗
)
, P̃𝑚𝑣 =

1

1 + 𝑒−𝑔 (H(𝑚) ,H(𝑣) )
, (13)

where 𝑓 : R𝑑 × R𝑑 → R, 𝑔 : R𝑁×𝑑 × R𝑁×𝑑 → R. To ensure the

inter-view diffusion matrix P retains symmetry and bi-randomness

throughout the computation, we employ the differentiable projec-

tion algorithm as proposed by Chen et al. (2023) [4]:

J0 (P̃) =
softmax𝑑𝑖𝑚=0 (P̃) + softmax𝑑𝑖𝑚=1 (P̂)

2

, (14)

J1 (P̃) = ReLU(P̃), (15)

J2 (P̃) = P̃ − 1

𝑉
(P̃1 − 1)1⊤, (16)

J3 (P̃) = P̂ − 1

𝑉
1(1⊤P̃ − 1⊤), (17)

where 1 denotes all 1 vector. Equation (15) - (17) undergoes iterative
computations, necessitating a large number of iterations to satisfy

the desired conditions. To expedite the convergence of this process,

Equation (14) utilizes an initialization to approximate the constraint-

satisfying matrix P̃. Ultimately, we obtain P = J3 (J2 (J1 (J0 (P̃)))).
By selecting both intra-view and inter-view diffusion functions,

the energy function reaches its upper bound. We compute the

energy function 𝐸 ({H(𝑣) }𝑉
𝑣=1

) partial derivative with respect to

H(𝑣)
. Following this computation, we implement a gradient descent

algorithm in a step-wise manner, adopting a step size denoted by 𝛾 ,

as delineated below:

H(𝑖,𝑘+1) = H(𝑖,𝑘 ) − 𝛾
𝜕𝐸 ({H(𝑣,𝑘 ) }𝑉

𝑣=1
)

𝜕H(𝑖,𝑘 )

=

[
(1 − 2𝛾)I + 𝛾S(𝑖,𝑘 )

]
H(𝑖,𝑘 ) + 𝛾

𝑉∑︁
𝑚=1

P(𝑘 )
𝑖𝑚

H(𝑚,𝑘 ) .

(18)

The detailed calculation process of Equation (18) is shown in Ap-
pendix A. Equation (18) reveals its structural similarity to Equation

(6), indicating that executing a single iteration of the update process

effectively corresponds to a reduction in the overall system energy.
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After performing 𝐾 iterations, we attain the final potential repre-

sentation for each view. Subsequently, we fuse the representation

from all views, culminating in the final representation denoted as:

Z = F (H(1,𝐾 ) , · · · ,H(𝑉 ,𝐾 ) ), (19)

where F (·) is a fuse function, typically implemented as sum, aver-

age, and concatenation. We ultimately employ a Multilayer Percep-

tron (MLP) to map the fused representation onto the probabilities

of each category, as outlined below:

Ỹ = MLP(Z), (20)

where MLP is parameterized withW ∈ R𝑑×𝑐 and b ∈ R𝑐 .
For a semi-supervised classification task, the proposed method

employs a loss function defined by the cross-entropy errors:

L = −
∑︁
𝑖∈Φ

𝑐∑︁
𝑗=1

Y𝑖 𝑗 𝑙𝑛Ỹ𝑖 𝑗 , (21)

where Φ is the set of samples with labels. The procedural steps of

the proposed method can be summarized in Algorithm 1.

Algorithm 1 Energy-Constrained Multi-view Graph Diffusion

Input: Multi-view data X = {X(1)
, · · · , X(𝑉 ) }, label set Y, the

hyperparameters 𝐾 and 𝛼 .

Output: Predictive output Ỹ.
1: Initialize {W(𝑣) , b(𝑣) }𝑉

𝑣=1
and {W, b} of the networks;

2: while not convergent do
3: for 𝑣 = 0 → 𝑉 do
4: Compute H(𝑣,0)

by Equation (3)

5: for 𝑘 = 1 → 𝐾 do
6: Compute S(𝑣,𝑘 ) and P(𝑘 ) by Equation (13);

7: Re-normalize P(𝑘 ) by Equation (14) - (17)

8: Compute H(𝑣,𝑘 )
by Equation (10);

9: end for
10: end for
11: Compute Z by Equation (19);

12: Compute Ỹ by Equation (20);

13: Compute L by Equation (21);

14: Optimize {W(𝑣) , b(𝑣) }𝑉
𝑣=1

and {W, b} of the networks with
backward propagation;

15: end while
16: return Predictive output Ỹ.

4 EXPERIMENT
In this section, we evaluate ECMGD for two tasks: 1) multi-view

data comprising multiple observable modal feature matrices, and

2) heterogeneous graph data containing multiple heterogeneous

graphs and one observable feature matrix. For each task, we bench-

mark ECMGD against a range of closely related competing models.

4.1 Datasets
We evaluate ECMGD on 8 real-world multi-view datasets and 4

heterogeneous graph datasets. Among them, BDGP, Flickr, and

NUSWIDE are vision-language datasets; HW, GRAZ02, Caltech102,

OutScene, NoisyMNIST, and Scene15 are digit image datasets; and

YouTube consists of video games data. For the heterogeneous graph

datasets, ACM and DBLP are citation networks; IMDB is a movie

dataset; and YELP is a subset derived from a merchant review web-

site. Table 1 illustrates a brief summary of these datasets. Additional

details of the datasets can be found in Appendix B.

Table 1: A brief description of multi-view data and heteroge-
neous graph data.

Datasets #Samples #Properties #Views #Classes

BDGP 2,500 Multi-modal 2 5

Flickr 12,154 Multi-modal 2 7

HW 2,000 Multi-view 6 10

GRAZ02 1,476 Multi-view 6 4

Scene15 4,485 Multi-view 3 15

OutScene 2,688 Multi-view 4 8

Caltech102 9,144 Multi-view 6 102

Youtube 2,000 Multi-view 6 10

ACM 3,025 Heterogeneous graph 3 3

DBLP 4,057 Heterogeneous graph 4 4

IMDB 4,780 Heterogeneous graph 4 3

YELP 2,614 Heterogeneous graph 4 3

4.2 Compared Methods
For multi-view classification, HLR-M

2
VS [38] and ERL-MVSC [7]

are traditional baseline, Co-GCN [18], DSRL [33], LGCN-FF [3],

IMVGCN [36], PDMF [12], and GEGCN [23] are networks-based

methods. For heterogeneous graph classification, we employ GCN

[15], HAN [34], DGI [31], DMGI [26], SSDCM [24], MHGCN [39].

Details of the comparison algorithm can be found in Appendix C.

4.3 Experimental Settings
All compared methods use the default parameters following the

original paper. For the proposed method, we specify the following

hyperparameters: The layers number 𝐾 = 3, step size 𝛼 = 0.1, MLP

with neuron sizes [𝐷𝑣 , 64, c], the learning rate is set as 5𝑒−3, training
epoch is 200, weight decay set as 5𝑒−5, and random dropout is 0.5. In

multi-view semi-supervised classification, ECMGD leverages a split

of 10% supervised samples for the training and 90% unsupervised

samples for the testing. Given the absence of a designated validation

set, we adopt the strategy of utilizing the model from the final

iteration for testing purposes. Conversely, for the semi-supervised

classification of heterogeneous graph data, we employ a partitioning

scheme of 20% for training, 10% for validation, and 10% for testing.

Some experimental results are presented below, with additional

results provided in Appendix D.

4.4 Classification on Multi-view Datasets
Performance. The experimental results presented in Table 2 indi-

cate that the proposed algorithm surpasses other algorithms across

most datasets. Particularly noteworthy is its superior performance

on datasets such as Flickr, Scene15, and Youtube, where it achieves

accuracy improvements of 3.1%, 3.5%, and 3.7%, respectively, com-

pared to the algorithm with the second-highest accuracy. The only
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Table 2: Classifiation results (mean% and standard deviation%) of all compared semi-supervised classification methods with 10%
labeled samples as supervision, where the best results are highlighted in red and the second best results are highlighted in blue.

Dataset Metrics HLR-M
2
VS ERL-MVSC Co-GCN DSRL LGCN-FF IMvGCN PDMF GEGCN ECMGD

BDGP

ACC 94.3 (1.2) 93.5 (0.8) 94.6 (1.7) 98.0 (1.7) 98.3 (0.2) 93.3 (0.5) 90.1 (1.6) 95.6 (0.7) 98.1 (0.1)

F1 94.3 (1.2) 93.5 (0.8) 94.6 (1.7) 98.0 (1.7) 98.3 (0.2) 93.3 (0.5) 90.1 (1.6) 95.6 (0.7) 98.1 (0.1)

Flickr

ACC 56.1 (0.6) 59.2 (0.5) 61.2 (2.6) 67.4 (8.3) 52.2 (0.5) 59.1 (0.8) 64.0 (0.7) 64.3 (0.1) 70.5 (0.0)

F1 55.6 (0.6) 59.0 (0.5) 61.1 (2.4) 67.2 (8.5) 52.0 (0.5) 58.3 (1.0) 63.2 (0.8) 64.3 (0.1) 70.4 (0.0)

HW

ACC 85.3 (0.0) 87.0 (0.4) 91.6 (2.7) 77.9 (0.9) 92.6 (0.1) 93.4 (0.8) 90.0 (2.3) 94.8 (0.2) 95.6 (0.4)

F1 89.3 (0.3) 92.7 (0.5) 86.9 (0.0) 87.5 (0.3) 91.5 (2.8) 93.4 (0.9) 90.0 (2.3) 94.8 (0.3) 95.6 (0.4)

GRAZ02

ACC 54.7 (2.6) 54.1 (1.3) 40.5 (2.6) 48.1 (1.0) 49.6 (2.5) 56.2 (0.5) 29.7 (1.4) 61.6 (0.5) 61.9 (0.2)

F1 43.6 (3.6) 54.8 (1.7) 56.3 (1.8) 54.4 (1.2) 38.9 (1.5) 48.6 (1.0) 29.7 (1.4) 61.5 (0.3) 61.7 (0.2)

Scene15

ACC 67.4 (1.3) 63.1 (1.2) 58.7 (1.1) 61.8 (0.9) 50.1 (4.4) 65.6 (3.1) 39.8 (4.6) 71.8 (0.3) 75.3 (0.4)

F1 67.3 (0.9) 63.9 (1.3) 56.7 (0.9) 60.5 (0.8) 42.3 (5.7) 62.0 (2.9) 39.8 (4.6) 70.1 (0.3) 73.8 (0.3)

OutScene

ACC 73.3 (1.3) 68.8 (1.4) 71.0 (2.1) 44.7 (0.8) 61.1 (11.0) 77.2 (0.7) 57.9 (4.7) 77.6 (0.3) 79.3 (0.3)

F1 75.2 (1.2) 69.2 (1.4) 71.3 (2.0) 42.1 (2.9) 57.9 (15.6) 77.4 (0.8) 57.9 (4.7) 77.9 (0.3) 79.3 (0.2)

Caltech102

ACC 48.1 (0.4) 50.8 (0.6) 37.4 (8.7) 52.9 (0.6) 40.2 (0.8) 47.6 (0.1) 15.3 (0.7) 51.2 (0.1) 54.4 (0.3)

F1 31.2 (0.7) 33.8 (0.5) 20.9 (6.4) 34.6 (1.2) 33.4 (0.5) 24.3 (0.1) 15.3 (0.7) 33.7 (0.1) 35.3 (0.4)

Youtube

ACC 35.9 (6.0) 45.2 (1.0) 29.3 (0.3) 44.7 (0.8) 47.3 (1.8) 47.2 (0.6) 36.9 (3.3) 55.7 (0.3) 59.4 (0.4)

F1 42.3 (4.0) 47.9 (0.9) 21.5 (1.3) 42.1 (2.9) 42.3 (5.7) 45.7 (0.6) 36.9 (3.3) 55.7 (0.3) 59.0 (0.4)

PDMF ECMGDGEGCNIMvGCNLGCN-FF

Figure 3: T-sne visualization of LGCN-FF, IMvGCN, GEGCN, PDMF, and ECMGD on dataset HW.

Table 3: Classification on large-scale datasets using accuracy
as evaluate metric, where ‘OOM’ denotes Out-of-Memory.

Metric

Datasets NoisyMNIST NUSWIDE

Methods / Size 30,000 20,000

ACC

HLR-M
2
VS OOM OOM

ERL-MVSC 90.4 (0.0) 51.2 (0.2)

Co-GCN 87.9 (1.9) 63.1 (2.2)

DSRL OOM OOM

LGCN-FF OOM OOM

IMvGCN 80.8 (0.1) 53.2 (1.2)

PDMF 87.9 (1.2) 56.8 (0.4)

GEGCN OOM OOM

ECMGD 90.5 (0.1) 70.8 (0.1)

exception is the BDGP dataset, where the proposed algorithm per-

forms slightly lower than LGCN-FF. Furthermore, Table 3 illustrates

the proposed method continues to demonstrate competitive perfor-

mance even on large-scale multi-view datasets.

Epoch 1 Epoch 50 Epoch 200

Figure 4: Visualization of the inter-view diffusion matrix P
of ECMGD at various epochs, where red represents the high
value and blue denotes the low values.

Visualization. Figure 3 provides a visualization of the classifi-

cation outcomes across various compared methods applied to the

HW dataset. Observation of the figure shows that the proposed

method significantly enhances inter-class separability within this

dataset. This enhanced separability underscores the superiority of

the proposed method in delineating between classes more distinctly.

Figure 4 presents a visualization of the inter-view diffusion matrix P
across varying numbers of layers, offering empirical evidence of the

convergence of views with an increasing number of iterations. This
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Table 4: Accuracy of all compared algorithms on the dataset Youtube under different ratios of supervision, where ↑ represents
the gap to the second highest accuracy.

Method / Ratio 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

HLR-M
2
VS 34.9 55.5 59.7 62.5 66.8 67.4 72.1 74.8 74.1 74.7

ERL-MVSC 42.4 50.7 55.7 62.3 61.7 62.0 65.0 64.8 67.9 68.7

Co-GCN 22.2 25.6 31.9 28.6 30.9 30.5 32.7 33.8 39.0 44.7

DSRL 33.0 44.7 51.1 52.8 51.6 51.5 53.4 53.3 56.6 55.8

LGCN-FF 40.1 40.2 47.5 45.4 48.3 49.1 52.4 55.6 52.1 56.6

IMvGCN 48.0 56.8 62.2 61.8 66.0 66.6 65.6 65.0 67.1 67.7

GEGCN 46.2 55.4 58.0 61.9 61.9 64.1 66.2 65.3 67.7 68.5

PDMF 31.1 33.4 38.0 33.0 39.5 36.4 37.2 37.8 40.5 48.0

ECMGD 48.2 (0.2↑) 58.4 (1.6↑) 67.0 (4.8↑) 71.3 (8.8↑) 73.3 (6.5↑) 76.0 (8.6↑) 77.0 (4.9↑) 76.3 (1.5↑) 77.7 (3.6↑) 78.3 (3.6↑)

convergence demonstrates the efficacy of the proposed method in

harmonizing disparate views toward a consistent representation.

Traing set size. Table 4 elucidates the performance accuracy

achieved by various algorithms under differing levels of supervision.

An observation from this data is that the proposed method not only

excels under constrained supervision rates but also significantly

surpasses the algorithm with the next highest accuracy by a margin

of 8.3% at a 20% supervision rate. This substantial differential un-

derscores the adaptability and efficiency of the proposed algorithm

in semi-supervised learning contexts. Such findings compellingly

argue in favor of the proposed algorithm’s enhanced capability to

leverage limited labeled data more effectively.

HW Youtube

ACM DBLP

Figure 5: Loss and accuracy / macro-F1 curves of ECMGD.

Convergence.The convergence behavior of the proposedmethod

is illustrated in Figure 5, which depicts the convergence curves for

various datasets. From this figure, there is a gradual decrease in

training set loss as the number of epochs increases, alongside a cor-

responding gradual increase in the accuracy of the test/validation

sets. Notably, for the multi-view datasets, satisfactory convergence

is achieved at approximately 40 epochs. In contrast, the heteroge-

neous graph datasets demand a significantly longer duration to

reach convergence, typically around 200 epochs.

Table 5: Classification results of eight compared methods on
four benchmark datasets with 20% samples as supervision.

Methods

ACM DBLP IMDB YELP

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

GCN 78.6 75.1 90.7 91.4 24.3 55.4 52.0 67.4

SGC 67.5 67.2 87.3 90.4 27.0 54.8 51.9 67.4

DGI 79.3 79.6 87.9 90.2 26.3 55.2 50.3 68.3

HAN 85.7 85.1 89.3 90.1 49.8 54.9 48.3 48.9

DMGI 87.9 87.6 90.0 90.8 35.3 57.3 51.6 69.9

IGNN 80.9 79.5 89.1 90.2 40.3 50.0 64.2 71.2

SSDCM 87.7 87.6 89.4 89.9 49.4 59.1 52.7 70.2

MHGCN 88.9 89.1 90.9 92.1 50.5 64.2 54.6 70.7

ECMGD 93.0 92.9 92.3 92.7 50.0 62.6 73.9 77.8

ACM IMDB

Figure 6: Running time (seconds) of compared HGNNs with
500 training epochs on dataset ACM and IMDB.

4.5 Classification on Heterogeneous Graph
In this subsection, we extend the experimentation to heterogeneous

graph data as shown in Table 5. The results indicate that the pro-

posed method achieves superior performance on datasets ACM,

DBLP, and YELP. Notably, the proposed algorithm exhibits slightly

lower performance compared to MHGCN on the IMDB dataset.

Training Time. In addition, we evaluate the computational

efficiency of various algorithms when applied to heterogeneous

graph data, with the findings detailed in Figure 6. The compara-

tive analysis reveals that, while the proposed method exhibits a

marginal delay in execution time relative to HAN, it nonetheless

delivers superior performance outcomes. Significantly, it maintains
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Figure 7: Performance comparisons among model variants on eight datasets.

a considerable speed advantage over both MHGCN and SSDCM.

This indicates that the proposed method achieves a clear balance

between computational efficiency and performance.

4.6 Ablation Study
In this subsection, we evaluate the effectiveness of the proposed

method by progressively removing the intra-view diffusion matrix

S and the inter-view diffusion matrix P. For the intra-view diffusion

process, we employ the 𝑘-nearest neighbor (𝑘NN) technique to con-

struct the topology of each view. To assess the inter-view diffusion

process, we conduct experiments using the identity matrix. The

experiment results are shown in Figure 7. Notably, the worst per-

formance is observed when neither S nor P is used. Subsequently,

the performance of the algorithm improves when either S or P
is retained, with the highest performance observed when both S
and P are used. However, an interesting phenomenon emerges: the

impact of missing P on many datasets is much smaller than missing

S. However, the absence of P significantly affects performance on

the Flickr dataset. This observation suggests that views in the Flickr

dataset may contain more disparate and inconsistent information,

necessitating inter-view diffusion to integrate them effectively.

4.7 Parameter Sensitivity
In this subsection, we investigate the parameter sensitivity of the

proposed model by examining the impact of different step sizes (𝛼)
and varying numbers of layers (𝐾) on the performance of the pro-

posed model. Figure 8 depicts the experimental results. The figure

reveals a notable trend: as the value of 𝛼 increases, the performance

of the proposed model decreases while the variance increases. This

phenomenon arises from the resemblance of 𝛼 to the step size

utilized in gradient descent. With larger values of 𝛼 , the energy

oscillation becomes more pronounced, especially as the number

of layers (𝐾) grows. Consequently, this oscillation may lead to

convergence toward suboptimal energy states, ultimately resulting

in diminished performance.

HW Youtube
Figure 8: The classification accuracy of ECMGD w.r.t hyper-
parameters 𝛼 and 𝐾 on Youtube dataset.

5 CONCLUSION
In this paper, we introduced a framework called ECMGD, which

re-bridges multi-view learning with GCNs through the lens of

graph diffusion. This approach effectively closed the gap between

GCNs and the pursuit of multi-view consistency, addressing an

existing disconnect. Additionally, we proposed an integrated energy

function tailored for the multi-view framework as a theoretical

basis. The function coordinates intra- and inter-view diffusion to

promote cross-view consistency. Through rigorous mathematical

derivations, we determined that the proposed iterative algorithm

is equivalent to a one-step gradient descent on the energy of the

multi-view system. Experimental evaluations on various multi-

view datasets and heterogeneous graph datasets confirmed the

superiority of ECMGD. Moving forward, we aim to further refine

ECMGD to improve its applicability in more complex scenarios.
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