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Abstract

To thrive in complex environments, animals and artificial agents must learn to act1

adaptively to maximize fitness and rewards. Such adaptive behavior can be learned2

through reinforcement learning1, a class of algorithms that has been successful at3

training artificial agents and at characterizing the firing of dopamine neurons in4

the midbrain. In classical reinforcement learning, agents discount future rewards5

exponentially according to a single time scale, known as the discount factor. This6

strategy is at the odds with the empirical observation that humans and animals7

use non-exponential discounts in many situations. Here, we explore the presence8

of multiple timescales in biological reinforcement learning. We first show that9

reinforcement agents learning at a multitude of timescales possess distinct com-10

putational benefits. Next, we report that dopamine neurons in mice performing11

two behavioral tasks encode reward prediction error with a diversity of discount12

time constants. Our model explains the heterogeneity of temporal discounting13

in both cue-evoked transient responses and slower timescale fluctuations known14

as dopamine ramps. Crucially, the measured discount factor of individual neu-15

rons is correlated across the two tasks suggesting that it is a cell-specific property.16

Together, our results provide a new paradigm to understand functional heterogene-17

ity in dopamine neurons, and open new avenues for the design of more efficient18

reinforcement learning algorithms.19

1 Computational advantages of multi-timescale learning.20

In traditional reinforcement learning (RL), value estimates V (s) encode the sum of discounted future21

rewards expected from the current state s (Eq. 1, left). The exponential temporal discount is not an22

arbitrary choice but a consequence of using Temporal Difference (TD) learning: after transitioning23

from s to s′ and receiving reward r, a TD-error δk = r+γkV
s′−V s is used to update V s ← V s+αδ.24

This discount factor can be interpreted as capturing uncertainty about the evolution of future states25

[1–3]. Labelling values by their discount and taking the expectation inside the sum reveals a very26

useful property[4]: Vγ(s) is the Z-transform of E[rτ |s] (i.e. the discrete version of the Laplace27

transform). Since the Z-transform is invertible, multi-timescale values encode not only the expected28

sum of discounted rewards, as in traditional RL, but also the expected reward at all future timesteps29

(Eq. 1, right).30

Vγ(s) = E
[∑∞

τ=0
γτrτ

∣∣s] =
∑∞

τ=0
γτE[rτ

∣∣s], Z−1{Vγ(s)}γ∈(0,1) = {E[rτ |s]}∞τ=0 (1)

In single-timescale value learning, the value of a cue (at t = 0) predicting future rewards (Fig. 1a, first31

panel) is evaluated by discounting these rewards with a single exponential discounting function (Fig.32

1a, second panel). The expected reward size and timing are encoded, but confounded, in the value of33

the cue (Fig. 1a, third panel). In multi-timescale value learning, the same reward delays are evaluated34
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with multiple discounting functions (Fig. 1b, second panel). The relative value of a cue as a function35

of the discount depends on the reward delay (Fig. 1b, third panel). A simple linear decoder based on36

the Laplace transform can thus reconstruct both the expected timing and magnitude of rewards (Fig.37

1b, fourth panel).38
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Figure 1: Computational benefits of multi-timescale reinforcement learning.

To illustrate the computational advantages of Laplace-transform multi-timescale agents , we consider39

several simple example tasks. The agent navigates through a linear track (a sequence of 15 states),40

where it encounters a reward of a certain magnitude (R) at a specific time point (tR, Fig. 1c). The41

value of R and tR changes across episodes and remains constant within episodes. Each episode42

is initiated by a cue presented at the initial state (s). Within each episode, the agent first learns43

the expected future rewards. Using the learned value Vγ(s) associated with the cue, the agent then44

performs various tasks, using a deep neural network (DNN, using a policy gradient [PG] method45

trained across episodes (Fig. 1d). Performance is reported after 1,000 training episodes. Error bars46

are the standard deviations (s.d.) across 100 test episodes and 3 trained policy gradient (PG) networks.47

We first asked whether an agent can correctly discern the magnitude (R) and the timing (tR) of reward48

separately (Fig. 1e). We vary R and tR across episodes. In each episode, the agent learns the values49

of states using 1, 2 or 3 discount factors. We then train the DNN across episodes to decode the timing50

of the reward (tR) with the vector of values associated with the cue Vγ(s) as its input. The pattern of51

values across discount factors (third panel in Fig. 1b) is invariant to reward magnitude and allows52

multi-timescale agents to decode the timing of reward.53

We further hypothesized that, multi-timescale agents can leverage this advantage of extracting timing54

information even before value learning has fully converged (Fig. 1f). Consider an agent that has55

encountered a reward only a limited number of times (N ). For single-timescale systems, a high value56

of the cue could be due to a short delay (tR) or simply because the value estimate has undergone more57

positive updates from an initial value of 0. In contrast, the shape of values encoded across discount58

factors is invariant to the number of reward encounters (N ), to the extent that all value estimates59

depart from similar baselines and share similar learning parameters. As a result, multi-timescale60

agents can decode the time of reward (tR) even in situations where learning is incomplete (Fig. 1f).61

An alternative way to leverage multi-timescale learning benefits is to employ them as auxiliary tasks62

(Fig. 1g, top). These networks only act according to the value of a single behavioral timescale, but63

concurrently learn about multiple other timescales as auxiliary tasks to enhance the representation in64

the hidden layers, which allows them to obtain superior performance in complex RL environments65

[3]. Multi-timescale systems could preferentially adjust between myopic and farsighted perspectives66

based on context and the accuracy (measured as fraction of concordant state pairs between the67

empirical value function and the discount specific Q-value) with which Qγ(s, abeh) captures the true68

empirical V true
γbeh

(s) across states depends on whether the agent is close to the goal (blue) or far from69
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the goal (orange) (Fig. 1g, bottom, Error bars are s.e.m across 20 trained networks, maximums are70

highlighted with stars.).71

To summarize, in multi-timescale value systems the vectorized learning signal robustly contains72

temporal information independently of the information about reward magnitude. This property73

empowers agents to selectively focus on either myopic or far-sighted estimates depending on the74

current situation.75
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Figure 2: Dopamine neurons exhibit a diversity of discount factors that enables decoding of
reward delays.

2 Dopamine-based multi-scale reinforcement learning76

Considering these computational advantages, we wondered whether the TD-error conveyed by77

dopaminergic neurons [5] carried signatures of a multi-timescale computation. We recorded the78

activity of optogenetically identified dopaminergic (DA) neurons in mice performing two behavioural79

tasks. In a cued delayed reward task, in each trial, one of 4 possible cues predicted the reward delay80

(Fig. 2a). The mice exhibit anticipatory licking prior to reward delivery for all 4 reward delays81

indicating that they have learned task contingencies (Fig. 2b, mean across behavior for all recorded82

neurons, shaded error bar indicates 95% confidence interval using bootstrap). The DA neurons’83

(n=50) responses to odour cues decreased as a function of increasing delays (Fig. 2c, Inset shows the84

firing rate in the 0.5s following the cue predicting reward delay. The firing rate in the shaded grey85

box (0.1s < t < 0.4s) was used as the cue response in subsequent analysis). These neural discount86

functions were diverse and well-fit by an exponential discount function, allowing us to estimate a87

distinct discount factor γ for each DA neuron (Fig. 2d). The dopaminergic cue responses for each88

reward delay exhibited unique shapes as a function of discount factors, suggesting that reward timing89

information is embedded in the dopaminergic population responses (Fig. 2e, compare with Fig. 1b,90

third panel, Thick lines, smoothed fit, dotted lines, theory, dots, responses of individual neurons.).91

For each neuron we plot the relative value of future events given its inferred discount factor, resulting92

in the discount matrix (Fig. 2f), which we can invert using a parameter-free regularized inverse93

Z-transform (we compute the singular value decomposition (SVD) of the discount matrix L. Then,94

we use the SVD to compute a regularized pseudo-inverse L−1. Finally, we normalize the resulting95

prediction into a probability distribution, Fig. 2g and see also ref [4]). The subjective expected timing96

of future reward E(r|t) can be decoded from the population responses to the cue predicting reward97

delay. Decoding based on mean cue responses for test data (Fig. 2h, top row). The ability to decode98

the timing of expected future reward is not due to a general property of the discounting matrix and99

collapses if we randomize the identity of the cue responses (Fig. 2, bottom row). This suggests that100
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the dopaminergic signal also represents temporal evolution of the expected reward via a Z-transform101

and downstream areas can exploit the computational advantages highlighted above.102

In a navigation task, mice experienced a 1-D linear track in virtual reality at the end of which they103

obtained a reward (Fig. 3a). Average activity of single neurons (n=90) exhibited an upward ramp104

as mice approached the reward, as has been found in bulk dopaminergic signal across several tasks105

[6, 7], but individual DA neurons showed diverse shapes of ramping activity, including upward,106

downward, and non-monotonic ramps (Fig. 3c). We hypothesized that ramping activity occurs due107

to mismatch between the increase in the value function that each DA neuron experiences and the108

discount factor that each DA neuron use to compute the TD-error (Fig. 3e-h). For agents experiencing109

an exponential value function (Fig. 3e-f) there is no TD error for an agent with the same discount110

factor as the parameter of the value function (red line). The TD error ramps upwards (downwards) if111

the discount factor is larger (smaller), dark red and light red lines respectively. In the case a cubic112

value function (Fig. 3g-h), Agents with large (small) discount factor experience a monotonic positive113

(negative) ramp in their TD error (dark red and light red lines respectively). Agents with intermediate114

discount factors experience non-monotonic ramps (red line). Unlike in the exponential value function115

case, no agent matches its discount to the value function at all the time steps (Fig. 3h). We found116

the qualitatively different ramping activities of single neurons can be quantitavely explained by this117

model (Fig. 3d) in which neurons have different discount factors (Fig. 3j, 0.42 ± 0.23, mean ± s.d.)118

and experience a common value function (Fig. 3k, grey line, individual bootstrap estimates. blue119

line, mean estimate, a similar formulation can be derived for a common reward timing expectation).120

Finally, a subset of neurons (n=43 neurons) was recorded across the two behavioural tasks. The121

inferred discount factors in the VR task and in the cued delay task were correlated (Fig. 3l, r =122

0.45, P = 0.0013), and we were able to decode reward timing in the cued delayed reward task using123

discount factors inferred in the VR task. These results suggest that individual DA neurons have their124

own characteristic discount factor that dictates the parameter they use to compute the TD-error and125

regulate learning.126

These results show that diversity in slow changes in activity across single neuron (known as dopamine127

ramps) in environments with gradual changes in value can be explained by a diversity of discount128

factors and is a signature of multi-timescale reinforcement learning. They also suggest that the129

discount factor (or its ranking) is a cell-specific property and strongly constrains the biological130

implementation of multi-timescale reinforcement learning in the brain.131
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Figure 3: The diversity of discount factors across dopamine neurons explains qualitatively
different ramping activity.

To conclude, our study investigates the computational advantages of multi-timescale reinforcement132

learning and establishes a new paradigm to understand the functional role of prediction error com-133

putation in dopaminergic neurons. It opens new avenues to develop mechanistic explanations for134

deficits in intertemporal choice in disease and inspire the design of new algorithms.135
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