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Positive: Moonwalk from left to right.

Negative: Moonwalk from right to left.

Figure 1: (Left) An example data point from the spatial category. Both videos last less than 10
seconds. Each data point contains two pairs of video-caption pairs counterfactual to each other.
(Right) Models perform significantly poorer than humans, performing better on the text score metric
than on the video score metric, as defined in Section 4.1.

Abstract

There has been growing sentiment recently that modern large multimodal models1

(LMMs) have addressed most of the key challenges related to short video com-2

prehension. As a result, both academia and industry are gradually shifting their3

attention towards the more complex challenges posed by understanding long-form4

videos. However, is this really the case? Our studies indicate that LMMs still lack5

many fundamental reasoning capabilities even when dealing with short videos.6

We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark7

encompassing 1000 short and natural video-caption pairs. We demonstrate that8

existing LMMs severely struggle to distinguish temporal differences between dif-9

ferent actions and object transformations. For example, the best model OpenAI o110

only obtains ∼50% on our text and video scores, showing a large gap compared11

to the human baseline of ∼90%. All open-source multimodal models and CLIP-12

based models perform much worse, producing mostly random chance performance.13

Through this work, we shed light onto the fact that temporal reasoning in short14

videos is a problem yet to be fully solved. We will publicly share our benchmark.15

1 Introduction16

Large multimodal models (LMMs) have become very competitive in not only image comprehension17

but also short video comprehension. Proprietary models such as GPT-4o [1] and Gemini-1.5-Pro [2]18

as well as open-source models like LLaVA-OneVision [3] and Qwen2-VL [4] demonstrate strong19

performance in summarizing a short video’s contents and answering questions regarding its details.20
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Recent SoTA reasoning models such as OpenAI o1 [5] and Gemini-2.0-Flash-Thinking-Mode [6]21

show powerful multimodal reasoning capabilities over images and videos alike. This has led many22

researchers to believe that short video comprehension has mostly been solved, and consequently, the23

community’s focus has been increasingly trending toward creating models that understand longer-24

form videos that are 10s of seconds or even minutes long. Our study, however, indicates that existing25

models are far from being capable of fully understanding short videos that are just a few seconds26

long, especially when there is dense temporal information.27

As demonstrated in [7] and [8], for many existing video benchmarks like EgoSchema [8], ActivityNet-28

QA [9], MSVD and MSRVTT [10], the performance of most modern LMMs does not vary signif-29

icantly with number of sampled frames. In fact, it is often the case that an LMM only needs to30

see a single frame to produce a correct response. This ‘single-frame bias’ [11] reduces the video31

comprehension problem into the much easier image comprehension problem, essentially discarding32

the temporal aspect of a video. Researchers have also proposed harder temporal counterfactual33

benchmarks [12, 13, 14] in order to better evaluate an LMM’s temporal understanding capabilities.34

Existing counterfactual datasets test a model’s ability to distinguish slight changes from a video’s35

original (positive) caption to the new (negative) caption by asking the model to match the video with36

the correct caption. However, they either do not contain any negative videos corresponding to the37

negative caption, or simply swap the order of two unrelated videos to form the positive and negative38

videos, making it easy to distinguish the negative pair from the original positive pair due to the videos’39

unnaturalness. Hence, these benchmarks may be inflating the performances of modern LMMs in40

understanding short videos.41

In this paper, we introduce Vinoground, a temporal counterfactual LMM evaluation benchmark42

composed of 1000 short and natural video-caption pairs. Vinoground is a challenging benchmark43

aimed to expose the incapabilities of state-of-the-art models in understanding temporal differences44

between different actions (e.g., “the man eats then watches TV" vs. “the man watches TV then eats")45

and object transformations (e.g., “water turning into ice" vs. “ice turning into water"). In each pair46

of captions, the positive and negative are the same in word composition but different in order. Our47

work is inspired by Winoground [15], a challenging counterfactual benchmark for visio-linguistic48

compositional reasoning in images. In Winoground, a model must correctly match two images with49

their corresponding captions, where both captions use the same set of words, but are rearranged50

to describe each image (e.g., “some plants surrounding a lightbulb” vs. “a lightbulb surrounding51

some plants”). This evaluates whether a model effectively encodes the text and images, paying52

attention to their compositional structures, and whether it can integrate and synthesize information53

across both modalities. Our benchmark’s name changes the ‘W’ to a ‘V’ for “video", and further54

employs temporal counterfactuals to emphasize this unique element in video data. We use text score,55

video score, and group score to evaluate a model’s ability to choose the right caption for a video,56

to choose the right video for a caption, and to match both positive and negative video-caption pairs57

correctly, respectively. These measure a model’s textual, visual, and temporal reasoning capabilities58

in a balanced manner. Most of our videos are less than 10 seconds long, yet we find a very large59

performance gap between an average human and today’s best models. An example can be found60

in Figure 1. We purposely focus on short videos as they efficiently expose deficiencies in temporal61

reasoning without the cost of long video curation and evaluation. Additionally, they prevent failures62

from being misattributed to limited context windows to process long videos rather than poor temporal63

understanding. If Video LLMs cannot handle short videos, tackling long ones is futile.64

In sum, our main findings and contributions are:65

• Existing temporal counterfactual benchmarks fail to fully expose the incapability of LMMs in66

temporal reasoning.67

• We introduce Vinoground, the first temporal and natural counterfactual evaluation benchmark for68

evaluating video understanding models using only short videos.69

• Modern SoTA LMM performance is subpar when it comes to temporal reasoning in short video70

comprehension tasks; most models perform at random-chance level on video score and even worse71

on group score, both being significantly lower than text score.72

• We categorize our data into 3 major categories, ‘object’, ‘action’, and ‘viewpoint’, as well as 4 minor73

categories, ‘interaction’, ‘cyclical’, ‘spatial’, and ‘contextual’, in order to dissect each model’s74

capabilities for each of these categories. We find that existing models are decent at analyzing video75

frames at coarse-level but tend to miss fine-grained details.76

• Short video comprehension is a problem that is far from being solved.77
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Figure 2: The best performances
of Video-LLaVA/LLaMA-7B (the only
models reported by all 5 benchmarks) on
Vinoground and other temporal datasets.
We use text score from Vinoground (as
defined in Section 4.1), which matches
TempCompass’s Event Order category
with Caption Matching format and VE-
LOCITI’s Mt2v metric. We report the av-
erage performances for VITATECS and
MVBench. We can see that Vinoground
is the most challenging benchmark.

2 Related Work78

Counterfactual Reasoning. Counterfactual reasoning [16] in the context of computer vision typically79

involves curating negative images and captions by manipulating the original data and observing80

how the outcome changes [17, 18, 19, 20, 21, 22, 15, 23, 24]. The idea is that a model should81

understand cause and effect and be able to make predictions in unseen situations. For evaluation,82

curating meaningful and hard negatives is important. Winoground [15] is a pioneering benchmark for83

counterfactual reasoning where each data point contains two images and two corresponding captions.84

Given an image, a vision-language model is asked to find the matching caption from the provided85

two options, and vice versa. COCO-Counterfactual [23] explores simple linguistic rules to generate86

negative captions and uses an image editing model to produce negative images. We introduce a novel87

benchmark with counterfactuals that are temporal, an attribute specific to the video modality.88

Single-Frame Bias and Temporal Reasoning. An important aspect of video data is its temporality,89

i.e., how events change as time progresses. Modern LMMs sample frames and treat the video as a90

set of images, both during training and evaluation. Benchmarks such as EgoSchema [8], MSVD91

and MSRVTT [10] exhibit a ‘single-frame bias’ [11] where only one video frame is needed for a92

model to predict correctly, as a model’s performance does not vary significantly as the number of93

frames sampled increases [7, 8]. To better evaluate a model’s temporal understanding capabilities,94

researchers have developed datasets such as YouCook2 [25], ActivityNet-QA [9] and COIN [26],95

which mainly involve procedural activities that often have a specific temporal dependency (e.g., if96

a video shows a person washing and slicing apples, and then baking an apple pie, a model would97

easily predict that “bake it to make a pie before washing the apple” is a wrong caption even without98

looking at the video). In contrast, Vinoground also includes actions that are entirely unrelated, such99

as “people are talking before drinking" vs “people are drinking before talking", making it more100

challenging for models to infer answers based solely on textual cues. MVBench [27] also includes101

temporal data that involves 20 different subcategories of temporal reasoning. However, even with102

this coverage, this benchmark does not contain any negatives like ours, reducing their difficulty103

since they do not contain any counterfactual examples. On top of not having any negative videos,104

NExT-QA [28] includes temporally rich questions but often mixes event inference with temporal105

reasoning. In contrast, Vinoground isolates pure temporal reasoning by presenting events e.g., A and106

B explicitly and asking about their order—removing confounding factors like causality or inference.107

Temporal Counterfactuals. Recent benchmarks combine counterfactuals with temporal reasoning.108

EgoSchema [8] introduces long-form videos where each video has 1 positive caption and 4 negative109

captions to choose from, while VITATECS [12] introduces temporal counterfactual data where a110

word or phrase is swapped/replaced from the positive caption to form the negative caption. However,111

neither has any negative videos and thus do not fully evaluate an LMM’s dense temporal reasoning112

capabilities like we do. VELOCITI [13] introduces positive/negative videos as a part of their113

intra-video association benchmark by clipping random portions in the same video, and asking the114

model to distinguish between the events. These videos, however, are not truly counterfactual pairs115

as different clips within the same movie are not guaranteed to have a positive-negative relation.116

TempCompass [14] includes videos that tests a model’s ability to differentiate the order of events,117

but the videos are either concatenations of two completely unrelated videos with drastic frame118

changes in between the events, or reversed in time and thus impossible to happen in real life,119

and do not belong to the true data distribution. LMMs tend to do much better when it comes to120

such videos when compared to our benchmark’s more natural negative videos, as shown in Fig. 2.121
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Negative Counter- Short Natural
Dataset Videos factual (Avg ≤10s) Videos

Paxion ✓ ✓ ✗ ✗
NExT-QA ✗ ✓ ✗ ✓
MVBench ✗ ✗ ✗ ✓

EgoSchema ✗ ✓ ✗ ✓
VITATECS ✗ ✓ ✗ ✓
VELOCITI ✓ ✗ ✓ ✓

TempCompass ✓ ✓ ✗ ✗
Vinoground (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison between Vinoground and other
temporal datasets. Ours is the only one possessing natu-
ral negative videos that are counterfactual and mostly
less than 10 seconds long.

Similar to TempCompass, Paxion [29] uses122

reversed videos and caption edits (e.g.,123

word swaps), which are often synthetically124

unnatural and detectable by models. Also,125

Paxion’s perturbations are limited to cap-126

tions, whereas Vinoground includes true127

negative videos, further increasing task dif-128

ficulty. We summarize the comparisons129

between other temporal benchmarks and130

Vinoground in Table 1, demonstrating how131

Vinoground is the only benchmark unify-132

ing the four qualities, making it the most133

novel temporal reasoning benchmark.134

3 Vinoground135

In this section, we introduce our data curation and categorization process. In order to curate136

Vinoground’s video-caption pairs, we first explain how we generate the required captions in Sec-137

tion 3.1, how we find the corresponding videos in Section 3.2, and finally the details of categorizing138

the videos in Section 3.3. An illustration of the overall process can be found in Appendix A.139

3.1 Generating Counterfactual Captions140

The first step in curating our data is to find counterfactual caption pairs. We want to ensure that141

the captions we curate are of high-quality and temporal in nature. While human annotation is a142

possible solution, it is costly and difficult to scale up. Instead, we leverage a SoTA LLM, specifically143

the GPT-4 [30] model, as it is much cheaper, follows the multiple requirements we impose, and144

guarantees that there are no duplicate candidates. We require our caption pairs to be composed of the145

exact same words, only permuted into different orders. We also want to avoid candidates that could146

easily be solved by looking at a single frame of the video such as “a man is waving at a woman"147

vs. “a woman is waving at a man". Hence, we ask GPT-4 to create temporal counterfactuals that148

require one to process and understand the entire video, and in particular, understand the order of149

events in which they happen, such as “a man waves at a woman before he talks to her" vs. “a man150

talks to a woman before he waves at her". We will later showcase in Section 4.3 that we can already151

expose LMMs greatly with such videos (i.e., by swapping the order of two events), making more152

complicated scenarios unnecessary. We include the detailed prompt fed to GPT-4 in Appendix E.153

3.2 Video Curation154

After curating counterfactual caption candidates, we next find corresponding videos for those captions.155

We make use of the VATEX [31] dataset, which contains 5 distinct captions for each maximum156

10-second long video. We only use the validation and test subsets of VATEX to make sure none of157

Vinoground is ever used as training data. This results in a pool of 9000 videos and 45000 captions.158

We retrieve potential matches in VATEX according to the generated caption candidates. We leverage159

sentence transformers [32], which are good at summarizing sentence-level information into feature160

vectors, to extract the features of both our GPT-generated captions and VATEX’s captions. We161

subsequently use the Faiss library [33] to efficiently index and retrieve the top 20 most similar162

VATEX captions for each GPT-4 generated caption. We manually examine if any retrieved caption is163

a good match, and if its corresponding video reflects the caption as well. The primary criterion during164

manual review is straightforward: Does the caption accurately and unambiguously describe the video165

content? While this process does involve some degree of semantic judgment—as is inevitable in166

aligning language and vision—we mitigate subjectivity by (1) cross-validating questionable cases,167

and (2) filtering out ambiguous matches. We also ensure that only caption/video pairs where multiple168

authors independently agree are retained. The quality of the dataset yielded under this process can be169

justified by our human performance (Table 3). For some cases where none of the retrieved captions170

are a good match, we search YouTube with the caption candidate to find a matching video.171

In the end, we curate 500 counterfactual pairs of video-caption pairs (1000 video-caption pairs in172

total) for evaluation. Each video-caption pair is provided in the form of the original YouTube ID,173
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the clip’s starting and ending timestamps, and the corresponding caption. We also put Vinoground174

through 3 rounds of human evaluation by the authors, making sure that the pair of captions truly175

contain the same word composition and that the video clips indeed reflect their respective captions.176

3.3 Categorization177

Major Object Action Viewpoint Total

Count 160 257 83 500

Minor Interaction Cyclical Spatial Contextual

Count 73 111 103 63

Table 2: The number of data points in Vinoground as-
signed under each category, separated by major and
minor groups. All 500 pairs have one and only one
major category assigned to them, while minor category
assignments are content-based.

Finally, we want to be able to evaluate178

LMMs in a fine-grained manner on mul-179

tiple aspects represented by our dataset.180

Hence, we categorize Vinoground accord-181

ing to the unique characteristics discovered182

through the data curation process. We re-183

port the number of counterfactual data pairs184

assigned under each category in Table 2.185

We define each category as follows.186

We divide Vinoground into 3 major cate-187

gories: object, action, and viewpoint. Each188

counterfactual pair must be in one and only189

one of the three major categories.190

• Object requires LMMs to detect changes in the status of one specific object, such as “water191

turning into ice" vs. “ice turning into water." This category is similar to the “Reversing" category192

in TempCompass [14] that evaluates a model’s ability to detect attribute and directional changes.193

While TempCompass reverses positive videos in time to create negatives and thus can be unnatural,194

we curate real, natural videos that correspond to the negative captions.195

• Action, on the other hand, simply asks models to distinguish the order in which two or more196

different actions happened, e.g. “the man eats and then watches TV" vs. “the man watches TV and197

then eats." The two actions need not be correlated at all, and thus less logical comprehension is198

necessary for a correct prediction.199

• Viewpoint specifically describes changes in the camera angle, perspective, or focus within the200

video, such as “a person films the car in front of him before he films himself" vs. “a person films201

himself before he films the car in front of him." The change in viewpoint is usually accompanied202

by a drastic difference in between the frames, whereas other events most likely happen within the203

same context or background.204

We also introduce 4 minor categories: interaction, cyclical, spatial, and contextual. Some pairs205

belong to a multitude of these minor categories, while some do not belong to any.206

• Interaction involves videos where a human changes their way of interacting with an object in the207

course of the video, e.g. “the calligrapher writes with his pen before he dips it into the ink" vs. “the208

calligrapher dips his pen into the ink before he writes with it."209

• Cyclical tests a model’s ability to identify either procedural temporal activities or two actions that210

are dependent on each other. The calligrapher example earlier is also cyclical as the person repeats211

the procedure “write, dip, write, dip...", and the action “dip" happens as a result of “write" in the212

positive, while “write" is enabled after “dip" in the negative. In contrast, the “action" category can213

involve completely unrelated actions.214

• Spatial It has been shown that LMMs struggle to distinguish physical locations between objects in215

image-caption pairs [24]. We want to further evaluate this deficiency when it comes to temporal216

understanding as well. Thus, this category involves object movements and requires positional217

understanding, such as “the man ran from left to right" vs. “the man ran from right to left." Note218

that this does not include movement of the background; e.g., when the camera is moving along219

with the object in question, which belongs to the next category.220

• Contextual requires LMMs to understand changes in the background or general information of221

entire video frames. An example is the pair “the biker rides down the street before he goes down222

the stairs" vs. “the biker goes down the stairs before he rides down the street" where the camera that223

records the videos is strapped on the biker’s forehead, making the background the only changing224

aspect. One cannot infer positional changes only by observing object movements like the “spatial"225

category, but instead must focus on the background as the object in question can appear motionless226

due to the camera moving along with the object.227

We provide in-depth analysis of models’ performances on our benchmark based on the above228

categories in Section 4.4.2. A detailed teaser can be found in Appendix M.229
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4 Experiments230

In this section, we evaluate state-of-the-art vision-language models on our benchmark. We first231

describe the models and evaluation metrics in Section 4.1; then we explain our experimental setup,232

including prompting methods and human studies, in Section 4.2; we analyze the performances of the233

models in Section 4.3, and provide further ablation studies in Section 4.4.234

4.1 Models and Evaluation Metrics235

We evaluate both CLIP-based [34] and large generative models, both proprietary and open-source.236

The exact list of models we evaluate can be found in Table 3. CLIP-based models use contrastive237

learning between videos and captions, while text-generation LMM models use next-token prediction238

to generate a response. Due to the different nature of the CLIP-based vs. LMM methods, we introduce239

our metrics in different fashions accordingly.240

We use C to denote captions and V to denote videos. For each positive and negative set of counter-241

factual video-caption pairs, (Ci, Vi) and (C ′
i, V

′
i ), ∀i ∈ {1, 2, ..., 500}, we ask CLIP-based models242

to compute a similarity score e between not only the correct pairs but also the incorrect pairs (Ci, V
′
i )243

and (C ′
i, Vi) (identical to Winoground [15]). For generative LMMs, we can only provide inputs (e.g.,244

2 captions and 1 video) to the model and ask it to choose between the captions/videos.245

We first evaluate the text score st where the model is presented with both positive and neg-
ative captions but only one of the videos, forming the triplets (Ci, C

′
i, Vi) and (Ci, C

′
i, V

′
i ).

For each triplet, the model is then asked to choose the caption that describes the contained
video. We denote the score function of a model response given any triplet as s; for instance,

s(Ci, C
′
i, Vi) =


1 if LMM chooses Ci or

e(Ci,Vi)
> e(C′

i
,Vi)

for CLIP-based

0 otherwise

s(Ci, C
′
i, V

′
i ) =


1 if LMM chooses C′

i or
e(C′

i
,V ′

i
) > e(Ci,V

′
i
) for CLIP-based

0 otherwise

Then the text score for the given counterfactual pair (Ci, Vi) and (C ′
i, V

′
i ) is:

st(Ci, C
′
i, Vi, V

′
i ) = s(Ci, C

′
i, Vi) ∧ s(Ci, C

′
i, V

′
i )

where ∧ is the logical and operator; i.e., st is 1 only if both triplets are correct. This exposes the246

models when they guess randomly.247

Similarly, for video score sv, the model is presented with one caption and both positive and neg-
ative videos, forming triplets (Ci, Vi, V

′
i ) and (C ′

i, Vi, V
′
i ). For each triplet, the model is asked

to choose the video that is described by the caption. In this case, the response scoring becomes:

s(Ci, Vi, V
′
i ) =


1 if LMM chooses Vi or

e(Ci,Vi)
> e(Ci,V

′
i
) for CLIP-based

0 otherwise

s(C
′
i, Vi, V

′
i ) =


1 if LMM chooses V ′

i or
e(C′

i
,V ′

i
) > e(Ci,V

′
i
) for CLIP-based

0 otherwise

Then the video score is:

sv(Ci, C
′
i, Vi, V

′
i ) = s(Ci, Vi, V

′
i ) ∧ s(C ′

i, Vi, V
′
i )

We also include a group score metric sg:

sg(Ci, C
′
i, Vi, V

′
i ) = st(Ci, C

′
i, Vi, V

′
i ) ∧ sv(Ci, C

′
i, Vi, V

′
i )

sg serves as the ultimate test for a model to demonstrate its temporal reasoning capabilities in both248

the textual and visual domains, as both st and sv must be 1. For all three metrics, we report the mean249

over all test instances. We include an illustration of the metrics in Appendix B.250

4.2 Experimental Setup251

Since for each pair of counterfactuals, we have 2 text-score questions and 2 video-score ques-252

tions, we have 2000 questions in total. To evaluate CLIP-based models, we use the evaluation253

code provided by the authors to calculate video-caption embeddings and similarity scores. Evalu-254

ating text-generative models is slightly more complicated. We first introduce the different prompts255

we use. For text score, we provide the model with the video and the two corresponding cap-256

tions, and prompt “⟨video⟩ Which caption best describes this video? A. {Caption 1}, B. {Caption257

2}”. For video score, however, since some LMMs only support 1 video input, we concatenate258

the positive and negative videos into a single video with a 2 second black screen in between.259

6



Model # Fr st sv sg

Random Chance N/A 25.0 25.0 16.7

Prolific Human All 93.4 94.0 90.0
32 91.4 90.8 85.2

Proprietary Large Multimodal Models

OpenAI o1 [5] 32 59.1 50.5 36.0
GPT-4o (CoT) [35] 32 59.2 51.0 35.0
GPT-4o [1] 32 54.0 38.2 24.6
GPT-4o 0 10.0 24.6 2.0
Gemini-2.0-Thinking [6] 32 39.0 31.2 14.6
Gemini-1.5-Pro (CoT) 1fps 37.0 27.6 12.4
Gemini-1.5-Pro [2] 1fps 35.8 22.6 10.2
Claude 3.5 Sonnet (CoT) 4 39.4 27.0 13.6
Claude 3.5 Sonnet [36] 4 32.8 28.8 10.6

Open-Source Large Multimodal Models

Qwen2-VL-72B (CoT) 32 53.0 26.6 15.2
Qwen2-VL-72B [4] 32 50.4 32.6 17.4
Qwen2-VL-7B [4] 4fps 40.2 32.4 15.2
LLaVA-Video-72B [37] 64 49.2 34.0 20.2
LLaVA-Video-7B [37] 64 42.4 30.0 17.0
LLaVA-OneVision-72B [3] 32 48.4 35.2 21.8
LLaVA-OneVision-7B [3] 16 41.6 29.4 14.6
VideoLLaMA3 [38] 16 47.4 30.4 15.6
Apollo-7B [39] 4 43.8 30.2 17.2
VideoLLaMA2-72B [40] 8 36.2 21.6 8.4
InternVideo2.5-8B [41] 32 35.0 29.0 11.4
MiniCPM-2.6 [42] 16 32.6 29.2 11.2
Aria [43] 32 34.8 28.8 12.0
InternLM-XC-2.5 (CoT) 1fps 30.8 28.4 9.0
InternLM-XC-2.5 [44] 1fps 28.8 27.8 9.6
Video-LLaVA-7B [45] 8 24.8 25.8 6.6
Phi-3.5-Vision [46] 16 24.0 22.4 6.2
MA-LMM-Vicuna-7B [47] 4 23.8 25.6 6.8
LLaVA-NeXT-34B (CoT) 32 25.8 22.2 5.2
LLaVA-NeXT-34B [48] 32 23.0 21.2 3.8
LLaVA-NeXT-7B (CoT) 32 21.8 26.2 6.8
LLaVA-NeXT-7B [48] 32 21.8 25.6 6.2
M3 [49] 6 21.2 25.8 6.8
VTimeLLM [50] 100 19.4 27.0 5.2

CLIP-based Models

VideoCLIP [51] 60 17.0 2.8 1.2
LanguageBind [52] 8 10.6 5.0 1.2
ImageBind [53] 20 9.4 3.4 0.6

Table 3: Vinoground results for different mod-
els and number of sampled frames. Per-
formances significantly better than random
chance are bolded. There are four groups sep-
arated by double lines: random chance and hu-
man performance, proprietary text-generative
models, open-source text-generative models,
and CLIP-based models from top to bottom.
The best performances of proprietary and
open-source models are highlighted in red.

When sampling N frames for the model’s input, we260

make sure we sample (N − 1)/2 frames from the261

positive and negative video fragments and at least 1262

frame of black screen in between. More details can263

be seen in Appendix L. For the sake of consistency,264

we provide all models with the single concatenated265

video, regardless of how many videos they can actu-266

ally take as input. We then prompt the model with267

“⟨video⟩ Which video segment matches this caption?268

Note: The video contains two segments separated by269

a 2-second black frame. Caption: {Caption}. A. First270

segment (before black frame), B. Second segment271

(after black frame)” to choose between the two video272

segments. For text score, we shuffle the caption or-273

ders so that both answer choices “A” and “B” have274

50% probability as ground truths. For video score, we275

concatenate videos in random orders while also mak-276

ing sure both answer choices appear evenly. We also277

report the results with respect to the number of frames278

sampled by the model from the video, if supported,279

to evaluate the effect of temporality in Section 4.4.1.280

All experiments are done with 4xA100-80GB GPUs.281

In addition, we also use Prolific (https://www.282

prolific.com) to evaluate human performance, and283

find that our dataset is fairly easy for an average hu-284

man to complete with high accuracy. Prolific is a285

platform similar to Amazon MTurk which recruits286

workers to complete tasks such as data annotation.287

The interface we present to the workers is in Ap-288

pendix H. To filter out unfaithful workers, we em-289

ploy a qualification process prior to evaluating on290

Vinoground. We sample 10 video-question pairs from291

TempCompass [14] that are of the event order cate-292

gory, which contains concatenated videos with no293

correlation, such as “a man lifts weights in a gym,294

then a cat plays on the grass”. Such examples are295

easy enough for an average human to obtain 100%296

accuracy. We ask the workers the 10 beginner-level297

questions first, and they are qualified only if they an-298

swer every question correctly. This process results in299

170 qualified workers, whose demographics are also300

included in Appendix H.301

We conduct human evaluation under two settings.302

First, the Prolific workers are provided the full videos303

with audio. We want to create another environment304

where the workers see the same input as the models.305

Hence, we uniformly sample 32 frames from each306

video and concatenate them into a new 10-second video with no audio. The results for the two307

settings are also compared in Section 4.4.1. Each question is answered by 10 unique workers. For the308

10 answers from a single question, we calculate the average human response by taking the mode of309

the 10 answers. We then report the mean over all the questions as the final result.310

4.3 Main Results311

Table 3 presents the results. (Appendix K presents more detailed results, as we only include312

each model’s best performances here.) First, all CLIP-based models (VideoCLIP, LanguageBind,313

ImageBind) perform much worse than random chance, suggesting that contrastive learning does not314

provide models with enough knowledge of temporality. Among text-generative models, OpenAI o1315
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performs best, achieving ∼ 59% on the text score metric. Chain-of-Thought (CoT) prompting [35]316

further improves the performance of models including GPT-4o, especially on the video score metric317

where it improves by 12.8% and 10.4% on group score, matching that of OpenAI o1. We include318

the full CoT prompt and parsing process in Appendix F. We do not use CoT on reasoning models319

because there always is a hidden reasoning process even without explicitly asking them to do so.320

Amongst the open-source models, LLaVA-Video, LLaVA-OneVision and Qwen2-VL demonstrate321

competitive performance compared to proprietary models, especially with Qwen2-VL-72B’s 50.4%322

performance on text score. Using CoT on open-source models, however, helps much less, especially323

if they perform at near chance level. Current reasoning models also show limited improvements324

compared to base models in terms of temporal reasoning. All other models perform at or worse325

than random chance, showing that dense temporal reasoning is still very challenging for LMMs. We326

further provide failure case analysis for some of GPT-4o’s responses in Appendix I.327

Similar to Winoground [15], we find that for models that perform better than chance level, their328

text score is significantly higher than video score, while group score is the lowest amongst all three.329

A clear pattern can also be seen in Fig. 1. This shows that they are better at identifying textual330

differences compared to visual/temporal differences. For example, GPT-4o’s video score (38.2%)331

is significantly lower compared to its text score (54.0%). Many open-source models only have332

non-random outcomes on the text score but equal or lower than random chance on video and group333

scores. Notably, LLaVA-OneVision-72B and LLaVA-Video-72B are the only open-source models334

that perform better than chance group score.335

Human evaluators perform significantly better than any model, with scores around 90%. This336

indicates that Vinoground can be tackled relatively easily within human capacity. When the human337

evaluators are provided with 32-frame videos, the scores decrease by a few points, but are still much338

higher than those of any model.339

Finally, we also report performance for GPT-4o with 0 frames sampled as a control to test for text340

bias. For text score, we hypothesize that the model will choose the more likely caption since it cannot341

see the video, and for the video score, we hypothesize it will choose an answer at random, which is342

indeed what happens. The lower than chance performance for text score of 10.0% indicates that there343

is some language bias in GPT4o, where it prefers to select one caption over the other (if it consistently344

did that for all questions, the text score would be 0). Thus, our balanced way of computing the scores345

(i.e., both s(Ci, C
′
i, Vi) and s(Ci, C

′
i, V

′
i )) prevents a model from doing well only via its language346

bias. This is in contrast to existing benchmarks like VITATECS [12] and EgoSchema [8] which lack347

negative videos, and hence enable models to potentially answer a question correctly only based on348

which caption is more likely.349

All in all, even the very best models exhibit subpar performance when it comes to dense temporal350

reasoning, and this is only using short videos (less than 10 seconds) as well. This strongly indicates351

that short video comprehension in LMMs is still far from human-level intelligence. We provide352

further insights on model design and data utilization strategies in Appendix N.353

4.4 In-Depth Analysis of Performance Variations354

4.4.1 Frames Sampled355

We demonstrate Vinoground’s temporal understanding requirements by varying the number of frames356

sampled, either from the video entirely, or as measured by frames-per-second (fps). If a dataset suffers357

from ‘single-frame bias’, a model would not perform very differently when only 1 or more frames358

are sampled. The results of the strongest proprietary and open-source models in Table 4 (additional359

results in Appendix K) show that the more frames a model takes, the better its performance. This360

indicates that a model does need the entirety of each video to fully comprehend the task at hand.361

Interestingly, too many sampled frames can hurt a model’s performance; for GPT-4o, its 64-frame362

variant performs 5% worse on all three metrics compared to its 32-frame variant. We suspect that363

current models are not good at discarding redundant information and isolating signal from noise364

when given too many visual tokens. Appendix G further explains the novelty of this finding.365

Note that for our video score metric to function as intended, a model must sample at least one frame366

from each video, and at least one black frame in between. This means that the number of frames367

sampled must be no fewer than 3. We hence gray out the video score and group score performances368

of models sampled at 1 or 2 frames and only focus on their text scores.369
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Model # Fr st sv sg

Prolific Human All 93.4 94.0 90.0
32 91.4 90.8 85.2

GPT-4o 64 49.0 34.8 19.0
32 54.0 38.2 24.6
8 53.6 31.4 20.6
1 28.2 28.0 10.0

LLaVA-OneVision-72B 64 46.2 31.8 18.6
32 48.4 35.2 21.8
16 47.2 33.8 20.4
8 46.8 29.8 19.0
4 40.4 24.8 13.0
2 33.4 25.2 10.2

Table 4: Results of the strongest closed- and
open-source models with different frames
sampled. Performances significantly higher
than random chance are highlighted, while
the best overall performance of each model
are highlighted in red. More frames do lead
to better performance, but too many frames
can worsen the results.

Finally, for human evaluators, the ‘All’ group per-370

forms better than the 32 frame group, which indicates371

that humans can answer Vinoground questions better372

when the full videos are shown. In contrast, modern373

LMMs generally lack the ability to process inputs of374

an entire video without coarse sampling of frames.375

This suggests that further research into creating mod-376

els that can handle more frames will be an important377

research direction for temporal reasoning.378

4.4.2 Category379

Fig. 3 shows results per category as defined in Sec-380

tion 3.3. Interestingly, many models perform signif-381

icantly better on the viewpoint and contextual cate-382

gories, while being significantly worse on other cat-383

egories. Here, we only report the group score for a384

selected set of models due to space. See Appendix J385

for the full results.386

Both viewpoint and contextual bring forth drastic387

changes in between the video frames whenever the388

events change, as contextual involves background changes that occupy most of the frame while in389

viewpoint, as the camera angle changes, the entirety of the video frame changes as well. On the other390

hand, interaction and cyclical not only require a model to have strong logical understanding of the391

connection between events, but also the ability to focus on small temporal changes for the different392

actions involved. Spatial, as previously hypothesized, also poses a difficult challenge for models in393

understanding changes in object location. Overall, today’s models are much better at understanding394

coarse-level information over a set of frames in their entirety than understanding fine-grained details395

from a part of each video frame. This also demonstrates how fine-grained comprehension is also396

crucial for dense temporal reasoning.397

5 Conclusion398

Figure 3: Group score of selected models per category. Mod-
els do better on contextual & viewpoint, worse on others.

We introduced Vinoground, a novel399

temporal counterfactual benchmark400

encompassing 1000 short and natural401

video-caption pairs. We demonstrated402

that existing video LMMs are quite403

incapable in terms of temporal rea-404

soning, even for short (<10s) videos.405

While an average human can easily406

and accurately complete our bench-407

mark, the best model, OpenAI o1, per-408

forms much worse, and most mod-409

els barely perform better than random410

chance. Our work demonstrates that411

there is much more to do still in the412

area of short video comprehension.413

We believe Vinoground can serve as an important checkpoint in evaluating a model’s true per-414

formance for temporal understanding of short videos.415

Limitations. One cannot fully analyze the behavior of proprietary models included in this paper due416

to the lack of access, namely OpenAI o1, GPT-4o, the Gemini series and Claude 3.5 Sonnet.417

Broader Impacts. Vinoground thoroughly stress tests the temporal reasoning capabilities of large418

multimodal models. Having shown that modern SoTA LMMs lack such elementary skills only with419

using short videos, we demonstrate great impact to the research community by prompting further420

work for researchers to use our benchmark as a true standard for evaluating temporal understanding421

and short video comprehension, and lastly to improve future LMMs based on our metrics.422
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Appendix579

A Data Curation Process580

We include an overall illustration of the data curation process in Figure 4.581

Generate xxx pairs of 
counterfactuals……

Sentence 
Transformer

FAISS 
Indexing

Top 20 results

VATEX Captions

features

VATEX or YouTube Videos

Figure 4: The data curation process.

B Metrics Illustration582

We visualize our text and video score metrics in Figure 5. This shows the 4 possible questions that583

can be derived from one counterfactual data point in the dataset.584

𝑉!

𝐶! (correct caption) 𝐶!"(incorrect caption)

Which one 
matches?

𝑉!"

𝐶!	(incorrect caption) 𝐶!"(correct caption)

Which one 
matches?

𝐶!

𝑉!
(correct video)

𝑉!"
(incorrect video)

Which one 
matches?

𝐶!"

𝑉!
(incorrect video)

𝑉!"
(correct video)

Which one 
matches?

Figure 5: Visualization of the text and video score metrics.
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C Random Chance Performance585

We set the random chance performance for text, video, and group score as 25%, 25%, and 16.67%.586

It is intuitive to understand the setup for both text and video score since there are two questions587

in the same counterfactual pair for each metric, and the probability of guessing correctly is 50%588

each. For the counterfactual pair (Ci, C
′
i, Vi, V

′
i ), a model can only produce six possible permu-589

tations of video-caption matchings: {(Ci, Vi), (C
′
i, V

′
i )}, {(Ci, Vi), (Ci, V

′
i )}, {(Ci, Vi), (C

′
i, Vi)},590

{(Ci, V
′
i ), (C

′
i, V

′
i )}, {(C ′

i, Vi), (C
′
i, V

′
i )}, and {(C ′

i, Vi), (Ci, V
′
i )}. This is why the random chance591

performance for group score is 1/6 ≈ 16.7%.592

D Human Performance593

The 90% group score is because of human error, not because of data quality issues. Upon carefully594

examining the error cases, we find no particular pattern or poor quality examples. On the other hand,595

[54] shows how humans have a 5% error rate even for the simple task of entering spreadsheets, which596

closely models the human text and video scores 93% and 94%. Since group score is a composite597

metric of both, the combined correctness is 0.95 · 0.95 = 0.9025, which matches our human group598

score performance. This confirms the high-quality of Vinoground.599

E Caption Curation Prompt600

The prompt we give GPT-4 to generate potential caption candidates is: “I am trying to find videos601

that have appropriate temporal counterfactuals; e.g., I want to find video pairs that can be described602

with the following captions: “a man eats then watches TV” vs “a man watches TV then eats”; “the603

old man is working hard before the young man is playing” vs “the young man is working hard before604

the old man is playing”. Note that for both elements of the same pair, they use the exact same words.605

Give me 10 examples.” Then in the same conversation, we prompt the model “give me 10 different606

ones” until we have 500 pairs of candidates.607

F CoT Prompt and Parsing608

For chain-of-thought prompting, we simply add “please think step by step" at the end of our questions609

(as mentioned in Section 4.2). We then use GPT-4 as the judge with the prompt: “Please parse the610

following model response into either A or B. If the model response is just A or B, then it denotes the611

model answer, just output it. The model response starts after ====, and end before ====):\n====612

⟨MODEL RESPONSE⟩ ====\nProvide output your answer as a single character (A or B): "613

G Comparison with Prior and Concurrent Analyses on Impact of Number of614

Frames Sampled615

In [11], the authors only demonstrated how they can use a model trained with one frame of the616

video and perform better than all SoTA methods trained on many frames. They did not conduct a617

comprehensive analysis like we do. In Section 4.4.1, we demonstrate how each model has an optimal618

number of frames sampled based on their model structure and size that affects their performance. It619

is not only too many frames but also too few frames that can cause performance issues.620

In [55]’s Tables 3 and 4, which show the performance of a model with different number of frames621

sampled, the results only illustrate how an increasing number of up to 128 frames (with a fixed622

number of visual embeddings per frame) mostly improves performance, while in our case, using623

64 frames and sometimes 32 frames can show significantly degraded performance. Since [55] had624

to change both the # of frames sampled and # of visual embeddings per frame to demonstrate the625

performance tradeoff/degradation, our findings are more direct since our Section 4.4.1 only changes 1626

factor (# of frames) instead of both.627

In conclusion, our work provides more significant analysis beyond the single-frame bias shown in628

[11] and the performance comparison in [55].629
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H Prolific Survey Interface and Worker Demographics630

We first upload all the videos to Google Drive and embed them into our surveys using Qualtrics.631

The 2000 questions from Vinoground are split into 50 surveys, with each survey having 40 random632

questions. We then distribute our surveys on Prolific where we pay everyone who completed a survey633

$2, or $0.05 per question. The interface is illustrated in Figure 7.634

Out of the 170 qualified workers, 91 were male and 79 were female; 13 were students, 119 were635

non-students, and 38 have no data/did not consent to provide information; 69 were full-time working,636

22 were part-time working, 20 were not in paid work (e.g. homemaker, retired or disabled), 17 were637

unemployed, and 42 have no data/did not consent to provide information; all of the 170 workers were638

fluent in English; we report the histogram of workers’ ages in Figure 8.639

I Analysis of Selected Failure Cases of GPT-4o640

Here we analyze 3 example failure cases of GPT-4o on our benchmark. One can find the corresponding641

video clips from the supplementary materials or the HuggingFace link. Extracted frames for video642

8_neg are shown in Figure 6.643

Figure 6: For this video, GPT-4o summarizes the video’s event in the exact opposite order of the
video itself, indicating its lack of understanding temporal dynamics between the frames.

For video 8_neg, the model response is: "a box with a lid placed on top of it => The hand interacts644

with the lid => The hand lifts the lid off the box => The hand moves the lid to the side of the box =>645

the lid placed to the side of the box. Based on this sequence, the man moved the lid from the top of646

the box to the side”. In this response, the model summarized the video’s event in the exact opposite647

order of the video itself, indicating its lack of understanding temporal dynamics between the frames.648

For video 248_pos, the model’s response is: "the man is seen using the machine from left to right =>649

the man continues moving the machine towards the right => the man is seen moving the machine650

back towards the left. Based on this analysis, the man first uses the machine from left to right and651

then goes from right to left." In this analysis, the model also reported the order of events in their exact652

opposite, but note the fact that here the model specifically failed to understand spatial movements as653

well.654

For video 361_neg, the model response is: "two scallops on a grill, with the one on the left being655

more prominently visible => the camera appears to shift focus slightly, but the scallop on the left656

remains the primary focus => the camera seems to zoom in or shift slightly, but it does not distinctly657

pan from one scallop to the other. Since the video does not show a clear pan from one scallop to658

the other, neither caption A nor B describes the video.” In this response, the model ignores huge659

frame shifts that is easily identifiable by the human eye. This shows how models can fail even with660

coarse-grain large frame changes.661
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Figure 7: The Qualtrics survey that Prolific workers see.

Figure 8: Distribution of Prolific workers’ ages.
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J Full Categorical Results662

Here we include the selected top-6 strongest models we evaluated and report their results by category663

in Tables 5 and 6. We also include the text and video score bar plots in Figures 9 and 10. We can see664

that the general trend is the same as reported in Section 4.4.2, where models perform much better on665

contextual and viewpoint, and worse on other categories.666

GPT-4o Gemini-1.5-Pro Claude 3.5 Sonnet

category text video group text video group text video group

all 54.00 38.20 24.60 35.80 22.60 10.20 32.80 28.80 10.60

object 52.50 35.62 20.62 36.25 25.62 12.50 30.00 25.00 7.50
action 47.47 35.41 20.23 30.74 22.18 8.56 27.63 28.79 9.34

viewpoint 77.11 51.81 45.78 50.60 18.07 10.84 54.22 36.14 20.48

interaction 50.68 42.47 21.92 30.14 27.40 10.96 20.55 21.92 5.48
cyclical 39.64 41.44 18.92 22.52 19.82 4.50 27.03 25.23 7.21
spatial 47.57 30.10 17.48 37.86 24.27 9.71 31.07 20.39 5.83

contextual 53.97 49.21 33.33 38.10 31.75 11.11 52.38 28.57 15.87

Table 5: The best performances of proprietary models grouped by category. Significantly high
performances are highlighted in blue, while significantly low performances are highlighted in red.

LLaVA-OneVision-72B Qwen2-VL-72B InternLM-XC-2.5

category text video group text video group text video group

all 48.40 35.20 21.80 50.40 32.60 17.40 28.80 27.80 9.60

object 42.50 33.75 17.50 46.88 33.75 18.12 28.75 28.12 12.50
action 42.80 31.91 17.90 44.75 28.79 12.06 25.68 29.96 8.56

viewpoint 77.11 48.19 42.17 74.70 42.17 32.53 38.55 20.48 7.23

interaction 36.99 36.99 16.44 34.25 31.51 6.85 23.29 36.99 6.85
cyclical 36.04 29.73 14.41 36.94 32.43 11.71 18.92 36.04 7.21
spatial 37.86 25.24 10.68 53.40 31.07 17.48 23.30 29.13 8.74

contextual 57.14 31.75 20.63 49.21 39.68 22.22 26.98 26.98 11.11

Table 6: The best performances of selected open-source models grouped by category. Significantly
high performances are highlighted in blue, while significantly low performances are highlighted in
red.

18



Figure 9: Text score bar plot based on category grouped by model.

Figure 10: Video score bar plot based on category grouped by model.

K Full Results on Evaluated Models667

Due to the extensive number of models evaluated and different number of frames sampled as668

hyperparameters, we include the full results of our evaluation that are not mentioned in the main669

paper in Tables 7 and 8.670
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Model Frames Text Video Group

Claude-3.5-Sonnet 16 30.0 22.6 8.4
8 32.2 25.4 9.4
4 32.8 28.8 10.6
2 29.4 24.0 8.4
1 26.2 30.0 10.8

Qwen2-VL-72B 32 50.4 32.6 17.4
8 37.4 23.0 7.8
4 26.2 23.8 6.2
2 15.6 24.4 4.0

Qwen2-VL-7B 32 40.0 26.4 11.8
16 36.8 25.8 10.2
8 27.6 23.4 7.8
4 22.2 22.8 5.6
2 21.4 25.8 5.2
4fps 40.2 32.4 15.2
2fps 34.8 27.4 10.6
1fps 26.8 26.6 7.6
0.5fps 23.2 19.6 4.8

MiniCPM-2.6 32 28.4 27.0 9.4
16 32.6 29.2 11.2
8 33.4 25.6 9.0
4 25.8 27.4 8.6
2 22.8 23.2 4.6
1 27.0 27.0 8.0

LLaVA-NeXT-Video-34B 32 23.0 21.2 3.8
16 21.0 21.8 4.4
8 21.2 22.0 5.2
4 16.6 21.6 3.4
2 15.4 21.6 2.2
1 13.2 21.8 2.0

LLaVA-NeXT-Video-7B 32 21.8 25.6 6.2
16 22.2 25.6 6.4
8 21.8 25.6 6.4
4 21.8 25.6 6.4
2 21.2 25.4 6.0
1 22.4 25.6 6.4

Phi-3.5-Vision 32 22.0 21.2 4.8
16 24.0 22.4 6.2
8 21.8 21.2 5.0
4 21.2 22.8 5.6
2 20.4 21.6 3.8
1 22.6 22.8 3.8

MA-LMM-Vicuna-7B 32 22.4 25.6 6.8
16 22.0 26.0 6.0
8 23.0 26.0 6.4
4 23.8 25.6 6.8
2 23.8 25.6 6.8

Table 7: The full evaluation results based on model type, frames sampled, and the metrics aforemen-
tioned. Only the model settings that are not mentioned in the main paper are listed here. Performances
significantly better than random chance are bolded.
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Model Frames Text Video Group

VideoLLaMA3 64 46.2 29.8 17.0
32 47.4 29.2 15.0
16 47.4 30.4 15.6
8 43.4 28.6 12.0
4 38.8 24.6 8.8
2 35.6 22.8 7.4
1 22.8 22.4 6.2

LLaVA-Video-72B-Qwen2 128 45.2 28.8 16.4
64 49.2 34.0 20.2
32 48.4 33.2 20.0
8 44.0 27.6 16.0
4 37.2 23.0 10.2
2 31.4 23.6 9.4
1 25.2 26.8 8.0

LLaVA-Video-7B-Qwen2 128 41.4 27.6 14.0
64 42.4 30.0 17.0
32 40.8 30.4 15.4
16 36.8 28.0 13.0
8 33.6 25.6 11.4
4 29.0 24.6 10.0
2 27.0 23.6 6.2
1 27.8 22.4 6.4

Aria 32 34.8 28.8 12.0
16 32.4 27.6 9.4

InternVideo2.5-8B 64 36.0 28.2 11.0
32 35.0 29.0 11.4
16 30.6 25.6 8.6
8 23.4 25.0 6.0
4 17.4 25.2 3.6

Apollo-7B 64 41.5 31.5 17.5
32 44.3 28.5 15.8
16 43.6 28.8 16.6
8 42.6 28.4 14.2
4 43.8 30.2 17.2

Table 8: Continuation of Table 7.
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L Video Lengths and The Use of Black Frames671

We report the video length distribution of our benchmark in Figure 11. We also report that out of672

the 1000 videos in Vinoground, there are a total of 992 videos with length ≤ 20 seconds, and 930 of673

them are ≤ 10 seconds.674

Figure 11: Video length distribution of Vinoground.

We show another histogram regarding—in all 500 concatenated videos for the video score metric—675

how much of each video is composed of black frames in Figure 12. We can see that for the majority,676

black frames only consist of less than two-tenths of the videos. This ensures that data loss due to677

sampling black frames is kept at a minimum.678

Figure 12: The portion of black frames in each concatenated video for video score questions.
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M Detailed Categorical Teaser679

The baby plays before he drinks water. The baby drinks water before he plays.

Fire turns into thin air. Thin air turns into fire.

Camera angle from 45 degrees behind to the right side. Camera angle from the right side to 45 degrees behind.

The man writes before he dips his pen in the ink. The man dips his pen in the ink before he writes.

The watermelon is cut then turned. The watermelon is turned then cut.

Moonwalk from left to right. Moonwalk from right to left.

From landed to flying. From flying to landed.

Object

Action

Viewpoint

Interaction

Cyclical

Spatial

Contextual

Figure 13: Examples of Vinoground video-caption pairs under each category.
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N Insights into Model Design and Data Utilization Strategies680

The goal of our paper is to introduce a highly challenging benchmark to expose existing video models’681

weakness in temporal understanding, while future work can use our benchmark to showcase true682

improvements. Hence, improving models is beyond the scope of our work. Nevertheless, we believe683

that the following findings can be valuable for future researchers:684

In Table 3, we include CLIP-based models and observe that contrastive learning models perform685

much worse compared to SoTA text-generative LLMs. We hypothesize that two key factors contribute686

to the significant performance gap:687

Feature Representation: CLIP-style models encode each modality with a single vector (e.g.,688

768–2048 tokens). This limited feature representation makes it difficult to capture the fine-grained689

temporal details essential for video understanding. In contrast, video LLMs like Video-LLaVA use690

thousands of visual tokens (e.g., 2048 tokens in our benchmark) that can represent more details691

containing temporal dynamics.692

Model Scale: CLIP-based text encoders are smaller in scale (in terms of the number of parameters693

and the amount of pretraining data) compared to the large language models used in video LLMs.694

Video LLMs’ richer pretraining datasets and larger capacities might have also made them better at695

understanding temporality.696

Case Study: For example, both Video-LLaVA and LanguageBind use the same video encoder, yet697

Video-LLaVA outperforms LanguageBind greatly as demonstrated in Table 2. This suggests that the698

difference between encoder architectures and learning objectives/training paradigms significantly699

influence performance on tasks requiring temporal reasoning.700

Regarding potential improvement suggestions:701

Architectural Improvements: Methods such as incorporating hierarchical temporal modeling702

or cross-modal attention mechanisms tailored for temporal reasoning could improve performance.703

For example, attention layers that focus on sequential dependencies across frames may help capture704

causality more effectively.705

Data Utilization Strategies: Current datasets often suffer from single-frame bias and fail to706

emphasize temporal consistency. Including more counterfactual training data designed to model707

temporality (as in Vinoground) could mitigate these biases.708

Learning Objectives: Transitioning from contrastive learning to visually conditioned next-word709

prediction, as seen in Video-LLaVA, could enhance temporal understanding. Fine-tuning LLMs on710

datasets emphasizing temporality is another promising direction.711

O Temporal Localization712

Vinoground inherently requires models to exhibit temporal localization abilities to answer questions713

correctly as our dataset highly focuses on the understanding of temporal ordering. For example, for714

the data pair “the cat moves before the person touches it” vs. “the person touches the cat before it715

moves”, the model is implicitly required to localize the temporal events “the cat moves” and “the716

person touches”, or simply to understand in which part of the video did the cat move; otherwise it717

cannot determine if an event happened before the other. Thus, even though we evaluate the models in718

the format of multiple-choice, without the ability to localize temporal events, these models cannot719

perform well on our benchmark.720

Yet again, we emphasize how easy to humans our benchmark is as reflected by the human baseline.721

No matter what form of task Vinoground can take, be it multiple choice or localization, models still722

perform much worse than humans, demonstrating the critical lack of temporal reasoning in modern723

video LLMs.724
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NeurIPS Paper Checklist725

1. Claims726

Question: Do the main claims made in the abstract and introduction accurately reflect the727

paper’s contributions and scope?728

Answer: [Yes]729

Justification: Our results match claims made in the abstract and introduction.730

Guidelines:731

• The answer NA means that the abstract and introduction do not include the claims732

made in the paper.733

• The abstract and/or introduction should clearly state the claims made, including the734

contributions made in the paper and important assumptions and limitations. A No or735

NA answer to this question will not be perceived well by the reviewers.736

• The claims made should match theoretical and experimental results, and reflect how737

much the results can be expected to generalize to other settings.738

• It is fine to include aspirational goals as motivation as long as it is clear that these goals739

are not attained by the paper.740

2. Limitations741

Question: Does the paper discuss the limitations of the work performed by the authors?742

Answer: [Yes]743

Justification: Section 5 contains our limitations.744

Guidelines:745

• The answer NA means that the paper has no limitation while the answer No means that746

the paper has limitations, but those are not discussed in the paper.747

• The authors are encouraged to create a separate "Limitations" section in their paper.748

• The paper should point out any strong assumptions and how robust the results are to749

violations of these assumptions (e.g., independence assumptions, noiseless settings,750

model well-specification, asymptotic approximations only holding locally). The authors751

should reflect on how these assumptions might be violated in practice and what the752

implications would be.753

• The authors should reflect on the scope of the claims made, e.g., if the approach was754

only tested on a few datasets or with a few runs. In general, empirical results often755

depend on implicit assumptions, which should be articulated.756

• The authors should reflect on the factors that influence the performance of the approach.757

For example, a facial recognition algorithm may perform poorly when image resolution758

is low or images are taken in low lighting. Or a speech-to-text system might not be759

used reliably to provide closed captions for online lectures because it fails to handle760

technical jargon.761

• The authors should discuss the computational efficiency of the proposed algorithms762

and how they scale with dataset size.763

• If applicable, the authors should discuss possible limitations of their approach to764

address problems of privacy and fairness.765

• While the authors might fear that complete honesty about limitations might be used by766

reviewers as grounds for rejection, a worse outcome might be that reviewers discover767

limitations that aren’t acknowledged in the paper. The authors should use their best768

judgment and recognize that individual actions in favor of transparency play an impor-769

tant role in developing norms that preserve the integrity of the community. Reviewers770

will be specifically instructed to not penalize honesty concerning limitations.771

3. Theory assumptions and proofs772

Question: For each theoretical result, does the paper provide the full set of assumptions and773

a complete (and correct) proof?774

Answer: [NA]775
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Justification: The paper does not include theoretical results.776

Guidelines:777

• The answer NA means that the paper does not include theoretical results.778

• All the theorems, formulas, and proofs in the paper should be numbered and cross-779

referenced.780

• All assumptions should be clearly stated or referenced in the statement of any theorems.781

• The proofs can either appear in the main paper or the supplemental material, but if782

they appear in the supplemental material, the authors are encouraged to provide a short783

proof sketch to provide intuition.784

• Inversely, any informal proof provided in the core of the paper should be complemented785

by formal proofs provided in appendix or supplemental material.786

• Theorems and Lemmas that the proof relies upon should be properly referenced.787

4. Experimental result reproducibility788

Question: Does the paper fully disclose all the information needed to reproduce the main ex-789

perimental results of the paper to the extent that it affects the main claims and/or conclusions790

of the paper (regardless of whether the code and data are provided or not)?791

Answer: [Yes]792

Justification: We include detailed methodologies and experimental setups in Sections 3793

and 4 and in Appendices A, B, E, F, and H.794

Guidelines:795

• The answer NA means that the paper does not include experiments.796

• If the paper includes experiments, a No answer to this question will not be perceived797

well by the reviewers: Making the paper reproducible is important, regardless of798

whether the code and data are provided or not.799

• If the contribution is a dataset and/or model, the authors should describe the steps taken800

to make their results reproducible or verifiable.801

• Depending on the contribution, reproducibility can be accomplished in various ways.802

For example, if the contribution is a novel architecture, describing the architecture fully803

might suffice, or if the contribution is a specific model and empirical evaluation, it may804

be necessary to either make it possible for others to replicate the model with the same805

dataset, or provide access to the model. In general. releasing code and data is often806

one good way to accomplish this, but reproducibility can also be provided via detailed807

instructions for how to replicate the results, access to a hosted model (e.g., in the case808

of a large language model), releasing of a model checkpoint, or other means that are809

appropriate to the research performed.810

• While NeurIPS does not require releasing code, the conference does require all submis-811

sions to provide some reasonable avenue for reproducibility, which may depend on the812

nature of the contribution. For example813

(a) If the contribution is primarily a new algorithm, the paper should make it clear how814

to reproduce that algorithm.815

(b) If the contribution is primarily a new model architecture, the paper should describe816

the architecture clearly and fully.817

(c) If the contribution is a new model (e.g., a large language model), then there should818

either be a way to access this model for reproducing the results or a way to reproduce819

the model (e.g., with an open-source dataset or instructions for how to construct820

the dataset).821

(d) We recognize that reproducibility may be tricky in some cases, in which case822

authors are welcome to describe the particular way they provide for reproducibility.823

In the case of closed-source models, it may be that access to the model is limited in824

some way (e.g., to registered users), but it should be possible for other researchers825

to have some path to reproducing or verifying the results.826

5. Open access to data and code827

Question: Does the paper provide open access to the data and code, with sufficient instruc-828

tions to faithfully reproduce the main experimental results, as described in supplemental829

material?830
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Answer: [Yes]831

Justification: We provide our dataset in the supplementary materials and through the Hug-832

gingFace link.833

Guidelines:834

• The answer NA means that paper does not include experiments requiring code.835

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/836

public/guides/CodeSubmissionPolicy) for more details.837

• While we encourage the release of code and data, we understand that this might not be838

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not839

including code, unless this is central to the contribution (e.g., for a new open-source840

benchmark).841

• The instructions should contain the exact command and environment needed to run to842

reproduce the results. See the NeurIPS code and data submission guidelines (https:843

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.844

• The authors should provide instructions on data access and preparation, including how845

to access the raw data, preprocessed data, intermediate data, and generated data, etc.846

• The authors should provide scripts to reproduce all experimental results for the new847

proposed method and baselines. If only a subset of experiments are reproducible, they848

should state which ones are omitted from the script and why.849

• At submission time, to preserve anonymity, the authors should release anonymized850

versions (if applicable).851

• Providing as much information as possible in supplemental material (appended to the852

paper) is recommended, but including URLs to data and code is permitted.853

6. Experimental setting/details854

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-855

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the856

results?857

Answer: [Yes]858

Justification: The entire Section 4 explains this in great detail.859

Guidelines:860

• The answer NA means that the paper does not include experiments.861

• The experimental setting should be presented in the core of the paper to a level of detail862

that is necessary to appreciate the results and make sense of them.863

• The full details can be provided either with the code, in appendix, or as supplemental864

material.865

7. Experiment statistical significance866

Question: Does the paper report error bars suitably and correctly defined or other appropriate867

information about the statistical significance of the experiments?868

Answer: [No]869

Justification: We only report model performance on benchmarks which conventionally does870

not necessitate the use of error bars or statistical significance.871

Guidelines:872

• The answer NA means that the paper does not include experiments.873

• The authors should answer "Yes" if the results are accompanied by error bars, confi-874

dence intervals, or statistical significance tests, at least for the experiments that support875

the main claims of the paper.876

• The factors of variability that the error bars are capturing should be clearly stated (for877

example, train/test split, initialization, random drawing of some parameter, or overall878

run with given experimental conditions).879

• The method for calculating the error bars should be explained (closed form formula,880

call to a library function, bootstrap, etc.)881

• The assumptions made should be given (e.g., Normally distributed errors).882
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• It should be clear whether the error bar is the standard deviation or the standard error883

of the mean.884

• It is OK to report 1-sigma error bars, but one should state it. The authors should885

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis886

of Normality of errors is not verified.887

• For asymmetric distributions, the authors should be careful not to show in tables or888

figures symmetric error bars that would yield results that are out of range (e.g. negative889

error rates).890

• If error bars are reported in tables or plots, The authors should explain in the text how891

they were calculated and reference the corresponding figures or tables in the text.892

8. Experiments compute resources893

Question: For each experiment, does the paper provide sufficient information on the com-894

puter resources (type of compute workers, memory, time of execution) needed to reproduce895

the experiments?896

Answer: [Yes]897

Justification: Section 4.2 reports the details.898

Guidelines:899

• The answer NA means that the paper does not include experiments.900

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,901

or cloud provider, including relevant memory and storage.902

• The paper should provide the amount of compute required for each of the individual903

experimental runs as well as estimate the total compute.904

• The paper should disclose whether the full research project required more compute905

than the experiments reported in the paper (e.g., preliminary or failed experiments that906

didn’t make it into the paper).907

9. Code of ethics908

Question: Does the research conducted in the paper conform, in every respect, with the909

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?910

Answer: [Yes]911

Justification: We uphold the Code of Ethics in every way we can.912

Guidelines:913

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.914

• If the authors answer No, they should explain the special circumstances that require a915

deviation from the Code of Ethics.916

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-917

eration due to laws or regulations in their jurisdiction).918

10. Broader impacts919

Question: Does the paper discuss both potential positive societal impacts and negative920

societal impacts of the work performed?921

Answer: [Yes]922

Justification: Section 5 contains our broader impacts.923

Guidelines:924

• The answer NA means that there is no societal impact of the work performed.925

• If the authors answer NA or No, they should explain why their work has no societal926

impact or why the paper does not address societal impact.927

• Examples of negative societal impacts include potential malicious or unintended uses928

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations929

(e.g., deployment of technologies that could make decisions that unfairly impact specific930

groups), privacy considerations, and security considerations.931
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• The conference expects that many papers will be foundational research and not tied932

to particular applications, let alone deployments. However, if there is a direct path to933

any negative applications, the authors should point it out. For example, it is legitimate934

to point out that an improvement in the quality of generative models could be used to935

generate deepfakes for disinformation. On the other hand, it is not needed to point out936

that a generic algorithm for optimizing neural networks could enable people to train937

models that generate Deepfakes faster.938

• The authors should consider possible harms that could arise when the technology is939

being used as intended and functioning correctly, harms that could arise when the940

technology is being used as intended but gives incorrect results, and harms following941

from (intentional or unintentional) misuse of the technology.942

• If there are negative societal impacts, the authors could also discuss possible mitigation943

strategies (e.g., gated release of models, providing defenses in addition to attacks,944

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from945

feedback over time, improving the efficiency and accessibility of ML).946

11. Safeguards947

Question: Does the paper describe safeguards that have been put in place for responsible948

release of data or models that have a high risk for misuse (e.g., pretrained language models,949

image generators, or scraped datasets)?950

Answer: [Yes]951

Justification: Our data is obtained either from the VATEX dataset or from YouTube directly.952

We carefully inspected each piece of data before including them in our dataset, as described953

in Section 3.2.954

Guidelines:955

• The answer NA means that the paper poses no such risks.956

• Released models that have a high risk for misuse or dual-use should be released with957

necessary safeguards to allow for controlled use of the model, for example by requiring958

that users adhere to usage guidelines or restrictions to access the model or implementing959

safety filters.960

• Datasets that have been scraped from the Internet could pose safety risks. The authors961

should describe how they avoided releasing unsafe images.962

• We recognize that providing effective safeguards is challenging, and many papers do963

not require this, but we encourage authors to take this into account and make a best964

faith effort.965

12. Licenses for existing assets966

Question: Are the creators or original owners of assets (e.g., code, data, models), used in967

the paper, properly credited and are the license and terms of use explicitly mentioned and968

properly respected?969

Answer: [Yes]970

Justification: The videos in Vinoground either come from VATEX or YouTube, whose971

original YouTube IDs we also provide along with the dataset files we submit. We properly972

cited these works as well as all the models we evaluated upon.973

Guidelines:974

• The answer NA means that the paper does not use existing assets.975

• The authors should cite the original paper that produced the code package or dataset.976

• The authors should state which version of the asset is used and, if possible, include a977

URL.978

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.979

• For scraped data from a particular source (e.g., website), the copyright and terms of980

service of that source should be provided.981

• If assets are released, the license, copyright information, and terms of use in the982

package should be provided. For popular datasets, paperswithcode.com/datasets983

has curated licenses for some datasets. Their licensing guide can help determine the984

license of a dataset.985
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• For existing datasets that are re-packaged, both the original license and the license of986

the derived asset (if it has changed) should be provided.987

• If this information is not available online, the authors are encouraged to reach out to988

the asset’s creators.989

13. New assets990

Question: Are new assets introduced in the paper well documented and is the documentation991

provided alongside the assets?992

Answer: [Yes]993

Justification: Section 3 well-documents the dataset we introduce.994

Guidelines:995

• The answer NA means that the paper does not release new assets.996

• Researchers should communicate the details of the dataset/code/model as part of their997

submissions via structured templates. This includes details about training, license,998

limitations, etc.999

• The paper should discuss whether and how consent was obtained from people whose1000

asset is used.1001

• At submission time, remember to anonymize your assets (if applicable). You can either1002

create an anonymized URL or include an anonymized zip file.1003

14. Crowdsourcing and research with human subjects1004

Question: For crowdsourcing experiments and research with human subjects, does the paper1005

include the full text of instructions given to participants and screenshots, if applicable, as1006

well as details about compensation (if any)?1007

Answer: [Yes]1008

Justification: Section 4.2 and Appendix H discusses about our human experiments using1009

Prolific, how our surveys looks like, the demographics, etc.1010

Guidelines:1011

• The answer NA means that the paper does not involve crowdsourcing nor research with1012

human subjects.1013

• Including this information in the supplemental material is fine, but if the main contribu-1014

tion of the paper involves human subjects, then as much detail as possible should be1015

included in the main paper.1016

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1017

or other labor should be paid at least the minimum wage in the country of the data1018

collector.1019

15. Institutional review board (IRB) approvals or equivalent for research with human1020

subjects1021

Question: Does the paper describe potential risks incurred by study participants, whether1022

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1023

approvals (or an equivalent approval/review based on the requirements of your country or1024

institution) were obtained?1025

Answer: [NA]1026

Justification: This paper does not involve any risks involved with study participants.1027

Guidelines:1028

• The answer NA means that the paper does not involve crowdsourcing nor research with1029

human subjects.1030

• Depending on the country in which research is conducted, IRB approval (or equivalent)1031

may be required for any human subjects research. If you obtained IRB approval, you1032

should clearly state this in the paper.1033

• We recognize that the procedures for this may vary significantly between institutions1034

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1035

guidelines for their institution.1036
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• For initial submissions, do not include any information that would break anonymity (if1037

applicable), such as the institution conducting the review.1038

16. Declaration of LLM usage1039

Question: Does the paper describe the usage of LLMs if it is an important, original, or1040

non-standard component of the core methods in this research? Note that if the LLM is used1041

only for writing, editing, or formatting purposes and does not impact the core methodology,1042

scientific rigorousness, or originality of the research, declaration is not required.1043

Answer: [Yes]1044

Justification: Section 3.1 and Appendix E explains how we use GPT-4 to curate caption1045

candidates, while Appendix F describes how we use GPT-4 as judge during evaluation.1046

Guidelines:1047

• The answer NA means that the core method development in this research does not1048

involve LLMs as any important, original, or non-standard components.1049

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1050

for what should or should not be described.1051
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