REFORMER: A ChatGPT-Driven Data Synthesis
Framework Elevating Text-to-SQL Models

Shenyang Liu
Department of Computer Science
University of Central Florida
Orlando, USA
shenyang.liu@ucf.edu

Abstract—The existing Text-to-SQL models suffer from a
shortage of training data, inhibiting their ability to fully facilitate
the applications of SQL queries in new domains. To address
this challenge, various data synthesis techniques have been
employed to generate more diverse and higher quality data. In
this paper, we propose REFORMER, a framework that leverages
ChatGPT’s prowess without the need for additional training, to
facilitate the synthesis of (question, SQL query) pairs tailored to
new domains. Our data augmentation approach is based on a
“retrieve-and-edit” method, where we generate new questions by
filling masked question using explanation of SQL queries with
the help of ChatGPT. Furthermore, we demonstrate that cycle
consistency remains a valuable method of validation when applied
appropriately. Our experimental results show that REFORMER
consistently outperforms previous data augmentation methods.
To further investigate the power of ChatGPT and create a general
data augmentation method, we also generate the new data by
paraphrasing the question in the dataset and by paraphrasing the
description of a new SQL query that is generated by ChatGPT
as well. Our results affirm that paraphrasing questions generated
by ChatGPT help augment the original data.

Index Terms—Data Augmentation, Text-to-SQL, GPT

I. INTRODUCTION

For Text-to-SQL tasks, popular training datasets like Wik-
iSQL [1] and Spider [2] are often too small, limiting model
generalization [3] [4]. This makes models struggle in new
domains. To address this, data synthesis is crucial. Unlike
past SQL-to-Text research that relied on zero-shot methods
[5] [6], we believe using one-shot learning with examples can
enhance performance. Previous data synthesis methods also
lacked query diversity, reducing model effectiveness [7] [8]
[91 [5].

We introduce REFORMER, a framework leveraging Chat-
GPT for data synthesis. By retrieving similar (question, SQL
query) pairs and masking the questions, we use ChatGPT
to generate new queries without fine-tuning. A novel cycle-
consistency validation approach compares the similarity be-
tween ChatGPT-generated questions and SQL query explana-
tions, improving stability over past methods [10]. Additionally,
we explore two data augmentation techniques: paraphrasing
existing questions and creating new SQL queries using schema
templates.

1946-0759/24/$31.00 ©2024 IEEE

Saleh Almohaimeed
Department of Computer Science
University of Central Florida
Orlando, USA
sa247216@ucf.edu

Ligiang Wang
Department of Computer Science
University of Central Florida
Orlando, USA
ligiang.wang @ucf.edu

Our contributions include: (1) to the best of our knowledge,
we are the first one to create a SQL-to-Text framework
REFORMER using ChatGPT without fine-tuning, (2) we in-
troduce question-query-question cycle consistency validation,
(3) we show REFORMER'’s improvement over other data
augmentation methods, and (4) demonstrate effective data
generation with two paraphrasing techniques.

II. RELATED WORK

A. SQL-to-Text Task

The models for SQL-to-Text task include those built upon
the Gated Recurrent Unit (GRU) [11], LSTM networks [7]
[8], and advanced models like BART [12] and T5 [5] [6]. In
specific cases, some models, as demonstrated by [7], leverage
BERT [13] as an encoder to enhance overall performance.
The SQL queries used in training these models can come
from a variety of sources. Some models employ hand-crafted
templates, while others leverage grammars extracted from
existing SQL queries [8] or draw from a corpus of SQL
queries obtained through web scraping or crawling open-
source code repositories [12]. The authors of [14] and us
independently came up with the same question-query-question
cycle consistency as in our paper concurrently, but they train a
GPT-3 model and do not use the method for data augmentation
purpose but for validation in text-to-SQL task.

B. Large Language Models and Prompt Engineering For SQL-
to-Text

It is noteworthy that, to date, there has not been many
research [5] [6] [14] considering the utilization of state-of-the-
art Large Language Models (LLMs) for SQL-to-text tasks. Our
work, therefore, can be viewed as pioneering in this regard.
By harnessing the capabilities of LLMs, we aim to inspire
and open up new avenues for further investigations into data
augmentations using these new models.

Prompt-based learning directly uses the model without
training or fine-tuning to get the answer for the questions.
Prompt engineering usually uses manually designed templates
[15] [16] or optimization techniques [17] to construct more
effective prompts for the model.

A. REFORMER

B. Direct Paraphrasing : C. Paraphrasing Using
with Schema Information | the Description of
Crafted SQLQueries

l Get schema information ‘

Original question

Fig. 2 (b) Prompt 2

[et aueston eiated ables

SELECT denomina tion, COUNT(*) FROM [For eac]
school GROUP BY denomination land

count of Fig. 2 (b) Prompt 1

SELECT country_1d,COUNT(*) FROM [Give the cc
loacations GROUP BY country_id i

Fig. 2 (a) Prompt 1

10 Paraphrasing questions

Fig. 2 (b) Prompt 3

[
e v Ae| s et [quntion]|

Fig. 1: Framework for REFORMER and Paraphrasing-based
Data Sythesis methods

III. DATA SYNTHESIS WITH REFORMER

In this study, we focus on data synthesis for Text-to-
SQL parsers by leveraging the power of GPT-based models.
Directly training a SQL-to-Text model on existing data and
using manually crafted templates for generating new SQL
queries has limitations that the results may fail to accurately
capture the underlying data distribution present in the original
dataset due to the lack of guided question generation. To
address this issue, we adopt the “retrieve-and-edit” approach
introduced by [10] and improve the approach to avoid training
models. Our approach is summarized in Algorithm 1 and
the whole framework is shown in Figure 1A. More detailed
explanations for the algorithm are provided from Section 3.1
to Section 3.3.

Algorithm 1 Data Augmentation with REFORMER
Illpllt QS”ew 3 Ma Dtrain

Dnew <~ w

for ¢ + enumerate (Qg,,,) do
Qsim, Usim < GetRelatedQueries (q, Dirqin)
Utemp < MaskSchemaTokens (qsim, Usim)
expll < GetExplanation (q)
Uresult < FillTemplate (Utemp,
expl2 + GetExplanation (q)
Dyew < DpewU Validate (expl2, Uresult)

end for

Myew +— Fine—tune (M, D)

expll)

A. Related SQL queries and question templates preparation

The SQL queries we use within a new schema S, can
be achieved by manually creating or using a grammar-based
SQL generator [7] [9] using random parts of the schema
information, denoted as (s, _,. We consider a Text-to-SQL
parser model M trained by Dy, to be enhanced by our
proposed method.

GetRelatedQueries: Given a query ¢, we aim to identify a
SQL query with high structural similarity (denoted by gg;m,)
to g and its corresponding question (or utterance denoted by
Ugim). Our goal is to derive question templates that ensure
fidelity to the training data distribution. To retrieve SQL

queries exhibiting high structural similarity to a given query g,
we adopt the method in [10] that utilizes the tree-edit-distance
[18]. This tree-edit-distance measures the similarity between
two relational algebra trees constructed from SQL queries.
The smaller the distance, the higher the structural similarity
between the queries. This approach does not consider schema-
specific information to assess structural similarity, allowing
us to focus on the query structure itself. We adopt the
hyperparameters in [10] so that we only retain queries with a
distance of less than 0.1 from the given query ¢, ensuring that
they exhibit substantial structural resemblance.

MaskSchemaTokens: The question templates play an im-
portant role in guiding our data synthesis process. These
templates are derived from existing questions but with schema-
specific information masked out. The purpose of these tem-
plates is to guide the generation of questions while ensuring
that the resulting questions conform to the data distribution
observed in the training set. We adopt the frequency-based
method in [10] to determine which words should be included
in the question templates and which should be masked. Specif-
ically, we retain all words that appear in more than 50%
of the schemas, as these words are indicative of common
patterns and characteristics in the training data. Any words
that fall below this threshold are masked and replaced with
a special token, denoted as “MASK”. Consecutive masked
words are represented by a single “MASK” token to maintain
conciseness and readability. For a question u, we get template
Utemp after masking based on the explanation above. This
preparation of related SQL queries and question templates
serves as the foundation for our data synthesis methodology,
enabling the generation of high-quality synthetic data to en-
hance the performance of Text-to-SQL parsers.

B. New Question Generation

GetExplanation and FillTemplate: We generate new ques-
tions for Text-to-SQL parsers by leveraging ChatGPT to
fill masked templates with one-sentence query explanations.
Using Prompt 1 in Figure 2a, ChatGPT extracts a concise
explanation expll from a given SQL query ¢ € Qs,..>
resulting in question u,..,;¢. Since the Spider dataset typically
has succinct, one-sentence questions, we match this format.

We improve upon [10] by avoiding intermediate represen-
tations, which often include unnecessary terms (e.g., ’belongs
to” for tables, ’the number of” for COUNT(*)) that negatively
affect ChatGPT’s performance. Instead, we instruct ChatGPT
to explain the SQL in a single sentence without using ta-
ble names, yielding more accurate question generation. We
employ in-context learning [19], providing original (question,
SQL query) pairs to guide ChatGPT, allowing it to generate
questions aligned with the desired structure. This method helps
create a new dataset D,,, for fine-tuning existing Text-to-
SQL parsers.

C. Result validation

GetExplanation and Validate: To ensure the consistency
of the generated SQL queries and the associated questions,

we came up with a validation approach that leverages the
embeddings produced by ChatGPT. Rather than training a
dedicated model to validate the alignment between SQL
queries and newly generated questions, we employ embed-
dings generated from ChatGPT. Specifically, we compute the
cosine similarity between the embeddings derived from the
one-sentence explanation of the SQL query and the generated
question. To increase the diversity of the questions, we gener-
ate a new one-sentence query explanation expl2 based on the
corresponding Prompt 2 in Figure 2a for the cosine similarity
rather than use the one to generate the result question. This
method unveils the relationship between SQL queries and
natural language questions, effectively establishing what can
be termed as a “question-query-question cycle” consistency.
Notably, our approach differs from previous methods [7] that
directly train binary classifiers with (question, SQL query)
pairs. The drawback of such direct training is the absence
of specific structures tailored for SQL queries. Unlike models
designed specifically for SQL queries [20] [21], where the
classifiers might struggle to elucidate the nuanced relationship
between queries and questions, our method addresses this
limitation. We agree with the concerns raised by [10] about
the usage of “query-question-query” cycle-consistency, which
get a query to generate a question, and utilize a Text-to-SQL
model to generate a query and then compare the similarity
between the two queries. However, we demonstrate that the
concept of cycle consistency can be valuable when applied
appropriately, as evident in our methodology. To ensure the
coherence and consistency of the generated questions, we
employ a threshold for cosine similarity, similar to previous
work [10]. This threshold serves as a filter, allowing us to
identify and retain only the questions that exhibit a satisfactory
degree of consistency with their corresponding SQL queries.
The questions that pass this filtering process, along with their
associated queries, are then utilized for fine-tuning existing
Text-to-SQL model M with a new dataset D,,,, to get a better
model M,,c.

IV. PARAPHRASING-BASED DATA SYNTHESIS METHOD
USING CHATGPT

To fully leverage the natural language processing capabil-
ities of ChatGPT, we explore two general data augmentation
methods that utilize the paraphrase with schema information
to generate new data without considering a specific domain.
The method is shown in Fig. 1B.

A. Direct Paraphrasing with Schema Information

Traditionally, paraphrasing methods focused solely on the
sentences themselves. [22] [23] However, for datasets like
Spider, where questions are associated with specific schema
information, we propose an enhanced approach. Beyond the
question text, we utilize ChatGPT in conjunction with the
LangChain library to extract related tables from the schema for
a given question. Subsequently, we retrieve all relevant column
names for these tables. The paraphrasing process involves
incorporating the question, related table names, and column

names, ensuring that the generated data is closely aligned
with the underlying database structure. Figure 2b Prompt 1
illustrates the prompt used in this approach. To maintain the
result quality, the same cycle-consistency validation method is
employed here.

B. Paraphrasing Using the Description of Crafted SQOL
Queries

Different from the direct paraphrasing method, we introduce
a strategy based on crafting SQL query templates. Starting
with basic queries containing select, from, where, group by,
order by, and limit clauses, we progress to generating complex
queries with in, union, except, and intersect clauses. Following
the creation of these templates, ChatGPT is employed to fill
in the blanks with tables, columns and values, guided by
the related schema. The synthesized SQL queries are then
executed to validate their correctness, and only those without
errors are retained. For each SQL query, we use ChatGPT
to generate a concise one-sentence description. New questions
are subsequently generated by paraphrasing these descriptions.
The prompt used for this method is detailed in Figure 2b
Prompt 2 and Prompt 3.

Prompt 1:

Explain sql query: {query} in one sentence with as many details to a person does not know SQL and do not
directly use table name.

ChatGPT return: {explanation1}

Prompt 2:

Explain sgl query: {query_similar} in one sentence with as many details to a person does not know SQL and do
not directly use table name.

ChatGPT return: {explanation2}

Prompt 3:

Use this sentence {explanationl} to fill in {question_template}, so that they have the same meaning and
concise. Consider the example, when the sentence is: {explanation2} and the result is: {question for
query_similar}. Give the result based on the style of the example.

ChatGPT return: {question_result}

(a) Prompts for REFORMER
Prompt 1:

Given the question and the related table names and the column names for each of the table inside the parentheses after the
table, get 10 new paraphrase for the question. The paraphrase should not contain word 'table’ or 'tables' or ‘column’ or ‘columns'
explicitly.

Qustion: {question}

Table and Column Names: {table_column_names}

ChatGPT return: {10_questions}

Prompt 2:

The database schema defined as below: {schema}, give me only one sql query as answer without description, the template is:
{SQL_template}. Use on keyword to join tables and use ‘T1', 'T2', 'T3' and so on as table alias. Please replace [column, [table]
and [val] in the template with schema information. if the column is a number type, then you may randomly use these
aggregation function: min, max, avg, sum to the final answer. Do not give more than one sql queries.

ChatGPT return: {SQL_query}

Prompt 3:

Based on explanation: {explanation}, please generate a imperative sentence with the explanation said by a person does not
know SQL without mentioning the word 'query’ or ‘column’ or 'table' or 'joining' or 'data’ or ‘database’ or ‘dataset'. display only
the generated question.

ChatGPT return: {question_result}

(b) Prompts for Paraphrasing-based Method

Fig. 2: Prompts for data generation, where ‘“query”,
“query_similar”, “explanation 1/2”, “question_result”, “ques-
tion_template” etc. denote the corresponding placeholders,
which will be replaced by real queries or explanations when

handing SQL query and question pairs.

V. EXPERIMENT SETTING
A. Datasets

For our experiments, we use the Spider dataset [2], which
includes 7,000 (question, SQL query) pairs in the training set
and 1,034 pairs in the dev set. Following prior work [10],
we categorize database schemas by domain, such as music,
pets, university records, and country records. We also replace
constants in 70% of the SQL queries with other values from
the same columns, as in [10]. For paraphrasing-based methods,

we use the Spider dataset directly without modifications, as
these methods are not domain-specific.

B. Text-to-SQL Model

In keeping with previous studies [10], we employ the Sm-
Bop model [24] as our baseline Text-to-SQL model. The Sm-
Bop model utilizes the ROBERTA [25] model as its backbone
and connects it with four Relation-Aware Attention (RAT) [20]
layers. The dev set in the Spider dataset is modified to ensure
that it does not include any data associated with the evaluation
categories.

C. SQL-to-Text Model

Our approach capitalizes on the capabilities of ChatGPT
[26] for the generation of text-based outputs. As detailed in
Section 3.2, we utilize ChatGPT to fill the masked templates,
and a sample prompt is illustrated in Fig. 2a. For paraphrasing-
based method, we use ChatGPT to generate related tables,
SQL queries and paraphrases, and a sample prompt is shown
in Fig. 2b.

D. Validation Module

The validation module (outlined in Section 3.3) computes
the cosine similarity between the GPT embeddings (text-
embedding-ada-002) derived from the one-sentence explana-
tion of the SQL query and the generated question. A threshold
value, denoted as A, is set to 0.85. This threshold aids in
filtering out inconsistent results, enhancing the overall quality
of our synthesized data. Beyond the threshold for similarity,
we keep only the best 5 results to maintain the high quality of
the generated data used for fine-tuning. The method of “Direct
Paraphrasing with Schema Information” uses a larger threshold
A for the similarity to decrease the size of the dataset. We
tried different values of A (such as 0.9, 0.93, 0.95) in our
experiments.

E. Baselines

For REFOMER framework, we incorporate ReFill [10] as
the baseline model in our experiments. ReFill has demon-
strated superior performance compared to several previous
methods, such as L2S [9], GAZP [7], and SNOWBALL
[27]. For our paraphrasing-based data synthesis method, we
compare with SmBop model [24], TS model+Picard [28] and
TS model+Picard+synthesized data [6].

E Evaluation Metrics

In line with the Spider dataset’s evaluation methodology
[2], we evaluate the performance of our models using Exact
Set Match (EM) and Execution Accuracy (EX). EM disregards
database-related values and compares the result query with the
gold query word by word. On the other hand, EX executes
both the result query and the gold query via a SQL engine
and measures their concordance.

TABLE I: Results for fine-tuning the SmBop parser on
(question, SQL query) pairs generated using REFILL and
REFORMER

Categoryl (Music) _ Category2 (Pets)
Method EM/EX EM/EX
SmBop [24] 87.8/88.7 63.7/65.3
REFILL [1
REFILL [1

Category3 (University) _Categoryd (Country) _Average
EM/EX EM/EX EM/EX

69.5/69.5 442/358 66.3/65.0
73.2/70.1
67.7/67.7

88.7/87.0
85.2/86.1
87.8/88.7

ata entation 87.8/88.7
Ours 89.6/89.6

69.7/73.8
56.5/58.1
56.5/57.3
59.7/62.9
58.9/62.1

55.8/45.0
56.7/46.7
54.2/46.7
56.7/47.5
57.5/50.8

71.8/68.9
66.4/64.7
67.9/66.8
69.2/68.5
70.0/69.4

72.6/73.2
72.6/73.8
73.8/74.4

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. Overall Evaluation

Our overall evaluation, detailed in Table I, demonstrates
the superior performance of our method compared to ReFill
across different categories. Notably, our approach outperforms
ReFill in all categories in our own experiment (denoted by
“Experiment”), while surpassing the claimed performance in
most categories (except for category 2) in [10] (denoted by
“In Paper”). Further scrutiny of the data in Category 2 high-
lights potential reasons for performance deterioration with data
augmentation methods. On average, we achieve an increase
in Exact Set Match (EM) by 3.6% and Execution Accuracy
(EX) by 4.7% when compared to the REFILL framework
(Experiment). We do not beat EM for REFILL (In Paper) but
beat EX by 0.5%.

B. Generated Question Evaluation

To have a fair comparison, we only compare our method
with REFILL(Experiment). Table I shows the performance of
using the SQL-to-Text module of the REFORMER framework
independently (data augmentation only) and then using the
REFILL filtering module. The results reveal improvements
in EM by 2.8% and EX by 3.8%. This analysis underscores
the effectiveness of our data augmentation approach, which
contributes to the overall performance enhancement.

C. Cycle Consistency Method Evaluation

In Table I, we examine the performance when utilizing the
validation module of the REFORMER framework exclusively
(validation only). The results illustrate improvements in EM
by 1.5% and EX by 2.1%. Notably, comparing with the
performance improvement by our approach with only data
augmentation (denoted by “Ours (data augmentation only)”),
our approach using only cycle consistency validation method
(denoted by “Ours (validation only)”) is less effective.

D. Error Analysis for REFORMER

Our analysis reveals that these errors disproportionately
impact the data augmentation in Category 2, ultimately yield-
ing suboptimal results (see Table I). Notably, some of the
generated templates retain information from the original ques-
tions should be excluded, which may result in inaccuracies.
However, for brevity, we focus solely on errors attributable to
other causes.

The REFILL method in our experiment introduces multiple
challenges. Specifically, we observe the questions generated
in Category 2 in our experiment are less complex than the

data synthesized in [10]. This discrepancy in data distribution
adversely affects the performance of the model. Moreover,
certain errors manifest more frequently in our generated data
than in the data synthesized by [10].

Our method REFORMER also has its own limitations in
terms of data diversity and the reliance on one-shot settings.
While data diversity is generally a desirable aspect of data
augmentation, it can inadvertently disrupt existing models
due to unseen novel expressions during training. The one-
shot setting, where substantial emphasis is placed on only
one example, restricts the flexibility to incorporate additional
information into the question template.

Some information are missing.

SELECT Tl.owner_id , T1.last_name FROM Owners AS T1 JOIN Dogs AS T2 ON T1l.owner_id = T2.owner_id
JOIN Treatments AS T3 ON T2.dog_id = T3.dog_id GROUP BY T1.owner_id ORDER BY count(*) DESC LIMIT 1
Show the name of the owner with the highest count of treatments provided to their dogs.

Some question templates may not fit for the SQL query.

SELECT max(weight) , petType FROM pets GROUP BY petType

What are the different pet types and how many pets have the maximum weight?

Columns are not mentioned explicitly.

select T1.fname from student as T1 join has_pet as T2 on T1.stuid = T2.stuid join pets as T3 on T3.petid =
T2.petid where T3.pettype = 'cat' intersect select T1.fname from student as T1 join has_pet as T2 on
T1l.stuid = T2.stuid join pets as T3 on T3.petid = T2.petid where T3.pettype = 'dog"

Find the names of students that have both a cat and a dog as pets.

Diversity may lead confusion.

SELECT count(*) FROM pets WHERE weight > 11

How many pets weigh over 117

The column in SQL query does not have a proper name.

SELECT name , age , weight FROM Dogs WHERE abandoned_yn = 2

List the name, age, and weight for all abandoned dogs

Explain SQL directly.

SELECT pettype , weight FROM pets ORDER BY pet_age LIMIT 1

Show the type and weight of the pets, sorted by the pet's age in ascending order, and retrieve only the first
row.

Fig. 3: Errors from REFORMER

In Figure 3, we comprehensively present the errors identi-
fied by our experiment on REFORMER. The specific errors
examined are as follows:

“Some Information Are Missing” Error: This occurs
when the SQL query specifies the last name, but the question
only asks for "name.” Consistent rules for specifying first
name” or “last name” could help, though expecting perfect
precision is challenging.

“Question Template Mismatch” Error: A mismatch arises
when the SQL query retrieves the maximum weight for pets,
but the question template introduces irrelevant phrases like
“how many,” which doesn’t align with the intent of the SQL
query.

“Columns Not Explicitly Mentioned” Error: This error
happens when important columns, like student IDs, are needed
in the SQL query but are not mentioned in the corresponding
question.

“Diversity Leads to Confusion” Error: ChatGPT’s varied
phrasing, like using “weigh” instead of “weight,” can confuse
the model when it expects specific column names.

“Improper Column Names” Error: SQL queries may
use abbreviations (e.g., “yn” for year number), and while
ChatGPT can interpret common ones, unfamiliar abbreviations
may cause failures.

“Explain SQL Directly” Error: Generated questions
sometimes directly reflect SQL descriptions in an unnatu-
ral, non-conversational tone, highlighting the need for more
human-like question generation.

E. Quality and Diversity of Generated Questions

To gauge the quality and diversity of the generated ques-
tions, we employ two metrics. The BLEU score [29] of the set
S(g) measures the quality of the synthesized data for a query ¢
when compared to its corresponding gold query. Concurrently,
the SelfBLEU metric [30] calculates the average BLEU score
among S(q), providing a measure of the diversity of the
synthesized data. Higher BLEU scores denote higher quality,
while lower SelfBLEU scores indicate greater diversity.

In the study of [10], the generation of hypotheses for
each query involves producing ten candidates through beam
sampling [31]. The selection of the final hypothesis is de-
termined by the highest BLEU score, serving as our final
result for evaluation. In our comparative analysis, we also
consider L2S [9], GAZP [7], and SNOWBALL [27]. It’s
essential to note that our approach lacks a dedicated training
phase, which makes the direct comparisons with other methods
unfair. Instead, we leverage all possible templates to generate
hypotheses, selecting the one yielding the highest BLEU score.

The results in Table II indicate that our method does not
surpass REFILL in terms of BLEU and SelfBLEU scores.
However, it outperforms other methods in BLEU. Despite the
lower score on BLEU and higher score on SelfBLEU, our
method demonstrates superiority over REFILL in terms of
Exact Match (EM) and Execution Accuracy (EX) across most
categories.

F. Result Evaluation for Direct Paraphrasing with Schema
Information

The findings (see Table III) show the performance of our
method highly depends on the size of the augmented data.

When considering values of A set at 0.93 and 0.95, cor-
responding to augmented data sizes of 21,781 and 8,939,
respectively, the performance closely aligns with the baseline
SmBop model, exhibiting marginal improvement of less than
1%. This observation suggests that, within certain data aug-
mentation thresholds, the Direct Paraphrasing method does not
significantly outperform the SmBop baseline.

However, a distinct shift is discerned when X is set to 0.9,
resulting in an augmented data size of 43,847. In this scenario,
the results exhibit marked improvements, with Exact Match
(EM) showing a commendable increase of 2.8% and the Exact
F1 (EX) metric registering a corresponding rise of 2.7%. These
enhancements bring the EM metric close to the performance
of T5-3B with PICARD [28] and surpass the performance of
T5-3B with Syn Data [6].

G. Issues for Paraphrasing using the Explanation of Crafted
SQOL Queries

The SmBop model excels due to its use of parsing trees for
both input and output validation of SQL queries. However,
its custom parser is limited to specific cases, leading to errors
when parsing more complex SQL templates in our new dataset.
To address this, we switched to RASAT(-small), a model based
on T5-small, due to resource constraints preventing us from
testing on T5-3B.

Our results showed that using the Explanation of Crafted
SQL Queries for paraphrasing significantly decreased EM and
EX scores. The errors mainly occurred with hard-level SQL
queries, so we designed even more complex templates than
those in the Spider dataset. However, the lack of ground truth
for the generated data contributed to performance issues.

TABLE II: Results for BLEU and Self-BLEU score from
different methods

Method BLEU 71 (Quality) 100-Self BLEU 1 (Diversity)
Gold-Ref 100 68.8

L2S 38.0 2.2

GAZP 38.8 2.0

SNOWBALL 40.2 2.8

REFILL 48.6 33.8

Ours 432 41.0

VII. CONCLUSION AND LIMITATION

In this study, we introduced REFORMER for generating
(question, SQL query) pairs tailored to new domains using
a “retrieve-and-edit” approach. By filling question templates
with information from queries and leveraging ChatGPT with
carefully crafted prompts, REFORMER outperforms previous
methods without extra training. Our experiments highlight the
effectiveness of cycle-consistency for validation. Additionally,
we explored two paraphrasing-based data synthesis methods,
demonstrating ChatGPT’s ability to generate high-quality data.
While we only focused on ChatGPT with spider dataset
and manually crafted prompts, future research should explore
automatic prompt generation and test other LLMs and Text-
to-SQL datasets.

REFERENCES

[1] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning,”
arXiv:1709.00103, 2017.

[2] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, L. Li,
Q. Yao, S. Roman et al., “Spider: A large-scale human-labeled dataset
for complex and cross-domain semantic parsing and text-to-sql task,”
arXiv:1809.08887, 2018.

[3] M. Hazoom, V. Malik, and B. Bogin, “Text-to-sql in the wild:
a naturally-occurring dataset based on stack exchange data,”
arXiv:2106.05006, 2021.

Citation: S. Liu, S. Almohaimeed and L. Wang, "REFORMER: A ChatGPT-
Driven Data Synthesis Framework Elevating Text-to-SQL Models,” 2024
International Conference on Machine Learning and Applications (ICMLA),
Miami, FL, USA, 2024, pp. 828-833, doi: 10.1109/ICMLA61862.2024.00119.
IEEE Xplore link: https://ieeexplore.ieee.org/abstract/document/10903391

TABLE III: Results for Paraphrasing-based method
Training Set Size ~ EM/EX
Base(SmBop [24]) 7000 72.1/72.3
With Schema Info (\=0.9) 7000+43847 74.9/75.0
With Schema Info (1\=0.93) 7000+21871 72.6/72.3
With Schema Info (1\=0.95) 7000+8939 72.1/71.5
With Crafted SQL 7000+12173 25.7/133.7
T5-3B [28] 7000 71.5/74.4
T5-3B + PICARD [28] 7000 75.5/79.3
T5-3B + Syn Data [6] 7000+21851 74.5/78.6
T5-3B + PICARD + Syn Data [6] 7000421851 76.1/81.4

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

A. Suhr, M.-W. Chang, P. Shaw, and K. Lee, “Exploring unexplored gen-
eralization challenges for cross-database semantic parsing,” in Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, pp. 8372-8388.

W. Yang, P. Xu, and Y. Cao, “Hierarchical neural data synthesis for
semantic parsing,” arXiv:2112.02212, 2021.

Y. Zhao, J. Jiang, Y. Hu, W. Lan, H. Zhu, A. Chauhan, A. Li, L. Pan,
J. Wang, C.-W. Hang et al., “Importance of synthesizing high-quality
data for text-to-sql parsing,” arXiv:2212.08785, 2022.

V. Zhong, M. Lewis, S. I. Wang, and L. Zettlemoyer, “Grounded adap-
tation for zero-shot executable semantic parsing,” arXiv:2009.07396,
2020.

K. Wu, L. Wang, Z. Li, A. Zhang, X. Xiao, H. Wu, M. Zhang, and
H. Wang, “Data augmentation with hierarchical sql-to-question genera-
tion for cross-domain text-to-sql parsing,” arXiv:2103.02227, 2021.

B. Wang, W. Yin, X. V. Lin, and C. Xiong, “Learning to synthesize data
for semantic parsing,” arXiv:2104.05827, 2021.

A. Awasthi, A. Sathe, and S. Sarawagi, “Diverse parallel data synthesis
for cross-database adaptation of text-to-sql parsers,” arXiv:2210.16613,
2022.

D. Guo, Y. Sun, D. Tang, N. Duan, J. Yin, H. Chi, J. Cao, P. Chen,
and M. Zhou, “Question generation from sql queries improves neural
semantic parsing,” arXiv:1808.06304, 2018.

P. Shi, P. Ng, Z. Wang, H. Zhu, A. H. Li, J. Wang, C. N. dos Santos,
and B. Xiang, “Learning contextual representations for semantic parsing
with generation-augmented pre-training,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 15, 2021, pp. 13 806—
13814.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Y. Zhang, J. Deriu, G. Katsogiannis-Meimarakis, C. Kosten, G. Koutrika,
and K. Stockinger, “Sciencebenchmark: A complex real-world bench-
mark for evaluating natural language to sql systems,” arXiv preprint
arXiv:2306.04743, 2023.

L. Cui, Y. Wu, J. Liu, S. Yang, and Y. Zhang, “Template-based named
entity recognition using bart,” arXiv:2106.01760, 2021.

B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” arXiv:2104.08691, 2021.

F. Petroni, T. Rocktischel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and
S. Riedel, “Language models as knowledge bases?” arXiv:1909.01066,
2019.

M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Transactions on Database Systems (TODS), vol. 40,
no. 1, pp. 1-40, 2015.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

B. Wang, R. Shin, X. Liu, O. Polozov, and M. Richardson, ‘“Rat-sql:
Relation-aware schema encoding and linking for text-to-sql parsers,”
arXiv:1911.04942, 2019.

Z. Chen, L. Chen, Y. Zhao, R. Cao, Z. Xu, S. Zhu, and K. Yu,
“Shadowgnn: Graph projection neural network for text-to-sql parser,”
arXiv:2104.04689, 2021.

T. Dopierre, C. Gravier, and W. Logerais, “Protaugment: Intent detection
meta-learning through unsupervised diverse paraphrasing,” in ACL-
IJCNLP. ACL, 2021, pp. 2454-2466.

H. Dai, Z. Liu, W. Liao, X. Huang, Z. Wu, L. Zhao, W. Liu, N. Liu, S. Li,
D. Zhu et al., “Chataug: Leveraging chatgpt for text data augmentation,”
arXiv:2302.13007, 2023.

O. Rubin and J. Berant, “Smbop: Semi-autoregressive bottom-up seman-
tic parsing,” arXiv:2010.12412, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
OpenAl. (2022) Chatgpt (sep 25 version). [Online]. Available:
https://chat.openai.com/chat

C. Shu, Y. Zhang, X. Dong, P. Shi, T. Yu, and R. Zhang, “Logic-
consistency text generation from semantic parses,” arXiv:2108.00577,
2021.

T. Scholak, N. Schucher, and D. Bahdanau, “Picard: Parsing incremen-
tally for constrained auto-regressive decoding from language models,”
arXiv:2109.05093, 2021.

[29]

[30]

[31]

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in ACL, 2002, pp. 311-
318.

Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu,
“Texygen: A benchmarking platform for text generation models,” in The
41st international ACM SIGIR conference on research & development
in information retrieval, 2018, pp. 1097-1100.

A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story genera-
tion,” arXiv:1805.04833, 2018.

