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Abstract

Federated Multilingual Modeling (FMM) plays001
a crucial role in the applications of natural lan-002
guage processing due to the increasing diver-003
sity of languages and the growing demand for004
data privacy. However, FMM faces limitations005
stemming from the substantial communication006
costs in networking and the conflicts arising007
from parameter interference between different008
languages. To address these challenges, we009
introduce a communication-efficient federated010
learning framework with low-rank adaptation011
and language family clustering for Multilingual012
Modeling (MM). In this framework, we main-013
tain the weights of the base model, exclusively014
updating the lightweight Low-rank adaptation015
(LoRA) parameters to minimize communica-016
tion costs. Additionally, we mitigate parameter017
conflicts by grouping languages based on their018
language family affiliations, as opposed to ag-019
gregating all LoRA parameters. Experiments020
demonstrate that our proposed model not only021
surpasses the baseline models in performance022
but also reduces the communication overhead.023

1 Introduction024

Multilingual modeling is increasingly important in025

natural language processing (NLP) as a result of the026

growing diversity of languages used online (Lim-027

isiewicz et al., 2023). However, gathering mul-028

tilingual data can prove prohibitively expensive029

due to its distributed nature and data privacy con-030

cerns (Wang et al., 2022; Gala et al., 2023). To031

address this challenge, Federated Learning (FL)032

is employed to train a multilingual model across033

various institutions and data sources (Chen et al.,034

2023; Zhang et al., 2023b; Fu and King, 2023).035

The fundamental concept of FL revolves around036

the exchange of model parameters rather than the037

transmission of sensitive data, thereby preserving038

data privacy (Zhang et al., 2023c; Xu et al., 2023).039

Nevertheless, the increasing size of pre-trained040

language models (PLMs) presents challenges041
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Figure 1: Benchmark Result on Text Classification Task.

when fine-tuning the federated multilingual model 042

(FMM) with a small dataset in the federated set- 043

ting (Zhang et al., 2023d). This is mainly due to 044

the bottleneck created by transmitting large model 045

parameters through the network (Kim et al., 2023). 046

Beyond the communication cost, FMM naturally 047

encounters non-IID (Non-Independently and Iden- 048

tically Distributed) issues (Zhang et al., 2023a). 049

Owing to differences in linguistic systems and cul- 050

ture, languages such as English and Chinese exhibit 051

significant distribution shifts. When adapting the 052

model towards a specific target language, it can 053

potentially interfere with the modeling of other 054

languages (Xu et al., 2022), resulting in signifi- 055

cant Parameter Conflicts (PC) (Liu et al., 2023; 056

Chronopoulou et al., 2023) and damaging the trans- 057

fer performance (Xu et al., 2022). 058

To this end, we propose a communication- 059

efficient federated learning framework with a lan- 060

guage family clustering for multilingual modeling. 061

Motivated by the parameter-efficient fine-tuning 062

(PEFT) (Houlsby et al., 2019; Ruder et al., 2022; 063

Sung et al., 2022; Hu et al., 2023), as illustrated 064

in Figure 2, we fine-tune on a small set of parame- 065

ters via Low-Rank adaptation techniques (LoRA), 066

while keeping the parameters of the original PLMs 067

unchanged. To the best of our knowledge, we rep- 068

resent the pioneering application of LoRA on FL. 069

Since the LoRA adapter contains fewer trainable 070

parameters, our approach significantly reduces the 071

communication overhead. To alleviate the interfer- 072
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ence between different languages, we are further073

grouping languages into clusters following the lan-074

guage family shown in Figure 3. Experiments are075

showing that our approach demonstrates superior076

performance with higher efficiency compared to077

various baseline models. Below we summarize our078

contributions as follows:079

i. We propose FedLFC, a communication-080

efficient federated learning framework with081

PEFT in the setting of Multilingual Modeling.082

Our work represents the pioneering application083

of LoRA on FL, resulting in a remarkable re-084

duction of communication overhead by a factor085

of 100.086

ii. We employed the language family clustering087

strategy to alleviate the parameter conflict in088

the setting of federated multilingual modeling.089

iii. We show the superiority of FedLFC in three090

downstream tasks, i.e., language modeling, ma-091

chine translation, and text classification.092

2 Methodology093

2.1 Federated Multilingual Modeling.094

We begin by introducing the formulation of Feder-095

ated Multilingual Modeling (FMM) (Weller et al.,096

2022). Given N language datasets {Dj}Ni=1, The097

goal of FMM is to collaboratively train a multilin-098

gual FL model that achieves high performance in099

the downstream tasks. Specifically, in the setting100

of FMM, we assume there are N client {Ci}Ni=1.101

Each client Ci owns only one language Di and the102

different client has different languages. Let Θi103

be the trainable parameters of the local model in104

Ci. At each training round l, the clients train the105

local FL model with parameter Θ(l) on their own106

dataset Di and then send parameters to the server107

S. The server S then aggregates these parameters108

to generate the global parameters Θ(l+1) and sends109

Θ(l+1) to all clients for the subsequent training110

round. FedAvg is employed for aggregation by de-111

fault (McMahan et al., 2017) and is computed as112

follows:113

Θ(l+1) =

N∑
i=1

1

N
Θ

(l)
i . (1)114

2.2 Federated Efficient Fintuning with115

Low-Rank Adaption116

In FMM, training the entire FL model incurs sub-117

stantial communication costs as it involves com-118

puting/exchanging a large number of parameters119

Figure 2: The overall framework of FedLFC.

through the networks. The success of fine-tuning 120

on pre-trained language models (PLMs) motivates 121

us to explore adjustment of the small portion of 122

parameters in the FMM. 123

FMM with Low-Rank Adaption. It has been 124

shown that PLMs exhibit a low “intrinsic dimen- 125

sion" when adapting to specific tasks (Aghajanyan 126

et al., 2021) and can still learn efficiently despite a 127

random projection to a smaller subspace. Inspired 128

by this, in FMM, we hypothesize the local updates 129

to the weights Θ for each client also have such 130

low “intrinsic rank” during training. Therefore we 131

employ the Low-Rank Adapter (LoRA) for effi- 132

cient FMM fine tuning. Specifically, instead of 133

training and exchanging Θ for each client, we only 134

adjust the parameters of adapter ∆Θ in propaga- 135

tion. Specifically, the forward process for the linear 136

layer in the FMM model is computed as follows: 137

h = Θx+∆Θx = BAx, (2) 138

where x represents the output of the previous layer, 139

h is the hidden state. Note that Θ ∈ Rd×k is param- 140

eters of the PLM used in the local model, which is 141

frozen. ∆Θ is the parameters of the adapter, which 142

is updated during training rounds. ∆Θ can be fac- 143

torize into two matrix B ∈ Rd×r and A ∈ Rr×k 144

As the intrinsic rank r << min(d, k) is small, 145

∆Θ = BA has fewer parameters to communicate. 146

Federated Parameter-Efficient Funin Tuning. 147

Our approach involves freezing a pre-trained 148

model and solely training adapters, which is more 149

parameter-efficient. For each client Ci, we add a 150

LoRA module with trainable parameter ∆Θi in 151

parallel to the PLMs parameter Θi. In each train- 152

ing round l, we freeze the parameters of the PLM, 153

Θ
(l)
i and only update LoRA parameters ∆Θ

(l)
i . At 154

the end of each training round, clients transfer their 155

updated LoRA parameters to the server. When 156

the server receives the parameters of all clients, it 157
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aggregates LoRA parameters as158

∆Θ(l+1) =
N∑
i=1

1

N
∆Θ

(l)
i . (3)159

2.3 Updating LoRA Parameters with160

Language Family Clustering161

The parameter conflict (PC) issue is common in162

FMM. As language from different sources exists in163

diverse distributions, such non-i.i.d. nature causes164

conflict when aggregating the parameters trained165

on different Di. The update of the parameter Θi166

from one client may have an adversarial effect on167

the others, yielding suboptimal performance.168

Language Family Clustering (LFC). To alleviate169

PC in FMM, we introduce LFC. Research related170

to FL has shown that clustering a subset of clients171

that share a similar distribution strategy can reduce172

the PC (Vahidian et al., 2023; Ruan and Joe-Wong,173

2022; Liu et al., 2023). Typical methods employ174

heuristic prior knowledge to determine the group175

of parameter aggregation. In language modeling,176

languages can be categorized together based on177

linguistic information, forming language families.178

Following the language family clustering in (Paul179

et al., 2009). We aggregate LoRA parameters using180

language family clusters as shown in Figure 3, i.e.,181

Germanic (including English and German), Italic182

(including Spanish, French, and Portuguese), Balto-183

Slavic (including Russia, Polish, Czech and Lithua-184

nian), Sino-Tibetan (including Chinese), Uralic (in-185

cluding Finnish), Afro-Asiatic (including Arabic),186

and Japonic (including Japanese).187

Let {Gm}Mm=1, (M ≤ N) denotes the set of fam-188

ily in taxonomy. Each Gm contains a set of index i189

indicating the i-th clients with datasets Di belong190

to the m-th language family. The aggregation in191

Equation 3 then change to192

∆Θm,(l+1) =
∑
i∈Gm

1

|Gm|
∆Θ

(l)
i . (4)193

Note that we have M LoRA adapters associated194

with different language families Gm. We use corre-195

sponding ∆Θm,(l+1) for inference in downstream196

tasks with specific language. The overall algorithm197

is shown in Algorihtm 1.198

3 Experiment199

Tasks and Datasets. We evaluate our model in200

three takes i.e., Language Modeling (LM), Ma-201

chine Translation (MT), and Text Classification202

Language Families

Indo-European

Germanic
English (En)

German (De)

Italic

Spanish (Es)

French (Fr)

Portuguese (Pt)

Balto-Slavic

Russia (Ru)

Polish (Pl)

Czech (Cs)

Lithuanian (Lt)

Sino-Tibetan Chinese (Zh)

Uralic Finnish (Fi)

Afro-Asiatic Arabic (Ar)

Japonic Japanese (Ja)

Figure 3: Language families form (Paul et al., 2009).

(TC) using four datasets i.e., Europarl, MTNT, UN 203

Corpus, and News Classification. The statistics of 204

each dataset are shown in Table 4. We detail the 205

description of each dataset in Appendix 4. 206

Experiment Settings. We use different pre-trained 207

models for different tasks i.e., mBERT (Sanh 208

et al., 2019) for language modeling, M2M100 (Fan 209

et al., 2021) for machine translation, and XLM- 210

Roberta (Conneau et al., 2019) for text classifi- 211

cation. A detailed setting including system and 212

hyperparameters is in Appendix A.2. 213

Baselines. We perform the experiment on three 214

different settings i.e., Centralized Model, FedAvg, 215

and Standalone. The centralized model employs 216

centralized training (Weller et al., 2022), where all 217

data is collected in one place. FedAvg employs 218

Federated Averaging (McMahan et al., 2017) train- 219

ing within the federated learning framework, di- 220

viding data across different clients. Both of them 221

train a conventional multilingual model with all 222

parameters. Standalone setting trains data exclu- 223

sively in one language and tests its performance 224

across all languages, demonstrating a scenario 225

where a model is trained using data from a single 226

client (Weller et al., 2022). To show the superi- 227

ority of LFC and LoRA, we further freeze param- 228

eters of PLMs in the setting of Centralized and 229

FedAvg. We train LoRA (Hu et al., 2022) and typi- 230

cal Adapter (Houlsby et al., 2019) without LFC. 231

Evaluation Metric. For the language modeling 232

task, we use perplexity (PPL) as the evaluation 233

metric (Weller et al., 2022). For neural machine 234

translation task, we use BLEU as evaluation met- 235

rics, using ScareBLEU package (Post, 2018). For 236

the text classification task, we use accuracy as an 237

evaluation metric. 238
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Table 1: Results for FL experiments on the LM task. The standard deviation (std) is reported Table 6.
# TP ↓ UN ↓ Europarl ↓

Method En Es Zh Ru Ar Fr Avg En Cs Lt Es Pl Fi Pt De Avg

Centralized - 7.4 4.8 6.9 3.9 5.2 4.6 5.6 9.8 3.8 4.8 6.0 3.9 5.8 9.2 8.4 5.9
+ Adapter - 10.4 6.2 9.0 4.7 7.2 5.9 7.0 10.6 7.1 8.2 7.3 5.8 7.6 7.6 7.9 7.7
+ LoRA - 11.3 6.7 9.7 5.0 7.6 6.4 7.5 10.7 6.9 8.0 7.3 5.7 7.4 7.5 8.0 7.6

Standalone - 33.0 16.1 43.0 10.3 10.8 14.0 25.4 9.4 2.8 2.6 4.3 2.8 3.0 3.7 3.5 4.0

FedAvg 135.4M 8.7 4.2 5.4 4.1 4.2 5.1 5.1 10.4 6.4 9.2 5.9 5.9 7.8 7.5 7.9 7.7
+ Adapter 2.5M 22.8 14.9 17.0 9.9 17.2 14.3 15.5 12.0 10.6 14.2 8.3 7.5 10.7 9.4 9.2 10.1
+ LoRA 1.2M 10.8 6.6 9.3 5.0 8.1 6.3 7.5 11.4 8.8 11.3 7.8 6.6 9.3 8.5 8.8 8.9

FedLFC 1.2M 9.4 5.6 8.0 4.0 6.1 5.1 6.4 10.4 6.1 6.3 7.1 5.4 6.4 7.2 7.7 7.1

Table 2: Results for FL experiments on the machine translation task.
# TP ↓ MTNT ↑ UN ↑

Method En-Fr En-Ja Avg En-Fr Ar-Es Ru-Zh Avg
Centralized - 32.2±0.5 32.3±0.2 32.1±0.7 39.3±0.6 37.5±0.9 24.0±0.2 33.8±0.6
+ Adapter - 31.9±0.5 30.4±0.3 31.7±0.1 36.9±0.9 34.0±0.6 20.3±0.2 30.4±0.3
+ LoRA - 32.3±0.6 32.5±0.2 32.2±0.6 37.6±0.3 34.9±0.3 20.2±0.2 31.3±0.6

Standalone - 27.1±0.5 28.1±0.7 27.6±0.6 34.6±0.5 33.8±0.5 18.5±0.6 29.0±0.4

FedAvg 483.9M 32.9±0.2 33.3±0.8 32.9±0.6 38.2±0.4 35.9±0.3 21.1±0.1 31.1±0.7
+ Adapter 12.7M 32.6±0.4 33.0±0.2 32.6±0.6 35.8±0.9 31.9±0.6 19.2±0.8 29.2±0.4
+ LoRA 9.4M 33.3±0.6 32.5±0.5 33.2±0.8 36.3±0.6 32.7±0.5 19.8±0.7 29.5±0.7

FedLFC 9.4M 34.0±0.2 33.6±0.1 33.8±0.4 38.7±0.7 37.9±0.5 22.1±0.2 32.9±0.1

Table 3: Results for FL experiments on the text classification task.
Method # TP ↓ En ↑ Es ↑ Fr ↑ De ↑ Ru ↑ Avg ↑
Centralized - 93.5±0.7 86.3±0.5 82.9±0.3 89.6±0.1 88.5±0.4 88.1±0.2
+ Adapter - 92.7±0.4 86.7±0.6 81.7±0.1 88.5±1.0 87.4±0.5 87.4±0.3
+ LoRA - 91.8±0.4 83.7±0.3 80.4±0.5 86.4±0.4 85.3±0.1 85.5±0.1

Standalone - 22.8±1.2 40.8±0.7 40.8±0.1 40.8±0.5 77.1±0.2 44.5±0.3

FedAvg 278.1M 90.7±0.4 84.3±0.2 80.5±0.3 87.6±0.1 83.4±0.5 85.3±0.2
+ Adapter 5.4M 91.5±0.5 85.7±0.7 79.1±0.2 86.9±0.7 81.3±0.8 84.9±0.7
+ LoRA 2.5M 93.8±0.3 85.8±0.6 80.7±0.3 89.4±0.7 86.7±0.3 87.3±0.2

FedLFC 2.5M 93.5±0.1 86.6±0.1 82.7±0.5 90.1±0.1 91.0±0.1 88.7±0.1

3.1 Main Results239

In this section, we discuss the results and observa-240

tions in Table 1, 2, and 3 respectively. Overall, our241

approach demonstrates superior performance com-242

pared to other FL methods in most tasks. Following243

are several key observations.244

FMM Model Outperform Standalone. The stan-245

dalone model serves as the lower performance246

bound for each task. Our experimental results247

demonstrate that a majority of FedAvg models248

outperform the standalone model. This observa-249

tion highlights the necessity of FMM for language250

model training in real-world scenarios, as it enables251

the using the training data without data barriers.252

Parameters Efficient FT vs. Full-Parameters253

FT. We observe that the parameters efficient fine-254

tuning model outperforms the full fine-tuning mod-255

els. This shows the effectiveness of LoRA in FMM.256

Lower Communication Costs. Being consistent257

in three tasks, the introduction of LoRA led to a258

remarkable reduction in the number of trainable259

parameters by a factor of 100 which is shown in260

Table 1, 2, and 3 respectively. In comparison to full261

fine-tuning and adapters, LoRA utilizes the fewest262

training parameters and GPU memory across the 263

three tasks. 264

Clustering Strategy Improves Performance. By 265

incorporating an LFC strategy, the performance 266

improvement varies significantly across different 267

languages. Notably, the clustering strategy proves 268

to be more beneficial for languages with limited 269

resources. In Table 1, we observe that compared 270

to other languages, Ar (8.1→6.1), Cs (8.8→6.1), 271

Lt (11.3→6.3), and Fi (9.3→6.4) exhibit a greater 272

decrease in perplexity (PPL). These languages are 273

typically associated with medium or low-resource 274

datasets in real-world scenarios. This confirms that 275

LFC is more effective in low-source languages. 276

4 Conclusion 277

In the paper, we propose, FedLFC, a communica- 278

tion efficient federated learning framework for Mul- 279

tilingual Modeling. Two crucial techniques, i.e., 280

Federated Efficient-Finetning with LoRA and Lan- 281

guage Family Clustering are introduced to solve 282

the problem of communication overhead and pa- 283

rameter conflict caused by language interference. 284

Experiments show that our proposed model is both 285

efficient and effective. 286
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Limitations287

In this paper, we only test the approach on Bert,288

M2M100 and xlm-roberta PLMs. In the future, we289

will conduct research on applying the approach to290

Large Language Models (LLM). Secondly, we only291

use the same number of data in each language for292

fine-tuning. The data partition is different from the293

real-world. We will validate the effectiveness of294

the model on datasets with varying quantities of295

different languages. Thirdly, there are other kinds296

of clustering strategy, such as gradients clustering,297

random clustering. Following Liu et al. (2023),298

we only choose language family clustering strategy.299

We will test other clustering strategy.300
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A Appendix502

A.1 Description of Datasets503

Below is a detailed description of three datasets:504

News Classification. The News Classification505

(NC) dataset from the XGLUE benchmark (Liang506

et al., 2020) is utilized for the text classification507

(TC) task. This dataset includes five languages:508

English, Spanish, French, German, and Russian.509

Our objective is to predict the 10 kinds of article510

categories based on the article title and body, such511

as finance, sports, or travel. We sample 8,000 in-512

stances for training and 1,000 for evaluation or513

testing.514

MTNT. The Machine Translation of Noisy Text515

(MTNT) dataset (Michel and Neubig, 2018) is one516

of widely adopted datasets. It consists of noisy517

comments on Reddit and professionally sourced518

translations. <English, French> and <English,519

Japanese> language pairs are utilized in our experi-520

ments. Previous research has utilized this dataset to521

assess the robustness of machine translation (MT)522

systems against domain shifts (Li et al., 2019).523

Given that FL inherently deals with client data that524

exhibits inherent shifts from centralized data, our525

study is well-suited to leverage this dataset.526

UN Corpus. The UN Corpus (Ziemski et al., 2016)527

is the initial parallel corpus comprised of United528

Nations documents provided by the original cre-529

ator. It consists of UN documents manually trans-530

lated over the past 25 years (1990 to 2014) and531

encompasses the six official UN languages: Arabic,532

Chinese, English, French, Russian, and Spanish.533

We make use of this dataset for language modeling534

(LM) and machine translation (MT) tasks. In the535

LM task, we employ 50,000 instances per language536

for training data and allocate 5,000 instances for537

validation or testing. As for the MT task, we have538

three language pairs: <English, French>, <Ara-539

bic, Spanish>, and <Russian, Chinese>. During540

training, we sample 10,000 instances, while 5,000541

instances are set aside for evaluation purposes.542

Europarl. We utilize the Europarl corpus (Koehn,543

2005), which comprises transcripts from European544

Union meetings, as our data source. The dataset545

comprises parallel text in 11 languages, from which546

we gather data samples for the language modeling547

(LM) task. Specifically, we collect data samples548

from 8 languages: English, Spanish, Portuguese,549

French, German, Finnish, Polish, Lithuanian, and550

Czech. To facilitate training, we extract 20,000551

Table 4: Datasets related to three tasks.

Task Dataset # Train # Dev # Test Metric

LM Europarl 160,000 40,000 40,000 PPL
UN 300,000 30,000 30,000 PPL

MT MTNT 11,210 1,798 2,019 sacreBleu
UN 30,000 15,000 15,000 sacreBleu

TC NC 40,000 5,000 5,000 Accuracy

Algorithm 1: Cluster Aggregation
Input: The clusters set G;

Initial LoRA parameters Θ0;
Clients set {Ci}Ni=1;
The clients id list in each cluster g;
Training round L.

Output: LoRA Parameters {ΘL
i }Ni=1.

1 for i from 1 to N do
2 Initialize Θ0

i with Θ0;

3 for l from 1 to L do
4 for i from 1 to N do

// local update of client i

5 update Θl−1
i with local data;

// cluster aggregation of LoRA
parameters

6 foreach g in G do
7 Θl

g =
∑

id∈g
1
|g|Θ

l−1
id ;

8 foreach id in g do
9 Θl

id = Θl
g;

instances, while reserving 5,000 instances for vali- 552

dation or testing. 553

A.2 Training Details 554

We have employed FedLab (Zeng et al., 2023) 1 as 555

our federated framework. The training method- 556

ology outlined in (Weller et al., 2022) was fol- 557

lowed. The maximum sequence length was set 558

to 512. These experiments were conducted on a 559

4 GPU cluster comprising A100 GPUs, with each 560

GPU having 80GB of memory. The AdamW opti- 561

mizer was employed. Each client completed a full 562

epoch of local learning before synchronizing with 563

the server. To enhance performance, four different 564

learning rates (1e-4, 5e-4, 1e-3, 5e-3) were utilized, 565

with 5e-4 yielding the best results. The model was 566

trained for 20 epochs for the language modeling 567

task, 25 epochs for the machine translation task, 568

and 30 epochs for the text classification task. In 569

FL training, FedAvg was used as the learning al- 570

gorithm. The adapter bottleneck was set to 128. 571

1https://github.com/SMILELab-FL/FedLab/
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Table 5: Results for LM experiments on the UN Corpus.
Method # TP ↓ En ↓ Es ↓ Zh ↓ Ru ↓ Ar ↓ Fr ↓ Avg ↓
Standalone - 33.0±0.8 16.1±1.2 43.0±1.5 10.3±0.8 10.8±0.2 14.0±0.3 25.4±0.9

Centralized - 7.4±0.2 4.8±0.4 6.9±0.2 3.9±0.1 5.2±0.3 4.6±0.3 5.6±0.3
+ Adapter - 10.4±0.6 6.2±0.5 9.0±0.2 4.7±0.5 7.2±0.4 5.9±0.2 7.0±0.3
+ LoRA - 11.3±0.5 6.7±.7 9.7±1.0 5.0±0.5 7.6±0.3 6.4±0.1 7.5±0.6

FedAvg 135.4M 8.7±0.2 4.2±0.5 5.4±0.1 4.1±0.2 4.2±0.7 5.1±0.5 5.1±0.6
+ Adapter 2.5M 22.8±0.5 14.9±0.5 17.0±0.4 9.9±0.5 17.2±0.1 14.3±0.7 15.5±0.6
+ LoRA 1.2M 10.8±0.9 6.6±0.3 9.3±0.5 5.0±0.6 8.1±0.5 6.3±0.6 7.5±0.8

FedLFC 1.2M 9.4±0.3 5.6±0.2 8.0±0.4 4.0±0.1 6.1±0.2 5.1±0.1 6.4±0.2

Table 6: Results for LM experiments on the Europarl.
Method # TP ↓ En Cs Lt Es Pl Fi Pt De Avg
Standalone - 9.4±0.9 2.8±0.4 2.6±1.2 4.3±0.6 2.8±0.5 3.0±0.2 3.7±0.6 3.5±0.8 4.0±0.2

Centralized - 9.8±0.5 3.8±0.6 4.8±0.1 6.0±0.2 3.9±0.8 5.8±0.4 9.2±0.6 8.4±0.5 5.9±0.5
+ Adapter - 10.6±0.6 7.1±0.5 8.2±0.5 7.3±0.2 5.8±0.8 7.6±0.8 7.6±0.5 7.9±0.5 7.7±0.2
+ LoRA - 10.7±0.8 6.9±0.9 8.0±0.2 7.3±0.2 5.7±0.6 7.4±0.4 7.5±0.5 8.0±0.8 7.6±0.6

FedAvg 135.4M 10.4±0.6 6.4±0.5 9.2±0.2 5.9±0.1 5.9±0.3 7.8±0.6 7.5±0.5 7.9±0.8 7.7±0.6
+ Adapter 2.5M 12.0±0.8 10.6±0.2 14.2±0.6 8.3±0.4 7.5±0.8 10.7±0.2 9.4±0.4 9.2±0.6 10.1±0.5
+ LoRA 1.2M 11.4±0.8 8.8±0.6 11.3±0.4 7.8±0.5 6.6±0.2 9.3±0.5 8.5±0.8 8.8±0.6 8.9±0.4

FedLFC 1.2M 10.4±0.3 6.1±0.4 6.3±0.2 7.1±0.1 5.4±0.5 6.4±0.2 7.2±0.7 7.7±0.5 7.1±0.4

Within the LoRA module, the rank was set to 64,572

alpha to 32, and dropout to 0.1.573

A.3 Extra Observation in the Experiment.574

FL Methods Outperforms Centralized methods.575

In general, centralized models are considered as576

the upper bound of each task. However, Weller577

et al. (2022) show that FedNLP, FedAvg-model578

outperforms centralized-model. We hypothesize579

that the phenomenon is a result by parameter con-580

flict. While there are shared commonalities, dif-581

ferent languages also have distinct characteristics.582

Consequently, the aggregation of parameters from583

all languages can potentially interfere with the spe-584

cific parameters of a particular language (Bari et al.,585

2021), resulting in a negative impact on transfer586

performance. The phenomenon is also observed in587

three tasks of our experiments.588
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