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Abstract

Federated Multilingual Modeling (FMM) plays
a crucial role in the applications of natural lan-
guage processing due to the increasing diver-
sity of languages and the growing demand for
data privacy. However, FMM faces limitations
stemming from the substantial communication
costs in networking and the conflicts arising
from parameter interference between different
languages. To address these challenges, we
introduce a communication-efficient federated
learning framework with low-rank adaptation
and language family clustering for Multilingual
Modeling (MM). In this framework, we main-
tain the weights of the base model, exclusively
updating the lightweight Low-rank adaptation
(LoRA) parameters to minimize communica-
tion costs. Additionally, we mitigate parameter
conflicts by grouping languages based on their
language family affiliations, as opposed to ag-
gregating all LoRA parameters. Experiments
demonstrate that our proposed model not only
surpasses the baseline models in performance
but also reduces the communication overhead.

1 Introduction

Multilingual modeling is increasingly important in
natural language processing (NLP) as a result of the
growing diversity of languages used online (Lim-
isiewicz et al., 2023). However, gathering mul-
tilingual data can prove prohibitively expensive
due to its distributed nature and data privacy con-
cerns (Wang et al., 2022; Gala et al., 2023). To
address this challenge, Federated Learning (FL)
is employed to train a multilingual model across
various institutions and data sources (Chen et al.,
2023; Zhang et al., 2023b; Fu and King, 2023).
The fundamental concept of FL revolves around
the exchange of model parameters rather than the
transmission of sensitive data, thereby preserving
data privacy (Zhang et al., 2023c; Xu et al., 2023).

Nevertheless, the increasing size of pre-trained
language models (PLMs) presents challenges
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Figure 1: Benchmark Result on Text Classification Task.

when fine-tuning the federated multilingual model
(FMM) with a small dataset in the federated set-
ting (Zhang et al., 2023d). This is mainly due to
the bottleneck created by transmitting large model
parameters through the network (Kim et al., 2023).
Beyond the communication cost, FMM naturally
encounters non-IID (Non-Independently and Iden-
tically Distributed) issues (Zhang et al., 2023a).
Owing to differences in linguistic systems and cul-
ture, languages such as English and Chinese exhibit
significant distribution shifts. When adapting the
model towards a specific target language, it can
potentially interfere with the modeling of other
languages (Xu et al., 2022), resulting in signifi-
cant Parameter Conflicts (PC) (Liu et al., 2023;
Chronopoulou et al., 2023) and damaging the trans-
fer performance (Xu et al., 2022).

To this end, we propose a communication-
efficient federated learning framework with a lan-
guage family clustering for multilingual modeling.
Motivated by the parameter-efficient fine-tuning
(PEFT) (Houlsby et al., 2019; Ruder et al., 2022;
Sung et al., 2022; Hu et al., 2023), as illustrated
in Figure 2, we fine-tune on a small set of parame-
ters via Low-Rank adaptation techniques (LoRA),
while keeping the parameters of the original PLMs
unchanged. To the best of our knowledge, we rep-
resent the pioneering application of LoRA on FL.
Since the LoRA adapter contains fewer trainable
parameters, our approach significantly reduces the
communication overhead. To alleviate the interfer-



ence between different languages, we are further
grouping languages into clusters following the lan-
guage family shown in Figure 3. Experiments are
showing that our approach demonstrates superior
performance with higher efficiency compared to
various baseline models. Below we summarize our
contributions as follows:

i. We propose FedLFC, a communication-
efficient federated learning framework with
PEFT in the setting of Multilingual Modeling.
Our work represents the pioneering application
of LoRA on FL, resulting in a remarkable re-
duction of communication overhead by a factor
of 100.

ii. We employed the language family clustering
strategy to alleviate the parameter conflict in
the setting of federated multilingual modeling.

iii. We show the superiority of FedLFC in three
downstream tasks, i.e., language modeling, ma-
chine translation, and text classification.

2 Methodology
2.1 Federated Multilingual Modeling.

We begin by introducing the formulation of Feder-
ated Multilingual Modeling (FMM) (Weller et al.,
2022). Given N language datasets {D;}Y |, The
goal of FMM is to collaboratively train a multilin-
gual FL. model that achieves high performance in
the downstream tasks. Specifically, in the setting
of FMM, we assume there are N client {C;} ;.
Each client C; owns only one language D; and the
different client has different languages. Let ©;
be the trainable parameters of the local model in
Cj;. At each training round [, the clients train the
local FL model with parameter ®¥) on their own
dataset D; and then send parameters to the server
S. The server S then aggregates these parameters
to generate the global parameters ©0+1) and sends
©(+1) to all clients for the subsequent training
round. FedAvg is employed for aggregation by de-
fault (McMahan et al., 2017) and is computed as
follows:
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2.2 Federated Efficient Fintuning with
Low-Rank Adaption

In FMM, training the entire FL model incurs sub-
stantial communication costs as it involves com-
puting/exchanging a large number of parameters
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Figure 2: The overall framework of FedLFC.

through the networks. The success of fine-tuning
on pre-trained language models (PLMs) motivates
us to explore adjustment of the small portion of
parameters in the FMM.

FMM with Low-Rank Adaption. It has been
shown that PLMs exhibit a low “intrinsic dimen-
sion" when adapting to specific tasks (Aghajanyan
et al., 2021) and can still learn efficiently despite a
random projection to a smaller subspace. Inspired
by this, in FMM, we hypothesize the local updates
to the weights ® for each client also have such
low “intrinsic rank” during training. Therefore we
employ the Low-Rank Adapter (LoRA) for effi-
cient FMM fine tuning. Specifically, instead of
training and exchanging ® for each client, we only
adjust the parameters of adapter A® in propaga-
tion. Specifically, the forward process for the linear
layer in the FMM model is computed as follows:

h=0xz+ A®x = BAx, 2)

where « represents the output of the previous layer,
h is the hidden state. Note that ® € R** is param-
eters of the PLM used in the local model, which is
frozen. A® is the parameters of the adapter, which
is updated during training rounds. A® can be fac-
torize into two matrix B € R%" and A € R™**
As the intrinsic rank r << min(d, k) is small,
A® = BA has fewer parameters to communicate.

Federated Parameter-Efficient Funin Tuning.
Our approach involves freezing a pre-trained
model and solely training adapters, which is more
parameter-efficient. For each client C;, we add a
LoRA module with trainable parameter A®; in
parallel to the PLMs parameter ®;. In each train-
ing round [, we freeze the parameters of the PLM,
()] Z(l) and only update LoRA parameters A® Z(l). At
the end of each training round, clients transfer their
updated LoRA parameters to the server. When
the server receives the parameters of all clients, it



aggregates LoORA parameters as
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2.3 Updating LoRA Parameters with
Language Family Clustering

A@(l+1)

The parameter conflict (PC) issue is common in
FMM. As language from different sources exists in
diverse distributions, such non-i.i.d. nature causes
conflict when aggregating the parameters trained
on different D;. The update of the parameter ®;
from one client may have an adversarial effect on
the others, yielding suboptimal performance.

Language Family Clustering (LFC). To alleviate
PC in FMM, we introduce LFC. Research related
to FL has shown that clustering a subset of clients
that share a similar distribution strategy can reduce
the PC (Vahidian et al., 2023; Ruan and Joe-Wong,
2022; Liu et al., 2023). Typical methods employ
heuristic prior knowledge to determine the group
of parameter aggregation. In language modeling,
languages can be categorized together based on
linguistic information, forming language families.
Following the language family clustering in (Paul
etal., 2009). We aggregate LoRA parameters using
language family clusters as shown in Figure 3, i.e.,
Germanic (including English and German), Italic
(including Spanish, French, and Portuguese), Balto-
Slavic (including Russia, Polish, Czech and Lithua-
nian), Sino-Tibetan (including Chinese), Uralic (in-
cluding Finnish), Afro-Asiatic (including Arabic),
and Japonic (including Japanese).

Let {Gn }M_,, (M < N) denotes the set of fam-
ily in taxonomy. Each G,, contains a set of index ¢
indicating the i-th clients with datasets D; belong
to the m-th language family. The aggregation in
Equation 3 then change to

A@m (I+1) Z 7A@(l 4)
Zegm |gm

Note that we have M LoRA adapters associated
with different language families G,,,. We use corre-
sponding A@™(+1) for inference in downstream
tasks with specific language. The overall algorithm
is shown in Algorihtm 1.

3 Experiment

Tasks and Datasets. We evaluate our model in
three takes i.e., Language Modeling (LM), Ma-
chine Translation (MT), and Text Classification
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Figure 3: Language families form (Paul et al., 2009).

(TC) using four datasets i.e., Europarl, MTNT, UN
Corpus, and News Classification. The statistics of
each dataset are shown in Table 4. We detail the
description of each dataset in Appendix 4.

Experiment Settings. We use different pre-trained
models for different tasks i.e., mBERT (Sanh
et al., 2019) for language modeling, M2M100 (Fan
et al., 2021) for machine translation, and XLM-
Roberta (Conneau et al., 2019) for text classifi-
cation. A detailed setting including system and
hyperparameters is in Appendix A.2.

Baselines. We perform the experiment on three
different settings i.e., Centralized Model, FedAvg,
and Standalone. The centralized model employs
centralized training (Weller et al., 2022), where all
data is collected in one place. FedAvg employs
Federated Averaging (McMahan et al., 2017) train-
ing within the federated learning framework, di-
viding data across different clients. Both of them
train a conventional multilingual model with all
parameters. Standalone setting trains data exclu-
sively in one language and tests its performance
across all languages, demonstrating a scenario
where a model is trained using data from a single
client (Weller et al., 2022). To show the superi-
ority of LFC and LoRA, we further freeze param-
eters of PLMs in the setting of Centralized and
FedAvg. We train LoRA (Hu et al., 2022) and typi-
cal Adapter (Houlsby et al., 2019) without LFC.

Evaluation Metric. For the language modeling
task, we use perplexity (PPL) as the evaluation
metric (Weller et al., 2022). For neural machine
translation task, we use BLEU as evaluation met-
rics, using ScareBLEU package (Post, 2018). For
the text classification task, we use accuracy as an
evaluation metric.



Table 1: Results for FL experiments on the LM task. The standard deviation (std) is reported Table 6.

#TP | UN | Europarl |
Method Es Zh Ru Ar Fr Avg | En Cs s Pl i t De Avg
Centralized -1 74 48 69 39 52 46 56| 98 38 48 60 39 58 92 84 59
+ Adapter -1 104 62 90 47 72 59 70 (106 71 82 73 58 76 76 19 17
+ LoRA - 13 67 97 50 76 64 75107 69 80 73 57 74 15 80 176
Standalone | - 1330 161 430 103 108 140 254 | 94 28 26 43 28 3.0 37 35 40
FedAvg 1354M | 87 42 54 41 42 51 51 |104 64 92 59 59 78 75 79 177
+ Adapter 25M | 228 149 170 99 172 143 155|120 106 142 83 75 107 94 92 101
+ LoRA 12M | 108 66 93 50 81 63 75 |114 88 113 78 66 93 85 88 89
FedLFC | 12M | 94 56 80 40 61 51 64 |104 61 63 71 54 64 72 77 171
Table 2: Results for FL experiments on the machine translation task.
#TP | MTNT t N1
Method En-Fr En-Ja Avg En-Fr Ar-Es Ru-Zh Avg
Centralized - 32.2+05 32.3+02 32.1+07 39.3+0.6 37.5+09 24.0+0.2 33.8+0.6
+ Adapter - 31.9+05 30.4+03 31.7+0.1 36.9+0.9 34.0+0.6 20.3+0.2 30.4+03
+LoRA - 32.3+06 32.5+02 32.2+06 37.6+03 34.9+03 20.2+0.2 31.3+06
Standalone | - | 27.1z%o0s 28.1+07 27.6+06 | 34.6+05 33.8+05 18.5+0.6 29.0+0.4
FedAvg 483.9M 32.9+02 33.3+08 32.9+06 38.2+0.4 35.9+03 21.1+0.1 31.1+07
+ Adapter 12.7M 32.64+04 33.040.2 32.640.6 35.84+09 31.9+06 19.2+038 29.2404
+LoRA 9.4M 33.3+06 32.5+05 33.2+08 36.3+0.6 32.7+05 19.8+0.7 29.5+07
FedLFC \ 94M | 34.0+02 33.6+0.1 33.8+04 | 38.7+07 37.9+0s5 22.1+02 32.9+0.1
Table 3: Results for FL experiments on the text classification task.
Method \ #TP| | En 1 Es 1 Fr 1 De 1 Ru 1 Avg 1
Centralized - 93.5+0.7 86.3+05 82.9+03 89.6+0.1 88.5+04 88.1+0.2
+ Adapter - 92.7+04 86.7+0.6 81.7+0.1 88.5+1.0 87.4+0.5 87.4+03
+ LoRA - 91.8+04 83.7+03 80.4+0.5 86.4+04 85.3+0.1 85.5+0.1
Standalone | - | 22812 40.840.7 40.8+0.1 40.8+05 77.1+02 44.5+03
FedAvg 278.1M 90.7+0.4 84.3+02 80.5+03 87.6+0.1 83.4+05 85.3+0.2
+ Adapter 5.4M 91.5+0.5 85.7+0.7 79.1+0.2 86.9+0.7 81.3+08 84.9+0.7
+ LoRA 2.5M 93.8+03 85.8+06 80.7+0.3 89.4+07 86.7+0.3 87.3+02
FedLFC \ 25M | 93.5z+01 86.6+0.1 82.7+05 90.1+0.1 91.0+0.1 88.7+0.1
3.1 Main Results training parameters and GPU memory across the

In this section, we discuss the results and observa-
tions in Table 1, 2, and 3 respectively. Overall, our
approach demonstrates superior performance com-
pared to other FL. methods in most tasks. Following
are several key observations.

FMM Model Outperform Standalone. The stan-
dalone model serves as the lower performance
bound for each task. Our experimental results
demonstrate that a majority of FedAvg models
outperform the standalone model. This observa-
tion highlights the necessity of FMM for language
model training in real-world scenarios, as it enables
the using the training data without data barriers.

Parameters Efficient FT vs. Full-Parameters
FT. We observe that the parameters efficient fine-
tuning model outperforms the full fine-tuning mod-
els. This shows the effectiveness of LoORA in FMM.

Lower Communication Costs. Being consistent
in three tasks, the introduction of LoRA led to a
remarkable reduction in the number of trainable
parameters by a factor of 100 which is shown in
Table 1, 2, and 3 respectively. In comparison to full
fine-tuning and adapters, LoRA utilizes the fewest

three tasks.

Clustering Strategy Improves Performance. By
incorporating an LFC strategy, the performance
improvement varies significantly across different
languages. Notably, the clustering strategy proves
to be more beneficial for languages with limited
resources. In Table 1, we observe that compared
to other languages, Ar (8.1—6.1), Cs (8.8—6.1),
Lt (11.3—6.3), and Fi (9.3—6.4) exhibit a greater
decrease in perplexity (PPL). These languages are
typically associated with medium or low-resource
datasets in real-world scenarios. This confirms that
LFC is more effective in low-source languages.

4 Conclusion

In the paper, we propose, FedLFC, a communica-
tion efficient federated learning framework for Mul-
tilingual Modeling. Two crucial techniques, i.e.,
Federated Efficient-Finetning with LoRA and Lan-
guage Family Clustering are introduced to solve
the problem of communication overhead and pa-
rameter conflict caused by language interference.
Experiments show that our proposed model is both
efficient and effective.
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A Appendix

A.1 Description of Datasets

Below is a detailed description of three datasets:

News Classification. The News Classification
(NC) dataset from the XGLUE benchmark (Liang
et al., 2020) is utilized for the text classification
(TC) task. This dataset includes five languages:
English, Spanish, French, German, and Russian.
Our objective is to predict the 10 kinds of article
categories based on the article title and body, such
as finance, sports, or travel. We sample 8,000 in-
stances for training and 1,000 for evaluation or
testing.

MTNT. The Machine Translation of Noisy Text
(MTNT) dataset (Michel and Neubig, 2018) is one
of widely adopted datasets. It consists of noisy
comments on Reddit and professionally sourced
translations. <English, French> and <English,
Japanese> language pairs are utilized in our experi-
ments. Previous research has utilized this dataset to
assess the robustness of machine translation (MT)
systems against domain shifts (Li et al., 2019).
Given that FL inherently deals with client data that
exhibits inherent shifts from centralized data, our
study is well-suited to leverage this dataset.

UN Corpus. The UN Corpus (Ziemski et al., 2016)
is the initial parallel corpus comprised of United
Nations documents provided by the original cre-
ator. It consists of UN documents manually trans-
lated over the past 25 years (1990 to 2014) and
encompasses the six official UN languages: Arabic,
Chinese, English, French, Russian, and Spanish.
We make use of this dataset for language modeling
(LM) and machine translation (MT) tasks. In the
LM task, we employ 50,000 instances per language
for training data and allocate 5,000 instances for
validation or testing. As for the MT task, we have
three language pairs: <English, French>, <Ara-
bic, Spanish>, and <Russian, Chinese>. During
training, we sample 10,000 instances, while 5,000
instances are set aside for evaluation purposes.

Europarl. We utilize the Europarl corpus (Koehn,
2005), which comprises transcripts from European
Union meetings, as our data source. The dataset
comprises parallel text in 11 languages, from which
we gather data samples for the language modeling
(LM) task. Specifically, we collect data samples
from 8 languages: English, Spanish, Portuguese,
French, German, Finnish, Polish, Lithuanian, and
Czech. To facilitate training, we extract 20,000

Table 4: Datasets related to three tasks.

Task ‘ Dataset # Train #Dev # Test Metric
LM | Europarl 160,000 40,000 40,000 PPL
UN 300,000 30,000 30,000 PPL
MT MTNT 11,210 1,798 2,019  sacreBleu
UN 30,000 15,000 15,000 sacreBleu
TC ‘ NC 40,000 5,000 5,000 Accuracy

Algorithm 1: Cluster Aggregation

Input: The clusters set G;
Initial LoRA parameters @°;
Clients set {C; }7L1;
The clients id list in each cluster g;
Training round L.
Output: LoRA Parameters {©F}Y ;.
1 forifrom1to N do
2 | Initialize ©; with ©°;
3 for ! from1to L do
4 for i from 1 to N do
// local update of client ¢
update ®'~! with local data;

// cluster aggregation of LoRA
parameters
foreach g in G do
1 1 ol-1.
0, = ZidEg me)id 4
foreach id in g do
l l.
| e, =0

e ® = &

instances, while reserving 5,000 instances for vali-
dation or testing.

A.2 Training Details

We have employed FedLab (Zeng et al., 2023) ! as
our federated framework. The training method-
ology outlined in (Weller et al., 2022) was fol-
lowed. The maximum sequence length was set
to 512. These experiments were conducted on a
4 GPU cluster comprising A100 GPUs, with each
GPU having 80GB of memory. The AdamW opti-
mizer was employed. Each client completed a full
epoch of local learning before synchronizing with
the server. To enhance performance, four different
learning rates (le-4, Se-4, 1e-3, 5e-3) were utilized,
with 5Se-4 yielding the best results. The model was
trained for 20 epochs for the language modeling
task, 25 epochs for the machine translation task,
and 30 epochs for the text classification task. In
FL training, FedAvg was used as the learning al-
gorithm. The adapter bottleneck was set to 128.

"https://github.com/SMILELab-FL/FedLab/



Table 5: Results for LM experiments on the UN Corpus.

Method | #TP| | En | Es | Zh | Ru | Ar | Fr| Avg |
Standalone | | 33.0+o0s8 16.1+1.2 43.0+15 10.3+08 10.8+0.2 14.0+03 25.4409
Centralized 7.4402 4.8404 6.940.2 3.9+0.1 5.2403 4.6+03 5.6403
+ Adapter 10.4+0.6 6.2+0.5 9.0+0.2 4.7+05 7.2+04 5.9+02 7.0+03
+ LoRA 11.3405 6.7+.7 9.741.0 5.0405 7.6403 6.4+0.1 7.5406
FedAvg 135.4M 8.7+02 4.2+05 S5.4-+0.1 4.14+02 4.2+0.7 S5.1+05 S5.1+06
+ Adapter 2.5M 22.840.5 14.9+05 17.0+04 9.9+0.5 17.240.1 14.3+0.7 15.5+06
+ LoRA 1.2M 10.840.9 6.610.3 9.3405 5.0+06 8.1+05 6.340.6 7.5408
FedLFC \ 12M | 9.4z+03 5.6£02 8.0+04 4.0+0.1 6.1+02 S.1+01 6.4+02
Table 6: Results for LM experiments on the Europarl.
Method | #TP| | En Cs Lt Es Pl Fi Pt De Avg
Standalone | - | 94409 2.8+04 2.6+12 43406  2.8+05 3.0+02 37+06  3.5408 4.0+02
Centralized - 9.84+0.5 3.8406 4.8+0.1 6.040.2 3.9+08 5.8404 9.2406 8.4405 5.9+05
+ Adapter - 10.6+0.6 7.1+05 8.2+05 7.3402 5.84+038 7.64038 7.640.5 7.940.5 7.7+02
+ LoRA - 10.7+0.8 6.940.9 8.0+02 7.3402 5.7+06 7.4+04 7.5405 8.0+08 7.6+0.6
FedAvg 135.4M 10.4+0.6 6.440.5 9.240.2 5.9+0.1 5.9403 7.840.6 7.540.5 7.9+038 7.7+0.6
+ Adapter 2.5M 12.0+0.8 10.640.2 14.2+0.6 8.3+04  7.5408 10.7+0.2 9.4+04 9.2+06 10.1+05
+ LoRA 1.2M 11.4+038 8.840.6 11.34+04 7.8405 6.640.2 9.34+05 8.5+08 8.840.6 8.9+04
FedLFC \ 12M | 10.4+03 6.1+04 6.3+02 7.14+0.1 54+05 6.4+02 7.2+07  7.7+05 71+04

Within the LoRA module, the rank was set to 64,
alpha to 32, and dropout to 0.1.

A.3 Extra Observation in the Experiment.

FL Methods Outperforms Centralized methods.
In general, centralized models are considered as
the upper bound of each task. However, Weller
et al. (2022) show that FedNLP, Fed Avg-model
outperforms centralized-model. We hypothesize
that the phenomenon is a result by parameter con-
flict. While there are shared commonalities, dif-
ferent languages also have distinct characteristics.
Consequently, the aggregation of parameters from
all languages can potentially interfere with the spe-
cific parameters of a particular language (Bari et al.,
2021), resulting in a negative impact on transfer
performance. The phenomenon is also observed in
three tasks of our experiments.
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