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Abstract
Uncovering the inner mechanisms of Transformer
models offers insights into how they process and
represent information. In this work, we analyze
the computation performed by Transformers in
the layers after the top-1 prediction remains fixed,
known as the “saturation event”. We expand this
concept to top-k tokens, demonstrating that simi-
lar saturation events occur across language, vision,
and speech models. We find that these events oc-
cur in order of the corresponding tokens’ ranking,
i.e., the model first decides on the top ranking
token, then the second highest ranking token, and
so on. This phenomenon seems intrinsic to the
Transformer architecture, occurring across differ-
ent variants, and even in untrained Transformers.
We propose that these events reflect task transi-
tions, where determining each token corresponds
to a discrete task. We show that it is possible
to predict the current task from hidden layer em-
bedding, and demonstrate that we can cause the
model to switch to the next task via intervention.
Leveraging our findings, we introduce a token-
level early-exit strategy, surpassing existing meth-
ods in balancing performance and efficiency and
show how to exploit saturation events for better
language modeling.

1. Introduction
In recent years, Transformer-based models (Vaswani et al.,
2017) have achieved state-of-the-art performance in vari-
ous tasks across multiple modalities, including text genera-
tion, image classification, and automatic speech recognition
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(Zhang et al., 2023; OpenAI et al., 2023). This has lead to
a growing interest in model interpretability, which tries to
explain the internal processes that give rise to these remark-
able capabilities. In the language domain, investigation into
the way the model’s predictions are constructed has led to
the discovery of saturation events, where the model’s top-1
prediction is determined in an early layer and remains fixed
in subsequent layers (Geva et al., 2022).

In this work, we investigate the following question – what
computation is the Transformer model performing after the
saturation event? Taking inspiration from Frydenlund et al.
(2022), we treat the model’s output as a ranking over the
labels instead of a probability distribution. Using the logit
lens (Nostalgebraist, 2020), we project the hidden states
of intermediate layers onto the vocabulary space to extract
ranking over tokens and analyze the changes over the layers.
For the first time, we show that in all tested decoder-only
text Transformers (Llama3-8B, GPT2-XL, Mistral-7B, and
Falcon-7B) saturation events also take place for the top
ranking tokens beyond the top-1 (2nd, 3rd, 4th, etc.).

Surprisingly, we find that they happen in order of their
ranking, i.e. the second-ranking token is determined only
after the first-ranking token, and so forth (see in Figure 1).
We then generalize the results across different modalities
and Transformer variants, including pretrained Transform-
ers for both vision (encoder-only ViT-L/16) and speech
(encoder-decoder Whisper-large). Next, we demonstrate
that sequential saturation seems intrinsic to the Transformer
architecture, occurring even in an untrained randomly ini-
tialized model (Llama3-8B).

We propose that this phenomenon is due to a discrete task-
transition mechanism, where each task i corresponds to the
model determining the i-th token in the final ranking, and
the transition between one task and the next happens at the
corresponding saturation layer. Furthermore, we claim that
the task information is encoded in the layer embeddings and
that at each saturation layer, a discrete “switch” is flipped,
signaling that the relevant token has been determined, caus-
ing the model to move on to the next task while keeping this
token fixed in subsequent layers. To support this, we show
that it is possible to predict the task index from the layer
embeddings using a simple logistic regression classifier, and
that we can cause the model to transition from the first to
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Figure 1. An illustration of the proposed task-transition mechanism wherein the layers of the Transformer perform a changing number of
tasks in order, so that task i is determining the i-th token in the final ranking, and the transition between task i and task i+ 1 occurs at
the corresponding i-th saturation layer. The transition is akin to a switch being flipped “on” and staying “on” for the remaining layers
representing the i-th token being fixed from this point onward.

the second task by “injecting” embeddings from either the
top-1 saturation layer or of one of the subsequent layers.

While our primary focus is on uncovering the inner work-
ings of Transformers, we also demonstrate the potential
applications of our finding. As a proof of concept, we show
that this new understanding of the Transformer lends itself
to improving inference efficiency. For this purpose, we
introduce a novel token-level early-exit strategy for text
generation, where the computation halts after the transition
from task 1 to task 2, presuming the top-1 token is finalized.
This method outperforms existing early-exit strategies (e.g.,
softmax-response, Schuster et al., 2022) in balancing com-
putational efficiency and performance. In addition, we show
that we can use task information to achieve more accurate
language modeling, by demonstrating that in cases where
the top-1 prediction is incorrect, the second highest ranking
token represents a much more accurate prediction when it
reaches saturation than when it does not.

Our main contributions are:

• We find that Transformers tend to decide their top ranking
tokens in order, so that the top ranking token is fixed
first, then the second-ranking token at a later layer and so
on. We show that this occurs across various modalities
and variants of the Transformer architecture, and even in
untrained randomly initialized models.

• We show that sequential saturation can be explained with

a discrete task-transition mechanism, encoded in the rep-
resentation of hidden layers where each task corresponds
to determining the next ranking token. We empirically
show that it is possible to predict the task index only
from internal activations, and that we can cause the model
to switch from one task to the next via an intervention
procedure.

• We demonstrate that our findings have practical implica-
tions by introducing a new token-level early-exit strategy
for text generation, as well as insights into better language
modeling based on saturation.

• By identifying ordered saturation as a modality-agnostic
phenomenon, we take a step toward developing inter-
pretability frameworks that generalize beyond domain-
specific observations.

The code for our experiments is available at:
https://github.com/daria-lioubashevski/
beyond top1.

2. Experiments
In this section, we first extend the formal definition of top-1
saturation to account for arbitrary i-th ranking token satura-
tion (Section 2.1). Building on this, we formulate two ex-
periments to understand what computation the Transformer
performs in the layers after the top-1 saturation event. The
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Figure 2. Schematic of our framework and visualization of the ordered saturation of the top-k tokens on Llama3-8B. The hidden states
from each layer are projected onto the vocabulary space using the unembedding matrix E, then sorted in descending order and treated
as rankings. The saturation effect is marked separately for each token in the top-4 of the final ranking, emphasizing the fact that the
2nd token saturates after the 1st token, the 3d token saturates after the 2nd token and so on. The dashed line represents the previously
established saturation event of the top-1 token.

first experiment (Section 2.2) leverages our definition to
develop a metric capturing the extent to which top tokens
are saturated in order. The second experiment (Section 2.3)
uses a probing approach to test whether it is possible to
determine the rank of the token currently being determined
by the model solely from intermediate layer activations.

2.1. Defining Saturation Layers

Definition 2.1 (1st Saturation Layer; Geva et al., 2022). The
saturation event occurs at layer l (from here on referred to as
the “1st saturation layer”) for index i in the input if the top-1
prediction of the model remains constant in all subsequent
layers after l. Formally, given a model with N layers, a
saturation event occurs at layer l ≤ N − 1 if for all layers l′

s.t. l < l′ ≤ N the top-1 token in the ranking induced by
that layer remains unchanged. For example, the saturation
event marked with a dashed line in Figure 2 occurs on layer
28, since in subsequent layers the top predicted token (“toy”)
remains constant.

Definition 2.2 (k-th Saturation Layer). Here, we are inter-
ested in examining model behavior beyond the determina-
tion of the top ranking token and so naturally extend the
definition of top-1 Saturation (Definition 2.1) to capture the
layer at which the k-th top token is determined and remains
fixed. Formally, the saturation event for the k-th top token
at index i in the input occurs at layer lk ≤ N − 1 (from
here on referred to as the “ k-th saturation layer”) if for all

following layers l′ s.t. lk < l′ ≤ N the token in position
k in the ranking induced by that layer remains unchanged.
We note that the saturation event defined in (Geva et al.,
2022) happens at l1. For example, in Figure 2, l1 = 28 as
that is where the top token (“toy”) is determined; l2 = 28,
since the second-most probable token (“ball”) is determined
at layer 29; and similarly l3 = 30, since the third-most
probable token (“ribbon”) is determined at layer 30, etc.

2.2. Examining the Order of Saturation Layers

We investigate whether the saturation layers of the top-k
tokens l1, l2, . . . lk are arranged in order, i.e., whether the
saturation of the first token happens before the saturation of
the second token, the saturation of the second token happens
before the saturation of the third token and so on1. To this
end, for each token in the input we first calculate these sat-
uration layers for k = 1, . . . , 5 according to Definition 2.2
and then for each k compute the rank of the saturation layer
of the k-th top token. We use k = 5 to ensure consistency
across models, as it is the highest value of k where the k-
th token reaches saturation in at least 5% of input tokens
for all the models analyzed. Following our example from
Figure 2, we have l1 = 28, l2 = 29, l3 = 30, l4 = 31,2

1In all of our experiments, we only consider tokens in the input
where the 1st saturation layer satisfies that l1 ≤ 0.85 ·N , to ensure
that there are enough layers after it for meaningful analysis.

2l5 is ill-defined in this case as the 5-th token doesn’t reach
saturation before the last layer.

3



Transformers Determine Top Tokens in Order

and their ranking is [1, 2, 3, 4], since l1 < l2 < l3 < l4.
If the tokens reach saturation in order of ranking, as they
do in this case, we would expect the average rank of the
saturation layers to increase monotonically with k. To sta-
tistically validate this phenomenon we use a stricter version
of Kendall’s τ coefficient that treats ties as disagreements,
allowing us to quantify the alignment between the token
ranking and the ranking of their corresponding saturation
layers (see Appendix A.3).

2.3. Probing for Task Transition

We argue that the mechanism underlying the saturation of
the top-k tokens in order is one of task transition, such that
determining the identity of each token in the final ranking is
a separate task, and the model performs them sequentially:
first determining the identity of 1st token, then the identity
of the 2nd token, and so on, and that the transition from
one task to the next occurs at the corresponding saturation
layer. Importantly, we do not claim that the model does
not process token i before task i, rather it may begin accu-
mulating evidence for token i earlier, but the token is fixed
at the end of the task at the corresponding saturation layer.
Additionally, we claim that the specific task number can be
inferred from the model embedding at each layer, and that
this information is independent of the context or the specific
token predicted by the model.

To test our hypothesis, we perform a type of probing in
which we train a simple one-versus-all multi-class logis-
tic regression classifier to predict the number of the task
the model is “working on” from the hidden layer embed-
dings. We collect the data for training by extracting the
model’s hidden states during inference and categorize them
into 5 classes according to the saturation layers of the top-5
tokens for each instance. This means that for a given input,
embeddings from layers up to (and including) the 1st satura-
tion layer are classified as belonging to task 1, embeddings
from layers from the next layer until the 2nd saturation layer
are classified as belonging to task 2, and so forth.

For example, in the case of the token ”a” as depicted in
Figure 2, the embeddings from layers 1 through 28 would
be classified as belonging to task 1; the embedding of layer
29 would be classified as belonging to task 2; the embedding
of layer 30 as belonging to task 3; the embedding of layer
31 as belonging to task 4, and as the model reaches the
last layer directly afterward there would be no embedding
classified as belonging to task 5.

We balance the training data to ensure equal representation
of embeddings from all layers in each class. To confirm that
task encoding arises from the model’s embeddings rather
than the classifier’s weights, we create a control setting
by generating random vectors for each class, matching the
dimensions, mean, and variance of the corresponding layer

embeddings.3

3. Results
To show the robustness of our findings, we test pretrained
Transformer models on corresponding datasets from three
modalities: text, vision and speech.

Top-1 saturation events are common. Saturation events
are quite common, with 10% to 60% of all input tokens
reaching top-1 saturation, according to our defintion, in all
models tested (see Appendix A.2 for more statistics).

3.1. Text Transformer

We conduct our experiments to examine the order of satu-
ration in a wide range of LLMs: GPT2-XL (Radford et al.,
2019), 8-bit quantized versions of Llama3-8B (Wendler
et al., 2024), Mistral-7B (Jiang et al., 2023) and Falcon-
7B (Almazrouei et al., 2023). We employ a set prompt to
present each task’s questions, answer choices, and correct
answer, ensuring a uniform input structure (see Appendix
A.1 for prompt details).

Tokens reach saturation in order of ranking. We use 1K
randomly sampled questions from MMLU test split which
represent 60K-100K tokens (depending on the model). In all
tested models, we find that tokens tend to reach saturation
in order. As an example, Figure 3a shows the average rank
of the k-th saturation layer for each k for the Llama3-8B
model. This value increases monotonically with k, and
the difference between each two consecutive token ranks is
statistically significant with p < 0.001 based on a pairwise
independent samples t-test. All other models show a similar
trend, see Appendix A.4.

Task number can be predicted from model embeddings.
After extracting embeddings from 500 randomly sampled
questions we split the data into train and test using 5-fold
cross validation, and report the mean and standard error
of the accuracy. Table 1 shows that the logistic regression
classifier trained on embeddings extracted from pre-trained
Llama3-8B model achieves very high accuracy, while the
classifier trained on the random embeddings in the control
setting performs approximately at chance level (see Ap-
pendix A.7 for accuracy and ROC-AUC scores per class).
From this we conclude that the representations of the hidden
layers across examples encode task specific information and
that the saturation layers as we defined them are the points of
transition between those tasks. The same qualitative results
are observed for all other models, see Appendix A.5.

3The number of tasks per model is set to the maximum where
data balancing yields at least 10 embeddings per class from at least
4 different layers.
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(a) Pre-trained Llama3-8B (decoder only) (b) ViT-L/16 (encoder only)

(c) Whisper-large (full-Transformer) (d) Randomly initialized Llama3-8B

Figure 3. Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 with standard error bars. Asterisks indicate
statistically significant differences between consecutive token ranks (*** represents p < 0.001), based on an independent samples t-test.

3.2. Vision Transformer

Encoder-only image-classification ViTs (Dosovitskiy et al.,
2021) take as input a sequence of linear projections of equal-
sized image patches with added position embedding and a
special “class token” denoted [CLS]. Following the work of
(Vilas et al., 2023) we use a version of the logit lens adapted
to ViT to project the hidden state representations of each
layer in the encoder onto the class embedding space using
the output embedding matrix. Importantly this is done only
for the [CLS] token for each image under the assumption
that it best represents the model’s prediction, since during
ViT’s pretraining the only token projected onto the class-
embedding space is the [CLS] token from the last layer.

For our experiments we use the ViT-L/16 variant pretrained
on ImageNet-21k and fine-tuned on ImageNet 2012, and run
inference on 5K randomly sampled images from the CIFAR-
10 (Krizhevsky et al., 2009) dataset. Figure 3b demonstrates
the high correspondence between saturation layer and token
rank, supporting our claim that in this domain as well as in
text the saturation layers are highly ordered. Furthermore,
Table 1 shows that the task index can be predicted from
the hidden layer activations with high accuracy well above
chance and control setting. We further validate our findings
in a multi-modal setting using the vision-language model
LLaVa (Liu et al., 2023) on the MMMU (Yue et al., 2024)
visual question answering benchmark, see Appendix A.8.

3.3. Speech Transformer

Whisper (Radford et al., 2023) is an encoder-decoder Trans-
former model trained on many different speech processing
tasks, including ASR. Although recently there have been
attempts to increase efficiency in ASR, such as Malard et al.
(2023), the concept of early exit has yet to be explored
in this setting, and to the best of our knowledge there has
not been work done concerning saturation events in speech
models. We adapt the logit lens and apply it only to the
decoder stack of Whisper-large, under the assumption that
representations in the encoder stack are inherently different
and projecting them onto the token vocabulary space would
not be meaningful. For our dataset we randomly sample 5K
audios from LibriSpeech (Panayotov et al., 2015).

In addition to reproducing for the first time in speech the
classical top-1 saturation event established in language and
vision models in previous work, we also show in Figure
3c evidence for the tendency of the top-k tokens to reach
saturation in order in this model as well, albeit only up to
the third token. We suspect that the deterioration in order
for later tokens arises from the fact that all decoder layers
are conditioned via cross-attention on the final layer of the
encoder. This global conditioning may interfere with the
task transition mechanism by ”blurring the lines” between
tasks, effectively entangling task-specific representations.
Supporting this hypothesis, in Appendix A.9 we replicate
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Table 1. Accuracy of task number logistic regression classifier
showing that in all modalities the layer embeddings contain in-
formation about the task number. Asterisks indicate statistically
significant accuracy (* represents p < 0.001), based on an Bi-
nomial Distribution probability test. P stands for pre-trained, R
stands for randomly initialized.

Model Layer Emb. Random
Emb.

Chance
Level

LLaMA3-8B (P) 88.1∗± 0.4 33.1 ± 0.5 33.3
LLaMA3-8B (R) 79.2∗± 0.3 34.1 ± 0.4 33.3
ViT-L/16 63.8∗± 0.1 21.0 ± 0.5 20.0
Whisper-large 52.7∗± 0.1 24.5 ± 0.4 25.0

our findings using Qwen-Audio (Chu et al., 2023), an audio
model in which the output of the audio encoder is used
only as input to the first decoder layer, and observe that
the ordered saturation persists up to the 4th token. Even
so, Table 1 shows that the task index can be predicted from
Whisper’s decoder layers’ embeddings with accuracy much
higher than chance or that achieved in the control setting.

4. Analysis
We have shown that top-k tokens tend to reach saturation
in order of their ranking, as well as the plausibility of the
underlying task transition mechanism over multiple modal-
ities and variants of Transformers: decoder only, encoder
only and full Transformer; in section 4.1 we argue that this
phenomenon is inherent to the architecture itself and in sec-
tion 4.2 we delve deeper into the way the model transitions
between tasks, demonstrating that we can cause the model
to switch to the next task using an intervention procedure.

4.1. Untrained Transformers Also Determine in Order

We repeat our experiments on an untrained Llama3-8B with
randomly initialized weights on the same amount of ran-
domly sampled questions from MMLU dataset as with the
pretrained model. Surprisingly, Figure 3d shows that the top-
k tokens tend to reach saturation in order up to the 3th token.
In addition, Table 1 shows that the task transition classifier’s
accuracy is more than 2x times higher than chance or that
of the control setting. The ability of the classifier to extract
the task index from the hidden layers’ representations in this
setting is especially remarkable, demonstrating that despite
the randomness of the weights as well of the identities of the
predicted tokens, there is still highly ordered information
encoded in the model originating only from the constraints
of the architecture.

Figure 4. By injecting the output from the top-1 saturation layer
of “the” as input to the subsequent layer of “artist”, we trigger a
saturation at the injected layer (21) in the post-intervention run,
without altering the top-1 prediction. Saturation layers are marked
in bold, saturation layer in the original run for “the” token marked
with dashes. The use of activations from adjacent layers is not
depicted for the sake of clarity.

4.2. Injecting Saturation Layer Activations Causes Task
Switch

Using the probing analysis, we demonstrated that the tasks,
as we defined them, are distinct enough to be separated by a
simple classifier, that saturation layers mark the boundaries
between them, and that the task index is encoded in the
hidden layer embeddings. We argue that in addition, each
saturation layer encodes the signal to transition to the next
task, and all subsequent layers contain the information that
the previous task has been completed and that the relevant
token is fixed. This can be thought of as switch being flipped
“on” for each token that reaches saturation, and remaining
”on” from the saturation layer onwards.

To causally validate this claim, taking inspiration from
Stolfo et al. (2023), we perform an intervention (visual-
ized in Figure 4) in which we “inject” the output from the
1st saturation layer of sample s1 as input into the subsequent
layer in the run on sample s2 and check how this affects the
1st saturation layer of s2. If these activations contain the
signal to switch to the next task, we expect this intervention
to cause the model to switch to task 2 at the injected layer in
the post-intervention run, i.e. in the new post-intervention
run the 1st saturation layer should be the one on which the
intervention is performed which is l1(s1) + 1. To minimize
the effect of confounding factors, we choose pairs of sam-
ples s1 and s2 that share context and where the original
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Figure 5. Flipping the Top-1 Switch. The percentage of examples where the top-1 saturation occurred at the injected layer after the
intervention, shown as a function of the layer from which the injected activations were taken, relative to the original saturation layer (e.g.,
−2 means activations were taken from two layers before the original saturation layer).

top-1 prediction of the model is the same, but there is a big
difference in their 1st saturation layers s.t. l1(s1) < l1(s2).

In the example depicted in Figure 4 s1 = “wanted” and
s2 = “the”, and for both the model’s top-1 next-word
prediction is “artist”, but l1(s1) = 20 while l1(s2) = 27.
Injecting the output of layer l1(s1) into the subsequent layer
(21) in the run for s2 should cause the model to switch to
task 2, resulting in layer 21 being the new 1st saturation
layer post intervention.

Moreover, we would expect the same thing to happen when
injecting activations from a layer l after the 1st saturation
layer, i.e. l > l1(s1), since they should contain the infor-
mation that the top-1 token is fixed. On the other hand,
activations from a layer l′ before the 1st saturation layer, i.e.
l′ < l1(s1) should not result in saturation at the injected
layer as the switch is still “off” in our analogy, indicating
to the model that it still working on task 1. To test this, we
repeat the same steps with activations from 3 layers before
and after the 1st saturation layer [l1(s1) − 3, l1(s1) + 3]
each time injecting them as input into the subsequent layer.

Figure 5(a) shows the results of this procedure performed
using pre-trained Llama3-8B on 200 token pairs taken from
10 randomly sampled texts from the CNN/DM dataset4

(Hermann et al., 2015), Figure 5(b) shows similar results
reproduced using ViT-L/16 on 200 pairs of images from
CIFAR-10 dataset, and Figure 5(c) shows the results of the
intervention on Whisper-large on 200 token pairs from 100
randomly sampled audios from LibriSpeech5. There is a

4We use texts from CNN/DM and not MMLU for this exper-
iment as they tend to be longer and have more pairs that fit our
criteria for intervention

5See Appendix A.10 for a formal description of the procedure
as well as adaptations for vision and speech modalities

stark difference in the effect the injected activations have on
the 1st saturation layer post-intervention when the activa-
tions are taken from the 1st saturation layer in the original
run or one of the following layers, compared to the layers
before it. When the injected activations are taken from an
earlier layer, the new top-1 saturation almost never occurs
at the injected layer, whereas when the injected activations
are taken from the saturation layer or a later layer the top-1
saturation occurs at the injected layer in a high percentage
of cases. This drastic change resembles a step function, and
is in line with our description of a switch being flipped ”on”
at the 1st saturation layer and remaining on in all subsequent
layers, indicating to the model to switch to the next task and
keep the top-1 constant. These results are consistent across
a range of LLMs, as shown in Appendix A.11.

5. Practical Implications
While the primary focus of this work is on understanding
the mechanisms underlying saturation events, we demon-
strate how these insights can inform practical strategies for
improving computational efficiency and language modeling.

5.1. New Early-Exit Strategy

We propose a new token-level dynamic inference method
based on the task-transition classifier described in Section
2.3, where the early exit layer for each token is defined
as the earliest layer which is predicted to belong to task 2
by the classifier. The idea being that once the model has
transitioned into the second task, it has finished with the
first task of determining the top-1 token. To demonstrate the
viability of this method, we compare it to two other local
confidence measures introduced by Schuster et al. (2022):
softmax response (the difference between the top two values
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of the logits after softmax) and hidden-state saturation (co-
sine similarity between two consecutive layer embeddings),
both recently found to be competitive with other early exit-
ing methods (Zhou et al., 2024). Since dynamic decoding is
not the focus of this paper, we calculate the metrics for each
measure while propagating states from the layers after the
“early exit” as in regular inference.6

Table 2 shows our results on a pre-trained Llama3-8B model
and 100 randomly sampled texts from CNN/DM dataset,
showcasing the ability of our probing classifier to generalize
across datasets as it was trained on texts from MMLU bench-
mark (see Section 3.1). We evaluate the model on next-word
prediction, and compute the speedup ratio for each method
as the total number of layers in the model divided by the
number of layers it uses for each token.7 For the two other
confidence measures we calculate these metrics at various
thresholds (see details in Appendix A.12), while in our mea-
sure the class is selected based on the highest predicted
score among all classes. Our strategy outperforms the other
two when considering the trade-off between next-word pre-
diction accuracy and speedup ratio, and requires no training
besides that of a simple logistic regression classifier on a
relatively small amount of data. We find the difference in
speedup between our strategy and the other methods to be
statistically significant (p < 0.001) using an independent
samples t-test.

5.2. Improved Language Modeling

Popular decoding methods in language generation such as
top-k (Fan et al., 2018) or top-p (Holtzman et al., 2020b)
sample the next token from the top ranking tokens. Based
on our task-transition mechanism and the assumption that
the tasks represent relevant computation, we argue that top
ranking tokens that are determined in the last layer repre-
sent less meaningful predictions, since the model only had
enough layers for the first task in these instances. To test
this hypothesis, we compare the accuracy of the second,
third, and fourth ranked tokens in the next-word prediction
task across two conditions: (1) the token in question reaches
saturation i layers before final layer (with 2 ≤ i ≤ 6); (2)
the token does not saturate, and is determined only in the
last layer. In all cases, we restrict the analysis to examples
where the top-1 prediction is incorrect.

Using 100 randomly sampled texts from CNN/DM dataset
and pre-trained Llama-8B predictions, we show in table
3 that in the first condition the accuracy is much higher
than in the second condition. A two proportion z-test indi-

6This is an informative comparison between the measures, as
the effect of a state copying mechanism for skipped layers on
model’s performance is negligible (Schuster et al., 2022).

7We apply all strategies starting from layer 15, since our classi-
fier was trained only on the intermediate layers of the network.

Table 2. Highest accuracy and corresponding speedup-ratio
achieved by each early-exit strategy. Asterisks indicate statis-
tically significant accuracy (* represents p < 0.001), based on an
independent samples t-test.

Softmax Re-
sponse

State Satura-
tion

Ours

Accuracy 40.6± 0.6 24.3± 0.4 43.3 ± 0.7
Speedup Ratio 1.07± 0.002 1.001± 0.000 1.11∗±0.009

cates a statistically significant difference between the groups
(p < 0.001) even when correcting for multiple comparisons
for 2 ≤ i ≤ 6 in the 2nd and 3rd tokens, and for and
2 ≤ i ≤ 5 in the 4th token. This supports our claim that
top-k tokens that reach true saturation are more plausible
predictions than those that are determined in the last layer,
which has potential implications for decoding strategies
which consider tokens beyond the top-1.

6. Related Work
There are many ways of thinking about the role of intermedi-
ate layers in Deep Neural Networks (DNNs) in general, and
Transformers in particular. The iterative inference hypothe-
sis interprets each layer as an iteration from an iterative and
convergent process (Simoulin & Crabbé, 2021), suggesting
that each layer incrementally refines the hidden representa-
tion by gradually shaping the next token prediction (Geva
et al., 2022; Belrose et al., 2023; Rushing & Nanda, 2024).
We argue that our findings challenge this view, given the
discrete nature of the tasks in the proposed task-transition
mechanism and the sharp transitions between them.

Pruning is another approach, focused on mitigating the re-
dundancy inherent to large machine learning models by
removing unnecessary parameters. Recent work has applied
structured pruning methods to Transformer based LLMs,
dropping whole modules, from self-attention layers (Ben-
Artzy & Schwartz, 2024; He et al., 2024) to full Transformer
blocks (Sun et al., 2024; Men et al., 2024). These studies
often focus on the middle layers of the model, and claim to
reduce memory and computation costs without degrading
performance. However, these works evaluate the accuracy
before and after pruning based only on the top-1 prediction
of the model, even though stochastic generation methods
such as top-p (Holtzman et al., 2020a) and top-k (Fan et al.,
2018) are preferable to deterministic decoding in certain
settings such as open-ended tasks, as they produce more
coherent and varied text (Shi et al., 2024). In light of this
and of our results regarding the sequential saturation of top
ranking tokens, we suggest that future work takes this into
account, since what may seem as redundancy is actually
necessary computation not reflected in the measured metric.

8
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Table 3. LLaMA3-8B: Accuracy (percentage) of next-word predic-
tion for the 2nd, 3rd, and 4th ranked tokens when the top-1 token
is incorrect
(comparing no saturation to saturation i layers before out-
put).

Token rank No saturation Saturation i layers before output

i =
2

i =
3

i =
4

i =
5

i =
6

2nd 25.2 38.1 48.6 37.6 37.6 33.0
3d 17.0 23.3 26.9 28.9 29.2 31.0
4th 13.4 16.8 19.7 20.5 19.5 18.3

The logit lens has also been used to study intermediate lay-
ers in a wide variety of interpretability papers (Yang et al.,
2024; Wendler et al., 2024; Halawi et al., 2024). Despite
this, (Belrose et al., 2023) claim that it can produce implau-
sible results due to the difference in representations between
layers. To address this issue they introduce the “tuned lens”,
in which an affine transformation is learned for each layer
in the model with a distillation loss, so that its image under
the unembedding matrix matches the final layer logits as
closely as possible. Although this method may be better
at approximating final top-1 prediction from intermediate
layers, our work highlights why this might actually be a
disadvantage when attempting to gain insights into the com-
putational process of the Transformer, as it could obscure
the changing dynamics of the lower ranked tokens.

7. Discussion
This work contributes to a deeper understanding of how
Transformer models construct predictions over layers. We
find that the top-k tokens (for k > 1) go through saturation
events in the order of their ranking. This phenomenon
is inherent to the Transformer architecture, occurring in
untrained models and is robust over multiple modalities.
We provide evidence in support of task transition as the
underlying mechanism, showing that we can predict task
index from the hidden layers’ embeddings, as well as cause
the model to switch from the first task to the second via an
intervention procedure. Our findings also show promise in
improving LLMs’ efficiency and performance as suggested
by the preliminary results in Section 5.

Our findings also carry broader implications for how we
understand the internal structure of Transformer models.
A common line of work in interpretability of LLMs aims
to assign distinct computational roles to different layers,
often proposing a hierarchical progression of feature com-
plexity (Tenney et al., 2019; van Aken et al., 2019; Geva
et al., 2021; 2022), suggesting that earlier layers specialize
in shallow or syntactic features, while later layers capture
more semantic or task-specific information. However, our

probing results indicate that the relationship between layer
depth and computation is more dynamic: the same layer can
participate in qualitatively different mechanisms depending
on the structure of the task, challenging the view of fixed
layer specialization.

In addition, the emergence of ordered saturation in an un-
trained Transformer raises fundamental questions about the
architectural biases baked into the model. We observe that
this behavior not only appears prior to training (potentially
influenced by weight initialization) but also persists after
pre-training, suggesting a constraint on the model’s compu-
tation. This opens the door to future work examining how
such structural biases influence representational dynamics
and probability distributions in language models.

Limitations While our analysis sheds light on the high-level
mechanism behind the ordered saturation of top-k tokens,
several questions remain open. First, the precise architec-
tural components responsible for this phenomenon are still
unclear. Targeted ablation studies could help localize the
origin of the effect within the Transformer architecture. Sec-
ond, a more concrete explanation is needed for how the
model keeps the “chosen” tokens constant in the layers af-
ter the corresponding saturation event. Third, we did not
consider whether the model had seen the experimental data
during training and how this might affect ordered saturation.
Furthermore, since we focused solely on Transformer archi-
tectures, it remains to be explored whether other DNN types
also determine their top-ranking tokens in order. Recurrent
Neural Networks might be of particular interest due to their
mathematical equivalence to decoder only Transformers
(Oren et al., 2024), and based on previous work success-
fully applying the logit lens to them to extract meaningful
predictions from intermediate layers (Paulo et al., 2024).
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How does BERT answer questions?: A layer-wise anal-
ysis of transformer representations. In Zhu, W., Tao,
D., Cheng, X., Cui, P., Rundensteiner, E. A., Carmel,
D., He, Q., and Yu, J. X. (eds.), Proceedings of the
28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, Beijing, China,
November 3-7, 2019, pp. 1823–1832. ACM, 2019. doi:
10.1145/3357384.3358028. URL https://doi.org/
10.1145/3357384.3358028.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017.
URL https://proceedings.neurips.cc/
paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.
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A. Appendix
A.1. Prompt Format

When using questions from MMLU dataset in our experiments we employ the following prompt to present each task’s
questions, answer choices, and correct answer, ensuring a uniform input structure.

Prompt format:

Question: <QUESTION>
A. <CHOICE A>
B. <CHOICE B>
C. <CHOICE C>
D. <CHOICE D>

Answer: <ANSWER>

A.2. Saturation statistics

Table 4 shows the percent of input tokens which reach top-1 saturation in the first 85% layers of the model across all models
we tested. For all text-Transformers we use 1K randomly sampled questions from MMLU dataset with the prompt format
described in A.1, for ViT we use 1K random images from CIFAR-10 dataset, and for Whisper we use 1K random audios
from LibriSpeech dataset.

For Llama3-8B, for example, we find that 31.2% of all input tokens reach top-1 saturation as we defined it. Additionally, we
show in Figure 6 that the tokens that reach top-1 saturation belong to all different parts of speech (POS) including content
words, with over 30% of them being nouns.

A.3. Stricter Kendall’s tau

We define a version of Kendall’s tau coefficient measuring the ordinal association between two tanking, where one-sided ties
are considered discordant unlike the regular metric, where ties are typically either ignored or handled as neutral, meaning
they neither count as concordant nor discordant. This is done to discount cases where two or more tokens reach saturation
at the same layer. The coefficient takes values in the range [−1, 1] where values close to 1 indicate strong agreement, and
values close to -1 indicate strong disagreement between the rankings.

Formally, given two rankings x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), let pair(i, j) be a pair of indices where
1 ≤ i < j ≤ n.

We define the pair as concordant if the rankings in both sequences agree, meaning:

(xi > xj and yi > yj) or
(xi < xj and yi < yj) or
(xi = xj and yi = yj)

Table 4. Percent of input tokens that reach top-1 saturation.

Model % tokens

Llama3-8B 31.24
Mistral-7B 43.36
Falcon-7B 11.75
GPT2-XL 58.42
ViT-L/16 44.70
Whisper-large 10.92
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Figure 6. POS of samples that reach top-1 saturation in first 85% of layers of Llama3-8B

The pair is discordant if:

(xi > xj and yi < yj) or
(xi > xj and yi > yj) or
(xi = xj and yi ̸= yj) or
(xi ̸= xj and yi = yj)

The coefficient τstrict, is computed as:

τstrict =
C −D

C +D
,

where C is the number of concordant pairs, and D is the number of discordant pairs (including ties), ranging in values
between [−1, 1].

To check whether the sequence of saturation layers of the top-k tokens (l1, .., lk) is strictly increasing, we use that sequence
as one ranking, and the sequence (1, 2, .., k) as the other. k is set independently for each token in the input to be the largest
token index such that this token’s reaches saturation by our definition i.e. lk < N . Table 5 summarizes the results of this
metric across the different models discussed in the paper. We find that for all models, the average τ coefficient indicates
moderate agreement between the rankings, and is larger than all values over 1K permutations, where the saturation layers
sequence were randomly shuffled for each instance, resulting in p < 0.001.

A.4. Reproducing Ordered Saturation in Various Text Transformers

We extend the results from Section 3.1 by reproducing the findings with additional decoder-only LLMs: GPT2-XL, and
8-bit quantized versions of Mistral-7B and Falcon-7B. Figure 7 presents the high correspondence between saturation layer
and token rank observed consistently across all three models.

Using 1K randomly sampled questions from the MMLU dataset for each model and using the prompt format described in
Section A.2, we find that the average rank of the k-th saturation layer increases monotonically with k (up to k = 5), with
statistically significant differences between each consecutive token rank (p < 0.001, pairwise independent samples t-test).
Similarly, we observe that Mistral’s top-k tokens reach saturation in order of their ranking up to and including the 5th token,
while Falcon’s tokens follow this pattern up to the 4th ranking token.

Table 5 shows additional validation of this agreement between token ranking and saturation layer ranking using a stricter
version of Kendall’s τ metric as described in Section 3.1, with statistically significant average τ values for all models
confirmed by a random permutation test.
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(a) GPT2-XL (b) Mistral-7B (c) Falcon–7B

Figure 7. Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 with standard error bars. Asterisks indicate
statistically significant differences between consecutive token ranks (*** represents p < 0.001, ** represents p < 0.01), based on an
independent samples t-test.

A.5. Reproducing Task Probing in Various Text Transformers

In support of our proposed task transition mechanism, using embeddings extracted during inference over 500 questions
randomly sampled from MMLU dataset, we demonstrate that task index can be predicted from GPT2, Mistral and Falcon
hidden layers’ embeddings with high accuracy. We report full results and control settings in Table 6. Asterisks indicate
statistically significant accuracy (*** represents p < 0.001), based on an Binomial Distribution probability test.

A.6. Training Data for Task Transition Classifier

Table 7 shows from which layers we took embeddings to train the task-transition classifier for each model.

A.7. Per Class Metrics for Task Transition Classifier

Table 8 shows accuracy scores per-class for each model, while Table 9 shows ROC-AUC scores per-class for each model.

A.8. Reproducing Ordered Saturation and Task Probing in LLaVa

We extend the results from Section 3.2 to multi-modal models by reproducing the findings with vision language model
LLaVa-1.5-7B model (Liu et al., 2023).

Using 1K randomly sampled questions from the visual question answering MMMU dataset (Yue et al., 2024) and using the
prompt format described in Section A.2, we find that the average rank of the k-th saturation layer increases monotonically
with k (up to k = 5), with statistically significant differences between each consecutive token rank (p < 0.001, pairwise
independent samples t-test). See Figure 8.

Table 5. Stricter Kendall’s tau coefficients and p-values for each model. * signifies statistical significance with pvalue < 0.001

Model τstrict (avg ± ste)

Llama3-8B (pre-trained) 0.249∗ ± 0.004
Llama3-8B (random initialization) 0.283∗ ± 0.004
ViT-L/16 (pre-trained) 0.149∗ ± 0.007
Whisper-large (pre-trained) 0.210∗ ± 0.009
GPT2-XL (pre-trained) 0.187∗ ± 0.004
Mistral-7B (pre-trained) 0.312∗ ± 0.002
Falcon-7B (pre-trained) 0.234∗ ± 0.005
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Table 6. Accuracy of task number logistic regression classifier showing that in all modalities the layer embeddings contain information
about the task number.

Model Accuracy

Layer embeddings Random embeddings Chance

GPT2-XL (pretrained) 84.2∗∗∗ ± 0.4 20.4± 0.5 20.0
Mistral-7B (pre-trained) 85.8∗∗∗ ± 0.1 27.1± 0.1 25
Falcon-7B (pre-trained) 91.0∗∗∗ ± 0.1 24.6± 0.1 25
LLaVa-1.5-7B (pre-trained) 89.0∗∗∗ ± 0.7 25.7± 0.1 25
Qwen-Audio (pre-trained) 95.1∗∗∗ ± 0.3 25.0± 0.5 25

Table 7. Task transition probing data.

Model Layers Dataset size

Llama3-8B (pre-trained) 19− 27 8K
Llama3-8B (random initalization) 21− 27 4K
GPT2-XL (pre-trained) 27− 40 10K
Mistral-7B (pre-trained) 22− 27 4K
Falcon-7B (pre-trained) 19− 27 5K
ViT-L/16 (pre-trained) 16− 21 2K
Whisper-large (pre-trained) 29− 32 4K
LLaVa-1.5-7B (pre-trained) 22− 27 4K
Qwen-Audio (pre-trained) 25− 30 5K

In support of our proposed task transition mechanism, using embeddings extracted during inference over 500 questions
randomly sampled from MMMU dataset, we show in Table 6 that task index can be predicted from LLaVa’s hidden layers’
embeddings with high accuracy.

A.9. Reproducing Ordered Saturation and Task Probing in Qwen-Audio

We extend the results from Section 3.3 to another variant of Transformers with Qwen-Audio (Chu et al., 2023) a multimodal
speech model trained for speech recognition, audio captioning, and audio-text retrieval.

Using 1K randomly sampled audios from the LibriSpeech we find that the average rank of the k-th saturation layer increases
monotonically with k (up to k = 4), with statistically significant differences between each consecutive token rank (p < 0.001,
pairwise independent samples t-test). See Figure 9.

In support of our proposed task transition mechanism, using embeddings extracted during inference over the same audios,
we show in Table 6 that task index can be predicted from Qwen-Audio’s hidden layers’ embeddings with high accuracy.

A.10. Intervention Procedure Additional Details

Formally, this procedure consists of the following steps:

1. Given an input sequence x =< x1, ..., xt > we first pass it through the model as in regular inference while storing the
activation values at all hidden layers, i.e hl

i for all 1 ≤ i ≤ t, 1 ≤ l ≤ N .

2. We calculate the saturation layer l1i of the 1st token for each token wi in the text.

3. We sample pairs of token indexes i, j in the text that the satisfy the following conditions:

(a) The distance between i and j is no more than 40 tokens, i.e. |i− j| ≤ 40.
This is a precaution to minimize the effect of the difference in context on the model’s predictions after intervention.
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Table 8. Task transition probing per-class accuracy scores.

Model Task 1 Task 2 Task 3 Task 4 Task 5

Llama3-8B (pre-trained) 0.82 0.89 0.93 − −
Llama3-8B (random initalization) 0.69 0.79 0.89 − −
ViT-L/16 (pre-trained) 0.65 0.62 0.60 0.64 0.68
Whisper-large (pre-trained) 0.52 0.53 0.48 0.58 −

Figure 8. LLaVa-1.5-7B: Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 with standard error bars.
Asterisks indicate statistically significant differences between consecutive token ranks (*** represents p < 0.001, ** represents p < 0.01),
based on an independent samples t-test.

(b) The model’s top-1 prediction (in the final layer) for both indexes is the same token y, meaning y =
argmax(softmax(EhN

i )) = argmax(softmax(EhN
j )).

The goal here is to avoid a conflict in the top-1 predictions which could be a confounding factor.
(c) There is a difference of at least 5 layers between the 1st token saturation layers of i and j, such that |l1i − l1j | ≥ 5,

to ensure that the change in saturation layer after intervention is significant.

For convenience’s sake we will assume in the remainder of the procedure description that l1i < l1j , i.e that the saturation
layer of the first index in the pair is smaller then that of the second index (even though both cases are allowed by our
conditions).

4. We perform 7 additional forward passes, each time injecting the output from layer l′ in range [l1i − 3, l1i +3] at position
i as input into layer l′ +1 at position j . The goal here is to to quantify the difference in effect between layers preceding
the saturation event and those after it.

Table 9. Task transition probing per-class ROC-AUC scores.

Model Task 1 Task 2 Task 3 Task 4 Task 5

Llama3-8B (pre-trained) 0.94 0.97 0.97 − −
Llama3-8B (random initialization) 0.87 0.90 0.96 − −
ViT-L/16 (pre-trained) 0.86 0.82 0.81 0.83 0.87
Whisper-large (pre-trained) 0.78 0.77 0.69 0.77 −
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Figure 9. Qwen-Audio: Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 with standard error bars.
Asterisks indicate statistically significant differences between consecutive token ranks (*** represents p < 0.001, ** represents p < 0.01),
based on an independent samples t-test.

5. We measure the causal effect of the intervention by calculating the percent of examples where the saturation layer of
the 1st token after intervention l̃1j is the layer on which we intervened, i.e. l̃1j = l + 1.

For example, in the setting depicted in 4 we would take the indexes of the marked tokens ”wanted” and ”the” as our pair,
where the original top-1 prediction in both is ”artist”. The top-1 saturation layer in the clean run for ”wanted” is layer 20, so
we would inject activations from layers 17 to 23 one at a time as inputs into the corresponding subsequent layers in the run
of token ”the” (24), and check for each one if the injected layer became the new top-1 saturation layer after the intervention.

A.10.1. INTERVENTION PROCEDURE ON VIT

To adapt the intervention procedure described in section 4.2 to ViT-L/16 and the image classification setting we made the
following modifications:

1. Since each image is processed independently by the model there is no need for two images to share a context, so the
only requirements for two images to be chosen as a relevant pair were: a distance of at least 5 layers between the top-1
saturation layers, and the same top-1 class prediction in the final layer.

2. For each image, as in all experiments conducted on this model we only consider the prediction at index 0 corresponding
to the [CLS] token in the input.

Figure 5 shows that the results for this model follow a similar step function pattern to the ones for Llama3-8B, where
injecting embeddings from the top-1 saturation layer or one of the subsequent layers causes the model to ”immediately” (at
the injected layer) switch to the second task in a high percentage of cases, when compared to injecting embeddings from one
of the layer before the top-1 saturation which almost never has the same effect.

A.10.2. INTERVENTION PROCEDURE ON WHISPER

We made the following adjustment to run the procedure described in section 4.2 on Whisper-large and 200 token pairs from
randomly sampled 50 audios from the LibriSpeech dataset: Since the average audio in LibriSpeech is 10 seconds long there
are not enough tokens in one sample to find relevant pairs, so we wave the requirement for a pair to share context and only
leave two conditions: a distance of at least 5 layers between the top-1 saturation layers, and the same top-1 prediction in the
final layer.
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Figure 10. Flipping the Top-1 Switch. The percentage of examples where the top-1 saturation occurred at the injected layer after the
intervention, shown as a function of the layer from which the injected activations were taken, relative to the original saturation layer (e.g.,
−2 means activations were taken from two layers before the original saturation layer).

Figure 5 shows that the results for this model follow a similar pattern to the other two models, even though the effect
increases in the following layers after the saturation event.

A.11. Reproducing Task Switch in Various Text Transformers

We show in Figure 10 the results of the intervention procedure described in Section 4.2 using GPT2-XL, Mistral-7B and
Falcon-7B models over 200 token pairs (each) extracted from 10 randomly sampled texts from CNN/DM dataset. As with
the other models, when the injected activations are taken from the top-1 saturation layer or later layers, the new top-1
saturation happens at the injected layer much more frequently than when injecting activations from earlier layers, indicating
that these layer contain the signal to switch to the next task and keep the top-1 constant.

A.12. Additional Details for Token-Level Early Exit Measures Comparison

Table 10 shows the accuracy and speedup ratio of the Softmax Response token-level early-exit strategy at various thresholds.

Table 11 shows the accuracy and speedup ratio of the Hidden-state saturation token-level early-exit strategy at various
thresholds.

Figure 11 visualizes the performance-efficiency trade-off of both methods in comparison to our novel early-exit strategy, as
well as baseline and oracle.

Table 10. Softmax Response accuracy & speedup ratios at various confidence thresholds

Thresholds
0.5 0.6 0.7 0.8 0.9 0.92 0.94 0.96 0.98

Accuracy 33.149 34.861 36.437 37.930 39.334 39.717 40.026 40.340 40.648
Speedup Ratio 1.326 1.284 1.243 1.199 1.145 1.132 1.117 1.099 1.073
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Figure 11. Performance-efficiency trade-off comparison of different confidence measures against a static baseline (where all layers are
used for each token) and a local oracle measure (where the early exit is at the top-1 saturation layer). The graph shows softmax and state
confidence measure results at different thresholds. Our method achieves the highest next-word prediction accuracy out of all early-exist
methods while providing significant speedup compared to the baseline.

Table 11. Hidden-sate saturation accuracy & speedup ratios at various confidence thresholds

Thresholds
0.9 0.92 0.94 0.96 0.98 0.99

Accuracy 11.267 15.183 21.396 24.250 24.252 24.252
Speedup Ratio 1.682 1.552 1.361 1.130 1.001 1.001
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