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Abstract
Training a neural network requires choosing a
suitable learning rate, which involves a trade-off
between speed and effectiveness of convergence.
While there has been considerable theoretical and
empirical analysis of how large the learning rate
can be, most prior work focuses only on late-stage
training. In this work, we introduce the maximal
initial learning rate η∗ – the largest learning rate
at which a randomly initialized neural network
can successfully begin training and achieve (at
least) a given threshold accuracy. Using a sim-
ple approach to estimate η∗, we observe that in
constant-width fully-connected ReLU networks,
η∗ behaves differently from the maximum learn-
ing rate later in training. Specifically, we find that
η∗ is well predicted as a power of (depth×width),
provided that (i) the width of the network is suffi-
ciently large compared to the depth, and (ii) the
input layer is trained at a relatively small learning
rate. We further analyze the relationship between
η∗ and the sharpness λ1 of the network at ini-
tialization, indicating they are closely though not
inversely related. We formally prove bounds for
λ1 in terms of (depth×width) that align with our
empirical results.

1. Introduction
The learning rate plays a crucial role in the training of deep
neural networks. Unfortunately, tuning the learning rate
is a tricky task – too large a learning rate can cause the
training loss to diverge, while too small a learning rate can
result in inefficient use of time and computational resources.
The optimal choice of learning rate has been observed to
depend non-trivially on many factors, including the data, ar-
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chitecture, optimizer, and initialization scheme. As a result,
it can be difficult to theoretically analyze the relationship
between the learning rate and other elements of the training
framework, and computationally expensive to find the best
learning rate in practice.

While there have been numerous works rigorously analyzing
effective learning rates both from theoretical and empirical
standpoints (Li et al., 2020; Smith et al., 2018), these works
tend to focus on behavior during late-stage training, con-
sidering which learning rates provide optimal performance
(Park et al., 2019), or lead to convergence guarantees (Wang
et al., 2022). However, it is not clear that optimal learning
rates early in training follow similar patterns to those near
convergence, and indeed a variety of heuristics for learning
rate scheduling suggest that an early change in learning rate
can actually boost performance (Goyal et al., 2017).

In this paper, we consider both empirically and theoretically
how large the learning rate can be in early training. Our
main contributions are as follows:

• In §3.1, we introduce the maximal initial learning rate
η∗ – the largest learning rate at which a randomly ini-
tialized neural network can successfully begin training
– and show how it can be computed.

• For fully-connected deep ReLU networks, we empiri-
cally identify a power law relating the maximal initial
learning rate and the product of width and depth:

E[ln η∗] = −α ln(depth× width) + γ1,

which can be observed in Figure 11. Notably, while
prior theoretical work (Karakida et al., 2019) suggests
that at the end of training α = 1, we find that at the start
of training α < 1, allowing for larger initial learning
rates.

• We show empirically that the sharpness λ1 (i.e. the
largest eigenvalue of the training loss Hessian) at ini-
tialization is a function of η∗, but does not necessarily
reflect the inverse relationship observed in late-stage
training. We illustrate this in Figure 4.

1Our empirical results suggest that α is indeed task-dependent.
While our results in Figure 1 largely show α ≈ 0.7 for sufficiently
wide networks, significant differences can be seen in Figure 11(a),
where we obtain smaller α on Gaussian data.
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width/depth Slope α R2

40 0.748 0.995
32 0.76 0.999
16 0.713 0.994
8 0.688 0.991
4 0.587 0.967
2 0.478 0.778

width/depth Slope α R2

40 0.72 0.998
32 0.71 0.998
16 0.687 0.991
8 0.703 0.991
4 0.693 0.98
3 0.714 0.968

Figure 1: Relationship between maximal initial learning rate η∗ and architecture for fully-connected networks with different
values of width/depth. We use depths ∈ {5, 7, 10, 12, 15, 18, 20, 23, 25, 27, 30}, for 25 initializations per architecture. If
width/depth is sufficiently large, the expected η∗ displays a strong power relationship with (depth×width)−1. Interestingly,
all such η∗ lie on the same line regardless of the exact width/depth value. As width/depth becomes smaller, networks
deviate from the power relationship. The input layer of networks is trained at η · 10−2, where η is the learning rate for the
rest of the network. We report slopes and coefficient of determination values for each width to emphasize the linear fit.

• In §5, we prove power law upper bounds on λ1 at ini-
tialization as a function of (depth×width) by studying
the Frobenius norm of the Loss Hessian.

In the process, we also provide a counterexample to a claim
about learning rates and sharpness made in Gilmer et al.
(2022), as detailed in §4.3.

2. Related Work
Large learning rates are a topic of considerable interest
(Smith & Topin, 2018; Li et al., 2019; Jastrzebski et al.,
2018). For instance Lewkowycz et al. (2020), to which we
compare our work more thoroughly below, investigate the
benefits of large learning rates to generalization and predict
maximum learning rates for some architectures in relation
to the sharpness (see below). Through theoretical analysis
of the Fisher information matrix and its statistics, Karakida
et al. (2019) derive a relationship between the architecture
of a network and the largest learning rate that would al-
low the network to converge to the global minimum when
trained with SGD. They state that this learning rate should
scale linearly with (depth× width) for constant width fully-
connected networks. Park et al. (2019) relate the optimal

learning rate (in the sense of optimal performance) to the
effective width of neural networks by studying the normal-
ized noise scale – a quantity derived from the learning rate,
batch size, and training set size.

Cohen et al. (2021) introduce “progressive sharpening” and
the “edge of stability” regime by investigating the evolution
of sharpness over the course of training, which is extended
to adaptive gradient methods in Cohen et al. (2022). More
recently, there have also been several theoretical investiga-
tions (Ahn et al., 2022; Arora et al., 2022; Li et al., 2022)
into this phenomenon. Gilmer et al. (2022) add to this line
of work by looking at early training instabilities through
the lens of sharpness and argue that seemingly different
methods such as learning rate warmup and gradient clipping
stabilize the learning process through the same mechanism
– by reducing sharpness early in training. Jastrzebski et al.
(2020) similarly look at the effect of hyperparameters used
in the early stages of training and find that they determine
properties of the entire training trajectory.

We present an average-case analysis of the maximal ini-
tial learning rate, and how it relates to the architecture and
expected sharpness. Such average-case analyses can be use-
ful in identifying gaps between theoretical possibilities and
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Figure 2: Behavior of the maximal initial learning rate η∗

as network architecture and threshold accuracy t vary in
constant-width fully-connected ReLU networks. (a) illus-
trates how η∗ depends on t as a function of width/depth
for networks trained on MNIST. We plot η∗ at t = 0.2
and 0.8, on the x and y axes respectively, and for 5 initial-
izations per architecture with depths ∈ {5, 10, 15, 20} and
width/depth ∈ {4, 8, 16, 32, 40}. There is no change in η∗

for architectures with sufficiently large width/depth, and such
points fall on the x = y line. Otherwise, its value declines
as t becomes larger. Essentially, the value of η∗ is stable
across a wide range of threshold accuracies t in constant width
architectures with sufficiently large width/depth.

practical observations. Hanin et al. (2022); Hanin & Rolnick
(2019a) and Hanin & Rolnick (2019b) provide average-case
analyses for expected length distortion, the number of linear
regions, and the number of activation regions in deep ReLU
networks. For further examples of average-case analyses,
see Shalev-Shwartz et al. (2017); Raghu et al. (2017).

We also point the reader to several prior articles which
show that in wide fully-connected networks, it is the width-
to-depth ratio, rather than depth or width separately that
effectively controls the stability of optimization – this is
the reason we separate architectures based on this ratio in
our experimental results. Examples include work about
fully-connected networks at initialization, which study the
fluctuations of the forward pass (Hanin & Rolnick, 2018),
the fluctuations in the backward pass (Hanin, 2018; Hanin &
Nica, 2019a; Hanin, 2021), and the extent of feature learning
early in training (Hanin & Nica, 2019b). Moreover, for large
values of width/depth, many novel results of this kind were
also obtained for networks after training in Roberts et al.
(2021) (especially Chapter∞).

We conclude the literature review by comparing our maxi-
mal initial learning rate to the maximal stable learning rate
of Lewkowycz et al. (2020) in more depth. To start, note
that these two notions of maximal learning rate are different.
As we illustrate in Figure 7(b), our maximal initial learn-
ing rate can sometimes lead to instability late in training,
suggesting that the maximal initial learning rate is likely
larger than the maximal stable learning rate. A core pro-
posal of Lewkowycz et al. (2020) is that the maximal stable
learning rate has the form cact/λ1, where cact is a constant
and λ1 is the largest eigenvalue of the NTK. For MSE loss
and linear one-layer networks, Lewkowycz et al. (2020)
suggest both theoretically and empirically that cact = 4.
For more general architectures and cross-entropy losses,
however, Lewkowycz et al. (2020) obtains different values
of cact. Thus, in situations where the maximal initial and

maximal stable learning rates are comparable, our empirics
can be viewed as capturing more of the full architecture
dependence of cact, suggesting that perhaps cact/λ1 scales
like (depth × width)−α. Finally, as detailed in Appendix
A of their work, experiments in Lewkowycz et al. (2020)
sometimes use learning rate drops, cosine scheduling, data
augmentation, batch normalization, and weak L2 regulariza-
tion in experiments. The experiments we undertake in this
work do not make use of these, further complicating direct
comparisons.

3. Preliminaries
3.1. The Maximal Initial Learning Rate

We define the maximal initial learning rate η∗ to be the
largest, constant learning rate at which a given network can
achieve validation accuracy of at least t, where t is a given
threshold accuracy.

The choice of learning rate is largely dictated by the data
being used to train the network and its architecture. Since
a theoretical formulation of the data itself is unrealistic,
the learning rate needs to be empirically tuned for each
problem statement, which is further affected by changes
in the training setup. By introducing the maximal initial
learning rate η∗, exploring its properties, and relating it
to the architecture, we aim to make it easier to find large
learning rates that work in practice.

Furthermore, several recent lines of work observe that the
early phase of training can heavily impact training dynam-
ics and performance at later stages (Frankle et al., 2020;
Jastrzebski et al., 2020) – from this perspective, it is impor-
tant to consider the behavior of η∗ and how it changes as a
function of architecture and training setup.

In Algorithm 1 we describe a simple method that can be used
to approximate η∗. We take as input a network initialization,
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Figure 3: Plots of 2/λ1 at initialization as a function of (depth× width) for various fully-connected, Kaiming-initialized
architectures, evaluated on CIFAR-10 (left) and MNIST (right). λ1 is measured by considering the complete dataset as a
single batch of data and is averaged over 25 initializations for each architecture, with error bars shown. See Figure 1 for
architecture depths used. We observe that for sufficiently large (depth× width), the maximal initial learning rate η∗ and
2/λ1 both show similar power relationships.

Algorithm 1 Maximal Initial Learning Rate η∗

Define threshold accuracy t, and upper and lower learning
rates u and l respectively.
for a small number of search iterations s do

Compute m = u+l
2 i.e. the midpoint of u and l

for each epoch in a small number of epochs e do
Train network at learning rate m
Evaluate validation accuracy a
If a ≥ t, then break out of inner loop, and l← m

end for
If a < t after training for e epochs, then u← m

end for
The last value of m satisfying a ≥ t is the desired η∗.

threshold accuracy t, and lower and upper learning rates
l and u respectively. We perform a binary search on the
continuous space of learning rates ∈ (l, u) to identify η∗.
More specifically, for each midpoint learning rate m =
u+l
2 , we train the network from initialization for a small

number of epochs. If this trained network, at any point
during training, achieves validation accuracy at least t, then
we set l = m. Otherwise, we set u = m. The next search is
performed in the interval (l, u). This is repeated for a small
number of search iterations, and the final value of m that
achieves validation accuracy at least t is output as η∗.

3.2. Experimental Setup

We primarily focus on constant width, fully-connected deep
ReLU networks trained with SGD, that are initialized with
the Kaiming normal initialization scheme. The batch size is
set to 128 across all our experiments. We discuss reasons

for making this choice of initialization in subsection 4.3.

When using Algorithm 1, we set threshold accuracy t to be
the accuracy that a linear classifier achieves on the given
dataset, along with the number of training epochs e = 10.
This ensures that networks trained at the maximal initial
learning rate perform adequately while taking into account
task difficulty. Namely, for MNIST and CIFAR-10 we use
t = 0.925 and t = 0.34 respectively. Upper and lower learn-
ing rate limits u and l are set heuristically; we use l = 0.0
for all our experiments, and find that s = 5 search iterations
are sufficient in practice to calculate η∗. For computing the
sharpness λ1, we use PyHessian (Yao et al., 2020).

4. Main Empirical Results
4.1. Maximal Initial Learning Rate and Architecture

We have described the maximal initial learning rate η∗

and explored its behavior under various training setups and
threshold accuracies t. We now consider how η∗ depends
on network architecture. From Figure 1, we see that if the
ratio width/depth is sufficiently large and the input layer
is trained at a sufficiently small learning rate, then the ex-
pected value of η∗ is related to (depth × width) through a
power law:

E[ln η∗] = −α ln(depth× width) + γ1

We also note that network architectures that deviate from
the trend show much smaller η∗. In our experiments, these
networks sometimes fail to beat the performance of a linear
classifier, leading to no valid η∗ being found at all. For
experimental results on Fashion-MNIST, we point the reader
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Figure 4: Plots of 2/λ1 against η∗ for 25 initializations per architecture, evaluated on CIFAR-10 and MNIST. We use
architectures with width/depth = 16, with the same depths as in Figure 1. We find that η∗ > 2/λ1 and that ln(2/λ1) =
β ln η∗ + γ2 for β ̸= 1, strongly contrasting with patterns observed later in training in e.g. Cohen et al. (2021).

to Figure 10 (a) in the Appendix.

We use a small learning rate for the input layer weights
because in virtually all principled initialization schemes
the learning rate of a weight depends on the width of the
previous layer, with larger widths corresponding to smaller
learning rates (see e.g. Table 1 in Yang & Hu (2021)).

Thus, while our experiments utilize networks that have con-
stant hidden layer widths, this suggests that the maximal
initial learning rate for input layer weights may differ from
the maximal learning rate appropriate for deeper layers, es-
pecially when the input dimension is large compared to
the network width. In accordance with these expectations,
we find that the behavior of η∗ is essentially unchanged if
the input layer weights are frozen at initialization, while
at smaller values of (depth × width) the maximal initial
learning rate η∗ deviates from the power-law predictions we
otherwise observe (see Appendix C).

In the context of the above experiments and results, we pose
the following questions for consideration in future work:

• Through theoretical analysis of the Fisher information
matrix, Karakida et al. (2019) have suggested that the
largest learning rate ensuring global convergence of
SGD should scale linearly with (depth× width):

E[ln η∗] ∝ −α ln(depth× width), α = 1

However, none of the setups considered here display
this behavior. While there is no direct contradiction
here, since global convergence is not guaranteed when
training at η∗, how can one explain the discrepancy
between these regimes?

• Is there a method for initializing the input layer that

allows it to train normally while preserving the strong
trends observed in Figure 1? It is possible that an-
swering this question could shed light on the conflict
between different methods for initializing the input
layer.

• What is the full functional relationship between
(depth × width) and η∗ at moderate to large values
of width/depth?

4.2. Relationship to Expected Sharpness at Initialization

The sharpness λ1 of a network is defined as the maximum
eigenvalue of the training loss Hessian, and is often associ-
ated with the learning rate at which the network is trained.
In particular, classical optimization tells us that the learning
rate must be no larger than 2/λ1 to guarantee the conver-
gence of SGD to the global minimum. However, this notion
has lately been questioned in the context of deep neural
networks (Cohen et al., 2021; Lewkowycz et al., 2020).

This motivates a need for a deeper understanding of sharp-
ness and its connection to the learning rate and architecture
in deep neural networks. To this end, we now explore how
the expected sharpness of a network at initialization relates
to architecture and maximal initial learning rate. In Figure 3,
we consider the value of 2/λ1 at initialization as a function
of (depth× width)−1, finding a power law relationship as
with η∗.

Note that the sharpness at initialization is the same regard-
less of whether the input layer is trained at the same or
smaller learning rate as the rest of the network since no
training is involved in computing sharpness at initialization.

Next, we directly compare the sharpness and the max-
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Figure 5: Sharpness λ1 as a function of training epochs in full-batch gradient descent, showcasing “progressive sharpening”
– the tendency of λ1 to continually rise until it reaches and hovers around the value of 2/η – for (a) LeCun and (b) Kaiming
initialization. We replicate the experimental setup of Cohen et al. (2021), training the same network architecture until 99%
training accuracy is reached, for learning rates η ∈ {2/20, 2/50, 2/80, 2/110}, on a 5k subset of CIFAR-10. Note that λ1 at
initialization is significantly larger for Kaiming-initialized networks than for LeCun-initialized networks (also see Figure 8
in the Appendix). The steep drop in sharpness at the beginning of training these networks may impact the value of η∗ since
the maximal initial learning rate depends on the state of the network in early-stage training as well as at initialization itself.

imal initial learning rate at initialization (see Figure 4,
and Figure 10 (b) in the Appendix), using networks with
width/depth = 16 and training the input layer at a small
learning rate as in Figure 1. While the work of Cohen et al.
(2021) suggests that η ∼ 2/λ1 as networks converge to
global optima, we find that at initialization the data closely
fit a different power law, with ln(2/λ1) ∼ β ln η∗ for β ̸= 1.
To study this comparison, we plot 2/λ1 as a function of η∗,
using networks with width/depth = 16 and train the input
layer at a small learning rate. This is done in order to com-
pute η∗ that preserves the correlations observed in previous
experiments.

Since judging linear fits on a log-log plot can be difficult,
we provide another version of this figure in the Appendix
in Figure 12, averaging over initializations for each archi-
tecture. This suggests that the coefficient β ̸= 1 estimated
from Figure 4 is unlikely to be a product of noise.

It is also worth noting that for each point in the above plots,
η∗ is clearly greater than 2/λ1. Recall that by definition, the
computed η∗ ensures that a network initialization performs
at least as well as a linear classifier on a given dataset, with-
out diverging. This goes against the established wisdom of
“η ≤ 2/λ1” for the convergence of SGD, hence supporting
the recent lines of work that question this notion.

4.3. Relationship to Edge of Stability

In the previous experiments, we considered the sharpness
at initialization, but since the definition of the maximal ini-
tial learning rate involves the ability to train a network past
initialization, it makes sense that it could also be influenced

by the value of the sharpness immediately following ini-
tialization. To gain further insight into this behavior, we
revisit the concept of “progressive sharpening” identified in
Cohen et al. (2021). This term refers to the tendency when
training at learning rate η for the sharpness λ1 to continually
rise until it reaches and hovers around the value of 2/η. In
Figure 5, we replicate the experimental setup of Cohen et al.
(2021). In particular, we do so for both the LeCun initializa-
tion used in Cohen et al. (2021), which initializes weights
from a uniform distribution on [−1/fan-in, 1/fan-in], and
for Kaiming initialization, which initializes weights from a
centered Gaussian with variance 2/fan-in.

We use Kaiming initialization in this paper both because
it is the more common initialization and also because in
some sense it is the “correct” way to initialize deep ReLU
networks. Namely, Hanin & Rolnick (2018) show that in
ReLU networks, Kaiming initialization prevents the mean
size of the activations from growing exponentially large or
small as a function of the depth, which occurs in LeCun ini-
tialization. Hanin (2018) shows a similar benefit to Kaiming
initialization in reducing the problem of gradient explosion
(Bengio et al., 1994).

Figure 5 illustrates that λ1 at initialization scales quite dif-
ferently for the two initialization schemes. For LeCun-
initialized networks, λ1 exponentially vanishes as depth in-
creases (an effect more visible in Figure 8 in the Appendix,
and described formally in 2), while it increases modestly
with width and depth for Kaiming-initialized networks.

We find that the “edge of stability” phenomenon occurs
for both initialization schemes, but takes slightly differ-
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Figure 6: Plot of 2/λ1 against η∗ evaluated on CIFAR-10
for networks initialized with Neural Tangent Kernel (NTK)
parametrization. Other experimental details are identical to
those in Figure 4. We find that in NTK-initialized networks,
2/λ1 and η∗ display a relationship very different from that
observed in Kaiming-initialized networks. We also note key
differences in empirical results between Kaiming and NTK-
initialized networks: (a) 2/λ1 increases with depth (i.e. λ1

decreases with depth), and (b) the relationship displayed be-
tween 2/λ1 and η∗ is non-monotonic – as 2/λ1 (and network
depth) increases, η∗ first increases and then decreases.

ent forms. Namely, λ1 at initialization is much larger for
Kaiming-initialized networks and steeply drops off at the be-
ginning of training, before rising (or dropping more slowly)
until it hovers slightly above the 2/η line. This behavior is
pertinent to our consideration of η∗, since the precipitous
drop of λ1 in very early training means that it is possible
η∗ is able to take on larger values than it could if the sharp-
ness remained at its initial value. This is thus a possible
explanation of the behavior observed in Figure 4.

The Neural Tangent Kernel (NTK) parametrization (Jacot
et al., 2018; Sohl-Dickstein et al., 2020) is an initializa-
tion scheme popularly used to analyze networks in the in-
finite width limit. In the context of our experiments, it
provides an alternate scaling of network weights with re-
spect to layer width. In Figure 6 we plot 2/λ1 against η∗ for
NTK-initialized networks and find that this relationship is
highly different from that observed in previous experimental
results.

We conclude this section by recalling Gilmer et al. (2022),
which claims that “When the learning rate only slightly ex-
ceeds 2/λ1, optimization is unstable until the parameters
move to a region with smaller λ1.” This claim is contra-
dicted by our Figure 5 (specifically the pink curve for Kaim-
ing initialization and η = 2/110), from which we find that
in fact the learning rate need not exceed 2/λ1 for the param-
eters to move to a region with smaller λ1. To elaborate, note
that the value of λ1 (in the pink curve in Figure 5 (b)) at
the beginning of training is much smaller than 2/η (where
η = 2/110) at initialization. Even in this case, we observe
that parameters move to a region with smaller λ1, imply-
ing that the condition stated by Gilmer et al. (2022) is not
necessary for this to occur.

5. Estimates for the Largest Eigenvalue of the
Loss Hessian at Initialization

In this section, we present our main theoretical result, Theo-
rem 1, which computes the average squared Frobenius norm
of the loss Hessian at initialization. Before stating it exactly,
we present informally a simple corollary that gives bounds
for the largest eigenvalue of the loss Hessian at initialization.

Corollary 1 (Informal). Consider a randomly initialized
fully connected ReLU network of constant width, and de-
note by λ1 the largest eigenvalue of the Hessian of an em-
pirical MSE loss. We have the following upper bound on
the largest eigenvalue:

E [|λ1|] = O(depth× width)

and the following lower bound on the sharpness:

E
[

2

sharpness

]
= E

[
2

|λ1|

]
= Ω

(
1

depth× width

)
,

where the average in both estimates is over initialization.

The preceding estimates show that depth times width, the
key parameter which we found determines the maximal
initial learning rate and the sharpness, naturally appears
when computing the Frobenius norm of the loss Hessian
(see also Theorem 1) and hence can be used to obtain bounds
on |λ1| and sharpness at initialization.

5.1. Formal Statements

In order to state this Corollary and Theorem 1 more pre-
cisely, we need some notation. We consider a ReLU net-
work, which for an input x ∈ Rn0 outputs z(L+1)

1 (x) ∈ R
via hidden layer pre-activations z(ℓ)(x) ∈ Rnℓ as follows:

z
(ℓ+1)
i (x) =

{∑nℓ

j=1 W
(ℓ)
ij σ

(
z
(ℓ)
j (x)

)
, ℓ ≥ 1∑nℓ

j=1 W
(1)
ij xj , ℓ = 0
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for i = 1, . . . , nℓ. Note that we have set the biases in the
network to 0. Moreover, we will assume that the weights
are independent Gaussians W (ℓ)

ij ∼ N (0, 2/nℓ−1).

Our goal is to understand the Hessian

H(L+1) :=
(
∂
W

(ℓ)
ij

∂
W

(ℓ′)
i′j′
L
)
,

(here the indices summarize 1 ≤ ℓ, ℓ′ ≤ L+ 1, 1 ≤ i, i′ ≤
nℓ, 1 ≤ j, j′ ≤ nℓ−1) of the empirical MSE

L =
1

2k

k∑
i=1

(
z
(L+1)
1 (xi)− yi

)2
over k input-output pairs (xi, yi). Specifically, we compute
the mean squared Frobenius norm of H(L+1) given by

E

 L+1∑
ℓ,ℓ′=1

nℓ∑
i,i′=1

nℓ−1∑
j,j′=1

(
∂
W

(ℓ)
ij

∂
W

(ℓ′)
i′j′
L
)2
 ,

where the average is over the Gaussian distribution of the
weights. Our main result is

Theorem 1. Fix n0 ≥ 1 as well as c, C > 0 and a network
input x satisfying ||x||2 = n0. Then, there exists a constant
C1, depending only on c, C with the following property. For
any L ≥ 1 there exists a constant C2, depending only on
L, c, C such that if cn ≤ n1, . . . , nL ≤ Cn, then∣∣∣∣E [∣∣∣∣∣∣H(L+1)

∣∣∣∣∣∣2
F

]
− C1n

2L2

∣∣∣∣ ≤ C2n.

The preceding Theorem gives the following upper bound on
the largest eigenvalue of H(L+1) and its reciprocal:

Corollary 2 (Precise Statement of Corollary 1). With the
notation of Theorem 1, denote by λ1 the largest eigenvalue
of the Hessian of an empirical MSE loss. There exists a
constant K > 0 depending only on the constants n0, C, c
from Theorem 1 such that

E [|λ1|] ≤ KnL
(
1 +O(n−1)

)
and

E [2/sharpness] = E [2/ |λ1|] ≥
1

KnL

(
1 +O(n−1)

)
.

These results hold for Kaiming initialization. For LeCun ini-
tialization the same results hold, except K must be replaced
by 2−L/2K.

Proof. Since the squared Frobenius norm of H(L+1) is the
sum of squares of its eigenvalues, Theorem 1 yields

E [|λ1|] ≤
√
E [λ2

1] ≤
√
E
[∣∣∣∣H(L+1)

∣∣∣∣2
F

]
= C

1/2
1 nL(1 +O(n−1)).

Further, since x 7→ 1/x is convex on (0,∞), we have

E
[

2

|λ1|

]
≥ 2

E [|λ1|]
≥ 2

C
1/2
1 nL

(1 +O(n−1)).

Since depth L ReLU networks are homogeneous of degree
L in their weights, The change from Kaiming to He initial-
ization causes the network output (and hence its derivatives)
to be re-scaled by a factor of 2−L/2.

5.2. Proof Outline for Theorem 1

Our strategy for estimating the Frobenius norm of H(L+1)

is to proceed recursively in L. To explain the main idea (full
details in the Appendix) we need some notation. First, we
will use µ, ν to denote generic variables indexing network
weights. Next, for any ℓ = 1, . . . , L and any expressions
fk(z) depending on z and ∂µz we write

Y (ℓ) [f1, . . . , fk] := E

∑
µ≤ℓ

1

nk
ℓ

nℓ∑
j1,...,jk=1

k∏
i=1

fi(z
(ℓ)
ji

)

 .

Thus, for example,

Y (ℓ) [z∂µz] = E

∑
µ≤ℓ

1

nℓ

nℓ∑
j=1

z
(ℓ)
j ∂µz

(ℓ)
j

 .

In both cases, µ ≤ ℓ denotes the collection of weights in
layers 1, . . . , ℓ. Similarly, if the functions fk(z) depend in
addition on ∂νz and ∂µνz then we we will write

Y (ℓ) [f1, . . . , fk] := E

 ∑
µ,ν≤ℓ

1

nk
ℓ

nℓ∑
j1,...,jk=1

k∏
i=1

fi(z
(ℓ)
ji

)

 .

Thus, for example, Y (ℓ)
[
(∂µz)

2
, z∂µνz

]
equals

E

∑
µ≤ℓ

1

n2
ℓ

nℓ∑
j1,j2=1

(
∂µz

(ℓ)
j1

)2
z
(ℓ)
j2

∂µνz
(ℓ)
j2

 .

The key steps in proving Theorem 1 are now as follows:

1. Integrate out the weights in layer L + 1 to rewrite
E
[∣∣∣∣H(L+1)

∣∣∣∣2
F

]
in terms of various Y (L)’s. This

is done in the Appendix in Lemma 2 and Corollary
4. Since the Hessian involves second derivatives, the
Y (L) that appear depend on various combinations of
z, ∂µz, ∂νz, ∂µνz.

2. Obtain recursive expressions for the Y (ℓ+1)’s that de-
pend only z, ∂µz in terms of the corresponding Y (ℓ)’s
at the previous layer. This is done in Lemma 3. Each
such recursion is derived by considering two cases.
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First, the case where the parameter µ is a weight in
layer ℓ+ 1. This gives expressions no longer contain-
ing any derivatives that depend only on moments of
the norm of the vector of pre-activations z(ℓ) at layer
ℓ. Such moments are well-known. Second, the case
where the parameter µ is a weight in layers 1, . . . , ℓ.
By explicitly integrating out the weights in layer ℓ+ 1,
we obtain expressions involving various Y (ℓ).

3. Solve the recursions for the Y (ℓ+1)’s that depend only
on z, ∂µz to understand how they grow with depth and
width. This is done in Corollary 5.

4. Obtain consistent recursive expressions for the
Y (ℓ+1)’s that depend only z, ∂µz, ∂νz, ∂µνz in terms
of Y (ℓ)’s that depend only on the same expressions.
This is done in Lemma 4. The strategy is the same as
in deriving Lemma 3, except one must consider three
cases: µ, ν are both weights in layer ℓ+ 1, exactly one
of µ, ν is a weight in layer ℓ + 1, and neither of µ, ν
are weights in layer ℓ+ 1.

5. Solve the recursions for the Y (ℓ+1)’s that depend only
z, ∂µz, ∂νz, ∂µνz to understand how they grow with
depth and width. This is done in Corollary 6.

6. Combine Corollaries 4, 5, and 6 to obtain estimates for
the average of the squared Frobenius norm of H(L+1).

6. Conclusion
We have introduced the maximal initial learning rate along
with a simple algorithm to compute it. We empirically show
that the maximal initial learning rate is closely related to the
architecture and sharpness λ1 at initialization in Kaiming-
initialized fully-connected ReLU networks through:

E[ln η∗] = −α ln(depth× width) + γ1,

ln(2/λ1) = β ln η∗ + γ2, β ̸= 1

as long as the network’s width/depth is sufficiently large
and the input layer is trained at a relatively small learning
rate. Further, we formally prove bounds for the sharpness
in terms only of the value of (depth× width).

To close, we emphasize several limitations and directions
for future work. First, our experiments were performed only
for constant width fully-connected ReLU networks trained
by vanilla SGD with a fixed batch size. It would be therefore
be interesting to further understand the architecture depen-
dence of the maximal initial learning rate on: batch size, the
presence of non-constant hidden layer widths, non-ReLU
activations, non-fully connected layers, and the presence
of normalization (e.g. BatchNorm). These factors can sig-
nificantly impact network behavior early in training, which
would, in turn, limit the direct application of our results in

practical settings. For a rather preliminary investigation of
maximal learning rates in ResNets see Appendix G.

Second, there is a rich vein of prior work concerning the
dependence of learning rate and details of the optimization
protocol. It would therefore be of interest to understand how
the maximal initial learning rate η∗ varies with batch size
(Goyal et al., 2017; Jastrzebski et al., 2018; Hoffer et al.,
2017; Smith et al., 2017; 2021) as well as momentum co-
efficient, ℓ2 regularization strength, and data augmentation
scheme. Similarly, it could be useful to study the rela-
tionship between architecture and η∗ when using adaptive
optimizers such as Adam or Adagrad.

Further, both our experiments and theoretical analyses fo-
cused on optimization with a single fixed learning rate. In
practice, however, learning rate protocols ranging from a
simple learning rate drop after a fixed number of epochs to
more intricate schemes such as warmup (Goyal et al., 2017)
or cosine schedules can improve network performance. De-
veloping a theory of maximal learning rates that is valid
throughout training could be of significant value.

Finally, we do not have a theoretical explanation that would
predict the somewhat exotic power-law exponents α, β in
the dependence of ln η∗ on (depth×width) and on ln(2/λ1),
and it would be interesting to understand their origin.
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A. Performance of Fully-Connected Networks Trained with Maximal Initial Learning Rate
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Figure 7: Performance of fully-connected networks when trained at the maximal initial learning rate η∗. (a) Validation
performance of initializations with different fully-connected network architectures when trained at learning rate η = η∗

computed by Algorithm 1 with t = 0.34 on CIFAR-10, over 50 training epochs. All initializations achieve≈ 50% validation
accuracy, which is reasonable for fully-connected networks; (b) The same for MNIST with t = 0.925, over 25 training
epochs. Note that training networks with η∗ guarantees that the network reaches the given threshold accuracy, but not
long-term training stability. Refer to §3.2 for specifics of the experimental setup.

Based on Figure 7, we make the following observations about the maximal initial learning rate η∗:

1. Networks train reasonably well when trained at η∗ – the fully connected networks we consider achieve ≈ 50%
validation accuracy on CIFAR-10. Although the computed η∗ may not be small enough to achieve optimal performance
when held constant, we believe they can serve well as large initial learning rates which can later be decayed for further
improvement in performance.

2. However, it must be noted that training at η = η∗ only guarantees that threshold performance will be achieved, and not
long-term training stability. This is particularly easy to notice on “easy” datasets, such as MNIST. Fortunately, this can
be easily overcome by simply employing early stopping, or a learning rate decay scheme.

B. Sharpness at Initialization for Different Initialization Schemes
Figure 8 compares λ1 at initialization between the Kaiming and LeCun initialization schemes, as a function of changing
fully-connected network architecture. Based on this figure, we make the following observations:

• For Kaiming-initialized networks, λ1 scales with both width and depth, and its variance primarily scales with the depth
of the network architecture.

• LeCun-initialized networks show very little variation in |λ1| with a change in width, but considerably more with
depth. Furthermore, |λ1| decreases exponentially as the depth gets larger, which is opposite to the trend we noticed for
Kaiming initializations. It is also interesting to note that λ1 may be positive or negative for LeCun-initialized networks,
whereas Kaiming-initialized networks show only positive λ1 values.

The above observations illustrate that the way in which λ1 varies and scales with architecture is largely dependent on the
initialization scheme employed. While we have the means to estimate the top eigenvalue(s) of the training Hessian, we
do not yet exactly understand how it is impacted by network architecture, data, and initialization. This is partly because
the complete Hessian is difficult to compute and theoretically analyze in large-scale settings. We believe that a better
understanding of this quantity could help us understand the role that sharpness plays in the optimization of neural networks.
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Figure 8: Visualization of sharpness λ1 as a function of width and depth at initialization for (a) LeCun (LeCun et al., 2012)
and (b) Kaiming (He et al., 2015) initialization schemes. We take absolute values and log scaling for λ1 in (b) for the sake of
clear representation - λ1 values are extremely small in magnitude and can be positive or negative in sign. Width is given on
the x-axis, and the different colors indicate different depths. There is a clear difference in how λ1 scales for the considered
initialization schemes – while it becomes larger as width and depth increase for Kaiming-initialized networks, it becomes
smaller with depth for LeCun-initialized networks.

C. Maximal Initial Learning Rates with Standard Training Setup
When all layers of the network are trained at the same learning rate η∗, the trend observed in Figure 1 breaks, and the
relationship becomes non-linear at small (depth× width) values, especially for networks with small width/depth. It is also
worth noting that the linear relationship is preserved for much larger values of (depth× width).

This raises a few questions: What exactly is the influence of the input layer on η∗? What is the correct way to initialize it so
we see a linear trend between η∗ and (depth× width)?
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Figure 9: Relationship between the maximal initial learning rate η∗ and architecture for fully-connected networks with
different width/depth values, trained on CIFAR-10 and MNIST. We use the same network architectures as in Figure 1. We
observe a consistent power relationship for networks with relatively large widths and small depths. However, this soon
becomes non-linear for other, relatively deeper architectures.
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D. Results on Fashion-MNIST
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Figure 10: Experimental results for Fashion-MNIST. We obtain a threshold accuracy of 0.84 for Fashion-MNIST. The
experimental setup remains identical to those in previous experiments, and the results further confirm the empirical and
theoretical results obtained in this work.

E. Results on Gaussian Data
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(b) Anisotropic Gaussian Data
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Figure 11: Relationship between maximal initial learning rate η∗ and architecture for (a) isotropic and (b) anisotropic
Gaussian datasets. We use the same values for depth as in Figure 1. Data is sampled from two multivariate normal
distributions (i.e. binary classification). The training set and validation set respectively consist of 9k and 1k samples from
each distribution, leading to a total of 20k samples (with 18k samples in the training set, and 2k in the validation set). Each
sample is 100-dimensional, and the means are sampled from a standard normal distribution. For the anisotropic Gaussian
dataset, we sample 100-dimensional covariance matrices from a standard normal distribution as well. For the isotropic and
anisotropic Gaussian datasets, we obtain threshold accuracies of 1.0 and 0.81 respectively.

We note that for the isotropic Gaussian data, the slope values are significantly smaller than those observed in other
experiments. This emphasizes that even in the relatively simple case of fully connected ReLU networks, we do not have
a theoretical explanation of the empirical scaling laws for the maximal initial learning rate as a function of architecture.
Through these experiments, we hope to understand these simple situations before analyzing more complex cases.
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F. Comparison of Averaged Sharpness λ1 and Maximal Initial Learning Rate η∗
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Figure 12: Correlation between 2/λ1 and η∗, averaged over 25 initializations per architecture. Each architecture has a
sufficiently large width/depth = 16, to preserve the established power relationship.

G. Performance of ResNet-20 Networks Trained with Maximal Initial Learning Rate
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Figure 13: Performance of ResNet-20 (He et al., 2016) networks with different learning rate setups. Each line in the figure
is an average of 3 runs, along with error bars to indicate deviation in performance. A well-tuned, constant learning rate
consistently beats η∗, but performance is competitive when using a scheduler is employed. Refer to MosaicML’s Model
Card for details of the learning rate scheduler setup.
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H. Proof of Theorem 1
H.1. Setup and Preparatory Lemmas

Let us first recall the notation. We consider a ReLU network, which for an input x ∈ Rn0 computes z
(L+1)
1 ∈ R via

intermediate representations z(ℓ) ∈ Rnℓ

z
(ℓ+1)
i =

{∑nℓ

j=1 W
(ℓ)
ij σ

(
z
(ℓ)
j

)
, ℓ ≥ 1∑nℓ

j=1 W
(1)
ij xj , ℓ = 0

, i = 1, . . . , nℓ.

Moreover, we will assume that the weights are independent Gaussians

W
(ℓ)
ij ∼ N

(
0,

2

nℓ−1

)
independent.

Instead of simply considering the loss Hessian as in the statement of Theorem 1, we will study a slightly more general
effective Hessian

Heff :=

(
η̂µη̂ν∂µν

{
1

2

(
z
(L+1)
1 − y

)2})
µ,ν

,

where µ, ν run over all network weights and for any weight µ = W
(ℓ)
ij we write

η̂
W

(ℓ)
ij

= n
−1/2
ℓ−1 η(ℓ)

for the corresponding learning rates. We’ve introduced the rescaled learning rates η(ℓ) for weights in layer ℓ for notational
convenience in what follows. Our goal is to compute the mean of the Hilbert-Schmidt norm

E
[
||Heff||2HS

]
= E

 ∑
µ,ν≤L+1

(
η̂µη̂ν∂µ∂ν

{
1

2

(
z
(L+1)
1 − y

)2})2
 , (1)

where we remind the reader that for any ℓ the notation µ ≤ ℓ means the set of all weights in layers 1, . . . , ℓ. In order to
effectively evaluate equation 1, we need two preparatory results. The first is well-known and can be found in Theorem 3 of
Hanin (2018) and Proposition 2 of Hanin & Nica (2019a)
Lemma 1. The indicator random variables 1{

z
(ℓ)
i >0

} are independent of any even function of the network weights and of

each other. Their marginal distribution is Bernoulli 1/2.

The second result we need is a simple corollary of Lemma 1. To state it, we need some notation. For any ℓ = 1, . . . , L and
any expressions fk(z) depending on z and ∂µz we write

Y (ℓ) [f1, . . . , fk] := E

∑
µ≤ℓ

(η̂µ)
2 1

nk
ℓ

nℓ∑
j1,...,jk=1

f1(z
(ℓ)
j1

) · · · fk(z(ℓ)jk
)

 .

Thus, for example

Y (ℓ) [z∂µz] = E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ

nℓ∑
j=1

z
(ℓ)
j ∂µz

(ℓ)
j

 .

Similarly, if the functions fk(z) depend in addition on ∂νz and ∂µνz then we we will write

Y (ℓ) [f1, . . . , fk] := E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

nk
ℓ

nℓ∑
j1,...,jk=1

f1(z
(ℓ)
j1

) · · · fk(z(ℓ)jk
)

 .

Thus, for example

Y (ℓ)
[
(∂µz)

2
, z∂µνz

]
= E

∑
µ≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ

nℓ∑
j1,j2=1

(
∂µz

(ℓ)
j1

)2
z
(ℓ)
j2

∂µνz
(ℓ)
j2

 .
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We will use repeatedly the following Corollary of Lemma 1:

Corollary 3. Fix k ≥ 1 and suppose that

fj(z) = σ(z)aj (∂µσ(z))
bj (∂νσ(z))

cj (∂µνσ(z))
dj , j = 1, . . . , k

with aj + bj + cj + dj being even for every j. Write

f̂j(z) := zaj (∂µz)
bj (∂νz)

cj (∂µνz)
dj , j = 1, . . . , k.

Then,

Y (ℓ) [f1] =
1

2
Y (ℓ)

[
f̂1

]
, f̂1(z) := za (∂µz)

b
. (2)

Further,

Y (ℓ) [f1, f2] =
1

4

[
Y (ℓ)

[
f̂1, f̂2

]
+

1

nℓ
Y (ℓ)

[
f̂1 · f̂2

]]
.

Proof. When k = 1, we have

Y (ℓ) [f1] = E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

nℓ

nℓ∑
j=1

(
σ(z

(ℓ)
j )
)aj

(
∂µσ(z

(ℓ)
j )
)bj (

∂νσ(z
(ℓ)
j )
)cj (

∂µνσ(z
(ℓ)
j )
)dj


= E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

nℓ

nℓ∑
j=1

(
z
(ℓ)
j

)aj
(
∂µz

(ℓ)
j

)bj (
∂νz

(ℓ)
j

)cj (
∂µνz

(ℓ)
j

)dj

1{
z
(ℓ)
j ≥0

}


= E

E
 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

nℓ

nℓ∑
j=1

(
z
(ℓ)
j

)aj
(
∂µz

(ℓ)
j

)bj (
∂νz

(ℓ)
j

)cj (
∂µνz

(ℓ)
j

)dj

1{
z
(ℓ)
j ≥0

} ∣∣∣∣ z(ℓ−1)

 .

In the inner conditional expectation, the term
(
z
(ℓ)
j

)aj
(
∂µz

(ℓ)
j

)bj (
∂νz

(ℓ)
j

)cj (
∂µνz

(ℓ)
j

)dj

1{
z
(ℓ)
j ≥0

} is an even function

of the weights in layer ℓ. Hence, by Lemma 1, it is independent of the indicator function. This yields equation 2. Similarly,
we have

Y (ℓ) [f1, f2] = E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ

nℓ∑
k1,k2=1

2∏
j=1

(
σ(z

(ℓ)
kj

)
)aj

(
∂µσ(z

(ℓ)
kj

)
)bj (

∂νσ(z
(ℓ)
kj

)
)cj (

∂µνσ(z
(ℓ)
kj

)
)dj


= E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ

nℓ∑
k1,k2=1

2∏
j=1

(
z
(ℓ)
kj

)aj
(
∂µz

(ℓ)
kj

)bj (
∂νz

(ℓ)
kj

)cj (
∂µνz

(ℓ)
kj

)dj

1{
z
(ℓ)
k1

≥0
}1{

z
(ℓ)
k2

≥0
}


=
1

nℓ
E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2
(
z
(ℓ)
1

)a1+a2
(
∂µz

(ℓ)
1

)b1+b2 (
∂νz

(ℓ)
1

)c1+c2 (
∂µνz

(ℓ)
1

)d1+d2

1{
z
(ℓ)
j1

≥0
}


+

(
1− 1

nℓ

)
E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2

2∏
j=1

(
z
(ℓ)
j

)aj
(
∂µz

(ℓ)
j

)bj (
∂νz

(ℓ)
j

)cj (
∂µνz

(ℓ)
j

)dj

1{
z
(ℓ)
j ≥0

}
 ,

where the last equality follows by symmetry. Again conditioning on z(ℓ−1) we thus find

Y (ℓ) [f1, f2] =
1

2nℓ
E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2
(
z
(ℓ)
1

)a1+a2
(
∂µz

(ℓ)
1

)b1+b2 (
∂νz

(ℓ)
1

)c1+c2 (
∂µνz

(ℓ)
1

)d1+d2


+

1

4

(
1− 1

nℓ

)
E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2

2∏
j=1

(
z
(ℓ)
j

)aj
(
∂µz

(ℓ)
j

)bj (
∂νz

(ℓ)
j

)cj (
∂µνz

(ℓ)
j

)dj

 .
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Running the above symmetry argument in reverse yields

Y (ℓ) [f1, f2] =
1

4

[
Y (ℓ)

[
f̂1, f̂2

]
+

1

nℓ
Y (ℓ)

[
f̂1 · f̂2

]]
,

as claimed.

In what follows we will use Lemma 1 and Corollary 3 without mention.

H.2. Reducing E
[
||Heff ||2F

]
to Y (ℓ)’s

To make progress on evaluating the expression equation 1, let us first write

∂µ∂ν

{
1

2

(
z
(L+1)
1 − y

)2}
= ∂µ

(
∂νz

(L+1)
1

(
z
(L+1)
1 − y

))
= ∂µνz

(L+1)
1

(
z
(L+1)
1 − y

)
+ ∂µz

(L+1)
1 ∂νz

(L+1)
1 .

Hence,

(
∂µ∂ν

{
1

2

(
z
(L+1)
1 − y

)2})2

=
(
∂µνz

(L+1)
1

(
z
(L+1)
1 − y

))2
+ 2∂µνz

(L+1)
1 ∂µz

(L+1)
1 ∂νz

(L+1)
1

(
z
(L+1)
1 − y

)
+
(
∂µz

(L+1)
1 ∂νz

(L+1)
1

)2
.

Using that y has mean 0 and variance 1 as well as the fact that any term with an odd number of z(L+1)
1 ’s has zero mean

shows that

E

[(
∂µ∂ν

{
1

2

(
z
(L+1)
1 − y

)2})2
]
= E

[(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
+ E

[(
∂µνz

(L+1)
1

)2]
(3)

+ 2E
[
∂µνz

(L+1)
1 ∂µz

(L+1)
1 ∂νz

(L+1)
1 z

(L+1)
1

]
+ E

[(
∂µz

(L+1)
1 ∂νz

(L+1)
1

)2]
.

Our goal is to evaluate the sums of such terms over µ, ν recursively in L. We do this by first integrating out the weights in
the last layer to reduce computing the expected squared Hilbert-Schmidt norm of the loss hessian to various Y ’s.
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Lemma 2. We have

∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]

=
(
η(L+1)

)2 [
Y (L)

[
(∂µz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µz)

2
]]

+ Y (L)
[
(∂µνz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µνz)

2
]

+ 2Y (L) [z∂µνz, z∂µνz] +
2

nL
Y (L)

[
(z∂µνz)

2
]

(4)∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]
=
(
η(L+1)

)2
Y (L)

[
(∂µz)

2
]
+ Y (L)

[
(∂µνz)

2
]

(5)∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
∂µνz

(L+1)
1 ∂µz

(L+1)
1 ∂νz

(L+1)
1 z

(L+1)
1

]
=
(
η(L+1)

)2(
Y (L) [z∂µz, z∂µz] +

1

nL
Y (L)

[
(z∂µz)

2
])

+ 2Y (L) [∂µνz∂µz, z∂νz] + Y (L) [z∂µνz, ∂µz∂νz] +
3

nL
Y (L) [z∂µνz∂µz∂νz] (6)

E
[
(η̂µη̂ν)

2
(
∂µz

(L+1)
1 ∂νz

(L+1)
1

)2]
=

1

2

(
η(L+1)

)4(
E

[(
1

nL

∣∣∣∣∣∣z(L)
∣∣∣∣∣∣2
2

)2
]
+

1

nL
E
[
1

nL

∣∣∣∣∣∣z(L)
∣∣∣∣∣∣4
4

])

+
(
η(L+1)

)2 [
Y (L)

[
z2, (∂µz)

2
]
+

1

nL
Y (L)

[
(z∂µz)

2
]]

+ 2Y (L) [∂µz∂νz, ∂µz∂νz] + Y (L)
[
(∂µz)

2
, (∂νz)

2
]
+

3

nL
Y (L)

[
(∂µz∂νz)

2
]

(7)

Proof. We begin with deriving (equation 4). We have

∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
=

∑
µ,ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]

+
∑

µ≤L, ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]

+
∑

µ∈L+1, ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]

+
∑

µ,ν≤L

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
.

Note first that if µ, ν are both weights in layer L+ 1, then ∂µνz
(L+1)
1 = 0. Thus, the first sum vanishes. Next, the second

19



Maximal Initial Learning Rates in Deep ReLU Networks

and third sums are equal. To evaluate them we proceed as follows:

∑
µ≤L, ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
=
∑
µ≤L

(η̂µ)
2 E

(η(L+1)
)2

nL

nL∑
j1=1

(
∂µσ(z

(L)
j1

)z
(L+1)
1

)2
=
∑
µ≤L

(η̂µ)
2 E

(η(L+1)
)2

nL

nL∑
j1=1

∂µσ(z
(L)
j1

)

nL∑
j2=1

W
(L+1)
1j2

σ(z
(L)
j2

)

2


=
∑
µ≤L

(η̂µ)
2 E

2 (η(L+1)
)2

n2
L

nL∑
j1,j2=1

(
∂µσ(z

(L)
j1

)σ(z
(L)
j2

)
)2

=
∑
µ≤L

(η̂µ)
2
2
(
η(L+1)

)2
E
[
1

nL

(
∂µσ(z

(L)
1 )σ(z

(L)
1 )

)2]

+
∑
µ≤L

(η̂µ)
2
2
(
η(L+1)

)2
E
[(

1− 1

nL

)(
∂µσ(z

(L)
1 )σ(z

(L)
2 )

)2]

=
∑
µ≤L

(η̂µ)
2
(
η(L+1)

)2
E
[
1

nL

(
∂µz

(L)
1 z

(L)
1

)2]

+
1

2

∑
µ≤L

(η̂µ)
2
(
η(L+1)

)2
E
[(

1− 1

nL

)(
∂µz

(L)
1 z

(L)
2 )

)2]

=

(
η(L+1)

)2
2

[
Y (L)

[
(∂µz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µz)

2
]]

.

Finally, the fourth sum is

∑
µ,ν≤L

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
=
∑

µ,ν≤L

E

(η̂µη̂ν)2
 NL∑

j1,j2=1

W
(L+1)
1j1

W
(L+1)
1j2

σ(z
(L)
j1

)∂µνσ(z
(L)
j2

)

2


=
∑

µ,ν≤L

E

(η̂µη̂ν)2 4

n2
L

NL∑
j1,j2=1

(
σ(z

(L)
j1

)∂µνσ(z
(L)
j2

)
)2

+ 2
∑

µ,ν≤L

E

(η̂µη̂ν)2 4

n2
L

NL∑
j1,j2=1

σ(z
(L)
j1

)∂µνσ(z
(L)
j1

)σ(z
(L)
j2

)∂µνσ(z
(L)
j2

)

 .

To proceed we evaluate the first term as follows:

∑
µ,ν≤L

E

(η̂µη̂ν)2 4

n2
L

NL∑
j1,j2=1

(
σ(z

(L)
j1

)∂µνσ(z
(L)
j2

)
)2 =

∑
µ,ν≤L

E
[
(η̂µη̂ν)

2 4

nL

(
σ(z

(L)
1 )∂µνσ(z

(L)
1 )

)2]

+
∑

µ,ν≤L

E
[
(η̂µη̂ν)

2
4

(
1− 1

nL

)(
σ(z

(L)
1 )∂µνσ(z

(L)
2 )

)2]
= Y (L)

[
(∂µνz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µνz)

2
]
.
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Further, the second term is

∑
µ,ν≤L

E

(η̂µη̂ν)2 4

n2
L

NL∑
j1,j2=1

σ(z
(L)
j1

)∂µνσ(z
(L)
j1

)σ(z
(L)
j2

)∂µνσ(z
(L)
j2

)


=
∑

µ,ν≤L

E
[
(η̂µη̂ν)

2 4

nL

(
σ(z

(L)
1 )∂µνσ(z

(L)
1 )

)2]

+
∑

µ,ν≤L

E
[
(η̂µη̂ν)

2
4

(
1− 1

nL

)
σ(z

(L)
1 )∂µνσ(z

(L)
1 )σ(z

(L)
2 )∂µνσ(z

(L)
2 )

]
= Y (L) [z∂µνz, z∂µνz] +

1

nL
Y (L)

[
(z∂µνz)

2
]

Putting all this together yields∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1 z

(L+1)
1

)2]
=
(
η(L+1)

)2 [
Y (L)

[
(∂µz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µz)

2
]]

+ Y (L)
[
(∂µνz)

2, z2
]
+

1

nL
Y (L)

[
(z∂µνz)

2
]

+ 2Y (L) [z∂µνz, z∂µνz] +
2

nL
Y (L)

[
(z∂µνz)

2
]
,

which is precisely the statement of equation 4. Next, we establish equation 5 in a similar manner. We have∑
µ,ν≤L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]
=

∑
µ,ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]

+
∑

µ≤L,ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]

+
∑

µ∈L+1,ν≤L

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]

+
∑

µ,ν≤L

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]
.

Again the first sum vanishes since ∂µνz
(L+1)
1 = 0 if µ, ν are weights in the final layer. Next, the second and third terms are

equal and can be written as follows:

∑
µ≤L,ν∈L+1

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]
=
(
η(L+1)

)2 ∑
µ≤L

1

nL

nL∑
j=1

E
[
(η̂µ)

2
(
∂µσ(z

(L)
j )

)2]
=

1

2

(
η(L+1)

)2
Y (L)

[
(∂µz)

2
]
.

Finally, the fourth term in the sum can be rewritten in the following manner

∑
µ,ν≤L

E
[
(η̂µη̂ν)

2
(
∂µνz

(L+1)
1

)2]
=
∑

µ,ν≤L

E

(η̂µη̂ν)2
 nL∑

j=1

W
(L+1)
1j ∂µνσ(z

(L)
j )

2


=
∑

µ,ν≤L

E

(η̂µη̂ν)2 2

nL

nL∑
j=1

(
∂µνσ(z
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Hence, altogether, we find
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,

which is the statement of equation 5. Next, we establish equation 6. We have
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The first sum vanishes since ∂µνz
(L+1)
1 = 0 when µ, ν are weights in the final layer. The second and third terms are again

the same and equal
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Finally, the fourth term is
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Putting this all together yields
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which precisely the statement of equation 6. Finally, it remains to check equation 7. We have
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The first term equals
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The second and third terms are the same and equal
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The fourth term equals
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Putting this all together yields
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which is precisely the statement of equation 7.

In particular, combining equation 1 and equation 3 with the result of the preceding Lemma yields the following result.
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Corollary 4. We have,
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H.3. Self-Consistent Recursions for Y (ℓ)’s

Our next task is to develop and then solve self-consistent recursions for those Y ’s that contain only one µ.

Lemma 3. We have
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Proof. We start with equation 8. We have
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The first term is
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Next, for the second term, we have
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Combining the preceding expressions yields
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which is precisely equation 8. Next, let us derive equation 9. We have
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In contrast, using Wick’s theorem, the second term is
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Hence, altogether, we find

Y (ℓ+1)
[
(∂µz)

2, z2
]
=
(
η(ℓ+1)

)2
E

[(
1

nℓ
||σ(ℓ)||2

)2
]
+ Y (ℓ)

[
z2, (∂µz)

2
]
+ 2Y (ℓ) [z∂µ, z∂µ] +

3

nℓ
Y (ℓ)

[
(z∂µz)

2
]
,
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µ≤ℓ

(η̂µ)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

z
(ℓ+1)
j1

z
(ℓ+1)
j2

∂µz
(ℓ+1)
j1

∂µz
(ℓ+1)
j2

 .

The first term equals

E

 ∑
µ∈ℓ+1

(η̂µ)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

z
(ℓ+1)
j1

z
(ℓ+1)
j2

∂µz
(ℓ+1)
j1

∂µz
(ℓ+1)
j2

 =

(
η(ℓ+1)

)2
nℓ+1

E

 1

nℓ

nℓ∑
j1=1

σ(z
(ℓ)2

j1
)

1

nℓ+1

nℓ+1∑
j2=1

(
z
(ℓ+1)
j2

)2
= 2

(
η(ℓ+1)

)2
nℓ+1

E

[(
1

nℓ
||σ(ℓ)||2

)2
]
.

The second term is

E

∑
µ≤ℓ

(η̂µ)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

z
(ℓ+1)
j1

z
(ℓ+1)
j2

∂µz
(ℓ+1)
j1

∂µz
(ℓ+1)
j2


= E

∑
µ≤ℓ

(η̂µ)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

nℓ∑
k1,k2,k3,k4=1

W
(ℓ+1)
j1k1

W
(ℓ+1)
j1k2

W
(ℓ+1)
j2k3

W
(ℓ+1)
j2k4

σ(z
(ℓ)
k1

)∂µσ(z
(ℓ)
k2

)σ(z
(ℓ)
k3

)∂µσ(z
(ℓ)
k4

)


= E

∑
µ≤ℓ

(η̂µ)
2 4

n2
ℓ

nℓ∑
k1,k2=1

σ(z
(ℓ)
k1

)∂µσ(z
(ℓ)
k1

)σ(z
(ℓ)
k2

)∂µσ(z
(ℓ)
k2

) +
2

nℓ+1

(
σ(z

(ℓ)
k1

)∂µσ(z
(ℓ)
k2

)
)2

= Y (ℓ) [z∂µz, z∂µz] +
1

nℓ

(
1 +

2

nℓ+1

)
Y (ℓ)

[
(z∂µz)

2
]
+

2

nℓ+1
Y (ℓ)

[
z2, ∂µz

2
]
.

Putting this together yields

Y (ℓ+1) [z∂µz, z∂µz] = 2

(
η(ℓ+1)

)2
nℓ+1

E

[(
1

nℓ
||σ(ℓ)||2

)2
]

= Y (ℓ) [z∂µz, z∂µz] +
1

nℓ

(
1 +

2

nℓ+1

)
Y (ℓ)

[
(z∂µz)

2
]
+

2

nℓ+1
Y (ℓ)

[
z2, ∂µz

2
]
,

which is precisely equation 10. Finally, we derive equation 11. We have

Y (ℓ+1)
[
(z∂µz)

2
]
= E

 ∑
µ∈ℓ+1

(η̂µ)
2 1

nℓ+1

nℓ+1∑
j=1

(
z
(ℓ+1)
j ∂µz

(ℓ+1)
j

)2
+ E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ+1

nℓ+1∑
j=1

(
z
(ℓ+1)
j ∂µz

(ℓ+1)
j

)2 .
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The first term is

E

 ∑
µ∈ℓ+1

(η̂µ)
2 1

nℓ+1

nℓ+1∑
j=1

(
z
(ℓ+1)
j ∂µz

(ℓ+1)
j

)2 =
(
η(ℓ+1)

)2
E

 1

nℓ

nℓ∑
j1=1

σ(z
(ℓ)
j1

)
1

nℓ+1

nℓ+1∑
j=1

(
z
(ℓ+1)
j

)2
= 2

(
η(ℓ+1)

)2
E

[(
1

nℓ
||σ(ℓ)||2

)2
]
.

The second term is

E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ+1

nℓ+1∑
j=1

(
z
(ℓ+1)
j ∂µz

(ℓ+1)
j

)2
= E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ+1

nℓ+1∑
j=1

nℓ∑
k1,k2,k3,k4=1

W
(ℓ+1)
jk1

W
(ℓ+1)
jk2

W
(ℓ+1)
jk3

W
(ℓ+1)
jk4

σ(z
(ℓ)
k1

)σ(z
(ℓ)
k2

)∂µσ(z
(ℓ)
k3

)∂µσ(z
(ℓ)
k4

)


= E

∑
µ≤ℓ

(η̂µ)
2 4

nℓ

nℓ∑
k1,k2=1

(
σ(z

(ℓ)
k1

)∂µσ(z
(ℓ)
k2

)
)2

+ 2σ(z
(ℓ)
k1

)∂µσ(z
(ℓ)
k1

)σ(z
(ℓ)
k2

)∂µσ(z
(ℓ)
k2

)


= 2Y (ℓ) [z∂µz, z∂µz] + Y (ℓ)

[
z2, ∂µz

2
]
+

3

nℓ
Y (ℓ)

[
(z∂µz)

2
]
.

So all together this yields

Y (ℓ+1)
[
(z∂µz)

2
]
= 2

(
η(ℓ+1)

)2
E

[(
1

nℓ
||σ(ℓ)||2

)2
]

+ 2Y (ℓ) [z∂µz, z∂µz] + Y (ℓ)
[
z2, ∂µz

2
]
+

3

nℓ
Y (ℓ)

[
(z∂µz)

2
]
,

which is precisely equation 11.

Inspecting the recursions in Lemma 3 immediately shows that, for ℓ = 1, . . . , L, we have that as n→∞

Y (ℓ)
[
(∂µz)

2
]
, Y (ℓ)

[
(∂µz)

2, z2
]
, Y (ℓ)

[
(z∂µz)

2
]
= O(1), Y (ℓ) [z∂µz, z∂µz] = O(n−1).

Thus, we obtain
Corollary 5. for ℓ = 1, . . . , L, we have that

Y (ℓ+1)
[
(∂µz)

2
]
=

1

2n0
||x||22

ℓ∑
ℓ′=0

(
η(ℓ

′+1)
)2

Y (ℓ+1)
[
(∂µz)

2, z2
]
=

1

2

ℓ∑
ℓ′=0

(
η(ℓ

′+1)
)2

E

[(
1

nℓ′
||z(ℓ

′)||22
)2
]
+O(n−1).

In particular, specializing to the case where η(ℓ) = η is independent of ℓ, we obtain

Y (ℓ+1)
[
(∂µz)

2
]
=

ℓ+ 1

2n0
||x||22 η

2

Y (ℓ+1)
[
(∂µz)

2, z2
]
=

η2

2

(
||x||22
n0

)2 ℓ∑
ℓ′=0

ℓ′∏
ℓ′′=1

(
1 +

2

nℓ′′

)
+O(n−1).

A simple consequence of this corollary is that, dropping terms on the order of O(n−1), O(ℓ−1) and assuming that ||x||2 = n0,
gives

Y (ℓ+1)
[
(∂µz)

2
]
, Y (ℓ+1)

[
(∂µz)

2, z2
]
=

1

2
ℓη2.
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Our next step is to obtain obtain and solve recursions for Y ’s appearing in Lemma 2 that involve sums over two network
weights µ and ν. The recursions are as follows.

Lemma 4. We have

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
=
(
η(ℓ+1)

)4
E

[(
1

nℓ
||σ(z(ℓ))||22

)2
]
+
(
η(ℓ+1)

)2 [
Y (ℓ)

[
(∂µz)

2, z2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ)
[
(∂µz)

2, (∂νz)
2
]
+

2

nℓ+1
Y (ℓ) [∂µz∂νz, ∂µz∂νz] +

1

nℓ

(
1 +

2

nℓ+1

)
Y (ℓ)

[
(∂µz∂νz)

2
]
.

Y (ℓ+1) [∂µz∂νz, ∂µz∂νz] =
(
η(ℓ+1)

)4
E

[(
1

nℓ
||σ(ℓ)||22

)2
]
+

(
η(ℓ+1)

)2
nℓ+1

[
Y (ℓ)

[
(∂µz)

2, z2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ) [∂µz∂νz, ∂µz∂νz] +
2

nℓ+1
Y (ℓ)

[
(∂µz)

2
, (∂νz)

2
]
+

(
1 +

2

nℓ+1

)
Y (ℓ)

[
(∂µz∂νz)

2
]

Y (ℓ+1) [z∂µνz, ∂µz∂νz] =

(
η(ℓ+1)

)2
nℓ+1

[
Y (ℓ) [z∂µz, z∂µz] +

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ) [z∂µνz, ∂µz∂νz] +
2

nℓ+1
Y (ℓ) [∂µνz∂µz, z∂νz] +

(
1 +

2

nℓ+1

)
Y (ℓ) [z∂µz∂νz∂µνz]

Y (ℓ+1) [z∂µz, ∂µz∂µνz] = Y (ℓ) [z∂µz, ∂µz∂µνz] +
2

nℓ+1
Y (ℓ)

[
z∂µνz, (z∂µz)

2
]
+

(
1 +

2

nℓ+1

)
Y (ℓ) [z∂µ∂ν∂µνz]

Y (ℓ+1)
[
(∂µνz)

2, z2
]
=
(
η(ℓ+1)

)2 [
Y (ℓ)

[
(∂µz)

2, z2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ)
[
(∂µνz)

2, z2
]
+

2

nℓ+1
Y (ℓ) [z∂µνz, z∂µνz] +

1

nℓ

(
1 +

2

nℓ+1

)
Y (ℓ)

[
(z∂µνz)

2
]

Y (ℓ+1)
[
(z∂µνz)

2
]
= 2

(
η(ℓ+1)

)2 [
Y (ℓ)

[
z2, (∂µz)

2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ)
[
z2, (∂µνz)

2
]
+ 2Y (ℓ) [z∂µνz, z∂µνz] +

2

nℓ
Y (ℓ)

[
(z∂µνz)

2
]

Y (ℓ+1)
[
(∂µz∂νz)

2
]
=
(
η(ℓ+1)

)4
E

[(
1

nℓ
||σ(ℓ)||2

)2
]
+ 2

(
η(ℓ+1)

)2 [
Y (ℓ)

[
z2, (∂µz)

2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

+ Y (ℓ)
[
(∂µz)

2, (∂νz)
2
]
+ 2Y (ℓ) [∂µz∂νz, ∂µz∂νz] +

1

nℓ
Y (ℓ)

[
(∂µz∂νz)

2
]

Y (ℓ+1) [z∂µνz, z∂µνz] =

(
η(ℓ+1)

)2
nℓ+1

(
Y (ℓ)

[
z2, (∂µz)

2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
])

+

(
1 +

1

nℓ+1

)
Y (ℓ) [z∂µνz, z∂µνz]

+
1

nℓ+1
Y (ℓ)

[
z2, (∂µz)

2
]
+

1

nℓ

(
1 +

1

nℓ+1

)
Y (ℓ)

[
(z∂µνz)

2
]

Y (ℓ+1)
[
(∂µνz)

2
]
=
(
η(ℓ+1)

)2
Y (ℓ)

[
(∂µz)

2
]
+ Y (ℓ)

[
(∂µνz)

2
]

Y (ℓ+1) [z∂µνz∂µz∂νz] =
(
η(ℓ+1)

)2(
Y (ℓ) [z∂µz, z∂µz] +

1

nℓ
Y (ℓ)

[
(z∂µz)

2
])

+ Y (ℓ) [z∂µνz, ∂µz∂νz] + 2Y (ℓ) [z∂µz, ∂νz∂µνz] +
3

nℓ
Y (ℓ) [z∂µνz∂µz∂νz]

Proof. The proof of Lemma 4 is very similar to that of Lemma 3, so we will only give the details for Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
.

29



Maximal Initial Learning Rates in Deep ReLU Networks

We have

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
= E

 ∑
µ,ν∈ℓ+1

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

(
∂µz

(ℓ+1)
j1

∂νz
(ℓ+1)
j2

)2
+ 2E

 ∑
µ≤ℓ,ν∈ℓ+1

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

(
∂µz

(ℓ+1)
j1

∂νz
(ℓ+1)
j2

)2
+ E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

(
∂µz

(ℓ+1)
j1

∂νz
(ℓ+1)
j2

)2 .

The first term equals (
η(ℓ+1)

)4
E

[(
1

nℓ

∣∣∣∣∣∣σ(z(ℓ))∣∣∣∣∣∣2)2
]
.

The second term is

2E

 ∑
µ≤ℓ,ν∈ℓ+1

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

(
∂µz

(ℓ+1)
j1

∂νz
(ℓ+1)
j1

)2
= 2

(
η(ℓ+1)

)2
E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ

nℓ∑
j1=1

(
σ(z

(ℓ)
j1

)
)2 1

nℓ+1

nℓ+1∑
j2=1

(
∂µz

(ℓ+1)
j2

)2
= 2

(
η(ℓ+1)

)2
E

∑
µ≤ℓ

(η̂µ)
2 1

nℓ

n2
ℓ∑

j1=1

(
σ(z

(ℓ)
j1

)
)2 (

∂µσ(z
(ℓ)
j2

)
)2

= 2
(
η(ℓ+1)

)2 [
Y (ℓ)

[
z2, (∂µz)

2
]
+

1

nℓ
Y (ℓ)

[
(z∂µz)

2
]]

.

Finally, the third term equals

E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

(
∂µz

(ℓ+1)
j1

∂νz
(ℓ+1)
j2

)2


= E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 1

n2
ℓ+1

nℓ+1∑
j1,j2=1

nℓ∑
k1,k2,k3,k4=1

W
(ℓ+1)
j1k1

W
(ℓ+1)
j1k2

W
(ℓ+1)
j2k3

W
(ℓ+1)
j2k4

∂µσ(zk1)
(ℓ)∂µσ(zk2)

(ℓ)∂νσ(zk3)
(ℓ)∂νσ(zk4)

(ℓ)


= E

 ∑
µ,ν≤ℓ

(η̂µη̂ν)
2 4

n2
ℓ

nℓ∑
j1,j2=1

(
∂µσ(zj1)

(ℓ)∂µσ(zj2)
(ℓ)

)2

+
2

nℓ+1
∂µσ(zj1)

(ℓ)∂νσ(zj1)
(ℓ)∂µσ(zj2)

(ℓ)∂νσ(zj2)
(ℓ)


= Y (ℓ) [(∂µz)

2, (∂νz)
2]+ 2

nℓ+1
Y (ℓ) [∂µz∂νz, ∂µz∂νz] +

3

nℓnℓ+1
Y (ℓ) [(∂µz∂νz)

2] .
Combining the preceding expressions completes the derivation of the recursion for Y (ℓ)

[
(∂µz)

2, (∂νz)
2
]
.

Inspecting these recursions immediately shows the following
Corollary 6. For ℓ = 1, . . . , L, we have that as n→∞

Y (ℓ) [∂µz∂νz, ∂µz∂νz] , Y
(ℓ) [z∂µz, ∂µz∂µνz] , Y

(ℓ) [z∂µνz, ∂µz∂νz] , Y
(ℓ) [z∂µνz, z∂µνz] = O(n−1),

while all the other Y ’s are order 1. Moreover,

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
=
(
η(ℓ+1)

)4
E

[(
1

2nℓ
||z(ℓ)||22

)2
]
+
(
η(ℓ+1)

)2
Y (ℓ)

[
(∂µz)

2, z2
]

+ Y (ℓ)
[
(∂µz)

2, (∂νz)
2
]
+O(n−1)
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Hence, assuming that ||x||2 = n0, we find

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
=

1

4
η4 +

1

2
η2ℓ+ Y (ℓ)

[
(∂µz)

2, (∂νz)
2
]
+O(n−1) =

η2ℓ2

4
+O(ℓ−1) +O(n−1).

Similarly,

Y (ℓ+1)
[
(∂µνz)

2
]
= ℓη4 + Y (ℓ)

[
(∂µνz)

2
]
+O(n−1) = C3ℓ

2η4 +O(n−1).

And also,

Y (ℓ+1)
[
z2, (∂µνz)

2
]
= ℓη4 + Y (ℓ)

[
(∂µνz)

2
]
+O(n−1) = C4ℓ

2η4 +O(n−1).

H.4. Completion of the Proof of Theorem 1

We are now in a position to complete the proof of Theorem 1. By combining the results at the end of the previous section
with Corollary 4, we find

E
[
||Heff||2HS

]
= 2

(
η(ℓ+1)

)4
E
[
1

nℓ

∣∣∣∣∣∣σ(L)
∣∣∣∣∣∣2]2

+
(
η(L+1)

)2 (
2Y (L)

[
z2, (∂µz)

2
]
+ Y (L)

[
(∂µz)

2
])

+ Y (L)
[
z2, (∂µνz)

2
]
+ Y (L)

[
(∂µνz)

2
]
+ Y (L)

[
(∂µz)

2, (∂νz)
2
]
+O(n−1)

= C1η
4

(
1

n0
||x||2

)2

+ C2η
4L

+ Y (L)
[
z2, (∂µνz)

2
]
+ Y (L)

[
(∂µνz)

2
]
+ Y (L)

[
(∂µz)

2, (∂νz)
2
]
+O(n−1)

for some universal constants C1, C2. Moreover, we also find

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
=
(
η(ℓ+1)

)4
E

[(
1

2nℓ
||z(ℓ)||22

)2
]
+
(
η(ℓ+1)

)2
Y (ℓ)

[
(∂µz)

2, z2
]

+ Y (ℓ)
[
(∂µz)

2, (∂νz)
2
]
+O(n−1).

Specializing to the case where η(ℓ) = η is independent of ℓ, dropping terms on the order of O(n−1), O(ℓ−1), and assuming
that ||x||2 = n0, we find

Y (ℓ+1)
[
(∂µz)

2, (∂νz)
2
]
=

1

4
η4 +

1

2
η2ℓ+ Y (ℓ)

[
(∂µz)

2, (∂νz)
2
]
+O(n−1) =

η2ℓ2

4
+O(ℓ−1) +O(n−1).

Similarly,

Y (ℓ+1)
[
(∂µνz)

2
]
= ℓη4 + Y (ℓ)

[
(∂µνz)

2
]
+O(n−1) = C3ℓ

2η4 +O(n−1).

And also,

Y (ℓ+1)
[
z2, (∂µνz)

2
]
= ℓη4 + Y (ℓ)

[
(∂µνz)

2
]
+O(n−1) = C4ℓ

2η4 +O(n−1).

So all together, we obtain

E
[
||Heff||2HS

]
=

η2L2

4

(
1 +O(n−1) +O(L−1)

)
.

In the setting of Theorem 1 we have

E
[∣∣∣∣∣∣H(L+1)

∣∣∣∣∣∣2
HS

]
= E

[
||Heff||2HS

]
n2
(
1 +O(n−1)

)
,

up to universal constants, which yields the stated estimate.
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