
Under review as submission to TMLR

FlowKac: An Efficient Neural Fokker-Planck solver using
Temporal Normalizing flows and the Feynman Kac-Formula

Anonymous authors
Paper under double-blind review

Abstract

Solving the Fokker-Planck equation for high-dimensional complex dynamical systems re-
mains a pivotal yet challenging task due to the intractability of analytical solutions and
the limitations of traditional numerical methods. In this work, we present FlowKac, a novel
approach that reformulates the Fokker-Planck equation using the Feynman-Kac formula, al-
lowing to query the solution at a given point via the expected values of stochastic paths. A
key innovation of FlowKac lies in its adaptive stochastic sampling scheme which significantly
reduces the computational complexity while maintaining high accuracy. This sampling tech-
nique, coupled with a time-indexed normalizing flow, designed for capturing time-evolving
probability densities, enables robust sampling of collocation points, resulting in a flexible
and mesh-free solver. This formulation mitigates the curse of dimensionality and enhances
computational efficiency and accuracy, which is particularly crucial for applications that in-
herently require dimensions beyond the conventional three. We validate the robustness and
scalability of our method through various experiments on a range of stochastic differential
equations, demonstrating significant improvements over existing techniques.

1 Introduction

The Fokker-Planck equation (FPE) (Risken & Frank, 1996) describes the time evolution of probability den-
sity functions associated with diffusion processes, playing a central role in modeling stochastic dynamical
systems across diverse domains, including physics (Lucia & Gervino, 2015), finance (Sornette, 2001), en-
gineering (Langtangen, 1991), and biology (Degond et al., 2020). The interest of the FPE lies in the fact
that it represents an Eulerian view (i.e. location-based) of the process rather than the usual Lagrangian
view, based on trajectories (Batchelor, 2000). However, except in very specific cases, analytical solutions
to the FPE are out of reach for systems with high-dimensional or complex dynamics, necessitating efficient
numerical methods.

Traditional numerical approaches, such as finite difference, finite element, and path integral methods, face
the curse of dimensionality when applied to high-dimensional problems where the computational cost grows
exponentially (Schuëller, 1997). Since these methods rely on discretizing the solution space using a mesh,
their scalability is inherently limited, motivating the need for alternative, mesh-free approaches. Deep
learning-based methods have emerged as promising alternatives in recent years, offering greater flexibility
and scalability in high-dimensional settings (Raissi et al., 2019; Yin et al., 2023).

In this work, we introduce FlowKac1, a novel generative model that combines the Feynman-Kac formula with
normalizing flows to efficiently solve the Fokker-Planck equation (FPE). The key features and advantages of
our approach are as follows:

• Similar to Beck et al. (2021b); Mandal & Apte (2024), our method reformulates the FPE using
the Feynman-Kac formula which expresses the solution as an expectation over stochastic paths.
This reformulation allows us to define an efficient regression loss function which is computed by

1Code available at https://anonymous.4open.science/r/FlowKac-41CB/.

1

https://anonymous.4open.science/r/FlowKac-41CB/

Under review as submission to TMLR

sampling stochastic trajectories—one of the main computational challenges of these methods. We
significantly improve this process through the stochastic sampling trick, which leverages properties
of stochastic flows and Taylor expansions to reduce the computational burden. Importantly, this
sampling algorithm can be extended to other Feynman-Kac-based approaches.

• By leveraging normalizing flows, a class of flexible deep generative models, our approach is partic-
ularly well-suited for handling probability densities, allowing to access a continuous representation
of the solution. Once trained, FlowKac acts as a powerful sampler and provides density evaluations
without requiring additional SDE discretization and enabling efficient generation of new samples
from the learned probability distribution. This generative capability allows us, analogous to Gabrié
et al. (2022), to dynamically refine the training set by inverting the trained flow. By generating
samples that increasingly align with the true probability density, this adaptive sampling strategy
improves both training efficiency and the accuracy of the estimated density.

• Unlike Mandal & Apte (2024), which relies on stationary densities to infer time-dependent solutions,
our approach remains effective even for stochastic differential equations (SDEs) with degenerate or
non-existent steady-state distributions, broadening its applicability to a wider class of problems.

• Finally, being a neural-based method, our approach can be scaled to higher dimensions.

More broadly, the Feynman-Kac framework extends beyond the Fokker-Planck equation, encompassing a
wide class of parabolic partial differential equations (PDEs), including the heat equation, reaction-diffusion
systems, and other Kolmogorov-type equations. This implies that our approach could be naturally extended
to address a wide range of problems in stochastic dynamical systems, statistical physics, and beyond, where
such PDEs play a central role.

The remainder of this paper is structured as follows: In Section 2, we review the relevant literature on deep
learning-based methods for solving partial differential equations, with a focus on approaches for the Fokker-
Planck equation. Section 3 introduces the problem formulation and provides an overview of traditional
non-neural numerical methods. In Section 4, we present our proposed approach, detailing the reformulation
of the FPE, the construction of the loss function, and the implementation of both the baseline and advanced
versions of our method, which incorporates an efficient stochastic sampling algorithm. Section 5 contains
a series of numerical experiments comparing our method to a state-of-the-art neural approach, followed by
concluding remarks in Section 6.

2 Related work

The present section discusses the relevant literature on deep learning approaches to solving partial differential
equations (PDEs), with a particular focus on methods applicable to the Fokker-Planck equation (FPE), and
puts it in context with the proposed approach.

A broad class of neural methods for PDEs revolves around circumventing the curse of dimensionality and
handling complex boundary conditions efficiently. Among these methods, the Deep Galerkin Method (DGM),
introduced in Sirignano & Spiliopoulos (2018), extends the traditional Galerkin method by using deep neural
networks to approximate solutions to a PDE as a linear combination of simpler functions. Similarly, the
Deep Ritz Method (Yu et al., 2018) employs a variational formulation to approximate solutions for elliptic
PDEs. Another approach is the Deep Splitting Method (Beck et al., 2021a), designed for parabolic PDEs.
This method subdivides the time domain into smaller intervals where the PDE is approximately linear, and
a deep-learning approximation is applied to each subinterval.

Backward Stochastic Differential Equations (BSDEs) have also been explored to solve PDEs (Han et al., 2017;
2018; Raissi, 2024). The method employs coupled forward-backward SDEs, discretizing them to approximate
the solution of the associated PDE. This method is particularly effective in dealing with high-dimensional
PDEs, successfully scaling to PDEs in hundreds of dimensions.

One of the most prominent approaches in recent literature involves Physics-Informed Neural Networks
(PINNs), introduced in Raissi et al. (2019). PINNs solve PDEs by incorporating the governing equation into

2

Under review as submission to TMLR

the loss function thereby minimizing the residual using a least-squares approach. PINNs have been applied
to both time-dependent and steady-state PDEs. More recently, extensions of PINNs that leverage generative
models, such as Normalizing Flows, have been explored (Feng & Zhou, 2022; Tang et al., 2021). Such an
extension uses generative models to adaptively sample collocation points, gradually enriching the training
set and improving convergence while reducing the computational cost.

Reformulating the Fokker-Planck equation using the Feynman-Kac formula has proven to be a powerful
approach. Several works such as Beck et al. (2021b); Sabate Vidales et al. (2021) adopt this strategy by
discretizing the underlying stochastic differential equation (SDE) and solving a minimization problem on the
expected value of the corresponding stochastic process. Another related strategy, described in Mandal &
Apte (2024) exploits the steady-state solution of the FPE and the Feynman-Kac formula to derive a general
time-dependent solution.

A recent paradigm explores solving the Fokker-Planck equation under the transportation of measure frame-
work, which gives rise to a probability flow equation (Boffi & Vanden-Eijnden, 2023). In this approach, the
initial probability density is pushed forward through a velocity field to yield the time-dependent density
solution. This method links to recent advances in generative learning, such as score-based diffusion mod-
els (Song et al., 2021) and flow matching techniques (Lipman et al., 2023), offering a novel perspective on
modeling time-evolving probability densities.

For a broader overview of neural-based approximation for PDEs we refer the reader to the surveys Beck
et al. (2023); Blechschmidt & Ernst (2021); E et al. (2021).

3 Problem statment

3.1 Fokker-Planck equation

We consider a filtered probability space (Ω,F , P) and a time horizon T , and define a diffusion process
X = {Xt}t∈[0,T] by the Itô Stochastic Differential Equation (SDE):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, t ∈ [0, T], (1)

where W = {Wt}t∈[0,T] is the m-dimensional adapted standard Wiener process, µ : Rd × [0, T] → Rd the drift
coefficient and σ : Rd × [0, T] → Rd×m the diffusion matrix. Both functions are time-dependent and assumed
to satisfy global Lipschitz conditions ensuring the existence and uniqueness of solutions to the SDE (Stroock
& Varadhan, 1997). Moreover, these regularity conditions guarantee the existence and smoothness of the
associated probability density function (PDF), which evolves according to the Fokker-Planck equation:

∂p

∂t
= Fp := −∇ · (µp) + 1

2∇ ·
(

∇ ·
(
σσ⊤p

))
, (2)

where ∇· denotes the divergence operator. Specifically, when applied to a matrix, ∇ operates column-wise,
meaning the divergence is computed separately for each column of the matrix.

To explicitly represent Equation 2, let x = [x1, x2, ..., xd]⊤, µ = [µ1, µ2, ..., µd]⊤ and D = 1
2σσ

⊤, where D is
the diffusion matrix, thus the FPE becomes:

∂p

∂t
(x, t) = −

d∑
i=1

∂

∂xi
[µi(x, t)p(x, t)] +

d∑
i,j=1

∂2

∂xi∂xj
[Dij(x, t)p(x, t)] , x ∈ Rd, t ∈ [0, T],

and the initial condition is specified as:

p(x, 0) = ψ(x), x ∈ Rd.

The solution is subject to the normalization and non-negativity constraints:∫
Rd

p(x, t)dx = 1 and p(x, t) ≥ 0, ∀t ∈ [0, T],

3

Under review as submission to TMLR

and the additional boundedness condition:

p(x, t) → 0 as ∥x∥2 → ∞,

ensuring p is a valid probability density.

Over the years, significant work has been done to develop numerical solutions for the Fokker-Planck equation,
spanning classical discretization schemes to modern neural network-based approaches. The following sections
provide a concise overview of these approximation techniques.

3.2 Non-learning-based integration methods

Analytical solutions for the Fokker–Planck equation have been developed for only a limited number of
low-dimensional systems. This limitation has led to a large body of approximation theory and tech-
niques (Schuëller, 1997; Hundsdorfer & Verwer, 2003), each leveraging different perspectives to address
the intractability of the exact solutions. These include:

1. Classical density estimation techniques: These methods approximate solutions through random
sampling, estimating the probability density function empirically using techniques such as histograms
or kernel density estimation (KDE).

2. Path Integral (PI) Approach: The PI method (Naess & Johnsen, 1991) approximates the prob-
ability density function as a Gaussian over an infinitesimal time interval, which is then integrated
to obtain a global solution.

3. Maximum Entropy Methods (MEM): In the MEM framework (Sobezyk & Trebicki, 1990;
Sobczyk & Trebicki, 1992), the solution is approximated through the various moments and con-
strained to maximize the informational Shannon entropy.

4. Grid-Based Numerical Solutions: Grid-based techniques discretize the FPE and solve it through
numerical integration and linear algebra (Pichler et al., 2013). These methods span a spectrum of
formulations:

• Finite Differences (FD): FD leads to an explicit scheme where the values can be calculated
directly, eliminating the need for matrix inversion. Despite its simplicity, explicit finite difference
methods often face stability issues, necessitating implicit formulations for more reliable solutions.

• Alternating Direction Implicit (ADI): ADI is another significant and improved finite dif-
ference scheme. In ADI, finite difference steps in each direction are resolved separately, treating
one dimension implicitly and the others explicitly in each step. This approach results in a sta-
ble finite difference formulation. The primary advantages of ADI include a tridiagonal matrix,
which allows for efficient computation.

• Finite Element Methods (FEM): FEM partitions the domain into smaller subdomains,
allowing flexible handling of complex geometries and boundary conditions.

Each numerical method offers unique advantages in terms of stability, efficiency, and applicability to complex
geometries. However, the main drawback that all these methods suffer from is the curse of dimensionality
arising when handling high dimensional FPE. As these methods rely mostly on a discretized grid, the
computational complexity scales exponentially with the grid dimension, while the grid precision heavily
impacts the approximation accuracy.

3.3 Neural network solutions: The Physics-informed approach

A notable paradigm that addresses the dimensionality constraint is machine learning, which offers mesh-
free solutions. A particularly promising method for solving differential equations is the Physics-Informed
Neural Network (PINN) approach. This technique integrates knowledge from physical laws defined by partial
differential equations and boundary conditions. In the PINN framework, a neural network, parameterized by

4

Under review as submission to TMLR

a set of weights θ and computing pθ, is employed to approximate p∗, the true solution to the Fokker-Planck
equation (FPE). The neural network achieves this approximation by minimizing a combination of two loss
functions: one related to the dynamics of the Fokker-Planck operator (LF), where the derivatives of the
neural-based probability density pθ are efficiently computed through automatic differentiation, and another
enforcing the initial condition (Li). The training set consists of NF spatial points and MF temporal points,
sampled uniformly from a given domain. The total loss function is then defined as:

L(θ) = Li(θ) + LF (θ) (3)

where

LF (θ) = 1
NF ×MF

NF∑
k=1

MF∑
j=1

(
∂pθ

∂t
(xk, tj) − Fpθ(xk, tj)

)2

and

Li(θ) = 1
NF

NF∑
k=1

(
pθ(xk, 0) − ψ(xk)

)2

PINNs have demonstrated remarkable efficacy in modeling and approximating solutions to a wide range of
differential equations, as comprehensively reviewed in Cuomo et al. (2022). However, despite their widespread
success, recent work by Mandal & Apte (2024) reveals a fundamental limitation of the PINN framework when
applied to solving the Fokker-Planck equation and deriving a time-dependent solution. Specifically, if we
assume that Equation 2 has a strong, unique solution p∗, one can show that there exists a sequence of
functions (fn)n∈N that minimize the loss 3, however the sequence fails to converge towards the true solution
p∗ (Mandal & Apte, 2024, Proposition 4.1):

lim
n→∞

 1
NF ×MF

NF∑
k=1

MF∑
j=1

(
∂fn

∂t

(
xk, tj

)
− Ffn

(
xk, tj

))2
+ 1
NF

NF∑
k=1

(
fn

(
xk, 0

)
− ψ

(
xk
))2

 = 0 (4)

yet

lim
n→∞

fn ̸= p∗.

In other words, despite successfully minimizing the loss, the sequence (fn)n∈N does not guarantee convergence
to the accurate time-dependent solution of the Fokker-Planck equation, emphasizing a significant limitation
of the PINN approach. This theoretical insight serves as a basis for the development of the FlowKac which
aims to address these limitations and provide a more robust framework for solving time-dependent Fokker-
Planck equations.

4 FlowKac

In this section, we introduce FlowKac, our approach for solving the Fokker-Planck equation (FPE) by
leveraging two key components: the Feynman-Kac formula and normalizing flows. Each of these elements
addresses critical challenges forming a powerful framework for efficient and accurate solutions.
The Feynman-Kac formula establishes a fundamental connection between stochastic processes and partial
differential equations (PDEs), enabling us to express the solutions of the FPE as expectations over stochastic
paths.
Complementing this, we employ the flexible architecture of a temporal normalizing flow (Both & Kusters,
2019) that is highly effective for modeling complex probability distributions and offers the advantage of
efficient sampling. This capability allows us to compute pointwise values of the FPE solution at arbitrary
spatial and temporal points, eliminating the need for fixed computational grids. Consequently, FlowKac
enables efficient training and accurate evaluation of the ground-truth probability density at new points of
interest. By combining the Feynman-Kac formula to derive the unique solution with the expressive power
of temporal normalizing flows to approximate it, FlowKac provides a robust, time-dependent, and mesh-free
framework for solving the FPE. Furthermore, FlowKac addresses the limitations of numerical approximation
methods (e.g., FEM, ADI) and neural network-based approaches like PINNs.

5

Under review as submission to TMLR

4.1 Temporal Normalizing flow

The temporal normalizing flow (Both & Kusters, 2019) is a flow-based model designed to approximate and
model intricate time-dependent distributions. Let X ∈ Rd be a random variable and pX(x) its corresponding
probability density function that we aim to model. A normalizing flow (NF) (Papamakarios et al., 2021;
Kobyzev et al., 2021; Grathwohl et al., 2019) is constructed via a simple base distribution pZ(z) and a
differentiable bijective mapping f : X → Z such that X = f−1(Z). This transformation allows for exact
density estimation through the change of variable formula:

log pX(x) = log pZ

(
f(x)

)
+ log | det ∇xf(x)| (5)

To address the dynamics of time-dependent distributions, the temporal normalizing flow (TNF) extends
this framework to the temporal domain by introducing a time-augmented variable X∗ = (X, t) and its
corresponding latent representation Z∗ = (Z, t′). The TNF then models the evolution of X∗ through a
time-dependent transformation:

log pX∗(x∗) = log pZ∗
(
f(x∗)

)
+ log | det ∇x∗f | (6)

where ∇x∗f denotes the Jacobian matrix of the time-augmented mapping f(., t). A critical aspect to highlight
is the dependence between the latent and observable variables, expressed by the relationships z = z(x, t) and
t′ = t′(x, t). Moreover, the TNF enforces the invariance of the time variable, t′ = t. This constraint arises
because the bijective transformation that maps the simple latent density into a more complex one is applied
exclusively to the spatial variable x, ensuring that the resulting function retains the essential normalization
property of a probability density. Time merely serves as an index for the transformation. As a result, the
Jacobian matrix simplifies to:

∇x∗f∗ =
∣∣∣∣ ∂z

∂x
∂z
∂t

∂t∗

∂x
∂t∗

∂t

∣∣∣∣ =
∣∣∣∣ ∂z

∂x
∂z
∂t

0 1

∣∣∣∣ = ∇xf

The TNF f is constructed through a sequential chaining of multiple transformations:

z∗ = f(x, t) = T[L] ◦ T[L−1] ◦ ... ◦ T[1](x, t) and x∗ = f−1(z, t) = T−1
[1] ◦ T−1

[2] ◦ ... ◦ T−1
[L] (z, t).

Each of these transformations adheres to the KRnet architecture (Tang et al., 2021) which is detailed in
Appendix A. The architecture comprises two fundamental layers: an Actnorm layer that scales the input and
adds a bias, followed by an affine coupling layer adapted from real NVP (Dinh et al., 2017) and responsible
for mixing the spatial and temporal variables. KRnet adds a nonlinear transformation at the end of this
sequence, helping to capture more complex and challenging dynamics, which constitutes an improvement
over RealNVP. KRnet also offers key advantages over ODE-based normalizing flows, such as Continuous Nor-
malizing Flows (CNFs) (Chen et al., 2018). In CNFs, transformations are governed by neural ODEs, where
the mixing of spatial and temporal variables occurs implicitly during ODE integration. In contrast, KRnet
explicitly controls the mixing of spatial and temporal variables through its discrete, structured transforma-
tions, allowing for faster training while maintaining flexibility in modeling complex probability distributions.
The Jacobian matrix of this sequential flow is derived via the chain rule:

|det ∇xf | =
L∏

i=1

∣∣det ∇x[i−1]T[i]
∣∣

here x[i] is the output of each transformation, with x[0] = x and x[L] = z.

4.2 Training algorithm

Our purpose is to train the TNF to solve the time-dependent Fokker-Planck equation accurately. As discussed
in Section 3.3, the Physics-Informed approach can suffer from convergence issues, thus simply minimizing
the PINN loss given by Equation 3 is insufficient to guarantee an accurate solution. Instead, following work
in Beck et al. (2021b) we leverage the Feynman-Kac formula (Oksendal, 2013, Theorem 8.2.1) to guide the
training process:

6

Under review as submission to TMLR

Theorem 4.1 (The Feynman-Kac formula) Let X̃t be an Ito process with drift µ̃ and diffusion σ̃, and
q ∈ C(Rd). Let v ∈ C2,1(Rd × R+) satisfy for all (x, t) ∈ Rd × [0, T]:

− ∂v

∂t
+

d∑
i=1

µ̃i
∂v

∂xi
+ 1

2

d∑
i,j=1

(
σ̃σ̃T

)
ij

∂2v

∂xixj
− qv = 0

with initial condition v(x, 0) = f(x). Then, the unique solution can be expressed as:

v(x, t) = E
[
exp

(
−
∫ t

0
q(X̃s, s)ds

)
f
(
X̃t

) ∣∣∣X̃0 = x

]
.

Such a formula provides a powerful connection between parabolic partial differential equations (such as
the FPE) and expectations of stochastic processes. This approach allows us to define a more effective loss
criterion for the training process.

We first reformulate the Fokker-Planck Equation 2 in a more tractable form (see Appendix B for more
details) to align it with this framework:

−∂p

∂t
+

d∑
i=1

−µi + 2
d∑

j=1

∂Dij

∂xj

 ∂p

∂xi
+

d∑
i,j=1

Dij
∂2p

∂xi∂xj
−
(
∇ · µ− ∇ · (∇ ·D)

)
p = 0 (7)

We denote q = ∇ · µ− ∇ · (∇ ·D), then we apply the Feynman-Kac formula to the transformed Equation 7,
which allows us to express the solution in terms of an expectation:

pFK(x, t) = E
[
exp

(
−
∫ t

0
q
(
X̃s, s

)
ds

)
ψ
(
X̃t

)
| X̃0 = x

]
(8)

here (X̃t)t≥0, referred to as the FlowKac process, represents a stochastic process characterized by the drift
and diffusion terms: 

µ̃ =

−µi + 2
d∑

j=1

∂Dij

∂xj

⊤

i

σ̃ = σ.

(9)

Finally, To optimize the parameters θ of the TNF, we propose the following loss function:

L(θ) =
∫ T

0
∥pθ(., t) − pFK(., t)∥2

2dt =
∫ T

0

∫
Rd

(
pθ(x, t) − pFK(x, t)

)2
dx dt (10)

This regression loss function measures the discrepancy between the TNF’s predicted density pθ and the true
solution derived via the Feynman-Kac formula pFK, with the L2 norm inducing a strong form of convergence
which also implies the convergence in distribution of the underlying stochastic process. Thus, the TNF is
guided toward the correct solution by minimizing this loss.

However, directly discretizing the integral given by Equation 10 is computationally prohibitive for high-
dimensional systems, as it requires covering a d-dimensional mesh, causing the computational complexity to
scale exponentially.
To alleviate this constraint, we use a sampling-based approximation that bypasses the mesh-based evaluation.
Specifically, we uniformly sample nx points from a spatial domain [a, b]d sufficiently large to encompass the
support of the distribution for all t, and nt temporal points from [0, T]. This reduces the computational cost
by replacing the uniform discretization of the integral with a discrete sum over sampled points:

L̂(θ) = 1
nxnt

nx∑
k=1

nt∑
j=1

(
pθ(xk, tj) − pFK(xk, tj)

)2 (11)

7

Under review as submission to TMLR

We further enhance this approach by leveraging the generative properties of normalizing flows. Instead of
relying solely on uniform sampling, we use an adaptive sampling mechanism that incorporates learned density
information Gabrié et al. (2022). Specifically, after an initial training phase, we refine the training set by
inverting the normalizing flow, thereby generating nx new spatial samples that better reflect the underlying
probability density. This adaptivity concentrates computational effort on regions of higher probability mass,
improving both training efficiency and density estimation accuracy.

A critical advantage of this approach lies in the properties of the Feynman-Kac formula, which enables the
computation of pointwise solutions to the Fokker-Planck equation without relying on adjacent mesh points.
By eliminating mesh dependencies, this sampling strategy significantly mitigates the curse of dimensionality
while maintaining high fidelity in the approximation of the loss function.

The proposed training procedure is detailed in Algorithm 1: we sample multiple stochastic paths starting
from each training point, compute the Feynman-Kac-based density estimate, and evaluate the corresponding
loss. The process is repeated across all training samples.

Algorithm 1: FlowKac (naive)
Input : Maximum epochs Ne, number of sample paths nW , number of spatial points nx, number of

temporal points nt

1 for l = 1, . . . , Ne do
2 Sample (xk, tj)1≤k≤nx, 1≤j≤nt ;
3 Initialize loss Le = 0;
4 for k = 1, . . . , nx do
5 Sample nW paths of X̃t at time points (tj)1≤j≤nt starting from xk;
6 Compute pFK(xk, tj) using empirical mean;
7 Compute TNF’s output pθ(xk, tj);
8 Accumulate loss: Le = Le +

∑
j

(
pθ(xk, tj) − pFK(xk, tj)

)2;
9 end for

10 Update model parameters θ using the Adam optimizer;
11 end for

Output: The predicted solution pθ(x, t)

The major computational challenge in the training process lies in the repeated application of the Feynman-
Kac formula for each training sample. Since sampling the stochastic process (X̃t) is conditioned on the
initial point xk, a new set of stochastic paths must be generated for every individual data point, increasing
computational complexity. This challenge is inherent to all methods based on Feynman-Kac reformulation
and path sampling, where the necessity of repeatedly simulating stochastic trajectories leads to an increase
in computational cost, particularly in high-dimensional settings. As a result, this bottleneck highlights the
critical need for more computationally efficient approaches.

In the following section, we introduce an enhanced version of the algorithm that significantly accelerates the
training process by addressing this inefficiency.

4.3 Stochastic sampling trick

In this section, we introduce a novel and efficient algorithm for sampling the FlowKac process X̃ by leveraging
the properties of stochastic flows (Kunita & Kunita, 1990). The SDE governing (X̃t)t∈[0,T] is given by:

dX̃t = µ̃(X̃t, t)dt+ σ(X̃t, t)dWt, (12)

We denote by Φs,t(x) = X̃s,x
t the solution to the SDE 12 starting from x at time s. Φs,t defines a stochastic

flow.
An important property of stochastic flows is stated by the following theorem (Protter, 2005, Theorem 40):

8

Under review as submission to TMLR

Theorem 4.2 Let drift µ̃ and diffusion σ coefficients have locally Lipschitz derivatives up to order k. Then,
for any fixed realization ω ∈ Ω, the mapping Φs,t(., ω) : Rd → Rd is k times continuously differentiable.

This theorem establishes that the solution to Equation 12 is smooth with respect to the initial condition,
thus allowing us to employ high-order Taylor expansions (Cartan, 1967, Theorem 5.6.1 and 5.6.3) to the
stochastic flow and expressing solutions to the SDE starting from arbitrary initial points x = x0 + h:

Φ0,t(x) = Φ0,t(x0) + Φ
′

0,t(x0).(h) + 1
2Φ

′′

0,t(x0).(h, h) + ...+ 1
(k)!Φ

(k)
0,t (x0).(h)k + o

(
∥h∥k

)
. (13)

here, Φ′

0,t(x0).(h) = JΦ,t(x0)h represents the linear term involving the Jacobian matrix JΦ,t, while
Φ′′

0,t(x0).(h, h) = h⊤HΦ,t(x0)h denotes the quadratic term, involving the Hessian tensor HΦ,t. Higher-
order terms provide additional precision for approximating the stochastic flow but are typically truncated
for computational efficiency.

For linear or sufficiently simple dynamics, the stochastic sampling trick provides exact solutions, regardless
of the choice of x and x0, as illustrated in the 1-dimensional geometric Brownian motion (GBM) example in
Section 5.1. In these cases, all higher-order terms in the Taylor expansion vanish since they are independent
of the initial condition x0, resulting in an exact reconstruction of the solution. However, for more complex or
nonlinear dynamics, maintaining accuracy requires a dynamic selection of x0. In such cases, careful tuning
of the batch size and choosing x0 sufficiently close to the training points ensure that the Taylor expansion
remains a valid local approximation, preventing significant errors in the sampling process.

This expansion forms the cornerstone of our novel sampling algorithm as we can efficiently generate samples of
X̃t starting from perturbed initial conditions while maintaining high accuracy. This approach significantly
reduces the computational burden of sampling the FlowKac SDE for each data point as summarized in
Algorithm 2.

Algorithm 2: FlowKac (stochastic sampling trick)
Input : Maximum epochs Ne, number of sample paths nW , number of spatial points nx, number of

temporal points nt, starting point for Taylor expansion x0

1 for l = 1, . . . , Ne do
2 Sample Ctrain = (xk, tj)1≤k≤nx, 1≤j≤nt ;
3 Sample nW Brownian motion paths W l

t ;
4 Compute Jacobian JΦ,t(x0) and Hessian HΦ,t(x0) using automatic differentiation;
5 Divide Ctrain into m batches {Cb}m

b=1;
6 Initialize loss Le = 0;
7 for b = 1, . . . ,m do
8 Compute Taylor expansion for batch Cb starting from x0 (Equation 13);
9 Compute pFK;

10 Compute batch loss Lb;
11 Accumulate loss: Le = Le + Lb;
12 end for
13 Update model parameters θ using the Adam optimizer;
14 end for

Output: The predicted solution pθ(x, t)

5 Numerical results

To assess the performance of our proposed model, we conducted a series of experiments across a range of
stochastic differential equations. We begin with a simple 1-dimensional example to validate the foundational
aspects of our approach. Following this, we apply our method to more complex processes then to nonlinear
SDEs, demonstrating its robustness in capturing intricate dynamics. Finally, we extended the framework
to tackle higher-dimensional stochastic processes, showcasing our model’s scalability and effectiveness in

9

Under review as submission to TMLR

handling increasingly complex systems. Our model is compared to the PINN-TNF approach of Feng & Zhou
(2022). The comparison is based on both qualitative and quantitative assessments. Qualitatively, we give,
for each SDE, probability density and marginal distribution plots to visualize the fidelity of the learned
solutions. Quantitatively, following Feng & Zhou (2022) and Tang et al. (2021), we compute metrics based
on the relative L2 distance and the Kullback-Leibler (KL) divergence between the ground truth probability
density p∗ and the model’s predicted density pθ. All quantitative results are then summarized in a dedicated
discussion subsection 5.6:

L2(t) = ∥p∗(., t) − pθ(., t)∥2
2

∥p∗(., t)∥2
2

, DKL
(
p∗(., t)||pθ(., t)

)
=
∫
p∗(x, t) log p

∗(x, t)
pθ(x, t)dx.

To ensure accurate computation, both metrics are evaluated on a spatial grid, leveraging neval evaluation
points uniformly spaced across the support of p∗(., t) ensuring thorough coverage of the probability density
for SDEs up to four dimensions. For higher-dimensional examples, where a uniform grid becomes computa-
tionally infeasible, we instead draw a fixed number of sample points directly from the ground-truth density
to compute the metrics efficiently:

L̃2(t) =
∑neval

k=1
(
p∗(xk, t) − pθ(xk, t)

)2∑neval

k=1 p∗(xk, t)2 , D̃KL(t) = 1
neval

neval∑
k=1

p∗(xk, t) log p
∗(xk, t)
pθ(xk, t) .

For all numerical experiments, we employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
η = 0.001 and default momentum parameters to optimize the normalizing flow parameters. The stochastic
differential equations are numerically sampled using the torchsde framework of Kidger et al. (2021); Li
et al. (2020), which implements adaptive-step solvers based on the Euler-Maruyama and higher-order strong
schemes. Finally, for the stochastic sampling trick, the Jacobian and Hessian terms are computed efficiently
using the automatic differentiation capabilities of pytorch (see details in Appendix E).

5.1 Univariate Geometric Brownian Motion

We first apply our framework to the univariate Geometric Brownian Motion (GBM). This process serves
as an ideal test case due to the existence of a known analytical closed-form solution, providing a rigorous
benchmark for our methodology. The following SDE characterizes the GBM dynamics:

dXt = µXtdt+ σXtdWt,

where µ represents the constant drift coefficient, σ denotes the constant volatility, and Wt is a standard
one-dimensional Wiener process. The corresponding FPE is described as follows:

∂p

∂t
= (−µ+ σ2)p+ (−µx+ 2σ2x)∂p

∂x
+ 1

2σ
2x2 ∂

2p

∂x2 . (14)

We choose the following initial condition:

ψ(x) = 1
x

√
2πσ2

exp
(

− log(x)2

2σ2

)
.

The exact solution for the process is given by:

Xt = X0 exp
((

µ− 1
2σ

2
)
t+ σWt

)
,

with the associated probability density function:

p∗(x, t) = 1
x
√

2π(t+ 1)σ2
exp

(
−
(
log(x) −

(
µ− 1

2σ
2) t)2

2(t+ 1)σ2

)
(15)

We solve the FPE on the interval (0, 5] using a training set of size |Ctrain| = 4.104 generated through a
uniform distribution, and nw = 500 sample paths. The model is trained for Ne = 200 epochs, and for our

10

Under review as submission to TMLR

normalizing flow, we use a sequence of depth L = 8. Notably, we employ our stochastic sampling trick by
computing a first-order Taylor expansion to efficiently sample the resulting FlowKac process (Equation 9):

dX̃t = (−µ+ 2σ2)X̃tdt+ σX̃tdWt, (16)

To compute Φ0,t(x, ω) the stochastic flow solution to Equation 16 originating from x at t = 0, we first derive
the Jacobian with respect to the initial condition (see details in Appendix E):

Jϕ,t(x) = exp
((

−µ+ 3σ2

2

)
t+ σWt

)
In this example, a first-order Taylor expansion turns out to be sufficient to completely capture the dynamics,
as all higher-order terms vanish due to their independence from the initial state, and yields:

X̃x
t = Φ0,t(x) = Φ0,t(0) + x.Jϕ,t(x) (17)

= x exp
((

−µ+ 3σ2

2

)
t+ σWt

)
.

The stochastic sampling trick represents a significant speed-up in our computational approach, allowing us to
compute sample paths of Equation 16 with perfect accuracy while significantly reducing the computational
cost. Table 1 presents a comprehensive performance comparison between the standard FlowKac implementa-
tion and the optimized version incorporating the stochastic sampling technique. The results reveal consistent
and substantial speedups across different training set sizes and sampling configurations.

In practical implementations, our experiments were conducted using 300 to 500 stochastic paths per training
point, which proved sufficient for producing accurate density estimations. Notably, as the dimensionality
of the SDE increases, the required training size will also grow accordingly to maintain accuracy. In this
context, the benefits of the stochastic sampling trick become even more pronounced, mitigating the otherwise
prohibitive computational burden associated with high-dimensional sampling.

Configuration Run Time (seconds) Speedup
Training Size Wt Samples FlowKac FlowKac Factor

(|Ctrain|) (nW) (naive) (Sampling trick)

2 × 104 500 31.1 3.9 8×
2 × 104 1,000 57.7 5.2 11×
6 × 104 500 93.1 6.6 14×
6 × 104 1000 171.5 10.5 16×

Table 1: Performance comparison between naive FlowKac and FlowKac with stochastic sampling trick, for a single
training epoch using a fixed batch size of 2000. The experiments were conducted on an NVIDIA T4 GPU with 16
GB memory. The speedup factor demonstrates increasing efficiency gains with larger training sets, highlighting the
technique’s scalability benefits.

The results, displayed in Figure 2, show the comparison between the predicted density and the exact solution
from Equation 15. This comparison demonstrates strong alignments between the predicted density and the
exact solution, validating the accuracy of our framework for this univariate case.

5.2 Multivariate Ornstein-Uhlenbeck

We next explore the dynamics of a two-dimensional Ornstein-Uhlenbeck (OU) process governed by The
following SDE:

dXt = AXtdt+ ΣdWt (18)

=
(

0.1 1
−1 −0.1

)
Xtdt+

(
0.6 0
0 0

)
dWt. (19)

11

Under review as submission to TMLR

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Exact p
FlowKac p

(t=0)

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Exact p
FlowKac p

(t=0.5)

0 1 2 3 4 5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Exact p
FlowKac p

(t=1)

Figure 2: Comparison between FlowKac density pθ and the true density of the univariate GBM process, at t = 0,
t = 0.5 and t = 1.

and the initial condition is given as:

ψ = N
((

1
1

)
,

1
9I2

)
(20)

The unique strong solution to Equation 18 can be expressed as follows (Gobet & She, 2016, Proposition 1):

Xt = eAt

[
X0 +

∫ t

0
e−AsΣdWs

]
(21)

its mean mt and covariance matrix Vt are given by:

mt := E[Xt] = eAtE[X0] (22)

Vt := E[XtX
⊤
t] = eAt

(
E[X0X

⊤
0] +

∫ t

0
e−AsΣΣ⊤ e−A⊤s ds

)
eA⊤t (23)

Therefore, the process (Xt) follows a multivariate normal distribution, and the exact solution of the corre-
sponding FPE is:

p∗(., t) = N (mt, Vt).

We solve the FPE on the interval [−5, 5]2 using a training set of size |Ctrain| = 4.104 generated through the
uniform distribution. The model is trained for Ne = 250 epochs. For the normalizing flow, we use a sequence
of depth L = 8.

The results presented in Figure 3 show the comparison of the predicted 2-dimensional density at different
time points (t =0, 1, 2, and 3) for the FlowKac model, the PINN model and the exact solution derived
from Equation 21. The FlowKac model demonstrates a strong capability to accurately replicate, across
time, the behavior of the process. In contrast, the PINN model shows a significant deviation from the true
density, particularly at later time points.

Quantitative results, as summarized in Table 2 and further emphasized in Table 3 highlight a significant
performance gap between the two approaches. The PINN model demonstrates a progressive deterioration in
accuracy as proven by the increasing error metrics over time (L2 error increasing from 5.7 × 10−3 to 1.11)
reflecting a divergent behavior. In contrast, FlowKac maintains stable and lower error values throughout
the simulation.

This reinforces the robustness and precision of our framework in modeling complex stochastic processes.

12

Under review as submission to TMLR

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Exact p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

FlowKac p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

PINN p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(t=0)

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Exact p

0.0

0.1

0.2

0.2

0.3

0.4

0.5

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4
x 2

FlowKac p

0.0

0.1

0.2

0.2

0.3

0.4

0.5

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

PINN p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(t=1)

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Exact p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

FlowKac p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4
x 2

PINN p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

0.3

(t=2)

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Exact p

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

FlowKac p

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.2

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

PINN p

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.2

(t=3)

Figure 3: Comparison of density distributions for the 2D Ornstein-Uhlenbeck process at t = 0, t = 1, t = 2, and
t = 3. The exact solution is depicted in the top row, FlowKac predictions in the middle row, and PINN predictions
in the bottom row.

5.3 Multivariate Geometric Brownian Motion

The third process is a two-dimensional extension of the Geometric Brownian motion (Barrera et al., 2022),
and is described by the following SDE:

dXt =
(
A+ 1

2B
2
)
Xtdt+BXtdWt (24)

where A,B ∈ R2×2 such that the eigenvalues of (A+ 1
2B

2) have a negative real part, and Wt is a univariate
Brownian motion. Under these conditions, Equation 24 admits a closed-form solution:

Xt = exp (tA+BWt)X0 (25)

here A =
(
a1 0
0 a2

)
=
(

−1 0
0 −2

)
, B =

(
b1 0
0 b2

)
=
(

0.5 0
0 1

)
and the initial state X0 is distributed

according to the multivariate log-normal distribution:

ψ = Log-N
(
µ0 =

(
0.5
0.7

)
,Σ0 = 1

2I2

)
The exact solution in this instance can be expressed in a closed-form formula (details in Appendix D):

p∗(., t) = Log-N
(
µt =

(
0.5 + a1t
0.7 + a2t

)
,Σt =

(
0.5 + (b1)2t b1b2t

b1b2t 0.5 + (b2)2t

))
(26)

13

Under review as submission to TMLR

this density converge to a stationary Dirac distribution centered at 0 as t → ∞.

To solve the associated FPE on the interval (0, 6]2, we employ a training set of size |Ctrain| = 6.104 generated
through the uniform distribution. The model is trained over Ne = 300 epochs, using a normalizing flow of
depth L = 12.

Results depicting the two-dimensional densities are displayed in Figure 4. The comparison shows a strong
alignment between the true solution of the Fokker-Planck equation and the prediction generated by FlowKac.
As the density evolves towards the stationary state consisting of a Dirac distribution centered at 0, the
support of the distribution becomes progressively concentrated. Such a configuration presents significant
challenges for mesh-based approximation methods, which struggle to capture such a sharply localized distri-
bution. Additionally, alternative Feynman-Kac reformulations relying on the steady-state solution would be
ineffective for this SDE due to the singular behavior of the Dirac distribution.

Quantitative results in Table 2 reinforce the qualitative observations. Specifically, FlowKac demonstrates
lower L2 errors and DKL values when compared to the PINN approach, further validating our model.

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

Exact p

0.0

0.0

0.1

0.1

0.1

0.1

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

FlowKac p

0.0

0.0

0.1

0.1

0.1

0.1

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

PINN p

0.0

0.0

0.1

0.1

0.1

0.1

(t=0)

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

Exact p

0.5 1.0 1.5

0.5

1.0

1.5

0.0

0.1

0.2

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

FlowKac p

0.5 1.0 1.5

0.5

1.0

1.5

0.0

0.1

0.2

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

PINN p

0.5 1.0 1.5

0.5

1.0

1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(t=0.5)

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

Exact p

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

4.8

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

FlowKac p

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6
x1

1

2

3

4

5

6

x 2

PINN p

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

(t=1)

Figure 4: Comparison of 2D density distributions for the Multivariate GBM at t = 0, t = 0.5, and t = 1. The exact
solution is depicted in the top row, FlowKac predictions in the middle row, and PINN predictions in the bottom row.

14

Under review as submission to TMLR

5.4 Duffing oscillator

To further assess the ability of our model to capture complex chaotic nonlinear dynamics, we solve the FPE
for the 2-dimensional Duffing oscillator (Pichler et al., 2013) described by:(

dX1t

dX2t

)
=
(

X2t

−0.4ωX2t + ω2X1t − 0.1ω2X3
1t

)
dt+

(
0 0
0

√
0.8

)
dWt. (27)

with initial condition ψ = N
((

0
8

)
, 1

2I2

)
.

Since no closed-form solution exists for this system, the ground truth is approximated numerically by solving
the FPE using the ADI scheme, following the approach in Feng & Zhou (2022). To ensure robustness and
accuracy, the computation is performed on a finely discretized mesh over the domain [−10, 10]2 (implemen-
tation details provided in Appendix C). This high-resolution numerical solution serves as a reliable reference,
enabling rigorous evaluation of FlowKac model’s output.

For FlowKac, we train the model to solve the FPE associated with Equation 27, for ω = 1, on the same
interval [−10, 10]2. The training dataset consists of |Ctrain| = 3 × 104 sample drawn uniformly across the
domain. The model is trained over Ne = 300 epochs, using a normalizing flow architecture of depth L = 10
and by employing the nonlinear layer with 60 bins (details in Appendix A). Notably, for this example,
we simulate the FlowKac SDE directly rather than utilizing the stochastic sampling trick. This decision
stems from the need for high-order derivatives (higher than second-order) in the Taylor expansion for the
sampling trick to work. These high-order derivatives are computationally intensive to estimate using sampling
approximations.

Figure 5 compares the solutions obtained with FlowKac, PINNs, and the ground truth computed using the
ADI scheme. We again observe a strong alignment between the predicted densities by FlowKac and the exact
solutions. Additionally, the quantitative results in Table 2 further highlight FlowKac’s superior accuracy
over the PINN approach, as demonstrated by consistently lower L2 and DKL values across time.

5.5 Higher dimensional examples

Finally, to assess the scalability of our approach, we consider a relatively higher-dimensional Ornstein-
Uhlenbeck process:

dXt = AXtdt+ ΣdWt (28)

where A = aId, Σ = σId and Wt is a d-dimensional Brownian motion. The model’s structure allows for
closed-form solutions and exact marginal distributions in all dimensions, making it particularly well-suited
for high-dimensional analysis. The associated FPE is given by:

∂p

∂t
= −a

d∑
i=1

(xi
∂p

∂xi
+ p) + 1

2σ
2

d∑
i,j=1

∂2p

∂xi∂xj
. (29)

For the initial condition, we assume a multivariate normal distribution:

ψ = N

m0 =

1
...
1

 , V0 = 1
4Id


The exact solution is given by:

p(., t) = N
(
mt = eatm0, Vt = e2atV0 + σ2

2a (e2at − 1)Id

)
(30)

Figure 6 presents a comparative analysis between FlowKac and PINN models for the 4-dimensional setting,
demonstrating the superior performance of our model, which consistently achieves lower DKL and L2 errors
across various time values.

15

Under review as submission to TMLR

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Exact p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

0.3

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

FlowKac p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

0.3

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

PINN p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

0.3

(t=0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Exact p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
x 2

FlowKac p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

0.3

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

PINN p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

(t=0.5)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Exact p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

FlowKac p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

PINN p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

(t=0.75)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

Exact p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

FlowKac p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 2

PINN p

0.0

0.0

0.1

0.1

0.2

0.2

0.2

(t=1)

Figure 5: Comparison of 2D density distributions for the Duffing non-linear oscillator at t = 0, t = 0.5, t = 0.75, and
t = 1. The exact solution, given by ADI, is depicted in the top row, FlowKac predictions in the middle row, and
PINN predictions in the bottom row.

As dimensionality increases, computing the PINN loss becomes increasingly tedious. Consequently, we report
performance metrics exclusively for FlowKac up to d = 12, while noting that our model runs out-of-memory
on an A100 GPU with 80 GB of memory at d ≈ 100. To further illustrate the accuracy of FlowKac in higher
dimensions, Figure 7 compares the learned 2D marginal distribution - the marginal dimensions are chosen
randomly - with the ground truth at various time steps for the 8-dimensional setting of the OU process. The
learned marginal distribution is obtained by sampling points from the temporal normalizing flow, and the
results indicate strong agreement with the exact distribution, reinforcing the scalability of our approach and
its ability to handle high-dimensional stochastic processes efficiently. Additional evaluation metrics across
various dimensions are provided in Appendix F.

5.6 Discussion

This section provides a quantitative evaluation of FlowKac’s performance compared to the PINN framework,
using KL-divergence (DKL) and relative L2 errors as metrics. While Table 2 offers an overview across different
SDEs and time points in t ∈ [0, 1], Table 3 specifically focuses on the 2D Ornstein-Uhlenbeck process over
an extended time horizon to assess long-term stability. Our analysis reveals several key findings:

• For low-dimensional processes (e.g., 1D GBM), both approaches achieve strong performance, with
PINN showing marginally better accuracy (DKL = 1.30×10−3 vs 2.60×10−3). However, the practical
significance of this difference is minimal given that the error levels are well within acceptable bounds.

16

Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

KL
 d

iv
er

ge
nc

e

FlowKac (d=4)
PINN (d=4)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
el

at
iv

e
L2

 e
rro

r

FlowKac (d=4)
PINN (d=4)

Figure 6: Comparison of DKL and relative L2 errors between FlowKac and PINN models for a 4-dimensional Ornstein-
Uhlenbeck at various time values.

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

FlowKac

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

Exact

(t=0)

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

FlowKac

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

Exact

(t=0.5)

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

FlowKac

1 0 1 2 3 4 5 6
x1

1

0

1

2

3

4

5

6

x 2

Exact

(t=1)

Figure 7: Comparison of 2D marginal distributions between FlowKac and the ground truth at t = 0, t = 0.5 and
t = 1.

• In higher-dimensional settings (2D GBM and OU), FlowKac maintains consistent convergence prop-
erties and stable error metrics, whereas PINNs exhibit growing instability over time, particularly in
the 2D OU process, where errors increase exponentially (from DKL(0) = 10−4 to DKL(3) = 1.68).

• FlowKac consistently preserves error values within the 10−2 to 10−3 range across all time points,
demonstrating superior stability compared to PINNs.

The PINN’s observed behavior aligns with the divergence phenomenon as presented by Mandal & Apte
(2024). This limitation manifests even when the training loss given by Equation 3 appears to decrease
significantly. In contrast, FlowKac’s consistent performance across all test cases demonstrates its robustness
as a general-purpose solver for stochastic processes, outperforming PINNs in challenging scenarios.

17

Under review as submission to TMLR

SDE Model DKL(t) L2(t)
t = 0.0 t = 0.25 t = 0.5 t = 0.75 t = 1.0 t = 0.0 t = 0.25 t = 0.5 t = 0.75 t = 1.0

GBM 1d FlowKac 2.60e-3 1.90e-3 1.80e-3 2.00e-3 2.60e-3 6.28e-2 3.56e-2 3.82e-2 4.61e-2 5.93e-2
PINN 3.00e-4 9.00e-4 1.50e-3 1.60e-3 1.30e-3 5.20e-3 1.94e-2 2.53e-2 3.08e-2 3.44e-2

Ornstein-Uhlenbeck 2d FlowKac 1.60e-2 1.36e-2 1.22e-2 1.13e-2 8.90e-3 6.07e-2 7.79e-2 5.73e-2 4.88e-2 4.70e-2
PINN 1.00e-4 1.65e-2 3.25e-2 4.37e-2 4.94e-2 5.70e-3 1.13e-1 1.58e-1 1.89e-1 2.10e-1

GBM 2d FlowKac 1.98e-2 1.30e-2 1.92e-2 3.24e-2 5.89e-2 1.24e-1 9.26e-2 9.67e-2 1.08e-1 1.38e-1
PINN 5.40e-3 1.74e-2 4.88e-2 9.60e-2 1.65e-1 4.18e-2 8.25e-2 1.45e-1 2.05e-1 2.59e-1

Duffing Oscillator FlowKac 1.15e-2 9.80e-3 9.70e-3 7.20e-3 5.12e-2 4.52e-2 4.33e-2 4.21e-2 5.64e-2 9.90e-2
PINN 5.70e-3 1.44e-2 3.61e-2 7.30e-2 1.13e-1 2.16e-2 5.09e-2 9.82e-2 1.29e-1 1.67e-1

Table 2: Comparison of KL divergence and L2 error metrics between FlowKac and PINN models across different
SDEs at various time points. Bold values indicate the better-performing model for each metric and time point.

Model Metric t = 0 t = 1 t = 2 t = 3

FlowKac DKL 1.60e-2 8.90e-3 5.20e-3 3.19e-2
L2 6.07e-2 4.70e-2 4.74e-2 1.37e-1

PINN DKL 1.00e-4 4.94e-2 2.94e-1 1.68
L2 5.70e-3 2.10e-1 5.18e-1 1.11

Table 3: Performance comparison of FlowKac and PINN models on the 2d Ornstein-Uhlenbeck process using KL
divergence (DKL) and L2 error metrics.

6 Conclusion

Neural-based approaches to solving the Fokker-Planck equation have shown remarkable results, particularly
when dealing with high-dimensional systems where classical numerical methods suffer from the curse of
dimensionality. The widely used Physic-informed approach can encounter convergence challenges as demon-
strated through the 2-dimensional Ornstein-Uhlenbeck process.

To address these limitations, we developed FlowKac, a novel framework combining the Feynman-Kac formula
and normalizing flows which enables the use of a more robust loss metric improving the stability and accuracy
during training. We also developed a stochastic sampling trick that exploits the smoothness of stochastic
flows, significantly improving sampling efficiency and reducing computational complexity without sacrificing
precision.

Numerical experiments confirm FlowKac’s effectiveness, demonstrating strong qualitative and quantitative
alignment with true solutions. While higher-order Taylor terms enhance accuracy, they also introduce
computational overhead, which must be carefully managed for scalability.

Overall, FlowKac provides a robust and scalable solution for solving the FPE, with promising applications
in physics, finance, and other domains requiring accurate modeling of complex stochastic systems.

References
Gerardo Barrera, M Högele, and J Pardo. Cutoff stability of multivariate geometric brownian motion. arXiv

preprint arXiv:2207.01666, 2022.

George Keith Batchelor. An introduction to fluid dynamics. Cambridge university press, 2000.

Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep splitting
method for parabolic pdes. SIAM Journal on Scientific Computing, 43(5):A3135–A3154, 2021a.

Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen. Solving the kolmogorov
pde by means of deep learning. Journal of Scientific Computing, 88:1–28, 2021b.

18

Under review as submission to TMLR

Christian Beck, Martin Hutzenthaler, Arnulf Jentzen, and Benno Kuckuck. An overview on deep learning-
based approximation methods for partial differential equations. Discrete and Continuous Dynamical Sys-
tems - B, 28(6):3697–3746, 2023.

Jan Blechschmidt and Oliver G Ernst. Three ways to solve partial differential equations with neural net-
works—a review. GAMM-Mitteilungen, 44(2):e202100006, 2021.

Nicholas M Boffi and Eric Vanden-Eijnden. Probability flow solution of the fokker–planck equation. Machine
Learning: Science and Technology, 4(3):035012, jul 2023.

Gert-Jan Both and Remy Kusters. Temporal normalizing flows. arXiv preprint arXiv:1912.09092, 2019.

H. Cartan. Calcul Différentiel. Hermann, Paris, 1967.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pp. 6572–6583, Red Hook, NY, USA, 2018. Curran Associates Inc.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and
Francesco Piccialli. Scientific machine learning through physics–informed neural networks: Where we
are and what’s next. Journal of Scientific Computing, 92(3):88, Jul 2022. ISSN 1573-7691.

Biswa Nath Datta. Numerical linear algebra and applications. SIAM, 2010.

Pierre Degond, Maxime Herda, and Sepideh Mirrahimi. A fokker-planck approach to the study of robustness
in gene expression. Mathematical Biosciences and Engineering, 17(6):6459–6486, 2020.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In International
Conference on Learning Representations, 2017.

Weinan E, Jiequn Han, and Arnulf Jentzen. Algorithms for solving high dimensional pdes: from nonlinear
monte carlo to machine learning. Nonlinearity, 35(1):278, dec 2021.

Li Feng, XiaodongZeng and Tao Zhou. Solving time dependent fokker-planck equations via temporal nor-
malizing flow. Communications in Computational Physics, 32(2):401–423, 2022. ISSN 1991-7120.

Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. Adaptive monte carlo augmented with
normalizing flows. Proceedings of the National Academy of Sciences, 119(10):e2109420119, 2022.

Emmanuel Gobet and Qihao She. Perturbation of Ornstein-Uhlenbeck stationary distributions: expansion
and simulation. preprint, July 2016. URL https://hal.science/hal-01345926.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
free-form continuous dynamics for scalable reversible generative models. In International Conference on
Learning Representations, 2019.

Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional parabolic
partial differential equations and backward stochastic differential equations. Communications in mathe-
matics and statistics, 5(4):349–380, 2017.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of dimen-
sionality with physics-informed neural networks. Neural Networks, pp. 106369, 2024.

W. Hundsdorfer and J. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equa-
tions. Springer Berlin Heidelberg, 01 2003. ISBN 978-3-642-05707-6.

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural SDEs as Infinite-
Dimensional GANs. International Conference on Machine Learning, 2021.

19

https://hal.science/hal-01345926

Under review as submission to TMLR

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and review
of current methods. IEEE Trans. Pattern Anal. Mach. Intell., 43, 2021.

Hiroshi Kunita and Hiroshi Kunita. Stochastic flows and stochastic differential equations, volume 24. Cam-
bridge university press, 1990.

HP Langtangen. A general numerical solution method for Fokker-Planck equations with applications to
structural reliability. Probabilistic engineering mechanics, 6(1):33–48, 1991.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients for
stochastic differential equations. International Conference on Artificial Intelligence and Statistics, 2020.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In The Eleventh International Conference on Learning Representations, 2023.

Umberto Lucia and Gianpiero Gervino. Fokker-planck equation and thermodynamic system analysis. En-
tropy, 17(2):763–771, 2015.

Pinak Mandal and Amit Apte. Solving fokker-planck equations using the zeros of fokker-planck operators
and the feynman-kac formula. arXiv preprint arXiv:2401.01292, 2024.

A. Naess and J. M. Johnsen. The Path Integral Solution Technique Applied to the Random Vibration of
Hysteretic Systems, pp. 279–291. Springer Netherlands, Dordrecht, 1991. ISBN 978-94-011-3692-1.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer Science &
Business Media, 2013.

Manolis Papadrakakis, George Stefanou, and Vissarion Papadopoulos. Computational methods in stochastic
dynamics, volume 1. Springer, 2011.

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res., 22, 2021.

Lukas Pichler, Arif Masud, and Lawrence A Bergman. Numerical solution of the fokker–planck equation by
finite difference and finite element methods—a comparative study. In Computational methods in stochastic
dynamics, volume 2. Springer, 2013.

P.E. Protter. Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probabil-
ity. Springer Berlin Heidelberg, 2005. ISBN 9783540003137.

Maziar Raissi. Forward–backward stochastic neural networks: deep learning of high-dimensional partial
differential equations. In Peter Carr Gedenkschrift: Research Advances in Mathematical Finance, pp.
637–655. World Scientific, 2024.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

H. Risken and T. Frank. The Fokker-Planck Equation: Methods of Solution and Applications. Springer Series
in Synergetics. Springer Berlin Heidelberg, 1996. ISBN 9783540615309.

Marc Sabate Vidales, David Šiška, and Lukasz Szpruch. Unbiased deep solvers for linear parametric pdes.
Applied Mathematical Finance, 28(4):299–329, 2021.

G.I. Schuëller. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering
Mechanics, 12(4):197–321, 1997.

20

Under review as submission to TMLR

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differ-
ential equations. Journal of computational physics, 375:1339–1364, 2018.

K. Sobczyk and J. Trebicki. Analysis of stochastic systems via maximum entropy principle. In Nicola Bellomo
and Fabio Casciati (eds.), Nonlinear Stochastic Mechanics, pp. 485–497, Berlin, Heidelberg, 1992. Springer
Berlin Heidelberg. ISBN 978-3-642-84789-9.

K. Sobezyk and J. Trebicki. Maximum entropy principle in stochastic dynamics. Probabilistic Engineering
Mechanics, 5(3):102–110, 1990. ISSN 0266-8920.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

Didier Sornette. Fokker–planck equation of distributions of financial returns and power laws. Physica A:
Statistical Mechanics and its Applications, 290(1-2):211–217, 2001.

Daniel W Stroock and SR Srinivasa Varadhan. Multidimensional diffusion processes, volume 233. Springer
Science & Business Media, 1997.

Keju Tang, Xiaoliang Wan, and Qifeng Liao. Adaptive deep density approximation for fokker-planck equa-
tions. J. Comput. Phys., 457:111080, 2021.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick gallinari. Con-
tinuous PDE dynamics forecasting with implicit neural representations. In The Eleventh International
Conference on Learning Representations, 2023.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

A KRnet

The KRnet architecture Tang et al. (2021) comprises two fundamental layers: an Actnorm layer that scales
the input and adds a bias, followed by an affine coupling layer responsible for mixing the spatial and temporal
variables. The Actnorm layer applies the following transformation:

x̂[i] = ai ⊙ x[i] + bi

Subsequently, this output is transformed through the affine coupling layer. Let x[i] =
[
x[i],1, x[i],2

]
be a

partition composed of a m-uplet x[i],1 ∈ Rm and d − m-uplet and x[i],2 ∈ Rd−m, the transformation is
expressed as:

x[i+1],1 = x[i],1

x[i+1],2 = x[i],2 ⊙
(
1 + α tanh

(
si+1

(
x[i],1, t

)))
+ eβi ⊙ tanh

(
ri+1

(
x[i],1, t

))
where 0 < α < 1 is a hyperparameter while βi is a trainable parameter. The functions si+1 and ri+1 are
implemented using neural networks providing the necessary flexibility to capture complex, time-dependent
relationships.

To further enhance the nonlinear characteristics of the temporal NF, an additional layer is incorporated and
is based on a cumulative distribution function. Consider a probability density function p(x) and a partition
of the interval [0, 1] given by 0 = h0 < h1 < ... < hm̂+1 = 1. We construct p(x) through a piece-wise linear
interpolation:

p(x) = wi+1 − wi

hi+1 − hi
(x− hi) + wi, ∀x ∈ [hi, hi+1]

21

Under review as submission to TMLR

the corresponding cumulative distribution function F is then defined

F (x) = wi+1 − wi

2(hi+1 − hi)
(x− hi)2 + wi (x− hi) +

i−1∑
k=0

wk + wk+1

2 (hi+1 − hi), ∀x ∈ [hi, hi+1]

This layer refines the model’s ability to capture and represent complex distributional properties, significantly
augmenting the expressiveness and accuracy of the TNF.

B Fokker-Planck equation transformation

In this appendix, we provide a detailed derivation of the transformed Fokker-Planck equation. This trans-
formation facilitates the use of the Feynman-Kac formula to derive a solution. The Fokker-Planck equation
describing the time evolution of a probability density function p(x, t) for a d-dimensional stochastic process
with drift vector µ = [µ1, ..., µd] and diffusion matrix D = 1

2σσ
⊤ = [Dij] is given by:

∂tp = −
d∑

i=1
∂xi [µip] +

d∑
i,j=1

∂xi

[
∂xj (Dijp)

]
.

Expanding the derivative terms in the equation to separate contributions from p, µ, and D, we have:

∂tp = −p
d∑

i=1
∂xiµi −

d∑
i=1

µi ∂xip+
d∑

i,j=1
∂xi

(
p ∂xjDij +Dij ∂xjp

)
= −p

d∑
i=1

∂xi
µi −

d∑
i=1

µi∂xi
p+

d∑
i,j=1

(
∂xi

p ∂xj
Dij + p ∂xixj

Dij + ∂xi
Dij ∂xj

p+Dij ∂xixj
p
)

= −p
d∑

i=1
∂xi

µi + p

d∑
i,j=1

∂xixj
Dij −

d∑
i=1

µi∂xi
p+

d∑
i,j

Dij ∂xixj
p+

d∑
i,j

(
∂xi

p ∂xj
Dij + ∂xj

p ∂xi
Dij

)

Introducing notations for divergence and corresponding second-order operator for compactness, we rewrite
the equation:

∂tp = p (−∇ · µ+ ∇ · (∇ ·D)) −
d∑

i=1
µi∂xi

p+
d∑

i,j=1
Dij∂xixj

p+
d∑

i,j=1

(
∂xi

p ∂xj
Dij + ∂xj

p ∂xi
Dij

)
The symmetry property of the diffusion matrix Dij = Dji further simplifies the last sum:

d∑
i,j=1

(
∂xip ∂xjDij + ∂xjp ∂xiDij

)
= 2

d∑
i=1

∂xip ∂xiDii + 2
d∑

i ̸=j=1
∂xip ∂xjDij

= 2
d∑

i=1
∂xip ∂xiDii + 2

d∑
i=1

∂xip

d∑
j ̸=i=1

∂xjDij

= 2
d∑

i=1
∂xi

p

 d∑
j=1

∂xj
Dij


Combining everything, we obtain a reformulated Fokker-Planck equation with reorganized drift and diffusion
contributions:

−∂tp+
d∑

i=1

−µi + 2
d∑

j=1
∂xj

Dij

 ∂xi
p+

d∑
i,j=1

Dij∂xixj
p− (∇.µ− ∇ · (∇ ·D)) p = 0.

22

Under review as submission to TMLR

C Alternating Direction Implicit scheme

We employ the Alternating Direction Implicit (ADI) Papadrakakis et al. (2011) method to solve the 2-
dimensional Duffing oscillator. The computational grid is defined with a time step h = tm+1 − tm and a
uniform spatial step δ = x1,i+1 − x1,i = x2,i+1 − x2,i. The governing PDE is given by:

∂p

∂t
= −x2

∂p

∂x1
−
(
ω2x1 − 0.4ωx2 − 0.1ω2x3

1
) ∂p
∂x2

+ 0.4ωp+ 0.4∂
2p

∂x2
2

(31)

The ADI scheme splits the numerical solution into two sequential half-steps, alternating between the spatial
dimensions x1 and x2. First, we discretize along the x1-axis using the finite difference method, yielding an
intermediate half-step solution pm+ 1

2
i,j , denoted as p∗

i,j . This intermediate solution is then used in the second
half-step, where we discretize along the x2-axis to obtain the final time-step solution. The first half-step
equation takes the form:

p∗
i,j − pm

i,j

h
= − x2,j

p∗
i+1,j − p∗

i−1,j

2δ − (ω2x1,i − 0.4ωx2,j − 0.1ω2x3
1,i)

pm
i,j+1 − pm

i,j−1

2δ + 0.4pm
i,j

+ 0.4
pm

i,j+1 − 2pm
i,j + pm

i,j−1

δ2

Rearranging the equation, we obtain:

p∗
i,j + x2,j

p∗
i+1,j − p∗

i−1,j

2δ h =(1 + 0.4h)pm
i,j − (ω2x1,i − 0.4ωx2,j − 0.1ω2x3

1,i)
pm

i,j+1 − pm
i,j−1

2δ h

+ 0.4
pm

i,j+1 − 2pm
i,j + pm

i,j−1

δ2 h

This equation takes the form of a tridiagonal system:

aip
∗
i−1,j + bip

∗
i,j + cip

∗
i+1,j = di,

where

ai = −hx2,j

2δ , bi = 1, ci = −ai

and

di = (1 + 0.4h)pm
i,j − (ω2x1,i − 0.4ωx2,j − 0.1ω2x3

1,i)
pm

i,j+1 − pm
i,j−1

2δ h+ 0.4
pm

i,j+1 − 2pm
i,j + pm

i,j−1

δ2 h

We solve this system using the Tridiagonal matrix algorithm (Thomas algorithm) Datta (2010) to obtain
the intermediate solution p∗.

Afterwards, we apply an explicit finite difference method along the x2-axis. The equation for the next
time-step pm+1 is given by:

pm+1
i,j − p∗

i,j

h
= − x2,j

p∗
i+1,j − p∗

i−1,j

2δ − (ω2x1,i − 0.4ωx2,j − 0.1ω2x3
1,i)

pm+1
i,j+1 − pm+1

i,j−1

2δ + 0.4p∗
i,j

+ 0.4
pm+1

i,j+1 − 2pm+1
i,j + pm+1

i,j−1

δ2 .

This equation is also reformulated into a tridiagonal system:

aip
m+1
i−1,j + bip

m+1
i,j + cip

m+1
i+1,j = di,

where

ai = −
(
ω2x1,i − 0.4ωx2,j − 0.1ω2x3

1,i

) h
2δ − 0.4h

δ2 , ci =
(
ω2x1,i − 0.4ωx2,j − 0.1ω2x3

1,i

) h
2δ − 0.4h

δ2 ,

23

Under review as submission to TMLR

bi =
(

1 + 0.8h
δ2

)

and

di = (1 + 0.4h)p∗
i,j − x2,j

p∗
i+1,j − p∗

i−1,j

2δ h.

The Thomas algorithm is again employed to solve for pm+1.

D Multivariate GBM closed-form solution

The multivariate GBM process is governed by the SDE:

dXt =
(
A+ 1

2B
2
)
Xtdt+BXtdWt (32)

where A =
(
a1 0
0 a2

)
, B =

(
b1 0
0 b2

)
are diagonal matrices enabling a closed-form solution. The initial

condition X0 follows a log-normal distribution:

ψ = Log-N
(
µ0 =

(
µ01
µ02

)
,Σ0 =

(
σ01 0
0 σ02

))

The exact solution to the 2D GBM SDE is given by:

Xt = exp (tA+BWt)X0

=
(
x1,0 exp(a1t+ b1Wt)
x2,0 exp(a2t+ b2Wt)

)

Defining Zt = logXt =
(

logX1,t

logX2,t

)
, we obtain a Gaussian vector with:

µt =
(
µ01 + a1t
µ02 + a2t

)
,

Σt =
(
σ2

01 + b2
1t b1b2t

b1b2t σ2
02 + b2

2t

)
.

Finally, the probability density function of Xt is:

p(x, t) = 1
x1x22π

√
det(Σt)

exp
(

−1
2 (log x− µt)⊤ Σ−1

t (log x− µt)
)
.

24

Under review as submission to TMLR

E Path-wise Jacobian and Hessian computation through Automatic Differentiation

Algorithm 3: Sampling SDE Solutions and Computing Sensitivities
Input: SDE with drift µ and diffusion σ, time interval [t0, t1], number of sample paths nsamples, state

space dimension dstate, number of time points ntime, initial point x0

Output: Sample paths Xx0
t ∈ Rntime×nsamples×dstate , Jacobian Jt(x0) ∈ Rntime×nsamples×dstate×dstate ,

Hessian Ht(x0) ∈ Rntime×nsamples×dstate×dstate×dstate

1 Initialize: Fix Brownian motion sample paths (torchsde.BrownianInterval);
2 Define function for SDE sampling:
3 expand x0 to match the batch size nsamples;
4 Compute SDE sample paths Xx0

t starting from x0;
5 Compute Jacobian:
6 Use automatic differentiation (torch.func.jacrev) to compute the Jacobian matrix w.r.t the

initial condition x0;
7

Jacobian = ∂Xx0
t

∂x0

8 Compute Hessian:
9 Define a function that returns the Jacobian for a given input x0;

10 Apply second-order automatic differentiation to compute the Hessian tensor;
11

Hessian = ∂Jacobian
∂x0

= ∂2Xx0
t

∂x2
0

12 Return: Sample paths Xx0
t , Jacobian Jt(x0), and Hessian Ht(x0);

F High-dimensional SDE: quantitative metrics

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.1

0.2

0.3

0.4

KL
 d

iv
er

ge
nc

e

d=4
d=6
d=8
d=12

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
L2

 e
rro

r

d=4
d=6
d=8
d=12

Figure 8: DKL and relative L2 errors for FlowKac across different dimensional settings (4, 6, 8, 12) and over various
time values for the Ornstein-Uhlenbeck process.

Figure 8 presents the relative L2 error and Kullback-Leibler divergence (DKL) across different dimensions
(d = 4, 6, 8, 12) for the Ornstein-Uhlenbeck process. These results are computed over various time steps and
demonstrate the robustness of our approach in accurately modeling high-dimensional stochastic dynamics.

25

	Introduction
	Related work
	Problem statment
	Fokker-Planck equation
	Non-learning-based integration methods
	Neural network solutions: The Physics-informed approach

	FlowKac
	Temporal Normalizing flow
	Training algorithm
	Stochastic sampling trick

	Numerical results
	Univariate Geometric Brownian Motion
	Multivariate Ornstein-Uhlenbeck
	Multivariate Geometric Brownian Motion
	Duffing oscillator
	Higher dimensional examples
	Discussion

	Conclusion
	KRnet
	Fokker-Planck equation transformation
	Alternating Direction Implicit scheme
	Multivariate GBM closed-form solution
	Path-wise Jacobian and Hessian computation through Automatic Differentiation
	High-dimensional SDE: quantitative metrics

