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Abstract

We explore two applications of Min-Max-Jump distance (MMJ distance): MMJ-1

based K-means and MMJ-based internal clustering evaluation index. K-means and2

its variants are possibly the most popular clustering approach. A key drawback of3

K-means is that it cannot deal with data sets that are not the union of well-separated,4

spherical clusters. MMJ-based K-means proposed in this paper overcomes this5

demerit of K-means, so that it can handle irregularly shaped clusters. Evaluation (or6

"validation") of clustering results is fundamental to clustering and thus to machine7

learning. Popular internal clustering evaluation indices like Silhouette coefficient,8

Davies–Bouldin index, and Calinski-Harabasz index performs poorly in evaluating9

irregularly shaped clusters. MMJ-based internal clustering evaluation index uses10

MMJ distance and Semantic Center of Mass (SCOM) to revise the indices, so that11

it can evaluate irregularly shaped data. An experiment shows introducing MMJ12

distance to internal clustering evaluation index, can systematically improve the13

performance. We also devise two algorithms for calculating MMJ distance.14

1 Introduction15

Distance is a numerical measurement of how far apart objects or points are. It is usually formalized16

in mathematics using the notion of a metric space. A metric space is a set together with a notion of17

distance between its elements, usually called points. The distance is measured by a function called18

a metric or distance function. Metric spaces are the most general setting for studying many of the19

concepts of mathematical analysis and geometry.20

In this paper, we introduce two algorithms for calculating Min-Max-Jump distance (MMJ distance)21

and explore two applications of it. Including MMJ-based K-means (MMJ-K-means) and MMJ-based22

internal clustering evaluation index.23

MMJ-K-means improves K-means, so that it can handle irregularly shaped clusters. We claim MMJ-24

CH is the SOTA (state-of-the-art) internal clustering evaluation index, which achieves an accuracy of25

90/145. MMJ-CH is one of the MMJ-based internal clustering evaluation indices.26

2 RELATED WORK27

2.1 Different distance metrics28

Many distance measures have been proposed in literature, such as Euclidean distance or cosine29

similarity. These distance measures often be found in algorithms like k-NN, UMAP, HDBSCAN,30

etc. The most common metric is Euclidean distance. Cosine similarity is often used as a way to31

counteract Euclidean distance’s problem in high dimensionality. The cosine similarity is the cosine32

of the angle between two vectors.33
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Hamming distance is the number of values that are different between two vectors. It is typically used34

to compare two binary strings of equal length (1).35

Manhattan distance is a geometry whose usual distance function or metric of Euclidean geometry36

is replaced by a new metric in which the distance between two points is the sum of the absolute37

differences of their Cartesian coordinates (2).38

Chebyshev distance is defined as the greatest of difference between two vectors along any coordinate39

dimension (3).40

Minkowski distance or Minkowski metric is a metric in a normed vector space which can be41

considered as a generalization of both the Euclidean distance and the Manhattan distance (4).42

Jaccard index, also known as the Jaccard similarity coefficient, is a statistic used for gauging the43

similarity and diversity of sample sets (5).44

Haversine distance is the distance between two points on a sphere given their longitudes and latitudes.45

It is similar to Euclidean distance in that it calculates the shortest path between two points. The main46

difference is that there is no straight line, since the assumption is that the two points are on a sphere47

(6).48

2.2 K-means49

K-means (7) and its variants (8; 9; 10) are possibly the most well-liked clustering approach. K-means50

divides the data into K groups, where K is a hyper-parameter to be optimized. It aims to reduce the51

within-cluster dissimilarity. While popular, K-means and its variants perform poorly for data sets52

that are not the union of well-separated, spherical clusters. MMJ-based K-means (MMJ-K-means)53

proposed in this paper overcomes this demerit of K-means, so that it can handle irregularly shaped54

clusters.55

2.3 Internal clustering evaluation index56

Evaluation (or "validation") of clustering results is as difficult as the clustering itself (11). Popular57

approaches involve "internal" evaluation and "external" evaluation. In internal evaluation, a clustering58

result is evaluated based on the data that was clustered itself. Popular internal evaluation indices59

are Davies-Bouldin index (12), Silhouette coefficient (13), Dunn index (14), and Calinski-Harabasz60

index (15) etc. In external evaluation, the clustering result is compared to an existing "ground truth"61

classification, such as the Rand index (16). However, knowledge of the ground truth classes is almost62

never available in practice.63

In Section 5.2, an experiment shows introducing Min-Max-Jump (MMJ) distance to internal clustering64

evaluation index, can systematically improve the performance.65

2.4 Path-based distances66

Euclidean distances are frequently used in machine learning and clustering methods to compare67

points. However, the distance is data-independent, and not tailored to the geometry of the data. Many68

metrics that are data-dependent have been devised, such as diffusion distances (17) and path-based69

distances (18; 19). MMJ distance is a path-based distance.70

3 Definition of Min-Max-Jump71

Definition 1. Min-Max-Jump distance (MMJ distance)72

Ω is a set of points (at least one). For any pair of points p, q ∈ Ω, the distance between p and q is73

defined by a distance function d(p,q) (such as Euclidean distance). i, j ∈ Ω, Ψ(i,j,n,Ω) is a path from74

point i to point j, which has length of n points (see Table 1). Θ(i,j,Ω) is the set of all paths from point75

i to point j. Therefore, Ψ(i,j,n,Ω) ∈ Θ(i,j,Ω). max_jump( Ψ(i,j,n,Ω) ) is the maximum jump in path76

Ψ(i,j,n,Ω).77

The Min-Max-Jump distance between a pair of points i, j, which belong to Ω, is defined as:78
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Table 1: Table of notations

Ω A set of N points, with each point indexed from
1 to N;

Ω[1,n] The first n points of Ω, indexed from 1 to n;

Ωn+1 The (n+ 1)th point of Ω;

Ci A cluster of points that is a subset of Ω;

ξi One-SCOM of Ci;

Ω + p Set Ω plus one new point p. Since p /∈ Ω, if Ω
has N points, this new set now has N +1 points;

Ψ(i,j,n,Ω) Ψ(i,j,n,Ω) is a sequence from point i to point j,
which has length of n points. All the points in
the sequence must belong to set Ω. That is to
say, it is a path starts from i, and ends with j.
For convenience, the path is not allowed to have
loops, unless the start and the end is the same
point;

d(i, j) d(i, j) is a distance metric between pair of
points i and j, such as Euclidean distance;

max_jump( Ψ(i,j,n,Ω) ) max_jump( Ψ(i,j,n,Ω) ) is the maximum jump
in path Ψ(i,j,n,Ω). A jump is the distance from
two consecutive points p and q in the path;

Θ(i,j,Ω) Θ(i,j,Ω) is the set of all paths from point i to
point j. A path in Θ(i,j,Ω) can have arbitrary
number of points (at least two). All the points
in a path must belong to set Ω;

MMJ(i, j | Ω) MMJ(i, j | Ω) is the MMJ distance between
point i and j, where Ω is the Context of the
MMJ distance;

Mk,Ω[1,k]
Mk,Ω[1,k]

is the pairwise MMJ distance matrix
of Ω[1,k], which has shape k × k. The MMJ
distances are under the Context of Ω[1,k];

MΩ The pairwise MMJ distance matrix of Ω, MΩ =
MN,Ω[1,N]

;

Π = {max_jump(ϵ) | ϵ ∈ Θ(i,j,Ω)} (1)

MMJ(i, j | Ω) = min(Π) (2)

Where ϵ is a path from point i to point j, max_jump(ϵ) is the maximum jump in path ϵ. Π is the set79

of all maximum jumps. min(Π) is the minimum of Set Π.80

Set Ω is called the Context of the Min-Max-Jump distance. It is easy to check MMJ(i, i | Ω) = 0.81

82

In summary, Min-Max-Jump distance is the minimum of maximum jumps of all path between a pair83

of points, under the Context of a set of points.84

Similar distances have actually been studied in many places in the literature, including the maximum85

capacity path problem, the widest path problem, the bottleneck edge query problem, the minimax86

path problem, the bottleneck shortest path problem, and the longest-leg path distance (LLPD)87

(20; 21; 22; 23).88
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Figure 1: An example

There is a minor difference between Min-Max-Jump distance and other similar distances: Min-Max-89

Jump distance stresses the context of the distance. The context is like the condition in conditional90

probability. The difference becomes non-trivial when we need to calculate the pairwise MMJ distance91

matrix of a set S, under the context of its superset X , such as in Section 6.3 of (24). A set Ω is a92

superset of another set B if all elements of the set B are elements of the set Ω.93

3.1 An example94

Suppose Set Ω is composed of the four points in Figure 1. There are five (non-looped) paths from95

point a to point c in Figure 1:96

1. a→ c, the maximum jump is 28;97

2. a→ b→ c, the maximum jump is 19;98

3. a→ d→ c, the maximum jump is 17;99

4. a→ b→ d→ c, the maximum jump is 19;100

5. a→ d→ b→ c, the maximum jump is 12.101

According to Definition 1, MMJ(a, c | Ω) = 12.102

To understand Min-Max-Jump distance, imagine someone is traveling by jumping in Ω. Suppose103

MMJ(i, j | Ω) = δ. If the person wants to reach j from i, she must have the ability of jumping at104

least δ. Otherwise, j is unreachable from i for her. Whether the distance to a point is "far" or "near"105

is measured by how far (or how high) it requires a person to jump. If the requirement is large, then106

the point is "far", otherwise, it is "near."107

3.2 Properties of MMJ distance108

Theorem 1. Suppose i, j, p, q ∈ Ω ,109

MMJ(i, j | Ω) = δ (3)
110

d(i, p) < δ (4)
111

d(j, q) < δ (5)

then,112

MMJ(p, q | Ω) = δ (6)

where d(x,y) is a distance function (Table 1).113

Proof. MMJ(i, j | Ω) = δ is equivalent to ∃P ∈ Θ(i,j,Ω), such that M(P ) = δ, and ∀T ∈ Θ(i,j,Ω),114

M(T ) ≥ δ, where Θ(i,j,Ω) is the set of all paths from point i to point j under context Ω. M(P ) is115

the maximum jump in path P . We can assume MMJ(p, q | Ω) > δ and MMJ(p, q | Ω) < δ, then116

we will arrive to a contradiction in both cases.117
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Theorem 2. Suppose r ∈ {1, 2, . . . , n},118

f(t) = max(d(Ωn+1,Ωt), MMJ(Ωt,Ωr | Ω[1,n])) (7)
119

X = {f(t) | t ∈ {1, 2, . . . , n}} (8)

then,120

MMJ(Ωn+1,Ωr | Ω[1,n+1]) = min(X) (9)

For the meaning of Ωt,Ωr,Ω[1,n], and Ω[1,n+1], see Table 1.121

Proof. There are n possibilities of the MMJ path from Ωn+1 to Ωr, under the context of Ω[1,n+1],122

set X enumerate them all. Each element of X is the maximum jump of each possibility. Therefore,123

according to the definition of MMJ distance, MMJ(Ωn+1,Ωr | Ω[1,n+1]) = min(X).124

Corollary 1. Suppose r ∈ {1, 2, . . . , N}, p /∈ Ω,125

f(t) = max(d(p,Ωt), MMJ(Ωt,Ωr | Ω)) (10)
126

X = {f(t) | t ∈ {1, 2, . . . , N}} (11)

then,127

MMJ(p,Ωr | Ω+ p) = min(X) (12)

For the meaning of Ω+ p, see Table 1.128

Proof. The proof follows the conclusion of Theorem 2.129

Theorem 3. Suppose i, j ∈ {1, 2, . . . , n},130

x1 = MMJ(Ωi,Ωj | Ω[1,n]) (13)
131

t1 = MMJ(Ωn+1,Ωi | Ω[1,n+1]) (14)
132

t2 = MMJ(Ωn+1,Ωj | Ω[1,n+1]) (15)
133

x2 = max(t1, t2) (16)

then,134

MMJ(Ωi,Ωj | Ω[1,n+1]) = min(x1, x2) (17)

Proof. There are two possibilities of the MMJ path from Ωi to Ωj , under the context of Ω[1,n+1]:135

Ωn+1 is in the path or it is not in the path. x2 is the min-max jump of the first possibility; x1 is the136

min-max jump of the second possibility. Therefore, according to the definition of MMJ distance,137

MMJ(Ωi,Ωj | Ω[1,n+1]) = min(x1, x2).138

4 Calculation of Min-Max-Jump distance139

We propose two methods to calculate the pairwise Min-Max-Jump distance matrix of a dataset. There140

are other methods for calculating or estimating it, such as a modified SLINK algorithm (25), or with141

Cartesian trees (26; 27), or from a sequence of nearest neighbor graphs (23), or a modified version of142

the Floyd–Warshall algorithm.143

4.1 MMJ distance by recursion144

The first method calculates MΩ by recursion. MΩ is the pairwise MMJ distance matrix of Ω (Table145

1). Mk,Ω[1,k]
is the MMJ distance matrix of the first k points of Ω (Table 1). Note M2,Ω[1,2]

is simple146

to calculate. MΩ = MN,Ω[1,N]
. MΩ is a N ×N symmetric matrix. Rows and columns of MΩ are147

indexed from 1 to N.148

Step 7 of Algorithm 1 can be calculated with the conclusion of Theorem 2; Step 12 of Algorithm 1149

can be calculated with the conclusion of Theorem 3.150

Algorithm 1 has complexity of O(n3), where n is the cardinality of Set Ω.151
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Algorithm 1 MMJ distance by recursion

Input: Ω
Output: MΩ

1: function MMJ_BY_RECURSION(Ω)
2: N ← length(Ω)
3: Initialize MΩ with zeros
4: Calculate M2,Ω[1,2]

, fill in MΩ[1, 2] and MΩ[2, 1]
5: for n← 3 to N do
6: for r ← 1 to n− 1 do
7: Calculate MMJ(Ωn,Ωr | Ω[1,n]), fill in MΩ[n, r] and MΩ[r, n]
8: end for
9: for i← 1 to n− 1 do

10: for j ← 1 to n− 1 do
11: if i < j then
12: Calculate MMJ(Ωi,Ωj | Ω[1,n]), update MΩ[i, j] and MΩ[j, i]
13: end if
14: end for
15: end for
16: end for
17: return MΩ

18: end function

4.2 MMJ distance by calculation and copy152

According to the conclusion of Theorem 1, there are many duplicated values in MΩ. So in the second153

method we can calculate the MMJ distance value in one position and copy it to other positions in154

MΩ.155

A well-known fact about MMJ distance is: "the path between any two nodes in a minimum spanning156

tree (MST) is a minimax path." A minimax path in an undirected graph is a path between two vertices157

v, w that minimizes the maximum weight of the edges on the path. That is to say, it is a MMJ path.158

By utilizing this fact, we propose Algorithm 2.159

Algorithm 2 MMJ distance by Calculation and Copy

Input: Ω
Output: MΩ

1: function MMJ_CALCULATION_AND_COPY(Ω)
2: Initialize MΩ with zeros
3: Construct a MST of Ω, noted T
4: Sort edges of T from large to small, generate a list, noted L
5: for e in L do
6: Remove e from T . It will result in two connected sub-trees, T1 and T2;
7: Traverse T1 and T2;
8: For all pair of nodes (p, q), where p ∈ T1, q ∈ T2. Fill in MΩ[p, q] and MΩ[q, p] with the

weight of e.
9: end for

10: return MΩ

11: end function

The complexity of Algorithm 2 is O(n2). Because the construction of a MST of a complete graph is160

O(n2). During the "for" part (Step 5 to 9) of the algorithm, it accesses each cell of MΩ only once.161

Unlike Algorithm 1, which accesses each cell of MΩ for O(n) times. The merit of the "Calculation162

and Copy" method is that it is easier to understand than using the Cartesian trees (26; 27).163
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(a) data A (b) data B (c) data C

(d) data A, Standard K-means (e) data B, Standard K-means (f) data C, Standard K-means

(g) data A, MMJ-K-means (h) data B, MMJ-K-means (i) data C, MMJ-K-means

Figure 2: Standard K-means vs. MMJ-K-means

5 Applications of Min-Max-Jump distance164

We explore two applications of MMJ distance, and test the applications with experiments. All the165

MMJ distances in the experiments are calculated with Algorithm 1.166

5.1 MMJ-based K-means167

K-means clustering aims to partition n observations into k clusters in which each observation belongs168

to the cluster with the nearest mean (cluster center or centroid), serving as a prototype of the cluster169

(28). Standard K-means uses Euclidean distance. We can revise K-means to use Min-Max-Jump170

distance, with the cluster centroid replaced by the Semantic Center of Mass (SCOM) (particularly,171

One-SCOM) of each cluster. For the definition of SCOM, see a previous paper (29). One-SCOM is172

like medoid, but has some difference from medoid. Section 6.3 of (29) compares One-SCOM and173

medoid. In simple terms, the One-SCOM of a set of points, is the point which has the smallest sum174

of squared distances to all points in the set.175

Standard K-means usually cannot deal with non-spherical shaped data, such as the ones in Figure 2.176

MMJ-based K-means (MMJ-K-means) can cluster such irregularly shaped data. Figure 2 compares177

Standard K-means and MMJ-K-means, on clustering three data which come from the scikit-learn178

project (30). Figure 3 are eight more samples of MMJ-K-means. The data sources corresponding to179

the data IDs can be found at this URL (temporarily hidden for double blind review).180

It can be seen MMJ-K-means can (almost) work properly for clustering the 11 data, which have181

different kinds of shapes. The black circles are Border points (Definition 2), the red stars are the center182

(One-SCOM) of each cluster. During training of MMJ-K-means, the Border points are randomly183

allocated to one of its nearest centers.184

Definition 2. Border point185

A point is defined to be a Border point if its nearest mean (center, centroid, or One-SCOM) is not186

unique.187

Compared with other clustering models that can handle irregularly shaped data, such as Spectral188

clustering or the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), the merit189

of MMJ-K-means is its simplicity; the logic of MMJ-K-means is as simple as K-means. We just190

replace the Euclidean distance with MMJ distance, and the centroid with the Semantic Center of191

Mass (SCOM).192
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(a) data 1 (b) data 54 (c) data 62 (d) data 76

(e) data 78 (f) data 83 (g) data 89 (h) data 102

Figure 3: Eight more samples of MMJ-K-means

CH SC DB CDbw DBCV VIASCKDE New MMJ-SC MMJ-CH MMJ-DB

Accuracy 27/145 38/145 42/145 8/145 56/145 11/145 74/145 83/145 90/145 69/145

Table 2: Accuracy of the ten indices

5.2 MMJ-based internal clustering evaluation index193

Calinski-Harabasz index, Silhouette coefficient, and Davies-Bouldin index are three of the most194

popular techniques for internal clustering evaluation. They are used to calculate the goodness of a195

clustering technique.196

The Silhouette coefficient for a single sample is given as:197

s =
b− a

max(a, b)

where a is the mean distance between a sample and all other points in the same class. b is the mean198

distance between a sample and all other points in the next nearest cluster. The Silhouette coefficient199

for a set of samples is given as the mean of Silhouette coefficient for each sample.200

We can also revise Silhouette coefficient to use Min-Max-Jump distance, forming a new internal201

clustering evaluation index called MMJ-based Silhouette coefficient (MMJ-SC). We tested the202

performance of MMJ-SC with the 145 datasets mentioned in another paper(31). MMJ-SC obtained203

a good performance score compared with the other seven internal clustering evaluation indices204

mentioned in the paper(31). Readers can check Table 2 and compare with Table 5 of Liu’s paper(31).205

MMJ-based Calinski-Harabasz index (MMJ-CH) and MMJ-based Davies-Bouldin index (MMJ-DB)206

were also tested. In calculation of these two indices, besides using MMJ distance, the center/centroid207

of a cluster is replaced by the One-SCOM of the cluster again, as in MMJ-K-means. It can be seen208

that MMJ distance systematically improves the three internal clustering evaluation indices (Table209

2). The best performer is MMJ-CH, which achieves an accuracy of 90/145. The accuracy of an210

index is computed by evaluating the index’s ability of recognizing the best partition of a dataset from211

hundreds of candidate partitions(31).212

5.2.1 Using MMJ-SC in CNNI213

The Clustering with Neural Network and Index (CNNI) model uses a Neural Network to cluster214

data points. Training of the Neural Network mimics supervised learning, with an internal clustering215

evaluation index acting as the loss function (24). CNNI with standard Silhouette coefficient as the216

internal clustering evaluation index, cannot deal with non-flat geometry data, such as data B and217

data C in Figure 2. MMJ-SC gives CNNI model the capability of processing non-flat geometry data.218

E.g., Figure 4 is the clustering result and decision boundary of data B by CNNI using MMJ-SC.219

It uses Neural Network C of the CNNI paper (24). CNNI equipped with MMJ-SC, achieves the220
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Figure 4: Clustering result and decision boundary of data B by CNNI using MMJ-SC

first inductive clustering model that can deal with non-flat geometry data (24). For the definition of221

non-flat geometry data, see this1 Stackexchange question.222

6 Discussion223

6.1 Using PAM224

Since One-SCOM is like medoid, in MMJ-K-means, we can also use the Partitioning Around Medoids225

(PAM) algorithm or its variants to find the One-SCOMs (32).226

6.2 Multiple One-SCOMs in one cluster227

There might be multiple One-SCOM points in a cluster, which have the same smallest sum of squared228

distances to all the points in the cluster. Usually they are not far from each other. We can arbitrarily229

choose one or keep them all. If we keep them all, then the One-SCOM of a cluster is not a point, but a230

set of points. If the One-SCOM is a set, when calculating a point’s MMJ distance to the One-SCOM231

of a cluster, we can select the minimum of the point’s MMJ distances to all the One-SCOM points.232

6.3 Differentiating border points233

Border points defined in Definition 2 can further be differentiated as weak and strong border points.234

Definition 3. Weak Border Point (WBP)235

A point is defined to be a WBP if its nearest mean (center or One-SCOM) is not unique but less than236

K, where K is the number of clusters.237

Definition 4. Strong Border Point (SBP)238

A point is defined to be a SBP if its nearest mean (center or One-SCOM) is not unique and equals K,239

where K is the number of clusters.240

Then we can process different kinds of border points with different strategies. E.g., deeming the241

Strong Border Points as outliers and removing them.242

7 Conclusion and Future Works243

We proposed two algorithms for calculating Min-Max-Jump distance (MMJ distance), and tested244

two applications of it: MMJ-based K-means and MMJ-based internal clustering evaluation index.245

MMJ-K-means overcomes a big drawback of K-means, improving its ability of clustering, so that it246

can handle irregularly shaped clusters. We claim MMJ-CH is the SOTA (state-of-the-art) internal247

clustering evaluation index, which achieves an accuracy of 90/145. To thoroughly test the internal248

clustering evaluation indices, we conducted an experiment on a set of 145 datasets. A normal249

Machine Learning paper usually uses several or dozens of datasets to test their models or algorithms.250

In summary, MMJ distance has good capability and potentiality in Machine Learning. Further251

research may test its applications in other models, such as other clustering evaluation indices.252

1https://datascience.stackexchange.com/questions/52260/terminology-flat-geometr
y-in-the-context-of-clustering
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from (intentional or unintentional) misuse of the technology.550
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image generators, or scraped datasets)?558

Answer: [NA]559
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Guidelines:561

• The answer NA means that the paper poses no such risks.562

• Released models that have a high risk for misuse or dual-use should be released with563

necessary safeguards to allow for controlled use of the model, for example by requiring564
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the639

guidelines for their institution.640

• For initial submissions, do not include any information that would break anonymity (if641

applicable), such as the institution conducting the review.642
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