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Abstract

Permutation problems have captured the attention of the combinatorial optimization
community for decades due to the challenge they pose. Although their solutions
are naturally encoded as permutations, in each problem, the information to be used
to optimize them can vary substantially. In this article, we consider the Quadratic
Assignment Problem (QAP) as a case study and propose using Doubly Stochastic
Matrices (DSMs) under the framework of Estimation of Distribution Algorithms.
To that end, we design efficient learning and sampling schemes that enable an
effective iterative update of the probability model. Conducted experiments on
commonly adopted benchmarks for the QAP prove doubly stochastic matrices to
be preferred to four other models for permutations, both in terms of effectiveness
and computational efficiency.

Reference: The following document is a brief summary of Santucci and Ceberio
(2025). For further information, we refer the interested reader to the original paper.

1 Introduction

Permutation problems are a subset of combinatorial optimization problems characterized by rep-
resenting their solutions naturally through permutations. Despite the fact that the encoding of the
solutions is their point in common, in each case permutations can encode diverse information.

As a result, focusing on the optimization of permutation problems by means of general-purpose
algorithms does not seem to be the most suitable strategy. In addition, to improve the performance
of the algorithms, it is necessary for each problem to define those operators or strategies that are
compatible with the encoding and, at the same time, are well aligned with the characteristics of the
problem. That is, they are able to capture the features of the solutions that influence the objective
function value.

In this article, we investigate the Doubly Stochastic Matrix (DSM) models for modeling permutations,
and introduce it in the framework of Estimation of Distribution Algorithms (EDAs) to tackle the
Quadratic Assignment Problem (QAP). To that end, we propose an efficient learning scheme, based
on the well-known algebraic properties of DSMs, which captures the information of the item-to-item
assignments appearing in a set of training permutations. With regard to the sampling scheme, we
introduce and discuss several strategies. Two of them, namely the probabilistic and algebraic sampling
strategies, are analyzed to understand how faithful they are to the learning algorithm. We also show
that DSMs are able to capture and propagate the relevant information contained in the solutions of
QAP instances more efficiently.
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2 Learning and Sampling Doubly Stochastic Matrices

A DSM is a square matrix D = [dij ]n×n of non-negative real numbers whose rows and columns
sum to 1. Formally, we have dij ≥ 0,

∑n
k=1 dik = 1, and

∑n
k=1 dkj = 1, for all pairs i, j ∈ [n].

Moreover, we denote by Dn the set of all DSMs of order n.

It is easy to see that any permutation can be encoded as a special DSM with the additional constraint
that the entries are either 0 or 1. In fact, there exists an isomorphism between Sn and the set Pn of
so-called permutation matrices. Given σ ∈ Sn, its associated permutation matrix P ∈ Pn has the
form P = [pij ]n×n, where, for all i, j ∈ [n], pij is 1 if and only if σ(i) = j and 0 otherwise. Hence,
permutation matrices are a proper subset of DSMs, that is, Pn ⊂ Dn.

From this point of view, it is apparent that DSMs can effectively model probability distributions over
permutations for assignment problems such as the QAP. In fact, in the QAP there are two sets A and
B – of equal size and without any requirement for the internal order of their elements – that must be
matched. Therefore, the row indices in [n] can be used to encode the items of A, while the column
indices in [n] can be used to encode the items of B.

2.1 Learning

A well-known result in the field of DSMs is the Birkhoff-von Neumann (BvN) theorem, which states
that Dn defines a polytope, embedded in the n2-dimensional Euclidean space, which is the convex
hull of Pn. In other words, the BvN theorem asserts that Dn is closed under a convex combination of
its elements and that every DSM can be written as a convex combination of permutation matrices.

This result allows us to design a learning procedure based on the concept of convex combination.
Given m training permutations P1, . . . ,Pm ∈ Pn (expressed as permutation matrices for presentation
purposes), we define the learned DSM D ∈ Dn as follows:

D← w1P1 + w2P2 + . . .+ wmPm + αU, (1)

where U = [uij ]n×n is the uniform DSM such that uij = 1/n for all pairs i, j ∈ [n], while α along
with w1, w2, . . . , wm are non-negative weights summing to 1.

Eq. 1 describes precisely the DSM D as a convex combination of m + 1 terms: the m training
permutations provided in input, and the uniform DSM U. This formulation serves two key purposes:
(i) it allows summarizing in D all item-to-item assignments on the basis of their observed frequency as
encoded in the training permutations, and (ii) the inclusion of the uniform DSM allows the smoothing
of the multinomial distributions in D, thus permitting positive probabilities also for those item-to-item
assignments which were not observed in the training permutations.

Regarding the coefficients in the convex combination of Eq. 1, the values wi can be set according to
the utility of each training permutation – or, simply wi = (1− α)/m for i = 1, . . . ,m, when no per-
mutation is preferred over the others –, and the α parameter serves as a smoothing factor (α ∈ [0, 1])
that plays a crucial role in regulating the exploration behavior of subsequent samplings performed
with the learned model. In the two extreme cases: when α = 0, only item-to-item assignments
observed in the training permutations can be sampled, while when α = 1, the learned DSM is formed
only by uniform multinomial distributions, thus spreading evenly over the entire permutation space.
In practical scenarios, α can be set to small values according to the space dimensionality n, such as
1/n2 or 1/n, or it can be adjusted during iterations to balance the exploration-exploitation behavior
of the search.

So we present a learning algorithm that takes as input m permutations (equally weighted) and
the smoothing factor α. Once the DSM is initialized, the algorithm accounts for the item-to-item
assignments in all input permutations (for an extensive explanation, check the original paper).

2.2 Sampling

Sampling permutations from a DSM in an exact manner is a #P-hard complexity process. In light of
this, we resort to heuristic sampling approaches that align as closely as possible to exactly sampling
the probability distribution induced by D. In particular, we present two sampling procedures, namely
Probabilistic Sampling (PS) and Algebraic Sampling (AS), which are empirically analyzed.
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Probabilistic Sampling (PS). Given a DSM D ∈ Dn, the PS algorithm samples a permutation
σ ∈ Sn by iteratively selecting item-to-item assignments based on the probabilities of rows and
columns of D. At each iteration, after the item-to-item assignment σ(i) = j is set, the entries of D
are updated by zeroing out both the row i and the column j. The process is repeated until all the n
item-to-item assignments in σ are set. It is interesting to observe that, when the input DSM model is
a permutation matrix, PS can only sample its corresponding permutation, while when the input DSM
is U, all permutations have the same probability of being sampled.

Algebraic Sampling (AS).The AS procedure is based on the “randomized rounding” methodology
outlined by Wolstenholme and Walden (2016). Given a DSM D ∈ Dn, the AS procedure generates a
random vector v ∈ [0, 1]n and selects the permutation matrix P ∈ Pn that solves the equation

P · rank(v) = rank(D · v), (2)
where · is the usual matrix-vector multiplication, while the vector rank(v) is defined in such a way
that rank(v)i is the rank of vi among all elements in v. For example, if v = (0.2, 0.6, 0.8, 0.4), then
rank(v) = (1, 3, 4, 2). Actually, rank(v) is the inverse permutation of argsort(v). Additionally, due
to the finite precision of computer arithmetic, there is a tiny probability of observing ties in the values
of v that are randomly broken in our implementation.

3 Experiments

To analyze the effectiveness of the proposed DSM model for optimizing QAP instances within EDAs,
we designed an experiment that compares the ability of the proposed model to capture good features
of assignment problem solutions with that of the Plackett-Luce (PL) model (known to be good for
ordering problems). With this aim, for each instance/model pair, we plotted the recorded objective
values of each iteration (using the DSM and PL models, respectively) as a density plot. The curves
representing the different iterations, from 0 to 5, are colored with an increasing color gradient.

Figure 1: Density plots of the QAP objective values recorded in each iteration for both the DSM
model (left plot) and the PL model (right plot) on a selected QAP instance.

From Fig. 1, it is apparent that the DSM model effectively allowed us to improve the objective values
of the sampled solutions as the iterations progressed, whereas this improvement is much less evident
for the PL model. Furthermore, considering that the initial models in the experiment were learned
from a selection of good samples, Fig. 1 also shows that the DSM model allows us to quickly reach
and improve the quality of these initial samples.

In conclusion, this experiment empirically demonstrates that a model suitable for one type of
permutation problem, such as the PL model, which has been shown to be effective for ordering
problems, may not necessarily be suitable when applied to another class of permutation problems.
Moreover, the comparison also reveals that the proposed DSM model is particularly well-suited for
the assignment class of problems, thereby supporting its incorporation into EDAs.
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