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Abstract

The evaluation of machine learning (ML) models is a core tenet of trust-
worthy use. Evaluation is typically done via a held-out dataset. However,
such validation datasets often need to be large and are hard to procure;
further, multiple models may perform equally well on such sets. To ad-
dress these challenges, we offer GeValdi: an efficient method to validate
discriminative classifiers by creating samples where such classifiers maxi-
mally differ. We highlight how such “maximally different samples” can be
constructed via and leveraged to probe the failure mode of classifiers and
offer a hierarchically-aware metric to further support fine-grained, compar-
ative model evaluation.

1 Introduction

Many different machine learning (ML) models may be able to perform comparably well
on observed data (Black et al., 2022); however, at test-time these models may deviate
substantially in their predictions on unseen data. How should we choose which model (or
set of models) we wish to deploy? Identifying where seemingly-comparable models differ
typically requires large, annotated validation datasets – which may not be readily available.
We propose a more data-efficient solution for probing the differences between comparably
performing classifiers without using validation data.
We synthesise data for which the predictions of two classifiers differ maximally. To do so,
we optimise in the latent space of a generative model. We dub our approach GeValDi:
Generative Validation of Discriminative classifiers. Using ImageNet (Deng et al., 2009) as
a case study, we empirically investigate the ability of our method to generate ‘maximally
different samples.’ Furthermore, we explore the path of classifier predictions along the latent
space optimisation path, and how model expressivity affects it.

2 Related Work

Prior work has leveraged generating synthetic data to explore the properties of classi-
fiers (Hittmeir et al., 2019). Yousefzadeh & O’Leary (2019) studies the characteristics of
classifiers by finding points in input space about which small perturbations changes the pre-
dicted class (i.e., “flip points”). These “flip points” help identify uncertainty in classifications
and determine minimum input perturbations required for a class flip. Adversarial example
generation finds small perturbations of existing images such that the predicted class label
changes (Dalvi et al., 2004; Goodfellow et al., 2014; Szegedy et al., 2013; Papernot et al.,
2016). Here, we first consider characterising the differences in the predictions made by two
classifiers, rather than characterising a single classifier (Demšar, 2006; Coston et al., 2021).
Further, we perform optimisation in the latent space of a generative model, rather than the
original image space (Upadhyay & Mukherjee, 2021; Creswell et al., 2017) which allows us to
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stay in the data manifold. Relatedly, Antorán et al. (2020) identifies changes in input space
by performing latent space optimisation such that classifier uncertainty decreases. Roth
et al. (2022) uses points where models substantially disagree to iteratively improve models.
Our work bridges these directions to support model differentiation at evaluation-time.

3 GeValDi

In this section, we introduce GeValDi, a framework for performing generative validation of
discriminative classifiers. Provided two discriminative classifiers, defined by their predictive
probability distributions, p1(y|x) and p2(y|x), GeValDi generates data in the input space
where the classifiers differ maximally, which is formalised as:

x̃ = arg max
x∈X

D [p1(y|x)∥p2(y|x)] (1)

where x̃ ∈ X denotes the maximally different sample (MDS), X denotes the input space
and D denotes some divergence measure, such as the KL-divergence (Kullback & Leibler,
1951). However, without restricting the search space, optimising this objective will return
data which such classifiers are unlikely to be evaluated on in practice (i.e., under the true
data distribution). Thus, it is necessary to constrain the optimisation to the data manifold.
Our key insight is to model this data distribution – and optimise directly in the latent space.
Specifically, consider the latent variable model:

p(x) =
∫

p(x|z)p(z)dz (2)

where p(z) denotes the prior over the latent variable z, and p(x|z) is some conditional
distribution with mean function E[p(x|z)] = g(z). Provided p(x) accurately models the
data distribution, we can formalise the problem of generating an MDS with high-probability
under the true data distribution as

g−1(x̃) = arg max
z∈Z

D [p1(y|g(z))∥p2(y|g(z))] + λ log p(z) (3)

where λ is some regularisation constant which trades off flexibility of the optimisation prob-
lem with the likelihood of the generated sample under p̃(x). The intuition behind this
additional regularisation term is that, provided p(x) ≈ p̃(x), for any latent variable z with
high-probability under p(z), g(z) is high-probability under p̃(x). In other words, if a latent
variable z has a high-probability under p(z), thenwe get that g(z) = E[p(x|z)] is high-
probability under p̃(x), given that we can assume p(x) ∼ p̃(x) (i.e. our latent variable
model effectively models the underlying data generating manifold).
By optimising in latent space, we ensure samples are from the true data manifold. As
latent spaces are typically designed to be low-dimensional, our optimisation offers a compu-
tationally cheap way to generate such points. Our overall GeValDi framework is then the
following: given two discriminative classifiers and a generative model, we create MDS that
maximise divergence between classifier predictions.

4 Experiments

We now probe the ability of GeValDi to generate realistic synthetic images for which the
predictions of two high-performing, pre-trained classifiers differ. For the generative model,
we employ a variational autoencoder (VAE) (Kingma & Welling, 2019) and pre-trained
BigGAN (Brock et al., 2018) for experiments on MNIST (Deng, 2012) and ImageNet (Deng
et al., 2009), respectively. For a complete list of experimental details, see Appendix B.

4.1 Examples of Maximally Different Samples

In Figures 1 and 2 we compare the optimised MDS with the image corresponding to the
pre-optimised latent variable for ImageNet and MNIST, together with the predicted class
probabilities for the two pre-trained classifiers. In both figures, we see that the optimised
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(a) (b) (c)

Figure 1: Each figure shows images generated by the GAN before (left) and after (right)
the latent space optimisation for Model 1 - GoogleNet (Szegedy et al., 2014) vs Model 2 -
AlexNet (Krizhevsky et al., 2012). Bolded text is used to highlight the BigGAN class-label
used to generate samples.

(a) (b) (c) (d) (e) (f)

Figure 2: Each figure shows images generated by the VAE (Kingma & Welling, 2019) after
latent space optimisation. Text on top gives the predictions by Classifier 1 and 2.

MDS remain photo-realistic whilst deviating noticeably from the pre-optimised image, in-
dicating the latent space optimisation works as intended. The resulting MDS are able to
expose intriguing characteristics of the classifiers involved. For example, in Figure 1(a) the
final image is clearly a lifeboat, yet model 1 incorrectly classifies it as a drilling platform.
This demonstrates the utility of our approach in exposing potential shortcomings of high-
performance pre-trained classifiers using synthetic data. However, it is also important to
note that there also exist cases where the true class label of the MDS is not so obvious.
Examples include Figures 2(a) and 2(b). Please see Appendix C for more examples.

4.2 Predictive Class Path

We develop a metric to quantify the discrepancy between models’ predictions which accounts
for hierarchical structure in the data space. Specifically, our approach utilizes the pre-
defined class hierarchy in ImageNet, known as WordNet (Fellbaum, 1998) synset hierarchy;
this taxonomy defines hierarchical relations between classes derived from their conceptual
similarity. For instance, the distance between two dog breeds is closer than that of a dog
and an inanimate object (e.g., a table). Our metric measures the distance between the top
n classes predicted by two classifiers, C1 and C2.

d(C1, C2) = 1
|C1||C2|

∑
ci∈C1

∑
cj∈C2

Hw(ci, cj) (4)

where |C| gives the size of set C, and Hw(a, b) computes the minimum distance from class a
to class b along the hierarchy of classes, which is defined as half the length of the shortest path
from one class to another. The intuition behind this metric is to give us on average, how
many levels on the hierarchy we need to go up before our predicted classes are ‘neighbours’
(i.e. share the immediate parent node). By analyzing the evolution of the distance metric
as we progress through the MDS algorithm, we gain insights into how the predictions of two
models differ.
Figure 3(a) illustrates the set distance path between C1 and C2 for different set sizes (1,
3, and 5). Initially, set distances increase with set size because larger sets span larger
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(a) (b) (c)

Figure 3: (a) and (b) show evolution of set distance, defined in Equation (4), for n = 1, 3, 5
for 2 pairs of models, with (number of parameters in model 1, number of parameters in
model 2) being (1.2 million, 1.2 million) and (66.1 million, 88.6 million) respectively. (c)
shows evolution of KL divergence across iterations for four pairs of models with different
capacities.

portions of the hierarchy. However, interestingly, the increase in set distance decreases
with set size across iterations. This implies that by looking at bigger prediction sets, we
decrease perceptual incongruence. In other words, when we look at the top 5 predictions,
the prediction set typically evolves to the same portions of the hierarchy, whereas when we
look at the top 1 prediction, the prediction set evolves more drastically across the hierarchy.
This is because the disagreement between predicted classes in a set reduces the overall set
distance between C1 and C2. In Figure 2(b), the set distance between predicted labels of the
“Brambling” and “Hummingbird” models is 2.5 at the initial point. However, it increases
to 9.5 in iteration 500 for “Racket” and “Vine Snake”. Qualitatively, MDS enables users to
gain insight into the behavior of two models not only probabilistically, but also conceptually
in a more interpretable way.

4.3 Classifier Expressivity

When using the MDS algorithm, we are finding directions in latent space that maximise
KL divergence between model predictions. This means that our latent space path has a
high dependence on model structure and parameters. So, we need to consider the effects of
variations in the models involved. We consider classifiers of varying expressivity (Hu et al.,
2021) to understand how it affects the MDS generated. The expressivity of a classifier is the
size of the set of functions spanned by its parameters Bengio & Delalleau (2011); Liang et al.
(2019); Montufar et al. (2014); Raghu et al. (2017). In particular, we use the number of
parameters as a proxy for classifier expressivity here. To explore this, we do 4 experiments,
with details in Appendix B.
Figure 3(c) shows the KL divergence path across iterations for our four experiments. From
this, we see that increasing the difference in expressivity of classifier pairs increases both
the convergent value and rate of growth of KL divergence. Figures 3(a) and 3(b) show
that increasing classifier expressivity decreases the overall set distance between classifier
predictions. This is especially evident in comparing the set distance of top one predictions,
where the increase in set distance grows in the following order: comparing two models of
high expressivity, comparing one model of high expressivity vs one model of low expres-
sivity, comparing two models of low expressivity. An important implication of this is that
classifiers with low expressivity have a higher probability of producing perceptually incon-
sistent predictions than models with higher expressivity. Since classifiers implicitly learn
label hierarchies by learning the sets of predictions that are most probable, this implication
is especially critical, as we can perform model selection by contrasting how well two models
learn the hierarchy.
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5 Limitations

There are a number of limitations to this approach: quality of the generative model and
instance generation. Since we are optimising in the latent space of a generative model, we
are assuming that p̃(x) ∼ p(x), as per in Section 3, and this becomes an inherent limitation
on GeValDi. For simple experiments, such as MNIST, training a generative model that is
able to reproduce realistic samples would be feasible. However, for larger-scale experiment,
such an ImageNet, we have to resort to pre-trained generative models. The assumption that
there exist such pre-trained generative models, with the ability to generate realistic samples,
would not hold for domains with limited data. Furthermore, by the nature of the algorithm,
GeValDi is only able to generate points in the latent space where classifiers differ, whereas
being able to generate regions where classifiers differ would be ideal.

6 Conclusion

We propose GeValDi as a method to circumvent the need for extensive amounts of validation
data to compare two classifiers. Instead, we generate samples from the true data distribution,
where the predicitons of two classifiers maximally differ – assuming that we have a good
generative model. Our method is able to identify failure modes – including differences in
pairs of models’ paths through label space hierarchies – offering a novel way to evaluate
classifiers. Further, we observe that expressivity affects the divergence of predictions and
hierarchical set distances, pointing to the possibility that models with higher expressivity
are able to learn the label hierarchy better than models with lower expressivity (Cerri et al.,
2014; Sadat & Caragea, 2022).
Next steps with GeValDi include running human subject experiments (HSEs) on MDS sam-
ples to study how the samples alter human preferences about model selection, as well as
testing the method on other modalities (e.g., audio data). With MDS, we can not only find
and correct failure modes of high-performance classifiers, but also make informed decisions
on which models have best learnt label hierarchies.
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(a) (b)

Figure 4: (a) shows the evolution of KL divergence across iterations of MDS algorithm. (b)
shows the evolution of ∆z across iterations of MDS algorithm

A Validating the MDS Algorithm

In order to make sure the MDS algorithm works as it is supposed to, the path of KL
divergence and the evolution of the latent space vector is checked.
Figure 4(a) shows that KL divergence is clearly increasing across iterations consistently
across the various experiments. This means that we are actually able to learn samples that
our models maximally disagree on, and are not just getting a random draw of samples from
the latent space.
Furthermore, we need to understand whether these latent space samples are any different
from the initial starting point, or are we just perturbing the initial point to generate ’diverse’
samples. We do this by plotting the evolution of the squared difference between the initial
starting point and the current latent space point in our MDS algorithm, ∆z = E[ ||z−zinit||2

||z||2
].

As evident in Figure 4(b), we see that the latent space point changes significantly to the
initial starting point (∆z ∼ 25%) and this shows us that our MDS algorithm actually
explores the latent space to find maximally different samples.

B Experimental Setup

For our experiments involving the MNIST dataset (Deng, 2012), a Variational Autoencoder
(VAE) (Kingma & Welling, 2019) is used as the latent variable model, with Convolutional
Neural Networks (CNNs) (Yamashita et al., 2018) as the discriminative classifiers. Note
that the CNNs classifiers have classification accuracies of 98.6% and 98.8%.
For experiments involving ImageNet (Deng et al., 2009), pretrained discriminative classifiers
and Generative Adversarial Networks (GANs) were used. For the GAN, BigGAN by Deep-
Mind (Brock et al., 2018), which generates images from the data distribution that generates
the ImageNet dataset, is used. For the classifiers, pairwise comparisons are made between
AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2014), SqueezeNet (Iandola
et al., 2016) and ConvNeXt (Liu et al., 2022). Note that the choice of these classifiers pro-
vide a wide variety of model capacities that allow us to investigate the effect it has on MDS
samples.
To explore the impact of model expressivity, we do 4 experiments (note that M denotes a mil-
lion parameters): 2 models with similar, but low capacity (SqueezeNet0 - 1.2M, SqueezeNet1
- 1.2M), 2 models with similar, but high capacity (AlexNet - 66.1M, ConvNeXt Base -
88.6M), 2 models with different capacity (SqueezeNet 0 - 1.2M, AlexNet - 66.1M) and
lastly, the same 2 models but with the ordering reversed (AlexNet - 66.1M, SqueezeNet 0
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Each figure shows images generated by the GAN before (left) and after (right)
the latent space optimisation for Model 1 (GoogleNet) vs Model 2 (AlexNet). Bolded text
is used to highlight the BigGAN class-label used to generate samples.

- 1.2M). The last experiment explores how changing the ordering of the models in our KL
divergence changes the MDS we generate, since KL divergence is non-symmetric.

C Additional MDS Examples

In this section, we present several more examples of MDS in Figure 5, with some interesting
observations to reinforce the utility of this method.
We are able to identify a few types of failure modes of these classifiers, and we look at
them in detail here. Firstly, consider Figure 5(b), where both models initially classify the
images as “Harvestman” (i.e. the BigGAN class-label). After optimisation, model 2 flips
the prediction to “Barn Spider” with more than 50% confidence, which is interesting as it
illustrates a failure mode where there are certain input perturbations in the image space that
nudge model 2 to flip its prediction. Furthermore, we notice that the set distance between
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“Harvestman” and “Barn Spider” is only 1.0, which means that flip in class occurred at the
same level in the hierarchy.
Contrasting this to example Figure 5(e), where the the predictions evolve from “Orange”
and “Granny Smith”, to “Maraca” and “Granny Smith”, where the set distance increases
from 2.0 to 7.0 when model 1 flips its prediction from “Orange” to “Maraca”, we see that
this failure mode exhibits a large lateral shift of the model predictions along the hierarchy.
We note that this category of failure modes are more serious than the previous failure mode
because the prediction is more incorrect from the hierarchical perspective in the former case.
As per Figure 5(i), we observe that this latent space optimisation can sometimes point to
regions in the image space that improve the model predictions. In other words, in this
example, we essentially found perturbations of the image space that nudged both classifiers
to correctly classify the image. This behaviour is also observed in Figure 5(k) where the
classifiers become more correctly confident in their predictions.
Therefore, these examples point to using MDS to not only find failure modes, but also
perturbations in image space that improve model predictions.

10
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