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Abstract

Bayesian learning of neural networks is attractive as it can protecting against over-fitting
and provide automatic methods for inferring important hyperparameters by maximizing
the marginal probability of the data. However, existing approaches in this vein, such as
those based on variational inference, do not perform well. In this paper, we take a different
approach and directly derive a practical estimator of the gradient of the marginal log-
likelihood for BNNs by combining local reparametrization of the network w.r.t. the prior
distribution with the self-normalized importance sampling estimator. We show promising
preliminary results on a toy example and on vectorized MNIST classification where the new
method results in significantly improved performance of variational inference compared to
existing approaches to tune hyperparameters.

1. Introduction

We consider a supervised learning task given a data set consisting of input-target pairs D =
{(xxxi, yyyi)}Ni=1. We denote the observation model for data as p(yyy|xxx,θθθ,βββ) defining the likelihood
p(D|θθθ,βββ) =

∏N
i=1 p(yyyi|xxxi, θθθ,βββ) and prior p(θθθ|ααα), where ααα and βββ denote hyperparameters.

Marginal likelihood of data is defnied as p(D|ααα,βββ) = p({yyyi}Ni=1|{xxxi}Ni=1,ααα,βββ). Given a
new data point (xxx∗, yyy∗), a fully Bayesian approach to modeling makes a prediction by
marginalizing out posterior over parameters θθθ and hyperparameters ααα,βββ (MacKay, 1992a):

p(yyy∗|xxx∗,D) =

∫ ∫ ∫
p(yyy∗|xxx∗, θθθ,βββ)p(θθθ|D,ααα,βββ)p(ααα,βββ|D)dθθθdαααdβββ. (1)

The integrals in Equation (1) inevitably carry high computational burden for non-trivial
models, requiring us to recourse to approximate inference. We subsequently discuss approx-
imations to posterior distributions p(θθθ|D,ααα,βββ) and p(ααα,βββ|D).

Variational inference (VI). Variational inference (Barber and Bishop, 1998; Hinton and
van Camp, 1993) reformulates finding an approximation to a posterior p(θθθ|D,ααα,βββ) into an
optimization problem finding a a simpler distribution q(θθθ|λλλ) approximating p(θθθ|D). This is
done by minimizing the divergence DKL

(
q(θθθ|λλλ)||p(θθθ|D,ααα,βββ)

)
, which is equivalent to maxi-

mizing the Evidence Lower BOund (ELBO), a lower bound to log p(D|ααα,βββ), defined as:

L(λλλ;ααα,βββ) =
N∑
i=1

Eq(θθθ|λλλ) log p(yyyi|xxxi, θθθ,βββ)−DKL

(
q(θθθ|λλλ)||p(θθθ|ααα)

)
. (2)

Evidence framework. The evidence framework (MacKay, 1992a,b) provides a systematic

framework for adaptation of hyperparameters ααα,βββ. Equation (1) indicates that p(ααα,βββ|D),
(and the marginal likelihood p(D|ααα,βββ) if the prior over ααα,βββ is uniform) embodies the in-
fluence of predictions arising from hyperparameters ααα,βββ on marginalized test predictions
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p(yyy∗|xxx∗,D). If the integral in Equation (1) has no closed form, it can be approximated
as p(yyy∗|xxx∗,D) ≈

∫
p(yyy∗|xxx∗, θθθ)p(θθθ|D,ααα∗,βββ∗)dθθθ where ααα∗,βββ∗ = argmaxααα,βββp(ααα,βββ|D). Rely-

ing only on the mode ααα∗,βββ∗ can lead to poor approximation of p(yyy∗|xxx∗,D), depending on
the concentration of density p(ααα,βββ|D). Estimating marginal log-likelihood log p(D|ααα,βββ)
for non-trivial models is a well-known problem (Barber and Bishop, 1998). Poorly chosen
prior distribution can result in ELBO not correlating with the predictive performance of
the learned posterior (Trippe and Turner, 2018; Turner and Sahani, 2011).

Bayesian Neural Networks. We consider a neural network FWWW represented as com-
position of L fully-connected layers interleaved with activation functions FWWW = FWWWL

◦
φ ◦ FWWWL−1

. . . φ ◦ FWWW 1
where φ denotes an activation function. We denote a forward

pass with input xxxl through l-th layer as FWWW l
(xxxl) = WWW lxxxl where biases are handled by

expanding the dimension of xxxl. We restrict the attention to Gaussian mean-field pri-
ors p(WWW l|µµµααα,σσσ2ααα) and mean-field approximate posteriors q(WWW l|µµµl,σσσ2l ), see Foong et al.
(2019) for discussion of limitations, independent over layers and use the notation WWW l ∼
N (µµµl,σσσ

2
l ) meaning wl,ij ∼ N (µl,ij , σ

2
l,ij). We adopt the notation WWW = (WWW 1,WWW 2, . . . ,WWW l)

for weights, µµµ = (µµµ1,µµµ2, . . . ,µµµl), σσσ = (σσσ21,σσσ
2
2, . . . ,σσσ

2
L) for variational parameters and µµµααα =

(µµµααα1 ,µµµααα2 , . . . ,µµµαααL), σσσ2ααα = (σσσ2ααα1
,σσσ2ααα1

, . . . ,σσσ2αααL) for prior hyperarameters. Hyperparameter βββ
belongs to an observation model, for instance, the scale of Gaussian noise N (yyy|000,diag[βββ2]).

Local Reparametrization Trick (LRT). The forward pass FWWW l
(xxxl) through a fully-

connected layer with mean-field Gaussian distribution over weights WWW l ∼ N (µµµl,σσσ
2
l ), can be

reparametrized as (Kingma et al., 2015; Tomczak et al., 2020):

FWWW l
(xxxl) = Fµµµl(xxxl) +

√
Fσσσ2

l
(xxxl)� εεεl, εεεl ∼ N (000, III), (3)

where
√

is applied element-wise and the Equation (3) denotes the equality between two ran-
dom variables (LHS and RHS follow the same distribution). We denote the reparametriza-
tion noise as εεε = (εεε1, εεε2, . . . , εεεL) and reparametrization of the network fWWW resulting from
applying Equation (3) to every layer l by gµµµ,σσσ2,εεε. Then we have that Eq(WWW |µµµ,σσσ2)h(fWWW (xxx)) =
Eεεε∼N (000,III)h(gµµµ,σσσ2,εεε(xxx)) for a continuous function h.

Approaches to adjust priors for BNNs. Hyperparameters ααα∗,βββ∗ can be also learned by
optimizing L(λλλ;ααα,βββ) as proxy for marginal log-likelihood since log p(D;ααα,βββ) ≥ L(λλλ;ααα,βββ)
(MacKay, 1999; Wu et al., 2019). The local optima of log p(D;ααα,βββ) and L(λλλ;ααα,βββ) can
significantly vary. This is manifested when a flexible prior distribution p(θθθ|ααα) learned by
optimizing L(λλλ;ααα,βββ) collapses to the approximate posterior q(θθθ|λλλ), resulting in no regular-
ization (Blundell et al., 2015). Laplace approximation assumes log p(D, θθθ|ααα,βββ) is a quadratic
w.r.t. θθθ enabling approximating log p(D|ααα,βββ) in closed form (MacKay, 1992c), which can
be used to compare different hyperparameters ααα,βββ. Hyperparameters ααα,βββ can be also cho-
sen using cross-validation (Farquhar et al., 2020; Tomczak et al., 2018), but this requires
increased computational effort, limiting the practicability of this approach.

2. Methods

First, we discuss the problems with the naive application of self-normalized importance
sampling (SNIS) to estimate the gradient of marginal log-likelihood of data ∇ααα log p(D|ααα,βββ)
for BNNs. We then demonstrate how taking the advantage of local reparametrization of
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the network allows us to mitigate these problems and derive a practical estimator of the
gradient of ∇ααα log p(D|ααα,βββ) given a BNN with mean-field Gaussian prior. Recall that the
gradient ∇ααα log p(D|ααα,βββ) can be derived as (Bornschein and Bengio, 2014; Tucker et al.,
2019):

∇ααα log p(D|ααα,βββ) = Ep(WWW |D,ααα,βββ)∇ααα log p(WWW |ααα). (4)

See Appendix A for similar expression for ∇βββ log p(D|ααα,βββ) and associated derivations. A
naive attempt to apply SNIS to Equation (4) results in estimator:

Î
(
∇ααα log p(D|ααα,βββ)

)
=

S∑
s=1

w(WWW (s))∑S
j=1w(WWW (j))

∇ααα log p(WWW (s)|ααα,βββ), (5)

where w(WWW (s)) = p(D|WWW (s),βββ)p(WWW (s)|ααα)/q(WWW (s)) and weights are proposed from WWW (s) ∼
q(WWW ). There are several challenges associated with applying the estimator given by Equa-
tion (5) making it impractical to use with BNNs. First, sampling multiple weights WWW (s) is
excessively costly even for networks of moderate size as this corresponds to sampling sepa-
rate copies of the network fWWW . Second, RHS of Equation (5) has high variance being a score
gradient estimator (Williams, 1992). Third, a separate objective needs to be optimized to
derive proposal q(WWW |ααα), e.g. by minimizing a divergence between q(WWW ) and p(WWW |D,ααα,βββ).
Lastly, calculating weights w(WWW (s)) requires iterating over whole data set D.

We now demonstrate that reparametrizing the network using LRT leads to the estimator
free of the two first described issues. More precisely, rather than operating in the space of
random weights WWW l, we can reparametrize the network using LRT and operate in the space
of preactivation reparametrization noise εεεl ∼ N(000, III). This reduces the cost of sampling,
as noise εεεl has significantly lower dimensionality than weight matrices WWW l. In addition,
the derived estimator is an improvement over one given by Equation (5) in a similar way
as reparametrizing (Kingma and Welling, 2014; Rezende et al., 2014; Kingma et al., 2015)
improves upon the score function estimator applied to the ELBO (Paisley et al., 2012;
Ranganath et al., 2014; Titsias and Lázaro-Gredilla, 2014), since path derivative usually
exhibits lower variance than score function gradient (Roeder et al., 2017). We subsequently
discuss how to derive better proposal distributions, reduce the cost of computing IS weights,
and derive an approximation using one optimization objective in Appendix A. We now state
Lemma deriving the reparametrized gradient of marginal log-likelihood of data log p(D|ααα,βββ).

Lemma 1 (Marginal log-likelihood gradient for BNN with MF Gaussian prior)
Given a neural network fWWW with layer-wise mean-field Gaussian prior N (WWW l|µµµαααl ,σσσ2αααl) where
ααα,βββ are hyperparameters, the marginal log-likelihood gradient can be computed as:

∇ααα log p(D|ααα,βββ) = Ep(εεε|D,ααα,βββ)
N∑
i=1

∇ααα log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxx),βββ), (6)

where p(εεε|D,ααα,βββ) is a posterior distribution over layer’s preactivations resulting from apply-
ing reparametrization in Equation (3) to layers of a network fWWW . Substituting ∇ααα with ∇βββ in
Equation (6) yields the gradient for hyperparameters of observation model ∇βββ log p(D|ααα,βββ).

Note that Equation (6) still requires sampling from posterior distribution p(εεε|D,ααα,βββ),
where εεε = (εεε1, εεε2, . . . , εεεl) denotes the local reparametrization noise for consecutive lay-
ers FWWW l

. While analyzing the posterior distribution over reparametrization noise might
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be uncommon, it is well-defined: for fixed ααα,βββ and for every εεε we define the likelihood
of data

∏N
i=1 p(yyyi|gµµµααα,σσσ2

ααα,εεε
(xxx),βββ) and hence we can calculate posterior distribution over

reparametrization noise p(εεε|D,ααα,βββ) given prior p(εεε). The gradient in the RHS of Equa-
tion (6) resembles gradients derived for generative models (Bornschein and Bengio, 2014;
Burda et al., 2015; Tucker et al., 2019). However, it is important to note not all derivations
for generative models transfer to BNNs if local reparametrization is desired, as LRT requires
the expression under the expectation to be only a function of layer’s outputs {F(xxxl)}l. For
instance, the expectation Eq(WWW )p(yyy|xxx, fWWW )p(WWW )/q(WWW ) cannot be locally reparametrized due
to the dependency on p(WWW )/q(WWW ). Applying SNIS to Equation (6) by proposing from dis-
tribution q(εεε) gives us the following estimator of ∇ααα log p(D|µµµααα,σσσ2ααα):

Î(∇ααα log p(D|µµµααα,σσσ2ααα)) =
N∑
i=1

S∑
s=1

w(εεε(i,s))∑S
j=1w(εεε(i,j))

∇ααα log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(i,s)(xxxi)), εεε
(i,s) ∼ q(εεε),

(7)
where w(εεε(i,s)) =

∏N
i=1 p(yyyi|gµµµααα,σσσ2

ααα,εεε
(i,s)(xxx),βββ)p(εεε(i,s))/q(εεε(i,s)) are normalized IS weights. We

will employ the estimator of ∇ααα log p(D|µµµααα,σσσ2ααα) in Equation (7) to optimize marginal log-
likelihood of data log p(D|µµµααα,σσσ2ααα) w.r.t. prior means µµµααα and variances σσσ2ααα.

Better proposal distributions. We now focus on deriving better proposal distributions
q(εεε) for estimator in Equation (7). This requires finding a distribution over noise εεε closer to
posterior distribution p(εεε|D,ααα,βββ). We define means and variances for Gaussian distributions
over layer’s preactivations as µµµεεε = (µµµ1,εεε,µµµ2,εεε, . . . ,µµµL,εεε) and σσσ2εεε = (σσσ21,εεε,σσσ

2
2,εεε, . . . ,σσσ

2
L,εεε). We as-

sume factors q(εεεl|µµµl,εεε,σσσ2l,εεε) to be mean-field Gaussian distributions and construct q(εεε|µµµεεε,σσσ2εεε )
by assuming independence between layers q(εεε|µµµεεε,σσσ2εεε ) =

∏L
l q(εεεl|µµµεεεl ,σσσ2εεεl). We learn the ap-

proximate posterior distribution q(εεε|µµµεεε,σσσ2εεε ) by minimizing DKL

(
q(εεε|µµµεεε,σσσ2εεε )||p(εεε|D,µµµααα,σσσ2ααα)

)
leading to ELBO-like expression:

L(µµµεεε,σσσ
2
εεε ) =

N∑
i=1

Eq(εεε|µµµεεε,σσσ2
εεε )

log p(yyyi|gµµµααα ,σσσ2
ααα
,εεε(xxxi))−

L∑
l=1

DKL

(
q(εεεl|µµµεεεl ,σσσ

2
εεεl

)||N (εεεl|000, III)
)
. (8)

The optimal posterior distribution q∗(εεε|µµµεεε,σσσ2εεε ) derived by optimizing the L(µµµεεε,σσσ
2
εεε ) depends

on the prior hyperparameters µµµααα ,σσσ
2
ααα

, so in practice we will optimize L(µµµεεε,σσσ
2
εεε ) by performing

one (or possibly a few) updates while we simultaneously learning µµµααα,σσσ
2
ααα. This setup of

learning jointly learning model parameters µµµααα,σσσ
2
ααα and auxiliary parameters µµµεεε,σσσ

2
εεε resembles

algorithms developed for generative models (Kingma and Welling, 2014; Bornschein and
Bengio, 2014; Burda et al., 2015; Rezende et al., 2014).

Computing weights w(εεε). The cost of calculating weights w(εεε) grows linearly with the
size of data set D. To ease the computational cost of iterating over whole data set D to
calculate w(εεε), we propose to employ the “average” likelihood calculated based on subsample
set of data points, similarly as Li and Turner (2016). While the theoretical properties of
this approximation are not well-studied, it appears to be a sensible heuristic.

Preventing over-fitting. Adjusting hyperparameters by optimizing log p(D|ααα,βββ) (type
II MLE) can be prone to over-fitting. The standard approach to mitigate over-fitting
hyperparameters is to introduce hyperpriors p(ααα) and p(βββ). In addition, for BNNs, the
variances of units σσσ2l can be shared across the layer l, so that σσσ2l = σ2l 1. The gradients of
log hyperprior ∇ααα log p(ααα) and ∇βββ log p(βββ) are then added to the Equation (7).
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3. Experimental demonstration

We will now empirically investigate the differences between learning hyperparameters ααα,βββ
via optimizing log p(D|ααα,βββ) and L(µµµ,σσσ2;µµµααα,σσσ

2
ααα). We demonstrate that relying on fixed

hyperparameters and optimizing ELBO w.r.t. hyperparameters ααα,βββ leads to undercon-
fident and overconfident predictions, respectively. Employing the derived estimator of
∇ααα log p(D|µµµααα,σσσ2ααα) in Equation (7) allows us to mitigate this behavior and leads to ααα yield-
ing better generalization. In our experiments we assume layer-wise Gaussian hyperprior over
shared (within every layer) prior log variances p(log σ2αl) = N (log σ2αl | log[50/(Nin+1)], γ2l ),
where Nin is the size of the layer’s input and we set γ2l = 500.
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Figure 1: Comparison of different approaches to infer prior means, variances and obser-
vation noise for regression with one hidden layer BNN. Prior distribution over
function (top) and posterior learned with VI (bottom).

One dimensional regression. We first consider one dimensional regression where we
attempt to learn function f(x) = (x + 1) sin(2x + 2) + 0.3ε, ε ∼ N (0, 1) after observing 3
data points. We learn a variational posterior for two hidden layer network with 128 hid-
den units, tanh activations and assume Gaussian observation model log p(y|fWWW (x), β) ∝
−(y − fWWW (x))2/2β2 − log β. We use ADAM optimizer (Kingma and Ba, 2014) to opti-
mize L(µµµ,σσσ2;µµµααα,σσσ

2
ααα). We consider three approaches: (a) use fixed value of observation

noise β = 1, zero prior unit means µµµ and fixed variances σ2α = 1/Nin (Neal, 1996), (b)
optimize L(µµµ,σσσ2;µµµααα,σσσ

2
ααα, β) w.r.t. both variational parameters µµµ,σσσ2, and prior hyperpa-

rameters µµµααα,σσσ
2
ααα, β, and (c) learn µµµααα,σσσ

2
ααα, β using marginal log-likelihood gradient given by

Equation (7) and then learn variational posterior q(µµµ,σσσ2) by optimizing L(µµµ,σσσ2;µµµααα,σσσ
2
ααα, β).

We report prior and posterior predictive distribution in Figure 1. First, in Figure 1(a) we
observe that MF-VI with predefined variances of units can severely underfit data if prior vari-
ances of the units are not tuned. This happens when the optimization of L(µµµ,σσσ2;µµµααα,σσσ

2
ααα, β)

is driven by reducing complexity penalty DKL

(
q(θθθ|λλλ)||p(θθθ|ααα)

)
and variational posterior ex-

plains data D by noise. Next, in Figure 1(b) we see that learning prior hyperparameters by
optimizing L(µµµ,σσσ2;µµµααα,σσσ

2
ααα, β) leads to an improved performance, but results in overconfident

predictive distribution. This happens as optimizing prior p(WWW |µµµααα,σσσ2ααα) using Equation (2)
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can set it very close to posterior q(WWW |µµµ,σσσ2), yielding almost no regularization. Lastly, we
see from Figure 1(c) that using the derived marginal log-likelihood gradient results in a prior
explaining the data D with subsequent application of VI yielding reasonable performance.

Vectorized MNIST classification. Next we investigate if adjusting hyperparameters
leads to improved performance of Gaussian MF-VI on a vectorized MNIST classification
task, a standard benchmark for Bayesian deep learning (Blundell et al., 2015). We learn a
two hidden layer network with 400 hidden units and ReLU activations (Nair and Hinton,
2010) and report learning curves as optimization proceeds in Figure 2. We use the same
hyperpriors for all approaches and compare using predefined hyperparameters with learning
them via optimizing ELBO and using the derived marginal log-likelihood gradient.

Overall, we observe similar patterns as in 1D regression experiment. Using predefined
set of hyperparameters yields underfitting with test NLL 0.095 and test error rate 2.49%, as
optimizing ELBO constrains q(WWW |µµµ,σσσ2) to prior distribution incapable of modeling data.
Tuning prior by optimizing ELBO leads to over-fitting (test NLL 0.177 and test error
rate 1.57%), as prior distribution p(WWW |µµµααα,σσσ2ααα) collapse to posterior q(WWW |µµµ,σσσ2) leading to
insufficient regularization. Using marginal log-likelihood gradient given by Equation (7)
optimizes prior p(WWW |µµµααα,σσσ2ααα) directly to fit the data and introduces sufficient regularization
when optimizing ELBO, leading to the best test log likelihood 0.047 and test error rate
1.37%.
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Figure 2: Different approaches to infer prior means and shared variances across layers for
MF-VI on vectorized MNIST classification. Using marginal log-likelihood gradi-
ent given by Equation (7) (red curve) leads to the best predictive performance.

4. Conclusions

We have derived a pragmatic algorithm adjusting hyperparameters of BNNs with mean-field
Gaussian priors by optimizing marginal log-likelihood of data. To this end, we applied local
reparametrization of the network combined with self-normalized importance sampling. The
optimized priors yielded predictive distributions explaining the data and subsequent appli-
cation of VI resulted in posterior distributions with good predictive performance. We hope
our work will catalyze research on benefits of reparametrization and algorithms inferring
hyperparameters for BNNs.
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Appendix A.

We provide derivations of ∇ααα log p(D|ααα,βββ) and ∇βββ log p(D|ααα,βββ) in Equation (6).

∇ααα log p(D|ααα,βββ) =
1

p(D|ααα,βββ)
∇αααp(D|ααα,βββ) (9)

=
1

p(D|ααα,βββ)
∇ααα
∫
p(D|WWW,βββ)p(WWW |ααα)dWWW (10)

=
1

log p(D|ααα,βββ)

∫
∇αααp(WWW |ααα)p(D|WWW,βββ)dWWW (11)

=
1

p(D|ααα,βββ)

∫
p(WWW |ααα)∇ααα log p(WWW |ααα)p(D|WWW,βββ)dWWW (12)

=

∫
p(D|WWW,βββ)p(WWW |ααα)

p(D|ααα,βββ)
∇ααα log p(WWW |ααα)dWWW (13)

= Ep(WWW |D,ααα,βββ)∇ααα log p(WWW |ααα). (14)

∇βββ log p(D|ααα,βββ) =
1

p(D|ααα,βββ)
∇βββp(D|ααα,βββ) (15)

=
1

p(D|ααα,βββ)
∇βββ
∫
p(D|WWW,βββ)p(WWW |ααα)dWWW (16)

=
1

p(D|ααα,βββ)

∫
p(WWW |ααα)∇βββp(D|WWW,βββ)dWWW (17)

=
1

p(D|ααα,βββ)

∫
p(WWW |ααα)p(D|WWW,βββ)∇βββ log p(D|WWW,βββ)dWWW (18)

=

∫
p(D|WWW,βββ)p(WWW |ααα)

p(D|ααα,βββ)
∇βββ log p(D|WWW,βββ) (19)

= Ep(WWW |D,ααα,βββ)∇βββ log p(D|WWW,βββ). (20)

We now present the proof of Lemma 1. The derivation uses the reparametrization of the
network fWWW into gµµµ,σσσ2,εεε together with applying log trick ∇f(x) = f(x)∇ log f(x).

Proof Derivation of Lemma 1.

∇ααα log p(D|µµµααα,σσσ2ααα) = (21)

=
1

p(D|µµµααα,σσσ2ααα)
∇αααp(D|µµµααα,σσσ2ααα) (22)

=
1

p(D|µµµααα,σσσ2ααα)
∇ααα
∫
p(D|WWW,βββ)p(WWW |µµµααα,σσσ2ααα)dWWW (23)

=
1

p(D|µµµααα,σσσ2ααα)
∇ααα
∫ N∏

i=1

p(yyyi|fWWW (xxxi),βββ)p(WWW |µµµααα,σσσ2ααα)dWWW (24)

=
1

p(D|µµµααα,σσσ2ααα)
∇ααα
∫ N∏

i=1

p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)p(εεε)dεεε (25)
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=
1

p(D|µµµααα,σσσ2ααα)

∫
p(εεε)∇ααα

N∏
i=1

p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)dεεε (26)

=
1

p(D|µµµααα,σσσ2ααα)

∫
p(εεε)

N∏
i=1

p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)∇ααα log
N∏
i=1

p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)dεεε (27)

=
1

p(D|µµµααα,σσσ2ααα)

∫
p(εεε)

N∏
i=1

p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)∇ααα
N∑
i=1

log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)dεεε (28)

=

∫
p(εεε)

∏N
i=1 p(yyyi|gµµµααα,σσσ2

ααα,εεε
(xxxi))

p(D|µµµααα,σσσ2ααα)

N∑
i=1

∇ααα log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)dεεε (29)

=

∫
p(εεε)p(D|εεε,µµµααα,σσσ2ααα)

p(D|µµµααα,σσσ2ααα)

N∑
i=1

∇ααα log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ)dεεε (30)

= Ep(εεε|D,µµµααα,σσσ2
ααα)

N∑
i=1

∇ααα log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ) (31)

Following the same derivations for ∇βββ yields

∇βββ log p(D|µµµααα,σσσ2ααα) = Ep(εεε|D,µµµααα,σσσ2
ααα)

N∑
i=1

∇βββ log p(yyyi|gµµµααα,σσσ2
ααα,εεε

(xxxi),βββ), (32)

Approximate scheme using one objective. Approximating weights with uniform dis-
tribution w(εεε(i,s)) = 1

S can be used to formulate the objective that can be used to learn
both µµµεεε,σσσ

2
εεε and µµµααα,σσσ

2
ααα:

L̃1(µµµεεε,σσσ2εεε ,µµµααα,σσσ2ααα) ≈
N∑
i=1

Eεεε′ log p(yyyi|gµµµααα ,σσσ2
ααα
,µµµεεε+σσσεεεεεε′(xxxi))−

L∑
l=1

DKL

(
q(εεεl|µµµεεεl ,σσσ

2
εεεl

)||N (εεεl|000, III)
)

+ log p(ααα,βββ). (33)

11


	Introduction
	Methods
	Experimental demonstration
	Conclusions
	

