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Abstract
We present a high probability complexity bound for a stochastic adaptive regularization method

with cubics, also known as regularized Newton method. The method makes use of stochastic zeroth,
first and second-order oracles that satisfy certain accuracy and reliability assumptions. Such oracles
have been used in the literature by other adaptive stochastic methods, such as trust region and line
search. These oracles capture many settings, such as expected risk minimization, stochastic zeroth
order optimization, and others. In this paper, we give the first high-probability iteration bound for
stochastic cubic regularization and show that just as in the deterministic case, it is superior to other
adaptive methods.

Keywords: nonlinear optimization, stochastic optimization, cubic regularization methods, high probability,
complexity bound, stochastic oracles, random models.

1. Introduction

We consider the unconstrained optimization problem

min
x∈Rn

φ(x),

where the objective function φ is assumed to be sufficiently smooth, but whose value and gradi-
ents are not computable exactly. Instead we assume that we have access to stochastic zeroth, first
and second order oracles that, given x, produce random estimates of φ(x), ∇φ(x) and ∇2φ(x)
respectively. These oracles are as follows.

Stochastic zeroth order oracle (SZO(εf , ν, b)). Given a point x, the oracle computes f(x,Ξ(x)),
a (random) estimate of the function value φ(x). Ξ(x) is a random variable (whose distribution
is defined, given x, εf , ν and b). We assume the absolute value of the estimation error E(x) =
|f(x,Ξ(x))−φ(x)| (we omit the dependence on Ξ for brevity) to be a “one-sided” sub-exponential-
like random variable1 with parameters (ν, b), whose mean is bounded by some constant εf > 0.
Specifically,

EΞ [E(x)] ≤ εf and EΞ [exp {λ(E(x)− E[E(x)])}] ≤ exp

(
λ2ν2

2

)
, ∀λ ∈

[
0,

1

b

]
. (1)

1. This is a weaker requirement than assuming E(x) to be sub-exponential and is sufficient for our purposes.
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We view x as the input to the oracle, f(x,Ξ(x)) as the output and the values (εf , ν, b) as values
intrinsic to the oracle. To simplify notation, we use f(x) instead of f(x,Ξ(x)) in the paper.

Stochastic first order oracle (SFO(κg). Given a point x and constants M1 > 0, δ1 ∈ [0, 1
2),

the oracle computes g(x,Ξ1(x)), a (random) estimate of the gradient∇φ(x), such that

P(‖∇φ(x)− g(x,Ξ1(x))‖ ≤ κgM1) ≥ 1− δ1.

The distribution of Ξ1(x) is defined, given x, M1, δ1 and κg. Here we view x, M1 and δ1 as inputs
input to the oracle, while κg is intrinsic to the oracle. Similarly we define

Stochastic second order oracle (SSO(κH)). Given a point x and constants M2 > 0, δ2 ∈
[0, 1

2), the oracle computes H(x,Ξ2(x)), a (random) estimate of the Hessian∇2φ(x), such that

P(‖∇2φ(x)−H(x,Ξ2(x))‖ ≤ κHM2) ≥ 1− δ2.
2

The distribution of Ξ2(x) is defined, given x, M2, δ2 and κH . Here we view x, M2 and δ2 as inputs
to the oracle, while κH is intrinsic to the oracle.

Similar oracles have been introduced and used recently in [17] and [8] for the analysis of high
probability iteration complexity bounds for a stochastic adaptive step search (line search) method
and a stochastic trust region method, respectively. Specific examples and settings under which the
assumptions are satisfied can be found in [17] and [8].

Related work. In [17], the authors derived high probability iteration complexity results for a step
search method that relies on stochastic, possibly biased zeroth and first order oracles. That paper
extends results in [11], [6] and [21] in two key ways - allowing the use of possibly biased oracles
and the derivation of high probability complexity bound.

On the other hand, [8] provides a similar extension to biased oracles for high probability iteration
complexity for stochastic trust region method, compared to previous work in [1], [16], and [7, 15]

Adaptive regularization with cubics (ARC) method is known to have optimal complexity for
finding ε stationary points of deterministic smooth functions [10, 13]. In that sense the method
is superior to deterministic line search and trust region methods. In [11] the expected complexity
analysis is derived for the case of stochastic first and second order oracles, but under the assumption
that the values φ(x) can be computed exactly. Moreover, the definitions of the first and second order
oracles imposed stronger conditions on those oracles than we require here.

There are many other variants of adaptive cubic regularization methods under various assump-
tions and requirements on the function value, gradient, and Hessian estimates. For example, in
[2, 4, 5], bounds on expected complexity are provided under the assumption that function estimates
are either exact or have a deterministically bounded error while the gradient and Hessian estimates
are probabilistic. In [3, 14, 19, 20, 22, 23], the function, gradient, and Hessian estimates are as-
sumed to have deterministically bounded errors whose magnitude can be adaptively changed in the
course of the algorithm.

Our contributions. In this work we provide the first analysis of a stochastic ARC method (SARC)
that allows 1. stochastic function estimates that can have arbitrarily large errors, and 2. stochastic
gradient and Hessian approximations whose accuracy is bounded by an adaptive quantity with suf-
ficiently high probability, but otherwise can be arbitrarily bad. To the best of our knowledge, our

2. The norm on the matrix is the operator norm.
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Algorithm 1: Stochastic Adaptive Regularization with Cubics (SARC)

Initialization: Choose parameters γ ∈ (0, 1), θ ∈ (0, 1), δ ∈ [0, 1
2) σmin > 0 and κθ ∈ (0, 1).

Pick initial x0, κg > 0, κH > 0, ε̄ ≥ 0, ε′f > 0 and σ0 > σmin.

Repeat for k = 0, 1, . . .

1. Compute a model trial step sk: Compute gradient and Hessian estimations gk, Hk and a
trial step sk that satisfies (6) and (7) via Algorithm 2, with parameters κθ, ε̄, δ, σk at xk.

2. Check sufficient decrease: Let x+
k = xk + sk. Compute function value estimations

f(xk) = f(xk, ξk) and f(x+
k ) = f(x+

k , ξ
+
k ) using the SZO, and set

ρk =
f(xk)− f(x+

k ) + 2ε′f

f(xk)−mk(x
+
k )

, (2)

where
mk(x

+
k ) = f(xk) + sTk gk +

1

2
sTkHksk +

σk
3
‖sk‖3. (3)

3. Update the iterate: Set

xk+1 =

{
x+
k if ρk ≥ θ [k successful]
xk otherwise [k unsuccessful]

(4)

4. Update the regularization parameter σk: Set

σk+1 =

{
max {γσk, σmin} if ρk ≥ θ
1
γσk otherwise.

(5)

work is the first to derive a complexity bound in this setting with an overwhelmingly high probabil-
ity. We show that our variant of stochastic ARC, while more general than those in prior literature,
still maintains its optimal iteration complexity.

The analysis presented here extends the stochastic settings and high probability results in [17]
and [8] to the framework in [11]. However, this extension is far from trivial, as it requires careful
modification of most of the elements of the existing analysis. We point out these modifications in
the appropriate places in the paper.

For space reasons, all proofs are in the Appendix.

2. Adaptive regularization method with cubics (ARC) with probabilistic
second-order models

The Stochastic Adaptive Regularization with Cubics (SARC) algorithm is presented below as Al-
gorithm 1, with its subroutine presented as Algorithm 2.

Remark 1 Algorithm 2 will always terminate in a finite number of iterations, if ε̄ > 0. In particular,
M1 takes at most log

(
M
αk ε̄

)
+ 1 iterations to be less or equal to the required precision lower bound

3
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Algorithm 2: Subroutine for computing sk

Input: Oracles SFO(κg) and SSO(κH ), xk, constants κθ, ε̄, δ, σk, M1,0 = M2,0 = M > 0.

Repeat for i = 0, 1, . . .

1. Generate the model mk,i: Generate gk,i = g(xk, ξ
1
k,i) and Hk,i = H(xk, ξ

2
k,i) using

SFO(κg) and SSO(κH ) with (M1,i,
δ
2) and (M2,i,

δ
2) as inputs respectively. Form the model

mk,i(xk + s) = sT gk,i +
1

2
sTHk,is+

σk
3
‖s‖3.

2. Compute sk,i: Compute an approximate minimizer sk,i of mk,i that satisfies (6) and (7)
with parameter κθ, using for example algorithms in [9, 12, 14].

(sk,i)
T gk,i + (sk,i)

THk,isk,i + σk‖sk,i‖3 = 0 and (sk,i)
THk,isk,i + σk‖sk,i‖3 ≥ 0 (6)

and
‖∇mk,i(xk + sk,i)‖ ≤ κθ min {1, ‖sk,i‖} ‖gk,i‖, (7)

3a. Successful step: If M1,i ≤ max
{
‖sk,i‖2 , ε̄

σk

}
and M2,i ≤ max

{
‖sk,i‖ , ε̄

σk‖sk,i‖

}
, end

procedure and return gk,i, Hk,i and sk,i.

3b. Unsuccessful step: Otherwise, set M1,i+1 ← max{M1,i

2 , ε̄
σk
},

M2,i+1 ← max{M2,i

2 ,
√

ε̄
σk
} and go to step 1.

αk ε̄, and M2 takes at most log
(

M√
αk ε̄

)
+ 1 iterations to be less or equal to the required precision

lower bound
√
αk ε̄. Note

√
αk ε̄ is the lower bound for max

{
‖sk,i‖ , ε̄

σk‖sk,i‖

}
for any ‖sk,i‖.

Remark 2 Step 2 in Algorithm 2 can be replaced by the simple requirement that sk,i is an exact
global optimizer of mk,i, which is stronger than the requirement listed in Step 2.

3. Elements of stochastic analysis

Algorithms 1 and 2 together generates a random stochastic process. Let ik be the total number
of iterations the loop in Algorithm 2 executes during iteration k of Algorithm 1. Let Mk denote{

Ξk,Ξ
+
k ,Ξ

1
k,ik

,Ξ2
k,ik

}
, whose realizations are

{
ξk, ξ

+
k , ξ

1
k,ik

, ξ2
k,ik

}
, where Ξk,Ξ

+
k dictate the ran-

domness of the function estimations at xk and x+
k .

A stochastic process
{(
Gk,Hk, Sk, f(Xk,Ξk), f(X+

k ,Ξ
+
k ), Xk, Ak = 1

Σk

)}
is generated by

the algorithm, with realization
{(
gk, Hk, sk, f(xk, ξk), f(x+

k , ξ
+
k ), xk, αk = 1

σk

)}
. It is adapted to

{Fk : k ≥ 0}, where Fk = σ(M0,M1, . . . ,Mk). At iteration k, Xk denotes the (random) iterate,
Gk is the gradient apprpximation, Hk is the Hessian approximation, Ak = 1

Σk
is the inverse of the
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model regularization parameter. Sk is the step computed by the Algorithm 2. f(Xk,Ξk) and f(X+
k ,Ξ

+
k )

are the function estimates at the current point and the candidate point, respectively. Note that con-
ditioned on Xk and M1,ik , Gk is dictated by Ξ1

k,ik
. Similarly, conditioned on Xk and M2,ik , Hk is

dictated by Ξ2
k,ik

. The function estimates are dictated by Ξk,Ξ
+
k in the zeroth order oracle.

We further define Ek := |f(Xk,Ξk) − φ(Xk)| and E+
k := |f(X+

k ,Ξ
+
k ) − φ(X+

k )|, with re-
alizations ek and e+

k . Let Θk := 1 {iteration k is successful}. The random variable Θk is clearly
measurable with respect to the filtration Fk.

By the construction of Algorithm 2, the stochastic model mk at iteration k is “sufficiently accu-
rate” with probability at least 1− δ. Specifically, we have the following lemma.

Lemma 3 By construction of Algorithm 2, given iterate xk at iteration k, the indicator variable

Jk
(
Ξ1
k(xk),Ξ

2
k(xk)

)
= 1

{
‖∇φ(xk)− g(xk,Ξ

1
k(xk))‖ ≤ κg max

{
‖Sk‖2, αk ε̄

}
, and

‖(∇2φ(xk)−H(xk,Ξ
2
k(xk)))Sk‖ ≤ κH max

{
‖Sk‖2, αk ε̄

}}
satisfies the following submartingale-like condition

P(Jk = 1 | Fk−1) ≥ 1− δ.

A key concept that will be used in the analysis is the concept of a true iteration.

Definition 4 (True iteration) We say that iteration k is true if

‖∇φ(xk)− gk‖ ≤ κg max
{
‖sk‖2, αk ε̄

}
, ‖(∇2φ(xk)−Hk)sk‖ ≤ κH max

{
‖sk‖2, αk ε̄

}
(8)

and |f(xk)− φ(xk)|+ |f(x+
k )− φ(x+

k )| ≤ 2ε′f , (9)

and is false otherwise. Ik is the indicator random variable that iteration k is true.

The stopping time of the algorithm is defined as follows.

Definition 5 (Stopping time)
For ε > 0, Tε := min

{
k :
∥∥∇φ(X+

k )
∥∥ ≤ ε} + 1, the iteration complexity of the algorithm for

reaching a ε-stationary point. We will refer to Tε as the stopping time of the algorithm.

It is easy to see that Tε is a stopping time of the stochastic process with respect to Fk. Given a level
of accuracy ε, we aim to derive a bound on the iterations complexity Tε with high probability. In par-
ticular, we will show the number of iterations until the stopping time Tε is a sub-exponential random
variable itself. The random variable Zk is defined to measure the progress towards optimality.

Definition 6 (Measure of Progress) For each k ≥ 0, let Zk ≥ 0 be a random variable measuring
the progress of the algorithm at step k: Zk = φ(Xk)− φ∗, where φ∗ is a lower bound of φ.

We make the following assumptions on the nonconvex objective φ and the algorithm input ε′f .

Assumption 1 φ is bounded below by a constant φ∗, φ ∈ C2(Rn) and has globally L-Lipschitz
continuous gradient and LH -Lipschitz continuous Hessian.

Assumption 2 ε′f ≥ εf .

5



STOCHASTIC ADAPTIVE REGULARIZATION METHOD WITH CUBICS:A HIGH PROBABILITY COMPLEXITY BOUND

Since the stochastic oracles are noisy and possibly biased, the algorithm cannot be expected
to converge to a stationary point. Instead, it can only converge to an ε-stationary point where ε is
dictated by ε̄ and ε′f as follows.

Inequality 1 (Lower bound on the size of convergence neighborhood)

ε > max

1 + κs
σmin

1− κθ
ε̄,

(
4ε′f

κh(p− 1
2)

) 2
3

 ,

where κh = θ
6(1 − κθ)

3/2 σmin

(σc+κs)3/2
, σc =

2κg+κH+L+LH
1− 1

3
θ

, κs = 2κg + κH + L + LH , and

p = 1− δ − exp
(
−min

{
u2

2ν2
, u2b

})
, where u = infx

{
ε′f − E[E(x)]

}
.

The stochastic process generated by the algorithm has the following properties.

Proposition 7 (Properties of the stochastic process) Let Assumptions 1 and 2 hold, and suppose
ε satisfies Inequality 1. For ᾱ = 1

σc
> 0 and the following non-decreasing function h : R→ R:

h(α) =
θ

6
(1− κθ)3/2 σmin

( 1
α + κs)3/2

ε3/2,

the following holds for all k < Tε − 1:

(i) h(ᾱ) >
4ε′f
p− 1

2

. (The lower bound of potential progress an iteration with step size ᾱ can make.)

(ii) P(Ik = 1 | Fk−1) ≥ p for all k. (Conditioning on the past, the next iteration is true with
probability at least p.)

(iii) If IkΘk = 1 then Zk+1 ≤ Zk − h(Ak) + 4ε′f . (True, successful iterations make progress.)

(iv) If Ak ≤ ᾱ and Ik = 1 then Θk = 1. (Small and true iterations are also successful.)

(v) Zk+1 ≤ Zk + 2ε′f + Ek + E+
k for all k. (The “damage” at each iteration is bounded.)

4. High probability iteration complexity

We can now use essentially the same analysis as in [18] to obtain a high probability iteration bound.
The only difference remains is the failure event is now t + 1 < Tε instead of t < Tε with the new
stopping time.

Theorem 8 Suppose Assumptions 1 and 2 hold for Algorithm 1, and the Inequality 1 on ε is
satisfied. Then we have the following bound on the iteration complexity: For any s ≥ 0, p̂ ∈(

1
2 +

4ε′f+s

κhε3/2
, p
)

, and t ≥ R

p̂− 1
2
−

4ε′
f
+s

κhε
3/2

, we have

P (Tε ≤ t+ 1) ≥ 1− exp

(
−(p− p̂)2

2p2
t

)
− exp

(
−min

{
s2t

8ν2
,
st

4b

})
,

where R = φ(x0)−φ∗
κhε3/2

+ max
{
− lnα0+lnσc

2 ln γ , 0
}

, with κh, p, σc and κs as defined previously.
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Remark 9

1. Theorem 8 essentially shows the iteration complexity of the algorithm is O(ε−3/2) with over-
whelmingly high probability, which matches its deterministic counterpart.

2. If ε̄ = 0, the stopping time can be also defined as:

Tε = min {k : ‖∇φ(Xk)‖ ≤ ε} .

3. By [17], with an appropriately chosen γ with respect to p, αk = 1
σk

will remain sufficiently
large with high probability. As a result, the accuracy requirements for the first and second
order oracles will remain reasonable to satisfy with high probability.
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Appendix A. Proof of Lemma 3

Proof We show P(Jk = 1 | Fk−1) ≥ 1− δ by showing

P
(
‖∇φ(xk)− g(xk,Ξ

1
k(xk))‖ ≤ κg max

{
‖Sk‖2, αk ε̄

}
| Fk−1

)
≥ 1− δ

2

and

P
(
‖(∇2φ(xk)−H(xk,Ξ

2
k(xk)))Sk‖ ≤ κH max

{
‖Sk‖2, αk ε̄

}
| Fk−1

)
≥ 1− δ

2
.

By definition of the oracles and construction of Algorithm 2 we have:

P
(
‖∇φ(xk)− g(xk,Ξ

1
k(xk))‖ ≤ κg max

{
‖Sk‖2, αk ε̄

})
≥ 1− δ

2
, (10)

and

P
(
‖(∇2φ(xk)−H(xk,Ξ

2
k(xk)))‖ ≤ κH max

{
‖Sk‖ ,

αk ε̄

‖Sk‖

})
≥ 1− δ

2
. (11)

Inequality (11) implies

P
(
‖(∇2φ(xk)−H(xk,Ξ

2
k(xk)))Sk‖ ≤ κH max

{
‖Sk‖2, αk ε̄

})
≥ 1− δ

2
. (12)

Inequality (10) and (12) together gives

P(Jk = 1) ≥ 1− δ.

Using the fact that conditioning on a set of xk’s, (Ξ1
k(xk),Ξ

2
k(xk))’s are independent of each

other, we obtain
P(Jk = 1 | Fk−1) = P(Jk = 1) ≥ 1− δ.

Appendix B. Lemmas and the proof of Proposition 7

The following lemmas provide useful properties of the stochastic process generated by Algorithm
1, which is essential for the convergence analysis.

Lemma 10 Consider any realization of Algorithm 1, on each iteration k we have

f(xk)−mk(x
+
k ) ≥ 1

6
σk‖sk‖3. (13)

On every successful iteration k, we have

f(xk)− f(xk+1) ≥ θ

6
σk‖sk‖3 − 2ε′f , (14)

or
φ(xk)− φ(xk+1) ≥ θ

6
σk‖sk‖3 − ek − e+

k − 2ε′f . (15)

9
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Proof The proof is similar to the proof of Lemma 3.3 in [12]. Clearly, (14) follows from (13) and
the sufficient decrease condition (2)-(4):

f(xk)− f(x+
k ) + 2ε′f

f(xk)−mk(x
+
k )

≥ θ,

and (15) follows from the definition of ek and e+
k .

It remains to prove (13). Combining the first condition on step sk in (6), with the model expres-
sion for s = sk, we can write

f(xk)−mk(x
+
k ) =

1

2
(sk)

THksk +
2

3
σk‖sk‖3.

The second condition on sk in (6) implies (sk)
THksk ≥ −σk‖sk‖3. Together with the above

equation, we obtain (13).

Lemma 11 Let Assumption 1 hold. For any realization of Algorithm 1, if iteration k is true (i.e.,
Ik = 1), and if

σk ≥ σc =
2κg + κH + L+ LH

1− 1
3θ

, (16)

then iteration k is either successful or produces sk such that ‖sk‖2 < ε̄
σk

.

Proof
Clearly, if ρk − 1 ≥ 0, then k is successful by definition. Let us consider the case when ρk < 1;

then if 1− ρk ≤ 1− θ, k is successful. We have from (2), that

1− ρk =
f(x+

k )−mk(x
+
k )− 2ε′f

f(xk)−mk(x
+
k )

.

Notice that:

f(x+
k )−mk(x

+
k )− 2ε′f

= f(x+
k )− (f(xk) + sTk gk +

1

2
sTkHksk +

σk
3
‖sk‖3)− 2ε′f

≤ φ(x+
k )− (φ(xk) + sTk gk +

1

2
sTkHksk +

σk
3
‖sk‖3)− 2ε′f + ek + e+

k

≤ φ(x+
k )− φ(xk)− sTk gk −

1

2
sTkHksk −

σk
3
‖sk‖3.

The second last inequality is by definition of ek and e+
k , and the last inequality is by definition of

the iteration being true.
Taylor expansion and triangle inequalities give, for some ξk ∈ [xk, x

+
k ],

φ(x+
k )− φ(xk)− sTk gk −

1
2s
T
kHksk − σk

3 ‖sk‖
3

= [∇φ(xk)− gk]T sk + 1
2(sk)

T [∇2φ(ξk)−∇2φ(xk)]sk + 1
2(sk)

T [∇2φ(xk)−Hk]sk − 1
3σk‖sk‖

3

≤ ‖∇φ(xk)− gk‖ · ‖sk‖+ 1
2‖∇

2φ(ξk)−∇2φ(xk)‖ · ‖sk‖2 + 1
2‖(∇

2φ(xk)−Hk)sk‖ · ‖sk‖ − 1
3σk‖sk‖

3

≤
(
κg + κH

2

)
max

{
ε̄
σk
‖sk‖, ‖sk‖3

}
+
(
LH
2 −

1
3σk

)
‖sk‖3

10



STOCHASTIC ADAPTIVE REGULARIZATION METHOD WITH CUBICS:A HIGH PROBABILITY COMPLEXITY BOUND

where the last inequality follows from the fact that the iteration is true and hence (8) holds: ‖∇φ(xk)−
gk‖ ≤ κg max

{
‖sk‖2, ε̄

σk

}
and ‖(∇2φ(xk)−Hk)sk‖ ≤ κH max

{
‖sk‖2, ε̄

σk

}
, and from As-

sumption 1. So as long as ‖sk‖2 ≥ ε̄
σk

, we have

f(x+
k )−mk(x

+
k )−2ε′f ≤

(
κg +

κH
2

+
LH
2
− 1

3
σk

)
‖sk‖3 = (6κg+3LH +3κH−2σk)

1

6
‖sk‖3,

which together with (13) give that 1− ρk ≤ 1− θ when σk satisfies (20).

Note that for the above lemma to hold σc does not have to depend on L. However, in what
follows we will need another condition on σc, which will involve L; hence for simplicity of notation
we introduced σc above to satisfy all necessary bounds.

Lemma 12 Let Assumption 1 hold. Consider any realization of Algorithm 1. On each true iteration
k we have

max

{
‖sk‖2,

ε̄

σk

}
≥ 1− κθ
σk + κs

‖∇φ(x+
k )‖, (17)

where κs = 2κg + κH + L+ LH .

Proof
Triangle inequality, equality ∇mk(xk + s) = gk + Hks + σk‖s‖s and condition (7) on sk

together give

‖∇φ(x+
k )‖ ≤ ‖∇φ(x+

k )−∇mk(x
+
k )‖+ ‖∇mk(x

+
k )‖

≤ ‖∇φ(x+
k )− gk −Hksk‖+ σk‖sk‖2 + κθ min {1, ‖sk‖} ‖gk‖.

(18)

Recalling Taylor expansion of∇φ(x+
k ):

∇φ(x+
k ) = ∇φ(xk) +

∫ 1

0
∇2φ(xk + tsk)skdt,

and applying triangle inequality, again, we have

‖∇φ(x+
k )− gk −Hksk‖ ≤ ‖∇φ(xk)− gk‖+∥∥∥∫ 1

0 [∇2φ(xk + tsk)−∇2φ(xk)]skdt
∥∥∥+ ‖∇2φ(xk)sk −Hksk‖

≤ (κg + κH) max
{

ε̄
σk
, ‖sk‖2

}
+ 1

2LH‖sk‖
2,

where to get the second inequality, we also used (8) and Assumption 1.
We can bound ‖gk‖ as follows

‖gk‖ ≤ ‖gk−∇φ(xk)‖+‖∇φ(xk)−∇φ(x+
k )‖+‖∇φ(x+

k )‖ ≤ κg max

{
ε̄

σk
, ‖sk‖2

}
+L‖sk‖+‖∇φ(x+

k )‖.

11
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Thus finally, we can bound all the terms on the right hand side of (18) in terms of ‖sk‖2 and using
the fact that κθ ∈ (0, 1) we can write

(1− κθ)‖∇φ(x+
k )‖ ≤ (2κg + κH) max

{
ε̄

σk
, ‖sk‖2

}
+ (L+ LH + σk)‖sk‖2

≤ (2κg + κH) max

{
ε̄

σk
, ‖sk‖2

}
+ (L+ LH + σk) max

{
ε̄

σk
, ‖sk‖2

}
,

which is equivalent to (17).

Lemma 13 Let Assumption 1 hold. Consider any realization of Algorithm 1. Let ε̄ satisfy

ε̄ ≤ 1− κθ
1 + κs

σmin

ε. (19)

Then on each true iteration k, with k < Tε − 1 we have

‖sk‖2 ≥
ε̄

σk
.

Proof
If iteration k is true and ‖∇φ(x+

k )‖ > ε (since k < Tε − 1) then by Lemma 12:

max

{
‖sk‖2,

ε̄

σk

}
≥ 1− κθ
σk + κs

‖∇φ(x+
k )‖ > 1− κθ

σk + κs
ε,

but since
ε̄ ≤ 1− κθ

1 + κs
σmin

ε,

so
ε̄

σk
≤ 1− κθ
σk + κsσk

σmin

ε ≤ 1− κθ
σk + κs

ε.

Hence, we must have

‖sk‖2 >
1− κθ
σk + κs

ε.

Thus, ‖sk‖2 ≥ ε̄
σk

.

Corollary 14 Let Assumption 1 hold. Consider any realization of Algorithm 1. Let ε̄ satisfy (19),
if k < Tε − 1 and iteration k is true (i.e., Ik = 1), then if

σk ≥ σc =
2κg + κH + L+ LH

1− 1
3θ

, (20)

the iteration k is successful.

Proof
The result is straightforward by applying Lemma 11 and 13.

12
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Lemma 15 Let Assumption 1 hold. Consider any realization of Algorithm 1. Let ε̄ satisfy (19) and
k < Tε − 1, then on each true and successful iteration k, we have

φ(xk)− φ(xk+1) ≥ θ

6
(1− κθ)3/2 σk

(σk + κs)3/2
‖∇φ(xk+1)‖3/2 − ek − e+

k − 2ε′f (21)

≥ θ

6
(1− κθ)3/2 σmin

(σk + κs)3/2
‖∇φ(xk+1)‖3/2 − ek − e+

k − 2ε′f (22)

≥
κf

(max {σk, σc})3/2
‖∇φ(xk+1)‖3/2 − ek − e+

k − 2ε′f , (23)

where κf := θ
12
√

2
(1− κθ)3/2σmin and σc is defined in (20).

Proof
Combining Lemma 12, 13, inequality (15) from Lemma 10 and the definition of successful

iteration in Algorithm 1 we have, for all true and successful iterations k,

φ(xk)− φ(xk+1) ≥ θ

6
σk‖sk‖3 − ek − e+

k − 2ε′f (24)

≥ θ

6
(1− κθ)3/2 σk

(σk + κs)3/2
‖∇φ(xk+1)‖3/2 − ek − e+

k − 2ε′f . (25)

Using that σk ≥ σmin and that κs ≤ σc, the result follows.

Hence, if k < Tε − 1, and ε̄ satisfies (19), any true and successful iteration that has σk ≤ σc
provides O(ε3/2) reduction in φ(x).

B.1. Proof of Proposition 7

Proof
Part (i) follows easily from the definitions of ᾱ, h(α) and inequality 1.
Part (ii) has exactly the same proof as that of Proposition 1 part (ii) in [18].
Part(iii) follows directly from Lemma 15.
Part(iv) follows directly from Corollary 14.
Part (v) has exactly the same proof as that of Proposition 1 part (v) in [18].
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