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Abstract

Recent studies empirically indicate that language models (LMs) encode rich world1

knowledge beyond mere semantics, attracting significant attention across various2

fields. However, in the recommendation domain, it remains uncertain whether3

LMs implicitly encode user preference information. Contrary to the prevailing4

understanding that LMs and traditional recommender models learn two distinct rep-5

resentation spaces due to a huge gap in language and behavior modeling objectives,6

this work rethinks such understanding and explores extracting a recommendation7

space directly from the language representation space. Surprisingly, our findings8

demonstrate that item representations, when linearly mapped from advanced LM9

representations, yield superior recommendation performance. This outcome sug-10

gests a homomorphic relationship between the language representation space and11

an effective recommendation space, implying that collaborative signals may indeed12

be encoded within advanced LMs. Motivated by these findings, we propose a13

simple yet effective collaborative filtering (CF) model named AlphaRec, which14

utilizes language representations of item textual metadata (e.g., titles) instead of tra-15

ditional ID-based embeddings. Specifically, AlphaRec is comprised of three main16

components: a multilayer perceptron (MLP), graph convolution, and contrastive17

learning (CL) loss function, making it extremely easy to implement and train. Our18

empirical results show that AlphaRec outperforms leading ID-based CF models19

on multiple datasets, marking the first instance of such a recommender with text20

embeddings achieving this level of performance. Moreover, AlphaRec introduces21

a new text-based CF paradigm with several desirable advantages: being easy to22

implement, lightweight, rapid convergence, superior zero-shot recommendation23

abilities in new domains, and being aware of user intention.24

1 Introduction25

Language models (LMs) have achieved great success across various domains [3–7], prompting a26

critical question about the knowledge encoded within their representation spaces. Recent studies27

empirically find that LMs extend beyond semantic understanding to encode comprehensive world28

knowledge about various domains, including game states [8], lexical attributes [9], and even concepts29

of space and time [10] through language modeling. However, in the domain of recommendation30

where the integration of LMs is attracting widespread interest [11–15], it remains unclear whether31

LMs inherently encode relevant information on user preferences and behaviors. One possible reason32

is the significant difference between the objectives of language modeling for LMs and user behavior33

modeling for recommenders [16–19].34

Currently, one prevailing understanding holds that general LMs and traditional recommenders35

encode two distinct representation spaces: the language space and the recommendation space36

(i.e., user and item representation space), each offering potential enhancements to the other for37
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(a) Linearly mapping language representations into the recommendation space

(b) Performance comparison (c) The t-SNE representations of movies and user intention in two spaces.
Figure 1: Linearly mapping item titles in language representation space into recommendation space
yields superior recommendation performance on Movies & TV [1] dataset. (1a) The framework
of linear mapping. (1b) The recommendation performance comparison between leading CF rec-
ommenders and linear mapping. (1c) The t-SNE [2] visualizations of movie representations, with
colored lines linking identical movies or user intention across language space (left) and linearly
projected recommendation space (right).

recommendation tasks [17, 20]. On the one hand, when using LMs as recommenders, aligning the38

language space with the recommendation space could significantly improve the performance of39

LM-based recommendation [14, 21–23]. Various alignment strategies are proposed, including fine-40

tuning LMs with recommendation data [15, 16, 24–26], incorporating embeddings from traditional41

recommenders as a new modality of LMs [17, 20, 27], and extending the vocabulary of LMs with item42

tokens [18, 19, 28–31]. On the other hand, when using LMs as the enhancer, traditional recommenders43

greatly benefit from from leveraging text representations [32–45], semantic and reasoning information44

[46–49], and generated user behaviors [50, 51]. Despite these efforts, explicit explorations of the45

relationship between language and recommendation spaces remain largely unexplored.46

In this work, we rethink the prevailing understanding and explore whether LMs inherently encode47

user preferences through language modeling. Specifically, we test the possibility of directly deriving a48

recommendation space from the language representation space, assessing whether the representations49

of item textual metadata (e.g., titles) obtained from LMs can independently achieve satisfactory50

recommendation performance. Positive results would imply that user behavioral patterns, such as51

collaborative signals (i.e., user preference similarities between items) [52, 53], may be implicitly52

encoded by LMs. To test this hypothesis, we employ linear mapping to project the language53

representations of item titles into a recommendation space (see Figure 1a). Our observations include:54

• Surprisingly, this simple linear mapping yields high-quality item representations, which achieve55

exceptional recommendation performance (see Figure 1b and experimental results in Section 2).56

• The clustering of items is generally preserved from the language space to the recommendation57

space (see Figure 1c). For example, movies with the theme of superheroes and monsters are58

gathering in both language and recommendation spaces.59

• Interestingly, the linear mapping effectively reveals preference similarities that may be implicit60

or even obscure in the language space. For instance, while certain movies, such as those of61

homosexual movies (illustrated in Figure 1c), show dispersed representations in the language space,62

their projections through linear mapping tend to cluster together, reflecting their genres affiliation.63

These findings indicate a homomorphic relationship between the language representation space of64

LMs and an effective item representation space for recommendation. Motivated by this insight, we65

propose a new text-based recommendation paradigm for general collaborative filtering (CF), which66

utilizes the pre-trained language representations of item titles as the item input and the average67

historical interactions’ representations as the user input. Different from traditional ID-based CF68

models [54, 55, 52] that heavily rely on trainable user and item IDs, this paradigm solely uses69
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pre-trained LM embeddings and completely abandons ID-based embeddings. In this paper, to fully70

explore the potential of advanced language representations, we adopt a simple model architecture71

consisting of a two-layer MLP with graph convolution, and the popular contrastive loss, InfoNCE72

[56–58], as the objective function. This model is named AlphaRec for its originality and a series of73

good properties.74

Benefiting from paradigm shifts from ID-based embeddings to language representations, AlphaRec75

presents three desirable advantages. First, AlphaRec is notable for its simplicity, lightweight, rapid76

convergence, and exceptional recommendation performance (see Section 4.1). We empirically77

demonstrate that, for the first time, such a simple model with embeddings from pre-trained LMs can78

outperform leading CF models on multiple datasets. This finding strongly supports the possibility79

for developing language-representation-based recommender systems. Second, AlphaRec exhibits80

a strong zero-shot recommendation capability across untrained domains (see Section 4.2). By81

co-training on three Amazon datasets (Books, Movies & TV, and Video Games) [1], AlphaRec82

can achieve performance comparable to the fully-trained LightGCN on entirely different platforms83

(MovieLens-1M [59] and BookCrossing [60]), and even exceed LightGCN in a completely new84

domain (Amazon Industrial), without additional training on these target datasets. This capability85

underscores AlphaRec’s potential to develop more general recommenders. Third, AlphaRec is user-86

friendly, offering a new research paradigm that enhances recommendation by leveraging language-87

based user feedback (see Section 4.3). Endowed with its inherent semantic comprehension of88

language representations, AlphaRec can refine recommendations based on user intentions expressed89

in natural language, enabling traditional CF recommenders to evolve into intention-aware systems90

through a straightforward paradigm shift.91

2 Uncovering Collaborative Signals in LMs via Linear Mapping92

In this section, we aim to explore whether LMs implicitly encode collaborative signals in their93

representation spaces. We first formulate the personalized item recommendation task, then detail the94

linear mapping and its empirical findings. Empirical evidence indicates a homomorphic relationship95

between the representation spaces of advanced LMs and effective recommendation spaces.96

Task formulation. Personalized item recommendation with implicit feedback aims to select items97

i ∈ I that best match user u’s preferences based on binary interaction data Y = [yui], where yui = 198

(yui = 0) indicates user u ∈ U has (has not) interacted with item i [58]. The primary objective of99

recommendation is to model the user-item interaction matrix Y using a scoring function ŷ : U ×I →100

R, where ŷui measures u’s preference for i. The scoring function ŷui = s ◦ ϕθ(xu,xi) comprises101

three key components: pre-existing features xu and xi for user u and item i, a representation learning102

module ϕθ(·, ·) parametrized by θ, and a similarity function s(·, ·). The representation learning103

module ϕθ transfers u and i into representations eu and ei for similarity matching s(eu, ei), and the104

Top-K highest scoring items are recommended to u.105

Different recommenders employ various pre-existing features xu,xi and representation learning106

architecture ϕθ(·, ·). Traditional ID-based recommenders use one-hot vectors as pre-existing features107

xu,xi. The choice of ID-based representation learning architecture ϕθ can vary widely, including108

ID-based embedding matrix [54], multilayer perception [61], graph neural network [52, 62], and109

variational autoencoder [63]. The commonly used similarity function is cosine similarity [64, 57]110

s(eu, ei) =
eu

⊤ei

∥eu∥·∥ei∥ , which we adopt in this paper.111

Linear mapping. Building on the extensive knowledge encoded by LMs, we explore utilizing LMs112

as feature extractors, leveraging the language representations of item titles as initial item feature xi.113

For initial user feature xu, we use the average of the title representations of historically interacted114

items, defined as xu = 1
|Nu|

∑
i∈Nu

xi, where Nu is the set of items user u has interacted with.115

Detailed procedures for obtaining these language-based features are provided in Appendix B.2.116

We select a trainable linear mapping matrix W as the representation learning module ϕθ, setting117

eu = Wxu and ei = Wxi. To learn the linear mapping W , we adopt the InfoNCE loss [56] as the118

objective function, which has demonstrated state-of-the-art performance in both ID-based [65, 66]119

and LM-enhanced collaborative filtering (CF) recommendations [47] (refer to Equation (4) for the120

formula). The overall framework of the linear mapping process is illustrated in Figure 1a. We directly121

use linearly mapped representations eu and ei to calculate the user-item similarity s(eu, ei) for122

recommendation. High performance on the test set would suggest that collaborative signals (i.e., user123
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Table 1: The recommendation performance of linear mapping comparing with classical CF baselines.
Books Movies & TV Video Games

Recall NDCG HR Recall NDCG HR Recall NDCG HR

MF (Rendle et al., 2012) 0.0437 0.0391 0.2476 0.0568 0.0519 0.3377 0.0323 0.0195 0.0864
MultVAE (Liang et al., 2018) 0.0722 0.0597 0.3418 0.0853 0.0776 0.4434 0.0908 0.0531 0.2211
LightGCN (He et al., 2021) 0.0723 0.0608 0.3489 0.0849 0.0747 0.4397 0.1007 0.0590 0.2281

Linear Mapping
BERT 0.0226 0.0194 0.1240 0.0415 0.0399 0.2362 0.0524 0.0309 0.1245
RoBERTa 0.0247 0.0209 0.1262 0.0406 0.0387 0.2277 0.0578 0.0338 0.1339
Llama2-7B 0.0662 0.0559 0.3176 0.1027 0.0955 0.4952 0.1249 0.0729 0.2746
Mistral-7B 0.0650 0.0544 0.3124 0.1039 0.0963 0.4994 0.1270 0.0687 0.2428
text-embedding-ada-v2 0.0515 0.0436 0.2570 0.0926 0.0874 0.4563 0.1176 0.0683 0.2579
text-embeddings-3-large 0.0735 0.0608 0.3355 0.1109 0.1023 0.5200 0.1367 0.0793 0.2928
SFR-Embedding-Mistral 0.0738 0.0610 0.3371 0.1152 0.1065 0.5327 0.1370 0.0787 0.2927

preference similarities between items) have been implicitly encoded in the language representation124

space [67, 10].125

Empirical findings. We compare the recommendation performance of the linear mapping method126

with three classical CF baselines, matrix factorization (MF) [54, 68], MultVAE [63], and LightGCN127

[55] (see more details about baselines in Appendix C.2.1). We report three widely used metrics Hit128

Ratio (HR@K), Recall@K, Normalized Discounted Cumulative Gain (NDCG@K)) to evaluate129

the effectiveness of linear mapping, with K set by default at 20. We evaluate a wide range of LMs,130

including BERT-style models [4, 5], decoder-only language models [6, 69], and LM-based text131

embedding models [70, 71] (see Appendix B.1 for details about used LMs).132

Table 1 reports the recommendation performance yielded by the linear mapping on three Amazon133

datasets [1], comparing with classic CF baselines. We observe that the performance of most advanced134

text embedding models (e.g., text-embeddings-3-large [70] and SFR-Embedding-Mistral [71]) exceed135

LightGCN on all datasets. We further empirically prove that these improvements do not merely136

come from the better feature encoding ability (refer to Appendix B.3). These findings indicate137

the homomorphic relationship between the language representation space of advanced LMs and an138

effective item representation space for recommendation. Moreover, with the advances in LMs, the139

performance of item representation linearly mapped from LMs exhibits a rising trend, gradually140

surpassing traditional ID-based CF models. Representations from early BERT-style models (e.g.,141

BERT [4] and RoBERTa [5]) only show weaker or equal capabilities compared with MF, while the142

performance of decoder-only LMs (e.g., Llama-7B [6] ) start to match MultVAE and LightGCN.143

3 AlphaRec144

This finding of space homomorphic relationship sheds light on building advanced CF models purely145

based on LM representations without introducing ID-based embeddings. To be specific, we try to146

incorporate only three simple components (i.e., nonlinear projection [61], graph convolution [55]147

and contrastive learning (CL) objectives [56]), to develop a simple yet effective CF model called148

AlphaRec. It is important to highlight that our approach is centered on exploring the potential of149

LM representations for CF by integrating essential components from leading CF models, rather than150

deliberately inventing new CF mechanisms. We present the model structure of AlphaRec in Section151

3.1, and compare AlphaRec with two popular recommendation paradigms in Section 3.2.152

3.1 Method153

We present how AlphaRec is designed and trained. Generally, the representation learning architecture154

ϕθ(·, ·) of AlphaRec is simple, which only contains a two-layer MLP and the basic graph convolution155

operation, with language representations as the input features xu,xi. The cosine similarity is used as156

the similarity function s(·, ·), and the contrastive loss InfoNCE [56, 57] is adopted for optimization.157

For simplicity, we consistently adopt text-embeddings-3-large [70] as the language representation158

model, for its excellent language understanding and representation capabilities.159

Nonlinear projection. In AlphaRec, we substitute the linear mapping matrix delineated in Section 2160

with a nonlinear MLP. This conversion from linear to nonlinear is non-trivial, for the paradigm shift161

from ID-based embeddings to LM representations, since nonlinear transformation helps in excavating162

more comprehensive collaborative signals from the LM representation space with rich semantics (see163
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discussions about this in Appendix C.2.3) [61]. Specifically, we project the language representation164

xi of the item title to an item space for recommendation with the two-layer MLP, and obtain user165

representations as the average of historical items:166

e
(0)
i = W2 LeakyReLU (W1xi + b1) + b2, e(0)u =

1

|Nu|
∑
i∈Nu

e
(0)
i . (1)

Graph convolution. Graph neural networks (GNNs) have shown superior effectiveness for recom-167

mendation [52, 55], owing to the natural user-item graph structure in recommender systems [72].168

In AlphaRec, we employ a minimal graph convolution operation [55] to capture more complicated169

collaborative signals from high-order connectivity [55, 73, 74, 72] as follows:170

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i , e

(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u . (2)

The information of connected neighbors is aggregated with a symmetric normalization term171
1√

|Nu|
√

|Ni|
. Here Nu (Ni) denotes the historical item (user) set that user u (item i) has inter-172

acted with. The features e(0)u and e
(0)
i projected from the MLP are used as the input of the first layer.173

After propagating for K layers, the final representation of a user (item) is obtained as the average of174

features from each layer:175

eu =
1

K + 1

K∑
k=0

e(k)u , ei =
1

K + 1

K∑
k=0

e
(k)
i . (3)

Contrastive learning objective. The introduction of contrasting learning is another key element for176

the success of leading CF models. Recent research suggests that the contrast learning objective, rather177

than data augmentation, plays a more significant role in improving recommendation performance178

[66, 75, 65]. Therefore, we simply use the contrast learning object InfoNCE [56] as the loss function179

without any additional data augmentation on the graph [76, 57]. With cosine similarity as the180

similarity function s(eu, ei) =
eu

⊤ei

∥eu∥·∥ei∥ , the InfoNCE loss [56, 76, 77] is written as:181

LInfoNCE = −
∑

(u,i)∈O+

log
exp (s(u, i)/τ)

exp (s(u, i)/τ) +
∑

j∈Su
exp (s(u, j)/τ)

. (4)

Here, τ is a hyperparameter called temperature [78], O+ = {(u, i)|yui = 1} denoting the observed182

interactions between users U and items I. And Su is a randomly sampled subset of negative items183

that user u does not adopt.184

3.2 Discussion of Recommendation Paradigms185

We compare the language-representation-based AlphaRec with two popular recommendation186

paradigms in Table 2 (see more discussion about related works in Appendix A).187

ID-based recommendation (ID-Rec) [52, 54]. In the traditional ID-based recommendation paradigm,188

users and items are represented by ID-based learnable embeddings derived from a large number of189

user interactions. While ID-Rec exhibits excellent recommendation capabilities with low training and190

inference costs [62, 76], it also has two significant drawbacks. Firstly, these ID-based embeddings191

learned in specific domains are difficult to transfer to new domains without overlapping users192

and items [37], thereby hindering zero-shot recommendation capabilities. Additionally, there is a193

substantial gap between ID-Rec and natural languages [34], which makes ID-based recommenders194

hard to incorporate language-based user intentions and further refine recommendations accordingly.195

LM-based recommendation (LM-Rec) [15, 16, 24]. Benefitting from the extensive world knowledge196

and powerful reasoning capabilities of LMs [7, 79], the LM-based recommendation paradigm has197

gained widespread attention [11, 13]. LM-Rec tends to convert user interaction history into text198

prompts as input for LMs, utilizing pre-trained or fine-tuned LMs in a text generation pattern to199

recommend items. LM-Rec demonstrates zero-shot and few-shot abilities and can easily understand200

language-based user intentions. However, LM-Rec faces significant challenges. Firstly, the LM-based201

model architecture leads to huge training and inference costs, with real-world deployment difficulties.202
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Table 2: Comparison of recommendation paradigms
Recommendation Paradigms Training Cost Zero-shot Ability Intention-aware Ability

ID-based Low % %

LLM-based High " "

Language-representation-based Low " "

Additionally, limited by the text generation paradigm, LM-based models tend to perform candidate203

selection [17] or generate a single next item [24]. It remains difficult for LM-Rec to comprehensively204

rank the entire item corpus or recommend multiple items that align with user interests.205

Language-representation-based recommendation. We argue that AlphaRec follows a new CF206

paradigm, which we term the language-representation-based paradigm. This paradigm replaces207

the ID-based embeddings in ID-Rec with representations from pre-trained LMs, employing feature208

encoders to map LM representations directly into the recommendation space. Few early studies lie in209

this paradigm, including using BERT-style LMs to learn universal sequence representations [37, 44],210

or adopting the same model architecture as ID-Rec with simple input features replacement [34, 35].211

These early explorations, which are mostly based on BERT-style LMs, are usually only applicable in212

certain specific scenarios, such as the transductive setting with the help of ID-based embeddings [37].213

This phenomenon is consistent with our previous findings in Section 2, indicating that BERT-style214

LMs may fail to effectively encode collaborative signals. We point out that AlphaRec is the first215

recommender in the language-representation-based paradigm to surpass the traditional ID-based216

paradigm on multiple tasks, faithfully demonstrating the effectiveness and potential of this paradigm.217

4 Experiments218

In this section, we aim to explore the effectiveness of AlphaRec. Specifically, we are trying to answer219

the following research questions:220

• RQ1: How does AlphaRec perform compared with leading ID-based CF methods?221

• RQ2: Can AlphaRec learn general item representations, and achieve good zero-shot recommenda-222

tion performance on entirely new datasets?223

• RQ3: Can AlphaRec capture user intention described in natural language and adjust the recom-224

mendation results accordingly?225

4.1 General Recommendation Performance (RQ1)226

Motivation. We aim to explore whether the language-representation-based recommendation paradigm227

can outperform the ID-Rec paradigm. An excellent performance of AlphaRec would shed light on228

the research line of building representation-based recommenders in the future.229

Baselines. We only consider ID-based baselines in this section. We ignore LM-based methods due to230

two practical difficulties: the huge inference cost on datasets with millions of interactions and the231

task limitation of candidate selection or next item prediction. In addition to classic baselines (i.e., MF,232

MultVAE, and LightGCN) introduced in section 2, we consider two categories of leading ID-based233

CF baselines: CL-based CF methods: SGL [80], BC Loss [76], XSimGCL [66] and LM-enhanced234

methods: KAR [48], RLMRec [47]. See more details about baselines in Appendix C.2.1.235

Results. Table 3 presents the performance of AlphaRec compared with leading CF baselines. The236

best-performing methods are bold, while the second-best methods are underlined. Figure 2a and237

Figure 2b report the training efficiency and ablation results. We observe that:238

• AlphaRec consistently outperforms leading CF baselines by a large margin across all metrics239

on all datasets. AlphaRec shows an improvement ranging from 6.79% to 9.75% on Recall@20240

compared to the best baseline RLMRec [47]. We further conduct the ablation study to explore the241

reason for its success (see more ablation results in Appendix C.2.2). As shown in Figure 2b, each242

component in AlphaRec contributes positively. Specifically, the performance degradation caused by243

replacing the MLP with a linear weight matrix (w/o MLP) indicates that nonlinear transformations244

can further extract the implicit collaborative signals encoded in the LM representation space.245
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Table 3: The performance comparison with ID-based CF baselines. The improvement achieved by
AlphaRec is significant (p-value << 0.05).

Books Movies & TV Video Games
Recall NDCG HR Recall NDCG HR Recall NDCG HR

MF (Rendle et al., 2012) 0.0437 0.0391 0.2476 0.0568 0.0519 0.3377 0.0323 0.0195 0.0864
MultVAE (Liang et al., 2018) 0.0722 0.0597 0.3418 0.0853 0.0776 0.4434 0.0908 0.0531 0.2211
LightGCN (He et al., 2021) 0.0723 0.0608 0.3489 0.0849 0.0747 0.4397 0.1007 0.0590 0.2281

SGL (Wu et al., 2021) 0.0789 0.0657 0.3734 0.0916 0.0838 0.4680 0.1089 0.0634 0.2449
BC Loss (Zhang et al., 2022) 0.0915 0.0779 0.4045 0.1039 0.0943 0.5037 0.1145 0.0668 0.2561
XSimGCL (Yu et al., 2024) 0.0879 0.0745 0.3918 0.1057 0.0984 0.5128 0.1138 0.0662 0.2550

KAR (Xi et al., 2023) 0.0852 0.0734 0.3834 0.1084 0.1001 0.5134 0.1181 0.0693 0.2571
RLMRec (Ren et al., 2024) 0.0928 0.0774 0.4092 0.1119 0.1013 0.5301 0.1384 0.0809 0.2997

AlphaRec 0.0991* 0.0828* 0.4185* 0.1221* 0.1144* 0.5587* 0.1519* 0.0894* 0.3207*
Imp.% over the best baseline 6.79% 5.34% 2.27% 9.12% 10.75% 5.40% 9.75% 10.51% 7.01%

(a) Training efficiency comparison (b) Ablation study on Books
Figure 2: (2a) The bar charts show the number of epochs needed for each model to converge.
AlphaRec tends to exhibit an extremely fast convergence speed. (2b) The effect of each component
in AlphaRec on Books dataset.

Moreover, the performance drop from replacing InfoNCE loss [57] with BPR loss [68] (w/o CL)246

and removing the graph convolution (w/o GCN) suggests that explicitly modeling the collaborative247

relationships through the loss function and model architecture can further enhance recommendation248

performance. These findings suggest that, by carefully designing the model to extract collaborative249

signals, the language-representation-based paradigm can surpass the ID-Rec paradigm.250

• The incorporation of semantic LM representations into traditional ID-based CF methods can251

lead to significant performance improvements. We note that two LM-enhanced CF methods,252

KAR and RLMRec, both show improvements over CL-based CF methods. Nevertheless, the com-253

bination of ID-based embeddings and LM representations in these methods does not yield higher254

results than purely language-representation-based AlphaRec. We attribute this phenomenon to the255

fact that the performance contribution of these methods mainly comes from the LM representations,256

which is consistent with the previous findings [34, 44].257

• AlphaRec exhibits fast convergence speed. We find that the convergence speed of AlphaRec is258

comparable with, or even surpasses, CL-based methods with data augmentation (e.g., SGL [80]259

and XSimGCL [66]). Meanwhile, methods based solely on graph convolution (LightGCN [55]) or260

CL objective (BC Loss [76]) show relatively slow convergence speed, indicating that introducing261

these modules may not lead to convergence speed improvement. Therefore, we attribute the fast262

convergence speed of AlphaRec to the homomorphic relationship between the LM representation263

space and a good recommendation space, so only minor adjustments to the LM representations are264

needed for recommendation.265

4.2 Zero-shot Recommendation Performance on Entirely New Datasets (RQ2)266

Motivation. We aim to explore whether AlphaRec has learned general item representations [37],267

which enables it to perform well on entirely new datasets without any user and item overlap.268

Task and datasets. In zero-shot recommendation [38], there is not any item or user overlap between269

the training set and test set [38, 33], which is different from the research line of cross-domain270

recommendation in ID-Rec [81]. We jointly train AlphaRec on three source datasets (i.e., Books,271

Movies & TV, and Video Games), while testing it on three completely new target datasets (i.e.,272
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Table 4: The zero-shot recommendation performance comparison on entirely new datasets. The
improvement achieved by AlphaRec is significant (p-value << 0.05).

Industrial MovieLens-1M Book Crossing
Recall NDCG HR Recall NDCG HR Recall NDCG HR

fu
ll MF (Rendle et al., 2012) 0.0344 0.0225 0.0521 0.1855 0.3765 0.9634 0.0316 0.0317 0.2382

MultVAE (Liang et al., 2018) 0.0751 0.0459 0.1125 0.2039 0.3741 0.9740 0.0736 0.0634 0.3716
LightGCN (He et al., 2021) 0.0785 0.0533 0.1078 0.2019 0.4017 0.9715 0.0630 0.0588 0.3475

ze
ro

-s
ho

t Random 0.0148 0.0061 0.0248 0.0068 0.0185 0.2611 0.0039 0.0036 0.0443
Pop 0.0216 0.0087 0.0396 0.0253 0.0679 0.5439 0.0119 0.0101 0.1157
ZESRec (Ding et al., 2021) 0.0326 0.0272 0.0628 0.0274 0.0787 0.5786 0.0155 0.0143 0.1347
UniSRec (Hou et al., 2022) 0.0453 0.0350 0.0863 0.0578 0.1412 0.7135 0.0396 0.0332 0.2454
AlphaRec 0.0913* 0.0573 0.1277* 0.1486* 0.3215* 0.9296* 0.0660* 0.0545* 0.3381*
Imp.% over the best zero-shot baseline 157.09% 127.69% 30.29% 66.67% 64.16% 37.78% 101.55% 63.71% 47.97%

Movielens-1M [59], Book Crossing [60], and Industrial [1]) without further training on these new273

datasets. (see more details about how we train AlphaRec on multiple datasets in Appendix C.3.1).274

Baselines. Due to the lack of zero-shot recommenders in the field of general recommendation, we275

slightly modify two zero-shot methods in the sequential recommendation [82], ZESRec [37] and276

UniSRec [37], as baselines. We also incorporate two strategy-based CF methods, Random and Pop277

(see more details about these baselines in Appendix C.3.2).278

Results. Table 4 presents the zero-shot recommendation performance comparison on entirely new279

datasets. The best-performing methods are bold and starred, while the second-best methods are280

underlined. We observe that:281

• AlphaRec demonstrates strong zero-shot recommendation capabilities, comparable to or even282

surpassing the fully trained LightGCN. On datasets from completely different platforms (e.g.,283

MovieLens-1M and Book Crossing), AlphaRec is comparable with the fully trained LightGCN.284

On the same Amazon platform dataset, Industrial, AlphaRec even surpasses LightGCN, which we285

attribute to the possibility that AlphaRec implicitly learns unique user behavioral patterns on the286

Amazon platform [1]. Conversely, ZESRec and UniSRec exhibit a marked performance decrement287

compared with AlphaRec. We attribute this phenomenon to two aspects. On the one hand, BERT-288

style LMs [4, 5] used in these works may not have effectively encoded collaborative signals, which289

is consistent with our findings in Section 2. On the other hand, components designed for the290

next item prediction task in sequential recommendation [83] may not be suitable for capturing the291

general preferences of users in CF scenarios.292

• The zero-shot recommendation capability of AlphaRec generally benefits from an increased293

amount of training data, without harming the performance on source datasets. As illustrated294

in Figure 8, the zero-shot performance of AlphaRec, when trained on a mixed dataset, is generally295

superior to training on one single dataset [37]. Additionally, we also note that training data with296

themes similar to the target domain contributes more to the zero-shot performance. For instance, the297

zero-shot capability on MovieLens-1M may primarily stem from Movies & TV. Furthermore, we298

discover that AlphaRec, when trained jointly on multiple datasets, hardly experiences a performance299

decline on each source dataset. These findings further point to the general recommendation300

capability of a single pre-trained AlphaRec across multiple datasets. The above findings also offer301

a potential research path to achieve general recommendation capabilities, by incorporating more302

training data with more themes. See more details about these results in Appendix C.3.3.303

4.3 User Intention Capture Performance (RQ3)304

Motivation. We aim to investigate whether a straightforward paradigm shift enables pre-trained305

AlphaRec to perceive text-based user intentions and refine recommendations.306

Task and datasets. We test the user intention capture ability of AlphaRec on MovieLens-1M and307

Video Games. In the test set, only one target item remains for each user [84], with one intention308

query generated by ChatGPT [85, 40] (see the details about how to generate and check these intention309

queries in Appendix C.4.1). In the training stage, we follow the same procedure as illustrated in310

Section 2 to train AlphaRec. In the inference stage, we obtain the LM representation eIntentionu311

for each user intention query and combine it with the original user representation to get a new user312

representation as ẽ(0)u = (1−α)e
(0)
u +αeIntentionu [84]. This new user representation is sent into the313

freezed AlphaRec for recommendation. We report a relatively small K = 5 for all metrics to better314

reflect the intention capture accuracy.315

8



Table 5: The performance comparison in user intention capture.
MovieLens-1M Video Games

HR@5 NDCG@5 HR@5 NDCG@5

TEM (Bi et al., 2020) 0.2738 0.1973 0.2212 0.1425
AlphaRec (w/o Intention) 0.0793 0.0498 0.0663 0.0438
AlphaRec (w Intention) 0.4704* 0.3738* 0.2569* 0.1862*

(a) Case study of user intention capture (b) Effect of α
Figure 3: User intention capture experiments on MovieLens-1M. (3a) AlphaRec refines the recom-
mendations according to language-based user intention. (3b) The effect of user intention strength α.

User intention capture results. Table 5 represents the user intention capture experiment results,316

compared with the baseline TEM [86]. Clearly, the introduction of user intention (w Intention)317

significantly refines the recommendations of the pre-trained AlphaRec (w/o Intention). Moreover,318

AlphaRec outperforms the baseline model TEM by a large margin, even without additional training319

on search tasks. We further conduct a case study on MovieLens-1M to demonstrate how AlphaRec320

captures the user (see more case study results in Appendix C.4.3). As shown in Figure 3a, AlphaRec321

accurately captures the hidden user intention for “Godfather”, while keeping most of the recommen-322

dation results unchanged. This indicates that AlphaRec captures the user intention and historical323

interests simultaneously.324

Effect of the intention strength α. By controlling the value of α, AlphaRec can provide better325

recommendation results, with a balance between user historical interests and user intent capture.326

Figure 3b depicts the effect of α. Initially, as α increases, the recommendation performance rises327

accordingly, indicating that incorporating user intention enables AlphaRec to provide better rec-328

ommendation results. However, as the α approaches 1, the recommendation performance starts to329

decrease, which suggests that the user historical interests learned by AlphaRec also play a vital role.330

The similar effect of α on Video Games is discussed in Appendix C.4.4.331

5 Limitations332

There are several limitations not addressed in this paper. On the one hand, although we have demon-333

strated the excellence of AlphaRec for multiple tasks on various offline datasets, the effectiveness of334

online employment remains unclear. On the other hand, although we have successfully explored the335

potential of language-representation-based recommenders by incorporating essential components in336

leading CF models, we do not elaboratively focus on designing new components for CF models.337

6 Conclusion338

In this paper, we explored what knowledge about recommendations has been encoded in the LM339

representation space. Specifically, we found that the advanced LMs representation space exhibits340

a homomorphic relationship with an effective recommendation space. Based on this finding, we341

developed a simple yet effective CF model called AlphaRec, which exhibits good recommendation342

performance with zero-shot recommendation and user intent capture ability. We pointed out that343

AlphaRec follows a new recommendation paradigm, language-representation-based recommendation,344

which uses language representations from LMs to represent users and items and completely abandons345

ID-based embeddings. We believed that AlphaRec is an important stepping stone towards building346

general recommenders in the future.1347

1Thc broader impact of AlphaRec will be detailed in Appendix E
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A Related Works636

Representations in LMs. The impressive capabilities demonstrated by LMs across various tasks637

raise a wide concern about what they have learned in the representation space. An important and638

effective approach for interpreting and analyzing representations of LMs is linear probing [67, 87].639

The main idea of linear probing is simple: training linear classifiers to predict some specific attributes640

or concepts (e.g., lexical structure [9] ) from the representations in the hidden layers of LMs. A high641

probing result (e.g., classification accuracy on the out-of-sample test set) tends to imply relevant642

information has been implicitly encoded in the representation space of LMs, although this does643

not imply LMs directly use these representations [67, 10]. Recent studies empirically demonstrate644

that concepts such as color [88], game states [8]. and geographic position are encoded in LMs.645

Furthermore, these concepts may even be linearly encoded in the representation space of LMs [8, 89].646

Collaborative filtering. Collaborative filtering (CF) [90] is an advanced technique in modern647

recommender systems. The prevailing CF methods tend to adopt an ID-based paradigm, where users648

and items are typically represented as one-hot vectors, with an embedding table used for lookup [54].649

Usually, these embedding parameters are learned by optimizing specific loss functions to reconstruct650

the history interaction pattern [68]. Recent advances in CF mainly benefit from two aspects, graph651

convolution [72] and contrastive learning [90]. These CF models exhibit superior recommendation652

performance by conducting the embedding propagation [52, 55] and applying contrastive learning653

objectives [80, 62, 66]. However, although effective, these methods are still limited, due to the654

ID-based paradigm. Since one-hot vectors contain no feature information beyond being identifiers, it655

is challenging to transfer pre-trained ID embeddings to other domains [37] or to leverage leading656

techniques from computer vision (CV) and natural language processing (NLP) [34].657

LMs for recommendation. The remarkable language understanding and reasoning ability shown by658

LMs has attracted extensive attention in the field of recommendation. The application of LMs in rec-659

ommendation can be categorized into three main approaches: LM-enhanced recommendation, LM as660

the modality encoder, and LLM-based recommendation. The first research direction, LLM-enhanced661

recommendation, focuses on empowering traditional recommenders with the semantic representations662

from LMs [48, 47, 46, 49, 91, 92]. Specifically, these methods introduce representations from LMs as663

additional features for traditional ID-based recommenders, to capture complicated user preferences.664

The second research line lies in adopting the LM as the text modality encoder, which is also known665

as a kind of modality-based recommendation (MoRec) [34, 35]. These methods tend to train the666

LM as the text modality encoder together with the traditional recommender. In previous studies,667

BERT-style LMs are widely used as the text modality encoder. The third research line, LLM-based668

recommendation, directly uses LLMs as the recommender and recommends items in a text generation669

paradigm. Early attempts focus on adopting in-context learning (ICL) [93] and prompting pre-trained670

LLMs [94–97]. However, such naive methods tend to yield poor performance compared to traditional671

models. Therefore, recent studies concentrate on fine-tuning LLMs on recommendation-related cor-672

pus [16, 15, 26, 25, 29] and align the LLMs with the representations from traditional recommenders673

as the additional modality [17, 20, 27, 98].674

B Linear Mapping675

B.1 Brief of Used LMs676

We briefly introduce the LMs we use for linear mapping in Section 2.677

• BERT [4] is an encoder-only language model based on the transformer architecture [3], pre-trained678

on text corpus with unsupervised tasks. BERT adopts bidirectional self-attention heads to learn679

bidirectional representations.680

• RoBERTa [5] is an enhanced version of BERT. RoBERTa preserves the architecture of BERT but681

improves it by training with more data and large batches, adopting dynamic masking, and removing682

the next sentence prediction objective.683

• Llama2-7B [6] is an open-source decoder-only LLM with 7 billion parameters. Llama2 adopts684

grouped-query attention, with longer context length and larger size of the pre-training corpus685

compared with Llama-7B [99].686
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Table 6: Linear mapping performance of randomly shuffled item representations
Books Movies & TV Video Games

Recall NDCG HR Recall NDCG HR Recall NDCG HR

BERT 0.0226 0.0194 0.1240 0.0415 0.0399 0.2362 0.0524 0.0309 0.1245
text-embeddings-3-large (Random) 0.0200 0.0197 0.1316 0.0559 0.0528 0.3204 0.0562 0.0328 0.1351
text-embeddings-3-large 0.0735 0.0608 0.3355 0.1109 0.1023 0.5200 0.1367 0.0793 0.2928

Table 7: Dataset statistics.
Books Movies & TV Video Games Industrial MovieLens-1M Book Crossing

#Users 7,176 14,382 40,834 15,141 6,040 6,273
#Items 10,728 1,000 14,344 5,163 3,043 5,335
#Interactions 1,304,453 129,748 390,013 82,578 995,492 253,057
Density 0.0169 0.0090 0.0701 0.0010 0.0542 0.0076

• Mistral-7B [69] is an open-source pre-trained decoder-only LLM with 7 billion parameters. Mistral687

7B leverages grouped-query attention, coupled with sliding window attention for faster and lower688

cost inference.689

• text-embedding-ada-v2 & text-embeddings-3-large [70] are leading text embedding models690

released by OpenAI. These models are built upon decoder-only GPT models, pre-trained on691

unsupervised data at scale with contrastive learning objectives.692

• SFR-Embedding-Mistral [71] is a decoder-based text embedding model built upon the open-693

source LLM Mixtral-7B [69]. SFR-Embedding-Mistral introduces task-homogeneous batching and694

computes contrastive loss on “hard negatives”, which brings a better performance than the vanilla695

Mixtral-7B model.696

B.2 Extracting Representations from LMs697

We present how to extract representations from LMs. For encoder-based LMs (e.g., BERT [4]698

and RoBERTa [5]), we use the output representation corresponding to the [CLS] token [40]. For699

decoder-based models (e.g., Llama-7B [6, 69], Mistral-7B, and SFR-Embedding-Mistral [71]),700

we use the representation in the last transformer block [3], corresponding to the last input token701

[10, 100, 70]. Especially, for the commercial closed-source model (e.g., text-embedding-ada-v2 and702

text-embeddings-3-large 2 [70]), we directly call the API interface to obtain representations.703

B.3 Empirical Findings704

We find more evidence about representations in leading LM encode collaborative signals beyond705

better feature encoding ability. We randomly shuffle item representations and conduct the same linear706

mapping experiment. As illustrated in Table 6, randomly shuffled representations, text-embeddings-707

3-large (Random), yield similar performance with BERT, lagging largely behind the vanilla linear708

mapping method. These results indicate that BERT may only serve as a good feature encoder, while709

the latest LM may further encode collaborative signals beyond naive feature encoding.710

C Experiments711

C.1 Datasets712

We incorporate six datasets in this paper, including four datasets from the Amazon platform 3 [1]713

(i.e., Books, Movies & TV, Video Games, and Industrial), and two datasets from other platforms (i.e.,714

MovieLens-1M and Book Crossing). Table 7 reports the data statistics of each dataset.715

We divide the history interaction of each user into training, validation, and testing sets with a ratio716

of 4:3:3, and remove users with less than 20 interactions following previous studies [50]. We also717

remove items from the testing and validation sets that do not appear in the training set, to address the718

cold start problem.719

2https://platform.openai.com/docs/guides/embeddings
3www.amazon.com
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Item Title Examples

Books: Dismissed with Prejudice: A J.P. Beaumont Novel; Die for Love: A Jacqueline
Kirby Novel of Suspense; The Cloud; Memories Before and After the Sound of Music: An
Autobiography; Harry Potter and the Sorcerer’s Stone;
Movies & TV: Batman Begins; Fantastic Four; Max Headroom: The Complete Series;
Madagascar; Land of the Dead; King Kong;
Video Games: Fighting Force; Tomb Raider II; Tomb Raider; WWF Warzone; Kartia: The
Word of Fate; Snowboard Kids; Command & amp; Conquer: Tiberian Sun - PC; Final Fantasy
VII; Grim Fandango - PC; Half-Life - PC;
MovieLens-1M: Basquiat (1996); Tin Cup (1996); Godfather, The (1972); Supercop (1992);
Manny & Lo (1996); Bound (1996); Carpool (1996);
Book Crossing: Prague : A Novel; Chocolate Jesus; Wie Barney es sieht; To Kill a
Mockingbird; Sturmzeit. Roman; A Soldier of the Great War; Pride and Prejudice (Dover
Thrift Editions);
Industrial: Jurassic Perisphinctes Ammonites from France; FS9140: Spinosaurus - Dinosaur
Tooth 20-30mm; FS9410: USA Eocene, Fossil Fish (Knightia alt), A-grade; Delta 50-857
Charcoal Filter for 50-868; Hitachi RP30SA 7-1/2 Gallon Stainless Steel Industrial Shop
Vacuum (Discontinued by Manufacturer); Makita 632002-4 14-Inch Cut-Off Wheels (5-Pack)
(Discontinued by Manufacturer); PORTER-CABLE 740001801 4 1/2-Inch by 10yd 180 Grit
Adhesive-Backed Sanding Roll;

Figure 4: Example of item titles.

In this paper, we only use the item titles as the text description. Figure 4 gives some item title720

examples from different datasets.721

C.2 General Recommendation722

C.2.1 Baselines723

We incorporate a series of CF models as our baselines for general recommendation. These models724

are classified as classical CF methods (MF, MultVAE, and LightGCN), CL-based CF methods (SGL,725

BC Loss, and XSimGCL), and LM-enhanced CF methods (KAR, RLMRec). For these LM-enhanced726

CF methods, we adopt the leading CF method XSimGCL as the backbone.727

• MF [54, 68] is the most basic CF model. It denotes users and items with ID-based embeddings and728

conducts matrix factorization with Bayesian personalized ranking (BPR) loss.729

• MultVAE [63] is a traditional CF model based on the variational autoencoder (VAE). It regards the730

item recommendation as a generative process from a multinomial distribution and uses variational731

inference to estimate parameters. We adopt the same model structure as suggested in the paper:732

600 → 200 → 600.733

• LightGCN [55] is a light graph convolution network tailored for the recommendation, which734

deletes redundant feature transformation and activation function in NGCF [52].735

• SGL [80] introduces graph contrastive learning into recommender models for the first time. By736

employing node or edge dropout to generate augmented graph views and conduct contrastive737

learning between two views, SGL achieves better performance than LightGCN.738

• BC Loss [76] introduces a robust and model-agnostic contrastive loss, handling various data biases739

in recommendation, especially for popularity bias.740

• XSimGCL [66] directly generates augmented views by adding noise into the inner layer of741

LightGCN without graph augmentation. The simplicity of XSimGCL leads to a faster convergence742

speed and better performance.743

• KAR [48] enhances recommender models by integrating knowledge from large language models744

(LLMs). It generates textual descriptions of users and items and combine the LM representations745

with traditional recommenders using a hybrid-expert adaptor.746
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(a) Ablation study on Movies & TV (b) Ablation study on Video Games

Figure 5: Ablation study

(a) LM representations (b) AlphaRec (w/o MLP) (c) AlphaRec

Figure 6: The t-SNE visualization of representations on Movies & TV. (6a) The item representations
in the LM space. (6b) The item representations obtained by replacing the MLP with a linear mapping
matrix in AlphaRec. (6c) The item representations obtained from AlphaRec.

• RLMRec [47] aligns semantic representations of users and items with the representations in CF747

models through a contrastive loss, as an additional loss trained together with the CF model. The748

fusion of semantic information and collaborative information brings performance improvement.749

C.2.2 Ablation Study750

We conduct the same ablation study as introduced in Section 4.1 on Movies & TV and Video Games751

datasets. As illustrated in Figure 5, each component in AlphaRec contributes positively, which is752

consistent with our findings in Section 4.1.753

C.2.3 The t-SNE Visualization Comparison754

In this section, we aim to intuitively explore how the MLP in AlphaRec further helps in excavating755

collaborative signals in language representations, compared to the linear mapping matrix. We756

visualize the item representations from LMs, AlphaRec (w/o MLP), and AlphaRec in Figure 6, where757

AlphaRec (w/o MLP) denotes replacing the MLP with a linear mapping matrix. We observed that758

movies about superhero and monster cluster in all representation spaces, indicating both AlphaRec759

(w/o MLP) and AlphaRec capture the preference similarities between these items and preserve760

the clustering relationship. The difference between AlphaRec (w/o MLP) and AlphaRec may lie761

in the ability to capture obscure preference similarities among items. As shown in Figure 6a,762

homosexual movies are dispersed in the language space, indicating the possible semantic differences763

between them. AlphaRec successfully captures the preference similarities and gathers these items764

in the representation space, while AlphaRec (w/o MLP) remains some items dispersed. Moreover,765

AlphaRec outperforms AlphaRec (w/o MLP) by a large margin, as indicated in Figure 5a. These766

results indicate that AlphaRec exhibits a more fine-grained preference capture ability with the help of767

nonlinear transformation.768
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Table 8: The effect of the training dataset on zero-shot recommendation
Industrial MovieLens-1M Book Crossing

Recall NDCG HR Recall NDCG HR Recall NDCG HR

AlphaRec (trained on Books) 0.0896 0.0562 0.1256 0.1218 0.2619 0.8942 0.0646 0.0532 0.3346

AlphaRec (trained on Movies & TV) 0.0909 0.0581 0.1266 0.1438 0.3122 0.9200 0.0471 0.0406 0.2600

AlphaRec (trained on Video Games) 0.0905 0.0567 0.1225 0.1221 0.2313 0.9034 0.0412 0.0378 0.2585

AlphaRec (trained on mixed dataset) 0.0913 0.0573 0.1277 0.1486 0.3215 0.9296 0.0660 0.0545 0.3381

Table 9: Performance comparison between training on the single dataset and the mixed dataset
Books Movies & TV Video Games

Recall NDCG HR Recall NDCG HR Recall NDCG HR

AlphaRec (trained on single dataset) 0.0991 0.0828 0.4185 0.1221 0.1144 0.5587 0.1519 0.0894 0.3207
AlphaRec (trained on mixed dataset) 0.0979 0.0818 0.4147 0.1194 0.1107 0.5463 0.1381 0.0827 0.2985

C.3 Zero-shot Recommendation769

C.3.1 Co-training on Multiple Datasets770

Co-training on multiple datasets is similar to training on one single dataset, where the only difference771

lies in the negative sampling. When co-training on multiple datasets, the negative items are restricted772

to the same dataset as the positive item rather than the full item pool. The other training procedures773

remain the same with training on one single dataset.774

C.3.2 Baselines775

Since previous works about zero-shot recommendation mostly focus on sequential recommendation776

[83, 82], we slightly modify two methods in sequential recommendation, ZESRec [38] and UniSRec777

[37] as our baselines. Specifically, we maintain the model structure as provided in the paper, and778

adopt the training paradigm of CF.779

• Random denotes randomly recommending items from the entire item pool.780

• Pop denotes randomly recommending from the most popular items. Here popularity denotes the781

number of users that have interacted with the item.782

• ZESRec [38] is the first work that defines the problem of zero-shot recommendation. To address783

this problem, this work introduces a hierarchical Bayesian model with representations from the784

pre-trained BERT.785

• UniSRec [37] aims to learn universal item representations from BERT, with parametric whitening786

and a MoE-enhanced adaptor. By pre-training on multiple source datasets, UniSRec can conduct787

zero-shot recommendation on various datasets in a transductive or inductive paradigm.788

C.3.3 The Effect of Training Datasets789

The effect of the training dataset on zero-shot recommendation. We report the zero-shot790

recommendation performance differences trained on different datasets in Table 8. Here AlphaRec791

(trained on Books) denotes training on a single Books dataset, while AlphaRec (trained on mixed792

dataset) denotes co-training on three Amazon datasets. Generally, training on more datasets lead to a793

better zero-shot performance.794

The performance comparison between training on the single dataset and the mixed dataset. In795

Table 9, AlphaRec (trained on single dataset) denotes training and testing on the same single dataset,796

while AlphaRec (trained on mixed dataset) denotes training on three Amazon datasets and testing797

on one single dataset. Generally, co-training on three Amazon datasets yields similar performance798

compared with training on one single dataset. The only exception lies in Video Games, which shows799

some performance degradation. We attribute this to the difference between the selection of τ . We use800

τ = 0.15 when trained on the mixed dataset, while the optimal τ for Video Games lies around 0.2.801

These results indicate that a single AlphaRec can capture user preferences among various datasets,802

showcasing a general collaborative signal capture ability.803
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C.4 User Intention Capture804

C.4.1 Intention Query Generation805

Intention Query Generation

Input
You are an expert in generating queries for a target movie. Please help me generate the most
suitable query for the target movie within one sentence, following the given example.
Example:
TARGET: BUG-A-SALT 3.0 Black Fly Edition.
QUERY: I want a gun that I can use while gardening to get rid of stink bugs, ants, flies, and
spiders in my house. It needs to be amazing and help me feel less scared.
TARGET: Toy Story (1995).

Output
QUERY: I’m looking for a heartwarming animated movie that follows the adventures of a
group of toys who come to life when their owner is not around.

Figure 7: Example of item query generation.

The user intention query is a natural language sentence implying the target item of interest. For806

each item in the dataset, we generate a fixed user intention query. Following the previous work807

[40], we generate user intention queries with the help of ChatGPT [85]. As shown in Figure 7, we808

prompt ChatGPT in a Chain-of-Thought (CoT) [101] paradigm and adopt the output as the user809

intention query. We adopt a rule-based strategy to ensure that the output query is in first person, and810

regenerate the wrong query. Considering the huge amount of item title text, we use ChatGPT3.5 API811

for generating all queries for the budget’s sake.812

C.4.2 Baseline813

AlphaRec exhibits user intention capture abilities, although not specially designed for search tasks.814

We compare AlphaRec with TEM [86] which falls in the field of personalized search [84, 102].815

• TEM [86] uses a transformer to encode the intention query together with user history behaviors,816

which enables it to achieve better search results by considering the user’s historical interest.817

C.4.3 Case Study818

We conduct two more case studies to verify the user intention capture ability of AlphaRec. As819

illustrated in Figure 8 and Figure 9, AlphaRec provides proper recommendation results, including the820

target item for the user intention at the top.821

C.4.4 Effect of the Intention Strength Alpha822

The value of α controls the balance between the user’s historical interests and the user intention823

query. A larger α incorporates more about the user intention while considering less about the user’s824

historical interests. As shown in Figure 10, the effect of α on Video Games shows a similar trend825

with MovieLens-1M.826

C.5 Trainig Cost827

We report the training cost of AlphaRec in this section. Table 10 reports the seconds needed per828

epoch and the total training cost until convergence. Here Amazon-Mix denotes the mixed dataset of829

Books, Movies & TV, and Video Games. It’s worth noting that AlphaRec converges quickly and only830

requires a small amount of training time.831
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Figure 8: Case study of user intention capture on MovieLens-1M

Figure 9: Case study of user intention capture on Video Games

D Hyperparameter Settings and Implementation Details832

We conduct all the experiments in PyTorch with a single NVIDIA RTX A5000 (24G) GPU and a833

64 AMD EPYC 7543 32-Core Processor CPU. We optimize all methods with the Adam optimizer.834

For all ID-based CF methods, we set the layer numbers of graph propagation by default at 2, with835

the embedding size as 64 and the size of sampled negative items |Su| as 256. We use the early stop836

strategy to avoid overfitting. We stop the training process if the Recall@20 metric on the validation837

set does not increase for 20 successive evaluations. In AlphaRec, the dimensions of the input and838

output in the two-layer MLP are 3072 and 64 respectively, with the hidden layer dimension as 1536.839

We apply the all-ranking strategy [103] for all experiments, which ranks all items except positive ones840

in the training set for each user. We search hyperparameters for baselines according to the suggestion841

in the literature. The hyperparameter search space is reported in Table 11. For these LM-enhanced842

models, KAR and RLMRec, we also search the hyperparameter of their backbone XSimGCL.843

For AlphaRec, the only hyperparameter is the temperature τ and we search it in [0.05, 2]. We report844

the temperature τ we used for each dataset in Table 12. For the mixed dataset Amazon-Mix in845

Section 4.2, we use a universal τ = 0.15. We adopt τ = 0.2 for the MovieLens-1M dataset for the user846

intention capture experiment in Section 4.3.847

E Broader Impact848

The proposed AlphaRec can significantly improve the performance of zero-shot recommendation849

and the capability of user intent capture, offering a good approach to crafting more personalized850

recommendation results. One concern of AlphaRec is the potential for the representations generated851

by language models can be maliciously attacked, which may result in erroneous or unexpected852

recommendations. Therefore, we kindly advise researchers to cautiously check the quality of the853

language representations before using AlphaRec.854
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Figure 10: Effect of α on Video Games

Table 10: Training cost of AlphaRec (seconds per epoch/in total).
Books Movies & TV Video Games Amazon-Mix

AlphaRec 40.1 / 1363.4 12.3 / 479.7 7.4 / 214.6 107.2 / 5788.8

Table 11: Hyperparameters search spaces for baselines.
Hyperparameter space

MF & LightGCN lr ∼ {1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3}

MultVAE dropout ratio ∼ {0, 0.2, 0.5}, β ∼ {0.2, 0.4, 0.6, 0.8}

SGL τ ∼ [0.05, 2], λ1 ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, ρ ∼ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

BC Loss τ1 ∼ [0.05, 3], τ2 ∼ [0.05, 2]

XSimGCL τ ∼ [0.05, 2], ϵ ∼ {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}, λ ∼ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, l∗ = 1

KAR No. shared experts ∼ {3, 4, 5}, No. preference experts ∼ {4, 5}

RLMRec kd weight ∼ [0.05, 2], kd temperature ∼ [0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1]

ZESRec λu ∼ {0.01, 0.05, 0.1, 0.5, 1.0}, λv ∼ {0.01, 0.05, 0.1, 0.5, 1.0}

UniSRec lr ∼ {3e-4, 1e-3, 3e-3, 1e-2}

TEM l ∼ {2,3}, head h ∼ {4, 8}

AlphaRec τ ∼ [0.05, 2]

Table 12: The hyperparameters of AlphaRec
Books Movies & TV Video Games Amazon-Mix

τ 0.15 0.15 0.2 0.15
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NeurIPS Paper Checklist855

The checklist is designed to encourage best practices for responsible machine learning research,856

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove857

the checklist: The papers not including the checklist will be desk rejected. The checklist should858

follow the references and follow the (optional) supplemental material. The checklist does NOT count859

towards the page limit.860

Please read the checklist guidelines carefully for information on how to answer these questions. For861

each question in the checklist:862

• You should answer [Yes] , [No] , or [NA] .863

• [NA] means either that the question is Not Applicable for that particular paper or the864

relevant information is Not Available.865

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).866

The checklist answers are an integral part of your paper submission. They are visible to the867

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it868

(after eventual revisions) with the final version of your paper, and its final version will be published869

with the paper.870

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.871

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a872

proper justification is given (e.g., "error bars are not reported because it would be too computationally873

expensive" or "we were unable to find the license for the dataset we used"). In general, answering874

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we875

acknowledge that the true answer is often more nuanced, so please just use your best judgment and876

write a justification to elaborate. All supporting evidence can appear either in the main paper or the877

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification878

please point to the section(s) where related material for the question can be found.879

IMPORTANT, please:880

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",881

• Keep the checklist subsection headings, questions/answers and guidelines below.882

• Do not modify the questions and only use the provided macros for your answers.883

1. Claims884

Question: Do the main claims made in the abstract and introduction accurately reflect the885

paper’s contributions and scope?886

Answer: [Yes]887

Justification: We clearly state the claims made in the abstract and introduction.888

Guidelines:889

• The answer NA means that the abstract and introduction do not include the claims890

made in the paper.891

• The abstract and/or introduction should clearly state the claims made, including the892

contributions made in the paper and important assumptions and limitations. A No or893

NA answer to this question will not be perceived well by the reviewers.894

• The claims made should match theoretical and experimental results, and reflect how895

much the results can be expected to generalize to other settings.896

• It is fine to include aspirational goals as motivation as long as it is clear that these goals897

are not attained by the paper.898

2. Limitations899

Question: Does the paper discuss the limitations of the work performed by the authors?900

Answer: [Yes]901

Justification: We discuss the limitations of this work in the Section 5.902
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Guidelines:903

• The answer NA means that the paper has no limitation while the answer No means that904

the paper has limitations, but those are not discussed in the paper.905

• The authors are encouraged to create a separate "Limitations" section in their paper.906

• The paper should point out any strong assumptions and how robust the results are to907

violations of these assumptions (e.g., independence assumptions, noiseless settings,908

model well-specification, asymptotic approximations only holding locally). The authors909

should reflect on how these assumptions might be violated in practice and what the910

implications would be.911

• The authors should reflect on the scope of the claims made, e.g., if the approach was912

only tested on a few datasets or with a few runs. In general, empirical results often913

depend on implicit assumptions, which should be articulated.914

• The authors should reflect on the factors that influence the performance of the approach.915

For example, a facial recognition algorithm may perform poorly when image resolution916

is low or images are taken in low lighting. Or a speech-to-text system might not be917

used reliably to provide closed captions for online lectures because it fails to handle918

technical jargon.919

• The authors should discuss the computational efficiency of the proposed algorithms920

and how they scale with dataset size.921

• If applicable, the authors should discuss possible limitations of their approach to922

address problems of privacy and fairness.923

• While the authors might fear that complete honesty about limitations might be used by924

reviewers as grounds for rejection, a worse outcome might be that reviewers discover925

limitations that aren’t acknowledged in the paper. The authors should use their best926

judgment and recognize that individual actions in favor of transparency play an impor-927

tant role in developing norms that preserve the integrity of the community. Reviewers928

will be specifically instructed to not penalize honesty concerning limitations.929

3. Theory Assumptions and Proofs930

Question: For each theoretical result, does the paper provide the full set of assumptions and931

a complete (and correct) proof?932

Answer: [NA]933

Justification: This is an empirical article and contains no theoretical results.934

Guidelines:935

• The answer NA means that the paper does not include theoretical results.936

• All the theorems, formulas, and proofs in the paper should be numbered and cross-937

referenced.938

• All assumptions should be clearly stated or referenced in the statement of any theorems.939

• The proofs can either appear in the main paper or the supplemental material, but if940

they appear in the supplemental material, the authors are encouraged to provide a short941

proof sketch to provide intuition.942

• Inversely, any informal proof provided in the core of the paper should be complemented943

by formal proofs provided in appendix or supplemental material.944

• Theorems and Lemmas that the proof relies upon should be properly referenced.945

4. Experimental Result Reproducibility946

Question: Does the paper fully disclose all the information needed to reproduce the main ex-947

perimental results of the paper to the extent that it affects the main claims and/or conclusions948

of the paper (regardless of whether the code and data are provided or not)?949

Answer: [Yes]950

Justification: We present all the experiment details and datasets in Appendix C, and Hyper-951

parameters settings are reported in Appendix D. Moreover, we have uploaded the code and952

data we used in the supplementary material.953

Guidelines:954

• The answer NA means that the paper does not include experiments.955
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• If the paper includes experiments, a No answer to this question will not be perceived956

well by the reviewers: Making the paper reproducible is important, regardless of957

whether the code and data are provided or not.958

• If the contribution is a dataset and/or model, the authors should describe the steps taken959

to make their results reproducible or verifiable.960

• Depending on the contribution, reproducibility can be accomplished in various ways.961

For example, if the contribution is a novel architecture, describing the architecture fully962

might suffice, or if the contribution is a specific model and empirical evaluation, it may963

be necessary to either make it possible for others to replicate the model with the same964

dataset, or provide access to the model. In general. releasing code and data is often965

one good way to accomplish this, but reproducibility can also be provided via detailed966

instructions for how to replicate the results, access to a hosted model (e.g., in the case967

of a large language model), releasing of a model checkpoint, or other means that are968

appropriate to the research performed.969

• While NeurIPS does not require releasing code, the conference does require all submis-970

sions to provide some reasonable avenue for reproducibility, which may depend on the971

nature of the contribution. For example972

(a) If the contribution is primarily a new algorithm, the paper should make it clear how973

to reproduce that algorithm.974

(b) If the contribution is primarily a new model architecture, the paper should describe975

the architecture clearly and fully.976

(c) If the contribution is a new model (e.g., a large language model), then there should977

either be a way to access this model for reproducing the results or a way to reproduce978

the model (e.g., with an open-source dataset or instructions for how to construct979

the dataset).980

(d) We recognize that reproducibility may be tricky in some cases, in which case981

authors are welcome to describe the particular way they provide for reproducibility.982

In the case of closed-source models, it may be that access to the model is limited in983

some way (e.g., to registered users), but it should be possible for other researchers984

to have some path to reproducing or verifying the results.985

5. Open access to data and code986

Question: Does the paper provide open access to the data and code, with sufficient instruc-987

tions to faithfully reproduce the main experimental results, as described in supplemental988

material?989

Answer: [Yes]990

Justification: We provide access to the data and code we used in the supplementary material.991

Guidelines:992

• The answer NA means that paper does not include experiments requiring code.993

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/994

public/guides/CodeSubmissionPolicy) for more details.995

• While we encourage the release of code and data, we understand that this might not be996

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not997

including code, unless this is central to the contribution (e.g., for a new open-source998

benchmark).999

• The instructions should contain the exact command and environment needed to run to1000

reproduce the results. See the NeurIPS code and data submission guidelines (https:1001

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1002

• The authors should provide instructions on data access and preparation, including how1003

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1004

• The authors should provide scripts to reproduce all experimental results for the new1005

proposed method and baselines. If only a subset of experiments are reproducible, they1006

should state which ones are omitted from the script and why.1007

• At submission time, to preserve anonymity, the authors should release anonymized1008

versions (if applicable).1009
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• Providing as much information as possible in supplemental material (appended to the1010

paper) is recommended, but including URLs to data and code is permitted.1011

6. Experimental Setting/Details1012

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1013

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1014

results?1015

Answer: [Yes]1016

Justification: Datasets and data split are presented in Appendix C.1, and hyperparameters1017

are searched according to the suggestion in the literature. See more details in Appendix D.1018

Guidelines:1019

• The answer NA means that the paper does not include experiments.1020

• The experimental setting should be presented in the core of the paper to a level of detail1021

that is necessary to appreciate the results and make sense of them.1022

• The full details can be provided either with the code, in appendix, or as supplemental1023

material.1024

7. Experiment Statistical Significance1025

Question: Does the paper report error bars suitably and correctly defined or other appropriate1026

information about the statistical significance of the experiments?1027

Answer: [Yes]1028

Justification: We validate the p-value to support the main claims of this paper.1029

Guidelines:1030

• The answer NA means that the paper does not include experiments.1031

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1032

dence intervals, or statistical significance tests, at least for the experiments that support1033

the main claims of the paper.1034

• The factors of variability that the error bars are capturing should be clearly stated (for1035

example, train/test split, initialization, random drawing of some parameter, or overall1036

run with given experimental conditions).1037

• The method for calculating the error bars should be explained (closed form formula,1038

call to a library function, bootstrap, etc.)1039

• The assumptions made should be given (e.g., Normally distributed errors).1040

• It should be clear whether the error bar is the standard deviation or the standard error1041

of the mean.1042

• It is OK to report 1-sigma error bars, but one should state it. The authors should1043

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1044

of Normality of errors is not verified.1045

• For asymmetric distributions, the authors should be careful not to show in tables or1046

figures symmetric error bars that would yield results that are out of range (e.g. negative1047

error rates).1048

• If error bars are reported in tables or plots, The authors should explain in the text how1049

they were calculated and reference the corresponding figures or tables in the text.1050

8. Experiments Compute Resources1051

Question: For each experiment, does the paper provide sufficient information on the com-1052

puter resources (type of compute workers, memory, time of execution) needed to reproduce1053

the experiments?1054

Answer: [Yes]1055

Justification: We conduct all the experiments in PyTorch with a single NVIDIA RTX A50001056

(24G) GPU and a 64 AMD EPYC 7543 32-Core Processor CPU. And Detailed time costs1057

are shown in Appendix C.5.1058

Guidelines:1059

• The answer NA means that the paper does not include experiments.1060
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1061

or cloud provider, including relevant memory and storage.1062

• The paper should provide the amount of compute required for each of the individual1063

experimental runs as well as estimate the total compute.1064

• The paper should disclose whether the full research project required more compute1065

than the experiments reported in the paper (e.g., preliminary or failed experiments that1066

didn’t make it into the paper).1067

9. Code Of Ethics1068

Question: Does the research conducted in the paper conform, in every respect, with the1069

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1070

Answer: [Yes]1071

Justification: The research adheres to all ethical guidelines outlined by NeurIPS. Specifically,1072

we have ensured that our data collection methods are ethical, our experiments are conducted1073

responsibly, and all potential biases are addressed. Additionally, we have considered the1074

broader impacts of our work and have taken steps to mitigate any negative consequences.1075

Guidelines:1076

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1077

• If the authors answer No, they should explain the special circumstances that require a1078

deviation from the Code of Ethics.1079

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1080

eration due to laws or regulations in their jurisdiction).1081

10. Broader Impacts1082

Question: Does the paper discuss both potential positive societal impacts and negative1083

societal impacts of the work performed?1084

Answer: [Yes]1085

Justification: We consider both the potential societal impacts and negative societal impacts,1086

and also discuss possible mitigation strategies. Details are shown in Appendix E.1087

Guidelines:1088

• The answer NA means that there is no societal impact of the work performed.1089

• If the authors answer NA or No, they should explain why their work has no societal1090

impact or why the paper does not address societal impact.1091

• Examples of negative societal impacts include potential malicious or unintended uses1092

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1093

(e.g., deployment of technologies that could make decisions that unfairly impact specific1094

groups), privacy considerations, and security considerations.1095

• The conference expects that many papers will be foundational research and not tied1096

to particular applications, let alone deployments. However, if there is a direct path to1097

any negative applications, the authors should point it out. For example, it is legitimate1098

to point out that an improvement in the quality of generative models could be used to1099

generate deepfakes for disinformation. On the other hand, it is not needed to point out1100

that a generic algorithm for optimizing neural networks could enable people to train1101

models that generate Deepfakes faster.1102

• The authors should consider possible harms that could arise when the technology is1103

being used as intended and functioning correctly, harms that could arise when the1104

technology is being used as intended but gives incorrect results, and harms following1105

from (intentional or unintentional) misuse of the technology.1106

• If there are negative societal impacts, the authors could also discuss possible mitigation1107

strategies (e.g., gated release of models, providing defenses in addition to attacks,1108

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1109

feedback over time, improving the efficiency and accessibility of ML).1110

11. Safeguards1111

Question: Does the paper describe safeguards that have been put in place for responsible1112

release of data or models that have a high risk for misuse (e.g., pretrained language models,1113

image generators, or scraped datasets)?1114
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Answer: [NA]1115

Justification: The paper poses no such risks.1116

Guidelines:1117

• The answer NA means that the paper poses no such risks.1118

• Released models that have a high risk for misuse or dual-use should be released with1119

necessary safeguards to allow for controlled use of the model, for example by requiring1120

that users adhere to usage guidelines or restrictions to access the model or implementing1121

safety filters.1122

• Datasets that have been scraped from the Internet could pose safety risks. The authors1123

should describe how they avoided releasing unsafe images.1124

• We recognize that providing effective safeguards is challenging, and many papers do1125

not require this, but we encourage authors to take this into account and make a best1126

faith effort.1127

12. Licenses for existing assets1128

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1129

the paper, properly credited and are the license and terms of use explicitly mentioned and1130

properly respected?1131

Answer: [Yes]1132

Justification: We incorporate six datasets, including four datasets from the Amazon1133

platform[1](Books, Movies & TV, Video Games, and Industrial), Movielens-1M[59], and1134

Book Crossing[60], all of which are open-source. The backend language models used in our1135

research are BERT [4], RoBERTa [5], Llama2-7B [6], Mistral-7B [69], text-embedding-ada-1136

v2 & text-embeddings-3-large [70], and SFR-Embedding-Mistral [71].1137

Guidelines:1138

• The answer NA means that the paper does not use existing assets.1139

• The authors should cite the original paper that produced the code package or dataset.1140

• The authors should state which version of the asset is used and, if possible, include a1141

URL.1142

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1143

• For scraped data from a particular source (e.g., website), the copyright and terms of1144

service of that source should be provided.1145

• If assets are released, the license, copyright information, and terms of use in the1146

package should be provided. For popular datasets, paperswithcode.com/datasets1147

has curated licenses for some datasets. Their licensing guide can help determine the1148

license of a dataset.1149

• For existing datasets that are re-packaged, both the original license and the license of1150

the derived asset (if it has changed) should be provided.1151

• If this information is not available online, the authors are encouraged to reach out to1152

the asset’s creators.1153

13. New Assets1154

Question: Are new assets introduced in the paper well documented and is the documentation1155

provided alongside the assets?1156

Answer: [NA]1157

Justification: This paper does not release new assets.1158

Guidelines:1159

• The answer NA means that the paper does not release new assets.1160

• Researchers should communicate the details of the dataset/code/model as part of their1161

submissions via structured templates. This includes details about training, license,1162

limitations, etc.1163

• The paper should discuss whether and how consent was obtained from people whose1164

asset is used.1165
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• At submission time, remember to anonymize your assets (if applicable). You can either1166

create an anonymized URL or include an anonymized zip file.1167

14. Crowdsourcing and Research with Human Subjects1168

Question: For crowdsourcing experiments and research with human subjects, does the paper1169

include the full text of instructions given to participants and screenshots, if applicable, as1170

well as details about compensation (if any)?1171

Answer: [NA]1172

Justification: The paper does not involve crowdsourcing nor research with human subjects.1173

Guidelines:1174

• The answer NA means that the paper does not involve crowdsourcing nor research with1175

human subjects.1176

• Including this information in the supplemental material is fine, but if the main contribu-1177

tion of the paper involves human subjects, then as much detail as possible should be1178

included in the main paper.1179

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1180

or other labor should be paid at least the minimum wage in the country of the data1181

collector.1182

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1183

Subjects1184

Question: Does the paper describe potential risks incurred by study participants, whether1185

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1186

approvals (or an equivalent approval/review based on the requirements of your country or1187

institution) were obtained?1188

Answer: [NA]1189

Justification: The paper does not involve crowdsourcing nor research with human subjects.1190

Guidelines:1191

• The answer NA means that the paper does not involve crowdsourcing nor research with1192

human subjects.1193

• Depending on the country in which research is conducted, IRB approval (or equivalent)1194

may be required for any human subjects research. If you obtained IRB approval, you1195

should clearly state this in the paper.1196

• We recognize that the procedures for this may vary significantly between institutions1197

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1198

guidelines for their institution.1199

• For initial submissions, do not include any information that would break anonymity (if1200

applicable), such as the institution conducting the review.1201
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