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Abstract

Popular approaches for quantifying predictive uncertainty in deep neural networks often
involve multiple sets of weights or models, for instance, via ensembling or Monte Carlo
dropout. These techniques usually incur overhead by having to train multiple model in-
stances or do not produce very diverse predictions. This survey aims to familiarize the
reader with an alternative class of models based on the concept of Evidential Deep Learn-
ing: For unfamiliar data, they admit “what they don’t know” and fall back onto a prior
belief. Furthermore, they allow uncertainty estimation in a single model and forward pass
by parameterizing distributions over distributions. This survey recapitulates existing works,
focusing on the implementation in a classification setting, before surveying the application
of the same paradigm to regression. We also reflect on the strengths and weaknesses com-
pared to each other as well as to more established methods and provide the most central
theoretical results using a unified notation in order to aid future research.

1 Introduction

Figure 1: Taxonomy of surveyed approaches. For more
detail about prior and posterior networks for classifi-
cation, check Tables 1 and 2, respectively. See Table 3
for all regression approaches.

Many existing methods for uncertainty estimation
leverage the concept of Bayesian model averag-
ing, which approaches such as Monte Carlo (MC)
dropout (Gal & Ghahramani, 2016), Bayes-by-
backprop (Blundell et al., 2015) or ensembling (Lak-
shminarayanan et al., 2017) can be grouped un-
der (Wilson & Izmailov, 2020). This involves the
approximation of an otherwise infeasible to com-
pute integral using MC samples – for instance from
an auxiliary distribution or in the form of ensem-
ble members. This causes the following problems:
Firstly, the quality of the MC approximation de-
pends on the veracity and diversity of samples from
the weight posterior. Secondly, the approach often
involves increasing the number of parameters in a
model or training more model instances altogether.
Recently, a new class of models has been proposed to
side-step this conundrum by using a different factor-
ization of the posterior predictive distribution. This
allows computing uncertainty in a single forward
pass and a single set of weights. Furthermore, these
models are grounded in a concept coined Evidential
Deep Learning: For out-of-distribution (OOD) in-
puts, they fall back onto a prior, often expressed as
knowing what they don’t know.
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(a) Ensemble (b) Confident prediction (c) Data uncertainty

(d) Model uncertainty (e) Distributional uncertainty (f) Representation gap (OOD)

Figure 2: Examples of the probability simplex for a K = 3 classification problem, where every corner
corresponds to a class and every point to a categorical distribution. Brighter colors correspond to higher
density. (a) Ensemble of discriminators. (b) – (e) (Desired) Behavior of Dirichlet in different scenarios by
Malinin & Gales (2018). (f) Representation gap by Nandy et al. (2020).

In this paper, we summarize the existing literature and group Evidential Deep Learning approaches, critically
reflecting on their advantages and shortcomings, as well as how they fare compared to established methods.
This survey aims to both serve as an accessible introduction to this model family to the unfamiliar reader as
well as an informative overview, in order to promote a wider application outside the uncertainty estimation
literature. We also provide a collection of the most important theoretical results for the Dirichlet distribution
for Machine Learning, which plays a central role in many of the discussed approaches. We give an overview
over all discussed work in Figure 1, where we distuinguish surveyed works for classification between models
parameterizing a Dirichlet prior (Section 3.3.1) or posterior (Section 3.3.2). We further discuss similar
methods for regression problems (Section 4). As we will see, obtaining well-behaving uncertainty estimates
can be challenging in the Evidential Deep Learning framework; proposed solutions that are also reflected
in Figure 1 are the usage of OOD examples during training (Malinin & Gales, 2018; 2019; Nandy et al.,
2020; Shen et al., 2020; Chen et al., 2018; Zhao et al., 2019; Hu et al., 2021; Sensoy et al., 2020), knowledge
distillation (Malinin et al., 2020b;a) or the incorporation of density estimation (Charpentier et al., 2020;
2021; Stadler et al., 2021), which we discuss in more detail in Section 6.

2 Background

We first introduce the central concepts to this survey, including Bayesian model averaging and Evidential
Deep Learning in Section 2.2, along with a short introduction to the Dirichlet distribution.

2.1 The Dirichlet distribution

Underlying the following sections is the concept of Bayesian inference: Given some prior belief p(θ) about
parameters of interest θ, we use available observations D and their likelihood p(D| θ) to obtain an updated
belief in form of the posterior p(θ |D) ∝ p(D| θ)p(θ). Within Bayesian inference, the Beta distribution is a
commonly used prior for a Bernoulli likelihood, which can i.e. be used in a binary classification problem.
Whereas the Bernoulli likelihood has a single parameter µ, indicating the probability success (or of the
positive class), the Beta distribution posses two shape parameters α1 and α2, and is defined as follows:
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Beta(µ;α1, α2) = 1
B(α1, α2)µ

α1−1(1 − µ)α2−1; B(α1, α2) = Γ(α1)Γ(α2)
Γ(α1 + α2) ; (1)

where Γ(·) stands for the gamma function, a generalization of the factorial to the real numbers, and B(·) is
called the Beta function (not to be confused with the distribution). As such, the Beta distribution expresses
a probability over probabilities: That is, the probability of different parameter values for µ. The Dirichlet
distribution arises as a multivariate generalization of the Beta distribution (and is thus also called the
multi-variate Beta distribution) for a multi-class classification problem and is defined as follows:

Dir(µ; α) = 1
B(α)

K∏
k=1

µαk−1
k ; B(α) =

∏K
k=1 Γ(αk)
Γ(α0) ; α0 =

K∑
k=1

αk; αk ∈ R+; (2)

where K denotes the number of categories or classes, and the Beta function B(·) is now defined for K shape
parameters compared to Equation (1). For notational convenience, we also define K = {1, . . . ,K} as the
set of all classes. The distribution is characterized by its concentration parameters α, the sum of which,
often denoted as α0, is called the precision.1 The distribution becomes relevant for applications using neural
networks, considering that most neural networks for classification use a softmax function after their last
layer to produce a categorical distribution of classes Cat(µ) =

∏K
k=1 µ

1y=k

k , in which the class probabilities
are expressed using a vector µ ∈ [0, 1]K s.t. µk ≡ P (y = k|x). The Dirichlet is a conjugate prior for such a
categorical likelihood, meaning that in combination they produce a Dirichlet posterior with parameters β,
given a data set D = {(xi, yi)}N

i=1 of N observations with corresponding labels:

p(µ|D,α) ∝ p
(
{yi}N

i=1|µ, {xi}N
i=1
)
p(µ|α) =

N∏
i=1

K∏
k=1

µ
1yi=k

k

1
B(α)

K∏
k=1

µαk−1
k

=
K∏

k=1
µ

(∑N

i=1
1yi=k

)
k

1
B(α)

K∏
k=1

µαk−1
k = 1

B(α)

K∏
k=1

µNk+αk−1
k ∝ Dir(µ; β),

(3)

where β is a vector with βk = αk +Nk, with Nk denoting the number of observations for class k and 1 being
the indicator function. Intuitively, this implies that the prior belief encoded by the initial Dirichlet is updated
using the actual data, sharpening the distribution for classes for which many instances have been observed.
Similar to the Beta distribution in Equation (1), the Dirichlet is a distribution over categorical distributions
on the K − 1 probability simplex; multiple instances of which are shown in Figure 2. Each point on the
simplex corresponds to a categorical distribution, with the proximity to a corner indicating a high probability
for the corresponding class. Figure 2a displays the predictions of an ensemble of classifiers as a point cloud
on the simplex. Using a Dirichlet, this finite set of distributions can be extended to a continuous density
over the whole simplex. As we will see in the following sections, parameterizing a Dirichlet distribution with
a neural network enables us to distinguish different scenarios using the shape of its density, as shown in
Figures 2b to 2f, which we will discuss in more detail along the way.

2.2 Predictive Uncertainty in Neural Networks

In probabilistic modelling, uncertainty is commonly divided into aleatoric and epistemic uncertainty (Der Ki-
ureghian & Ditlevsen, 2009; Hüllermeier & Waegeman, 2021). Aleatoric refers to the uncertainty that is
induced by the data-generating process, for instance noise or inherent overlap between observed instances of
classes. Epistemic is the type of uncertainty about the optimal model parameters (or even hypothesis class),
reducible with an increasing amount of data, as less and less possible models become a plausible fit. These
two notions resurface when formulating the posterior predictive distribution for a new data point x:2

1The precision is analogous to the precision of a Gaussian, where a larger α0 signifies a sharper distribution.
2Note that the predictive distribution in Equation (4) generalizes the common case for a single network prediction where

P (y| x, θ) ≈ P (y| x, θ̂). Mathematically, this is expressed by replacing the posterior p(θ|D) by a delta distribution as in
Equation (5), where all probability density rests on a single parameter configuration.
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P (y| x,D) =
∫
P (y| x,θ)︸ ︷︷ ︸

Aleatoric

p(θ|D)︸ ︷︷ ︸
Epistemic

dθ. (4)

Here, the first term captures the aleatoric uncertainty about the correct class based on the predicted categor-
ical distribution, while the second one expresses uncertainty about the correct model parameters – the more
data we observe, the more concentrated p(θ|D) should become for reasonable parameter values for θ. Since
we integrate over the entire parameter space of θ, weighting each prediction by the posterior probability of
its parameters to obtain the final result, this process is referred to as Bayesian model averaging. For a large
number of real-valued parameters θ like in neural networks, this integral becomes intractable, and is usually
approximated using Monte Carlo samples – with the aforementioned problems of computational overhead
and approximation errors. Malinin & Gales (2018) therefore propose to factorize Equation (4) further:

p(y| x,D) =
∫∫

P (y|µ)︸ ︷︷ ︸
Aleatoric

p(µ| x,θ)︸ ︷︷ ︸
Distributional

p(θ|D)︸ ︷︷ ︸
Epistemic

dµdθ =
∫
P (y|µ) p(µ| x, θ̂)︸ ︷︷ ︸

p(θ|D)=δ(θ−θ̂)

dµ.
(5)

In the last step, we replace p(θ|D) by a point estimate θ̂ using the Dirac delta function, i.e. a single trained
neural network, to get rid of the intractable integral. Although another integral remains, retrieving the
uncertainty from this predictive distribution actually has a closed-form analytical solution for the Dirichlet
(see Section 3.2). The advantage of this approach is further that it allows us to distinguish uncertainty about
a data point because it lies in a region of considerable class overlap (Figure 2c) from points coming from an
entirely different data distribution (Figure 2e). It should be noted that restricting oneself to a point estimate
of the parameters prevent the estimation of epistemic uncertainty like in earlier works through the weight
posterior p(θ|D), as discussed in the next section. However, there are works like Haussmann et al. (2019);
Zhao et al. (2020) that combine both approaches.

3 Dirichlet Networks

We will show in Section 3.1 how neural networks can parameterize Dirichlet distributions, while Section 3.2
reveals how such parameterization can be exploited for efficient uncertainty estimation. The remaining
sections enumerate different examples from the literature parameterizing either a prior (Section 3.3.1) or
posterior Dirichlet distribution (Section 3.3.2) according to Equations (2) and (3).

3.1 Parameterization

For a classification problem with K classes, a neural classifier is usually realized as a function fθ : RD → RK ,
mapping an input x ∈ RD to logits for each class. Followed by a softmax function, this then defines a
categorical distribution over classes with a vector µ with µk ≡ p(y = k| x,θ). The same architecture can be
used without any major modification to instead parameterize a Dirichlet distribution, as in Equation (2).3
In order to classify a data point x, a categorical distribution is created from the predicted concentration
parameters of the Dirichlet as follows (this definition arises from the expected value, see Appendix B.1):

α = fθ(x); µk = αk

α0
; ŷ = arg max

k∈K
µ1, . . . , µK . (6)

This process is very similar when parameterizing a Dirichlet posterior distribution, except that in the case
of the posterior, a term corresponding to the observations per class Nk in Equation (3) is added to every
concentration parameter as well.

3The only thing to note here is that the every αk has to be strictly positive, which can for instance be enforced by using an
additional ReLU function (and adding a small value, e.g. like in Sensoy et al., 2020) on the output or predicting log αk instead
(Sensoy et al., 2018; Malinin & Gales, 2018).
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3.2 Uncertainty Estimation with Dirichlet Networks

Let us now turn our attention to how to estimate the different notions of uncertainty laid out in Section 2.2
within the Dirichlet framework. Although stated for the prior parameters α, the following methods can also
be applied to the posterior parameters β without loss of generality.

Data (aleatoric) uncertainty. For the data uncertainty, we can evaluate the expected entropy of the data
distribution p(y|µ) (similar to previous works like e.g. Gal & Ghahramani, 2016). As the entropy captures
the “peakiness” of the output distribution, a lower entropy indicates that the model is concentrating all
probability mass on a single class, while high entropy stands for a more uniform distribution – the model is
undecided about the right prediction. For Dirichlet networks, this quantity has a closed-form solution (for
the full derivation, refer to Appendix C.1):

Ep(µ| x,θ̂)

[
H
[
P (y|µ)

]]
= −

K∑
k=1

αk

α0

(
ψ(αk + 1) − ψ(α0 + 1)

)
(7)

where ψ denotes the digamma function, defined as ψ(x) = d
dx log Γ(x), and H the Shannon entropy.

Model (epistemic) uncertainty. As we saw in Section 2.2, computing the model uncertainty via the
weight posterior p(θ|D) like in Blundell et al. (2015); Gal & Ghahramani (2016); Smith & Gal (2018) is
usually not done in the Dirichlet framework4. Nevertheless, a key property of Dirichlet networks is that
epistemic uncertainty is expressed in the spread of the Dirichlet distribution (for instance in Figure 2 (d)
and (e)). Therefore, the epistemic uncertainty can be quantified considering the concentration parameters
α that shape this very same distribution: Charpentier et al. (2020) simply consider the maximum αk as a
score akin to the maximum probability score by Hendrycks & Gimpel, while Sensoy et al. (2018) compute it
by K/

∑K
k=1(αk + 1) or simply α0 (Charpentier et al., 2020). In both cases, the underlying intuition is that

larger αk produce a sharper density, and thus indicate increased confidence in a prediction.

Distributional uncertainty. Another appealing property of this model family is being able to distinguish
uncertainty due to model underspecification (Figure 2d) from uncertainty due to alien inputs (Figure 2e).
In the Dirichlet framework, the distributional uncertainty can be quantified by computing the difference
between the total amount of uncertainty and the data uncertainty, which can be expressed in terms of the
mutual information between the label y and its categorical distribution µ:

I
[
y,µ

∣∣∣x,D] = H

[
Ep(µ| x,D)

[
P (y|µ)

]]
︸ ︷︷ ︸

Total Uncertainty

−Ep(µ| x,D)

[
H
[
P (y|µ)

]]
︸ ︷︷ ︸

Data Uncertainty

(8)

Given that E[µk] = αk

α0
(Appendix B.1) and assuming the point estimate p(µ| x,D) ≈ p(µ| x, θ̂) to be

sufficient (Malinin & Gales, 2018), we obtain an expression very similar to Equation (7):

I
[
y,µ

∣∣∣x,D] = −
K∑

k=1

αk

α0

(
log αk

α0
− ψ(αk + 1) + ψ(α0 + 1)

)
(9)

This quantity expresses how much information we would receive about µ if we were given the label y,
conditioned on the new input x and the training data D. In regions in which the model is well-defined,
receiving y should not provide much new information about µ — and thus the mutual information would
be low. Yet, such knowledge should be very informative in regions in which few data have been observed,
and there the mutual information would indicate higher model uncertainty.

4With exceptions such as Haussmann et al., 2019; Zhao et al., 2020). When the distribution over parameters in Equation (5)
is retained, alternate expressions of the aleatoric and epistemic uncertainty are derived by (Woo, 2022).
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Table 1: Overview over prior networks for classification. (∗) OOD samples were created inspired by the
approach of Liang et al. (2018). ID: Using in-distribution data samples.

Method Loss function Architecture Requires
OOD samples?

Prior network
(Malinin & Gales, 2018)

ID KL w.r.t smoothed label &
OOD KL w.r.t. uniform prior

MLP / CNN ✓

Prior networks
(Malinin & Gales, 2019)

Reverse KL of Malinin & Gales (2018) CNN ✓

Information Robust Dirichlet Networks
(Tsiligkaridis, 2019)

lp norm w.r.t one-hot label &
Approx. Rényi divergence
w.r.t. uniform prior

CNN ✗

Dirichlet via Function Decomposition
(Biloš et al., 2019)

Uncertainty Cross-entropy &
mean & variance regularizer

RNN ✗

Prior network with PAC Regularization
(Haussmann et al., 2019)

Negative log-likelihood loss +
PAC regularizer

BNN ✗

Ensemble Distribution Distillation
(Malinin et al., 2020b)

Knowledge distillation objective MLP / CNN ✗

Prior networks with representation gap
(Nandy et al., 2020)

ID & OOD Cross-entropy +
precision regularizer

MLP / CNN ✓

Prior RNN (Shen et al., 2020) Cross-entropy + entropy regularizer RNN (✓)∗

Graph-based Kernel Dirichlet distribution
estimation (GKDE) (Zhao et al., 2020)

l2 norm w.r.t. one-hot label &
KL reg. with node-level distance prior &
Knowledge distillation objective

GNN ✗

3.3 Existing Approaches for Dirichlet Networks

Being able to quantify aleatoric, epistemic and distributional uncertainty in one forward pass and in closed
form are desirable traits, as they simplify the process of obtaining different uncertainty scores. However,
it is important to note that the behaviors of the Dirichlet distributions in Figure 2 are idealized. In the
empirical risk minimization framework that neural networks are usually trained in, Dirichlet networks are
not incentivized to behave in the depicted way per se. Thus, when comparing existing approaches for
parameterizing Dirichlet priors (Section 3.3.1) and posteriors (Section 3.3.2),5 we mainly focus on the different
ways in which authors try to tackle this problem by means of loss functions and training procedures. We
give an overview over the discussed works in Tables 1 and 2 in the respective sections. For additional details,
we refer the reader to Appendix B for general derivations concerning the Dirichlet distribution. We dedicate
Appendix C to more extensive derivations of the different loss functions and regularizers and give a detailed
overview over their mathematical forms in Appendix D.

3.3.1 Prior Networks

The key challenge in training Dirichlet networks is to ensure both high classification performance and the
intended behavior under foreign data inputs. For this reason, most discussed works follow a loss function
design using two parts: One optimizing for task accuracy for the former goal, the other one for a flat Dirichlet
distribution for the latter, as flatness suggests a lack of evidence. To enforce flatness, the predicted Dirichlet
is compared to the target distribution using some probabilistic divergence measure.

5Even though the term prior and posterior network have been coined by Malinin & Gales (2018) and Charpentier et al.
(2020) for their respective approaches, we use them in the following as an umbrella term for all methods targeting a prior or
posterior Dirichlet.

6



Under review as submission to TMLR

For instance, Tsiligkaridis (2019) derive a lp loss (see Appendix C.3) as their main objective, but using
a local approximation of the Rényi divergence6 w.r.t. a uniform Dirichlet for the regularization term in
order to ensure higher uncertainty for misclassified examples. Zhao et al. (2020) similarly use a l2 loss in
the context of Graph Neural Networks (GNNs), but adapt a Kullback-Leibler (KL) regularization term to
incorporate information about the local graph structure, as well as a knowledge distillation loss, where a
student network aims to imitate the predictions of a more complex teacher networks, and thus also acts as
a form of regularization. Haussmann et al. (2019) optimize the model using a negative log-likelihood (NLL)
loss and derive a regularizer using Probably Approximately Correct (PAC) bounds from learning theory,
giving a proven bound to the expected true risk of the classifier.

Instead of enforcing the flatness of the Dirichlet by itself, Malinin & Gales (2018) instead explicitly maximize
the KL divergence to a uniform Dirichlet on OOD data points. Further, they utilize another KL term to
train the model on predicting the correct label instead of a lp norm. However, as the KL divergence is not
symmetrical, Malinin & Gales (2019) argue that the reverse counterparts of both loss terms actually have
more appealing properties in producing the correct behavior of the predicted distribution (see Appendix C.5).
Nandy et al. (2020) refine this idea further, stating that even in this framework high epistemic and high
distributional uncertainty (Figures 2d and 2e) might be confused, and instead propose novel loss functions
producing a representation gap (Figure 2f; check Appendix D for the final form), which aims to be more
easily distinguishable. Lastly, Malinin et al. (2020b) show that prior networks can also be distilled using
an ensemble of classifiers and their predicted categorical distributions (akin to learning Figure 2e from
Figure 2a), which does not require regularization at all (but training the ensemble).

Figure 3: Schematic of a posterior network, taken from
Charpentier et al. (2020). An encoder fθ maps inputs
to a latent representation z. NFs then model class-
conditional densities, which are used together with the
prior concentration to produce the posterior parame-
ters. For x(1), its latent representation lies right in the
modelled density of the first class, and thus receives a
confident prediction. The latent z(2) lies between den-
sities, creating aleatoric uncertainty. x(3) is an OOD
input, is mapped to a low-density area of the latent
space and thus produces a flat posterior Dirichlet.

An application to Natural Language Processing can
be found in the work of Shen et al. (2020), who train
their recurrent neural network for spoken language
understanding using a simple cross-entropy loss and
entropy regularizer. However, Biloš et al. (2019),
who apply their model to asynchronous event clas-
sification, note that the standard cross-entropy loss
only involves a point estimate of a categorical dis-
tribution, discarding all the information contained
in the predicted Dirichlet. For this reason, they
propose an uncertainty-aware cross-entropy (UCE)
loss instead, which has a closed-form solution in the
Dirichlet case (see Appendix C.6). They further reg-
ularize the mean and variance for OOD data points
using an extra loss term.

3.3.2 Posterior Networks

As elaborated on in Section 2.1, choosing a Dirich-
let prior, due to its conjugacy to the categorical
distribution, induces a Dirichlet posterior distribu-
tion. Like the prior in the previous section, this
posterior can be parameterized by a neural network.
The challenges hereby are two-fold: Accounting for
the number of class observations Nk that make up
part of the posterior density parameters β (Equa-
tion (3)), and, similarly to prior networks, ensur-
ing the wanted behavior on the probability simplex
for in- and out-of-distribution inputs. Sensoy et al.
(2018) base their approach on the Dempster-Shafer theory of evidence (Yager & Liu, 2008; lending its name
to the term “Evidential Deep Learning”) and its formalization via subjective logic (Audun, 2018). In doing

6The Kullback-Leibler divergence can be seen as a special case of the Rényi divergence (van Erven & Harremoës, 2014),
where the latter has a stronger information-theoretic underpinning.
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Table 2: Overview over posterior networks for classification. OOD samples were created via (†) the fast-sign
gradient method (Kurakin et al.), using a (‡) Variational Auto-Encoder (VAE; Kingma & Welling, 2014 or
a (§) Wasserstein GAN (WGAN; Arjovsky et al., 2017). NLL: Negative log-likelihood. CE: Cross-entropy.

Method Loss function Architecture Requires
OOD samples?

Evidential Deep Learning
(Sensoy et al., 2018)

l2 norm w.r.t. one-hot label +
KL w.r.t. uniform prior

CNN ✗

Regularized ENN
Zhao et al. (2019)

l2 norm w.r.t. one-hot label +
Uncertainty regularizer on OOD/ difficult samples

MLP / CNN ✓

WGAN–ENN
(Hu et al., 2021)

l2 norm w.r.t. one-hot label +
Uncertainty regularizer on synth. OOD

MLP / CNN +
WGAN

(✓)§

Variational Dirichlet
(Chen et al., 2018)

ELBO +
Contrastive Adversarial Loss

CNN (✓)†

Belief Matching (Joo et al., 2020) ELBO CNN ✗

Posterior Networks
(Charpentier et al., 2020)

Uncertainty CE (Biloš et al., 2019)
+ Entropy regularizer

MLP / CNN +
Norm. Flow

✗

Graph Posterior Networks
(Stadler et al., 2021)

Same as Charpentier et al. (2020) GNN ✗

Generative Evidential Neural Networks
(Sensoy et al., 2020)

Contrastive NLL + KL between
uniform & Dirichlet of wrong classes

CNN (✓)‡

so, an agnostic belief in form of a uniform Dirichlet prior is updated using pseudo-counts, which are pre-
dicted by a neural network. Sensoy et al. (2018) train their model using a straightforward l2 loss between
the predicted Dirichlet and the one-hot encoded class label (Appendix C.4), as well as a regularization term
consisting of the KL divergence w.r.t. a uniform Dirichlet:

KL
[
p(µ|α)

∣∣∣∣p(µ|1)
]

= − log Γ(K)
B(α) +

K∑
k=1

(αk − 1)(ψ(αk) − ψ(α0))

As an alternative to the KL regularizer, Hu et al. (2021) train a Wasserstein GAN (Arjovsky et al., 2017)
to generate OOD samples, on which the network’s uncertainty is maximized. In a follow-up work, Sensoy
et al. (2020) train a similar model using a contrastive loss with artificial OOD samples from a Variational
Autoencoder (Kingma & Welling, 2014), and a KL-based regularizer similar to that of Tsiligkaridis (2019).

Charpentier et al. (2020) also set α to a uniform prior, but obtain class observations Nk from the training
set and scale them by the probability of an input’s latent representation z under a normalizing flow7 (NF;
Rezende & Mohamed, 2015) with parameters ϕ, with one NF per class density (see Figure 3):8

βk = αk +Nk · p(z |y = k,ϕ); z = fθ(x)

This has the advantage of producing low probabilities for strange inputs like the noise in Figure 3, which in
turn translate to low concentration parameters of the posterior Dirichlet, as it falls back onto the uniform
prior. The model is optimized using the same uncertainty-aware cross-entropy loss as in Biloš et al. (2019)
with an additional entropy regularizer. This scheme is also applied to GNNs by Stadler et al. (2021), who use
a Personalized Page Rank scheme to diffuse node-specific posterior parameters between neighboring nodes.

7A NF is a generative model, estimating a density in the feature space by mapping it to a Gaussian in a latent space by a
series of invertible, bijective transformations. The probability of an input can then be estimated by calculating the probability
of its latent encoding under that Gaussian and applying the change-of-variable formula, traversing the flow in reverse. Instead
of mapping from the feature space into latent space, the flows in Charpentier et al. (2020) map from the encoder latent space
into a separate, second latent space.

8In their follow up work, this architecture is further simplified to just a single NF (Charpentier et al., 2021).
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Table 3: Overview over Evidential Deep Learning methods for regression.

Method Parameterized
distribution

Loss function Model

Deep Evidential Regression
(Amini et al., 2020)

Normal-Inverse
Gamma Prior

Negative log-likelihood loss + KL
w.r.t. uniform prior

MLP / CNN

Deep Evidential Regression
with Multi-task Learning
(Oh & Shin, 2021)

Normal-Inverse
Gamma Prior

Like Amini et al. (2020), with additional
Lipschitz-modified MSE loss

MLP / CNN

Multivariate Deep Evidential
Regression (Meinert & Lavin, 2021)

Normal-Inverse
Wishart Prior

Like Amini et al. (2020), but tying two
predicted params. instead of using a regularizer

MLP

Regression Prior Network
(Malinin et al., 2020a)

Normal-Wishart Prior Reverse KL
(Malinin & Gales, 2019)

MLP / CNN

Natural Posterior Network
(Charpentier et al., 2021)

Inverse-χ2 Posterior Uncertainty Cross-entropy (Biloš et al., 2019)
+ Entropy regularizer

MLP / CNN +
Norm. Flow

Another route lies in directly parameterizing the posterior parameters β. Because it is infeasible to model the
posterior this way due to an intractable integral, this leaves us to instead model an approximate posterior
using variational inference methods, which is exactly the approach of Joo et al. (2020) and Chen et al.
(2018). As the KL divergence between the true and approximate posterior is infeasible to estimate as well,
the variational methods usually optimizes the evidence lower bound (ELBO) instead. For the Dirichlet
family, the ELBO has an analytical solution (see Appendix B.3 for a derivation of the expression):

LELBO = ψ(βy) − ψ(β0) − log B(β)
B(γ) +

K∑
k=1

(βk − γk)
(
ψ(βk) − ψ(β0)

)
4 Evidential Deep Learning for Regression

Because the Evidential Deep Learning framework provides convenient uncertainty estimation, the question
naturally arises of whether it can be extended to regression problems as well. The answer is yes, although
the Dirichlet distribution is not an appropriate choice in this case. It is very common to model a regression
problem using a normal likelihood (Bishop, 2006). As such, there are multiple potential choices for a prior
distribution. The methods listed in Table 3 either choose the Normal-Inverse Gamma distribution (Amini
et al., 2020; Charpentier et al., 2021), inducing a scaled inverse-χ2 posterior (Gelman et al., 1995),9 or as a
Normal-Wishart prior (Malinin et al., 2020a). We will discuss these approaches in turn.

Amini et al. (2020) model the regression problem as a normal distribution with unknown mean and variance
N (y;µ, σ2), and use a normal prior for the mean with µ ∼ N (γ, σ2v−1) and an inverse Gamma prior for
the variance with σ2 ∼ Γ−1(α, β), resulting in a combined Inverse-Gamma prior with parameters γ, ν, α, β.
These are predicted by different “heads” of a neural network. Aleatoric and epistemic uncertainty can then be
estimated using the expected value of the variance as well as the variance of the mean, respectively, which have
closed form solutions under this parameterization. The model is optimized using a negative log-likelihood
objective along with an evidence regularizer, akin to the entropy regularizer for Dirichlet networks. Oh & Shin
(2021) add another Lipschitz-modified loss to the objective function in order to improve predictive accuracy
on inputs with high model uncertainty. Meinert & Lavin (2021) tackle the problem with the regularizer by
tying β and ν via a hyperparameter, and present a multivariate generalization of the approach. Charpentier
et al. (2021) extend the approach behind the posterior networks by Charpentier et al. (2020) to different
distributions from the exponential family, keeping architecture and loss function the same. Depending on
the distributions used however, the UCE loss by Biloš et al. (2019) takes on a different form. Malinin
et al. (2020a) can be seen as another multivariate generalization of the work of Amini et al. (2020), where
a combined Normal-Wishart prior is formed to fit the now multivariate normal likelihood. Again, the prior

9The form of the Normal-Inverse Gamma posterior and the Normal Inverse-χ2 posterior are interchangable using some
parameter substitutions (Murphy, 2007).
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parameters are the output of a neural network, and uncertainty can be quanitified in a similar way. For
training purposes, they apply the reverse KL objective of Malinin & Gales (2019) as well as the knowledge
distillation objective of Malinin et al. (2020b).

5 Related Approaches & Applications

Current Approaches The need for the quantification of uncertainty in order to earn the trust of end-
users and stakeholders has been a key driver for research (Bhatt et al., 2021). Unfortunately, standard neural
discriminator architectures have been proven to possess unwanted theoretical properties w.r.t. OOD inputs10

(Hein et al., 2019; Ulmer & Cinà, 2021) and lacking calibration in practice (Guo et al., 2017). A popular way
to overcome these blemishes is by quantifying (epistemic) uncertainty by aggregating multiple predictions
by networks in the Bayesian model averaging framework (Jeffreys, 1998; Wilson & Izmailov, 2020; Kristiadi
et al., 2020; Daxberger et al., 2021; Gal & Ghahramani, 2016; Blundell et al., 2015; Lakshminarayanan et al.,
2017). Nevertheless, many of these methods have been shown not to produce diverse predictions (Wilson &
Izmailov, 2020; Fort et al., 2019) and to deliver subpar performance and potentially misleading uncertainty
estimates under distributional shift (Ovadia et al., 2019; Masegosa, 2020; Wenzel et al., 2020; Izmailov et al.,
2021a;b), raising doubts about their efficacy.

Related Approaches Kull et al. (2019) found an appealing use of the Dirichlet distribution as a post-
training calibration map. The proposed Posterior Network (Charpentier et al., 2020; 2021) can furthermore
be seen as related to another, competing approach, namely the combination of neural discriminators with
density estimation methods, for instance in the form of energy-based models (Grathwohl et al.; Elflein et al.,
2021) or other hybrid architectures (Lee et al., 2018; Mukhoti et al., 2021).

Applications Some of the discussed models have already found a variety of applications, such as in au-
tonomous driving (Capellier et al., 2019; Liu et al., 2021; Petek et al., 2021; Wang et al., 2021), medical
screening (Ghesu et al., 2019; Gu et al., 2021), molecular analysis (Soleimany et al., 2021), open set recog-
nition (Bao et al., 2021), active learning (Hemmer et al., 2022) and model selection (Radev et al., 2021).

6 Discussion

Despite their advantages, the last chapters have highlighted key weaknesses of Dirichlet networks as well: In
order to achieve the right behavior of the distribution and thus guarantee sensible uncertainty estimates (since
ground truth estimates are not available), the surveyed literature proposes a variety of loss functions. Bengs
et al. (2022) show formally that many of the loss functions used so far are not appropriate and violate basic
asymptotic assumptions about epistemic uncertainty. Furthermore, some approaches Malinin & Gales (2018;
2019); Nandy et al. (2020); Malinin et al. (2020a) require out-of-distribution data points during training.
This comes with two problems: Such data is often not available or in the first place, or cannot guarantee
robustness against other kinds of unseen OOD data, of which infinite types exist in a real-valued feature
space.11 Indeed, Kopetzki et al. (2021) found OOD detection to deteriorate across a family of Dirichlet-based
models under adversarial perturbation and OOD data points. One possible explanation for this behavior
might lie in the insight that neural networks trained in the empirical risk minimization framework tend to
learn spurious but highly predictive features (Ilyas et al., 2019; Nagarajan et al., 2021). This way, inputs
stemming from the training distribution can be mapped to similar parts of the latent space as data points
outside the distribution even though they have (from a human perspective) blatant semantic differences,
simply because these semantic features were not useful to optimize for the training objective. This can
result in ID and OOD points having assigned similar feature representations by a network, a phenomenon
has been coined “feature collapse” (Nalisnick et al., 2019; van Amersfoort et al., 2021; Havtorn et al., 2021).
One strategy to mitigate (but not solve) this issue has been to enforce a constraint on the smoothness of
the neural network function (Wei et al., 2018; van Amersfoort et al., 2020; 2021; Liu et al., 2020), thereby

10Pearce et al. (2021) argue that some insights might partially be mislead by low-dimensional intuitions, and that empirically
OOD data in higher dimensions tend to be mapped into regions of higher uncertainty.

11The same applies to the artificial OOD data in Chen et al. (2018); Shen et al. (2020); Sensoy et al. (2020).
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maintaining both a sensitivity to semantic changes in the input and robustness against adversarial inputs
(Yu et al., 2019). Nevertheless, this question remains an open area of research and the impact on Evidential
Deep Learning methods underexplored.

7 Conclusion

This survey has given an overview over contemporary approaches for uncertainty estimation using neural
networks to parameterize conjugate priors or the corresponding posteriors instead of likelihoods, with a
focus on the Dirichlet distribution in a classification context. We highlighted their appealing theoretical
properties allowing for uncertainty estimation with minimal computational overhead, rendering them as a
viable alternative to existing strategies. We also emphasized practical problems: In order to nudge models
towards the desired behavior in the face of unseen or out-of-distribution samples, the design of the model
architecture and loss function have to be carefully considered. Based on a summary and discussion of
experimental findings in Appendix A, the entropy regularizer seems to be a sensible choice in prior networks
when OOD data is not available. Combining discriminators with generative models like normalizing flows like
in (Charpentier et al., 2020; 2021), embedded in a sturdy Bayesian framework, also appears as an exciting
direction for practical applications. In summary, we believe that recent advances show promising results for
Evidential Deep Learning, making it a viable option in the realm of uncertainty estimation to improve safety
and trustworthiness in Machine Learning systems.
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A Datasets & Evaluation Techniques

This section contains a discussion of the used datasets, methods to evaluate the quality of uncertainty
evaluation, as well as a direct of available models based on the reported results to determine the most useful
choices for practitioners. An overview over the differences between the surveyed works is given in Table 4.

Datasets Most models are applied to image classification problems, where popular choices involve the
MNIST dataset (LeCun, 1998), using as OOD datasets Fashion-MNIST (Xiao et al., 2017), notMNIST
(Bulatov, 2011) containing English letters, K-MNIST (Clanuwat et al., 2018) with ancient Japanese
Kuzushiji characters, and the Omniglot dataset (Lake et al., 2015), featuring handwritten characters from
more than 50 alphabets. Other choices involve different versions of the CIFAR-10 object recognition dataset
(LeCun et al., 1998; Krizhevsky et al., 2009) for training purposes and SVHN (Goodfellow et al., 2014),
iSUN (Xiao et al., 2010), LSUN (Yu et al., 2015), CelebA (Liu et al., 2015), ImageNet (Deng et al., 2009)
and TinyImagenet (Bastidas, 2017) for OOD samples. Regression image datasets include for instance the
NYU Depth Estimation v2 dataset (Silberman et al., 2012), using ApolloScape (Huang et al., 2018) or
KITTI (Menze & Geiger, 2015) as an OOD dataset. Many authors also illustrate model uncertainty on
synthetic data, for instance by simulating clusters of data points using Gaussians (Malinin & Gales, 2018;
2019; Nandy et al., 2020; Zhao et al., 2019; Hu et al., 2020; Charpentier et al., 2020; 2021), spiral data
(Malinin et al., 2020b) or polynomials for regression (Amini et al., 2020; Oh & Shin, 2021; Meinert &
Lavin, 2021; Malinin et al., 2020a; Charpentier et al., 2021). Tabular datasets include the Segment dataset,
predicting image segments based on pixel features (Dua et al., 2017), and the sensorless drive dataset
(Dua et al., 2017; Paschke et al., 2013), describing the maintenance state of electric current drives as well
as popular regression datasets included in the UCI regression benchmark used by Hernández-Lobato &
Adams (2015); Gal & Ghahramani (2016): Boston house prices (Harrison Jr & Rubinfeld, 1978), concrete
compression strength (Yeh, 1998), energy efficiency of buildings (Tsanas & Xifara, 2012), forward kinematics

19



Under review as submission to TMLR

Table 4: Overview over uncertainty evaluation techniques and datasets. (∗) indicates that a dataset was
used as an OOD dataset for evaluation purposes, while (⋄) signifies that it was used as an in-distribution or
out-of-distribution dataset. (†) means that a dataset was modified to create ID and OOD splits (for instance
by removing some classes for evaluation or corrupting samples with noise).

Data Modality

Method Uncertainty Evaluation Images Tabular Other

Prior network
(Malinin & Gales, 2018)

OOD Detection,
Misclassification Detection

MNIST, CIFAR-10,
Omniglot(∗), SVHN(∗),
LSUN(∗), TIM(∗)

✗ Clusters (Synthetic)

Prior networks
(Malinin & Gales, 2019)

OOD Detection,
Adversarial Attack Detection

MNIST, CIFAR-10/100,
SVHN(∗), LSUN(∗), TIM(∗) ✗ Clusters (Synthetic)

Information Robust Dirichlet Networks
(Tsiligkaridis, 2019)

OOD Detection,
Adversarial Attack Detection

MNIST, FashionMNIST(∗)

notMNIST(∗), Omniglot(∗)

CIFAR-10, TIM(∗), SVHN(∗)
✗ ✗

Dirichlet via Function Decomposition
(Biloš et al., 2019)

OOD Detection ✗

Erdős-Rényi Graph
(Synthetic), Stack Exchange,
Smart Home, Car Indicators

✗

Prior network with PAC Regularization
(Haussmann et al., 2019)

OOD Detection MNIST, FashionMNIST(∗)

CIFAR-10(†) ✗ ✗

Ensemble Distribution Distillation
(Malinin et al., 2020b)

OOD Detection,
Misclassification Detection,
Calibration

CIFAR-10, CIFAR-100(⋄)

TIM(⋄), LSUN(∗) ✗ Spirals (Synthetic)

Prior networks with representation gap
(Nandy et al., 2020)

OOD Detection CIFAR-10(⋄), CIFAR-100(⋄)

TIM, ImageNet(∗) ✗ Clusters (Synthetic)

Prior RNN (Shen et al., 2020) New Concept Extraction ✗ ✗
Concept Learning(⋄), Snips(⋄),
ATIS(⋄) (Language)

Graph-based Kernel Dirichlet distribution
estimation (GKDE) (Zhao et al., 2020)

OOD Detection
Misclassification Detection ✗ ✗

Coauthors Physics(⋄),
Amazon Computer(⋄)

Amazon Photo(⋄) (Graph)

Evidential Deep Learning
(Sensoy et al., 2018)

OOD Detection,
Adversarial Attack Detection

MNIST, notMNIST(∗),
CIFAR-10(†) ✗ ✗

Regularized ENN
Zhao et al. (2019)

OOD Detection CIFAR-10(†) ✗ Clusters (Synthetic)

WGAN–ENN
(Hu et al., 2021)

OOD Detection,
Adversarial Attack Detection

MNIST, notMNIST(∗),
CIFAR-10(†) ✗ Clusters (Synthetic)

Variational Dirichlet
(Chen et al., 2018)

OOD Detection,
Adversarial Attack Detection

MNIST, CIFAR-10/100,
iSUN(∗), LSUN(∗),
SVHN(∗), TIM(∗)

✗ ✗

Belief Matching (Joo et al., 2020) OOD Detection, Calibration CIFAR-10/100, SVHN(∗) ✗ ✗

Posterior Networks
(Charpentier et al., 2020)

OOD Detection,
Misclassification Detection,
Calibration

MNIST, FashionMNIST(∗),
K-MNIST(∗), CIFAR-10,
SVHN(∗)

Segment(†),
Sensorless Drive(†) Clusters (Synthetic)

Graph Posterior Networks
(Stadler et al., 2021)

OOD Detection,
Misclassification Detection,
Calibration

✗ ✗

Amazon Computer(⋄), Amazon Photo(⋄)

CoraML(⋄), CiteSeerCoraML(⋄),
PubMed(⋄), Coauthors Physics(⋄),
CoauthorsCS(⋄), OBGN Arxiv(⋄) (Graph)

Deep Evidential Regression
(Amini et al., 2020)

OOD Detection,
Misclassification Detection,
Adversarial Attack Detection
Calibration

NYU Depth v2
ApolloScape∗

(Depth Estimation)

UCI Regression
Benchmark Univariate Regression (Synthetic)

Deep Evidential Regression
with Multi-task Learning
(Oh & Shin, 2021)

OOD Detection,
Calibration ✗

Davis, Kiba(†),
BindingDB, PubChem(∗)

(Drug discovery),
UCI Regression
Benchmark

Univariate Regression (Synthetic)

Multivariate Deep Evidential
Regression Meinert & Lavin (2021)

Qualitative Evaluation ✗ ✗ Multivariate Regression (Synthetic)

Regression Prior Network
(Malinin et al., 2020a)

OOD Detection
NYU Depth v2⋄,
KITTI⋄

(Depth Estimation)

UCI Regression
Benchmark Univariate Regression (Synthetic)

Natural Posterior Network
(Charpentier et al., 2021)

OOD Detection, Calibration

NYU Depth v2,
KITTI∗, LSUN(∗)

(Depth Estimation),
MNIST, FashionMNIST(∗),
K-MNIST(∗), CIFAR-10(†),
SVHN(∗), CelebA(∗)

UCI Regression
Benchmark(†),
Sensorless Drive(†),
Bike Sharing(†)

Clusters (Synthetic),
Univariate Regression (Synthetic))

of an eight link robot arm (Corke, 1996), maintenance of naval propulsion systems (Coraddu et al., 2016),
properties of protein tertiary stuctures, wine quality (Cortez et al., 2009), and yacht hydrodynamics
(Gerritsma et al., 1981). Furthermore, Oh & Shin (2021) use a number of drug discovery datasets, such as
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Davis (Davis et al., 2011), Kiba (Tang et al., 2014), BindingDB (Liu et al., 2007) and PubChem (Kim et al.,
2019). Biloš et al. (2019) are the only authors working on asynchronous time even prediction, and supply
their own data in the form of processed stack exchange postings, smart home data, and car indicators.
Shen et al. (2020) provide the sole method on language data, and use three different concept learning
datasets, i.e. Concept Learning (Jia et al., 2017), Snips (Coucke et al., 2018) and ATIS (Hemphill et al.,
1990), which contains new OOD concepts to be learned by design. For graph neural networks, Zhao et al.
(2020) and Stadler et al. (2021) select data from the co-purchase datasets Amazon Computer, Amazon
Photos (McAuley et al., 2015) and the CoraML (McCallum et al., 2000), CiteSeer (Giles et al., 1998)
and PubMed (Namata et al., 2012), Coauthors Physics (Shchur et al., 2018), CoauthorCS (Namata et al.,
2012) and OGBN Arxiv (Hu et al., 2020) citation datasets. Lastly, Charpentier et al. (2021) use a sin-
gle count prediction dataset concerned with predicting the number of bike rentals (Fanaee-T & Gama, 2014).

Uncertainty Evaluation Methods There usually are no gold labels for uncertainty estimates, which is
why the efficacy of proposed solutions has to be evaluated in a different way. One such way used by almost
all the surveyed works is using uncertainty estimates in a proxy OOD detection task: Since the model is
underspecified on unseen samples from another distribution, it should be more uncertain. By labelling
OOD samples as the positive and ID inputs as the negative class, we can measure the performance of
uncertainty estimates using the area under the receiver-operator characteristic (AUROC) or the area under
the precision-recall curve (AUPR). We can thereby characterize the usage of data from another dataset
as a form of covariate shift, while using left-out classes for testing can be seen as a kind of concept shift
(Moreno-Torres et al., 2012). Instead of using OOD data, another approach is to use adversarial examples
(Malinin & Gales, 2019; Tsiligkaridis, 2019; Sensoy et al., 2018; Hu et al., 2021; Chen et al., 2018; Amini
et al., 2020), checking if they can be identified through uncertainty. In the case of Shen et al. (2020), OOD
detection or new concept extraction is the actual and not a proxy task, and thus can be evaluated using
classical metrics such as the F1 score. Another way is misclassification detection: In general, we would desire
the model to be more uncertain about inputs it incurs a higher loss on, i.e., what it is more wrong about.
For this purpose, some works (Malinin & Gales, 2018; Zhao et al., 2020; Charpentier et al., 2020) measure
whether let missclassified inputs be the positive class in another binary proxy classification test, and again
measure AUROC and AUPR. Alternatively, Malinin et al. (2020b); Stadler et al. (2021); Amini et al. (2020)
show or measure the area under the prediction / rejection curve, graphing how task performance varies as
predictions on increasingly uncertain inputs is suspended. Lastly, some authors look at a model’s calibration
(Guo et al., 2017): While this does not allow to judge the quality of uncertainty estimates themselves,
quantities like the expected calibration error quantify to what extent the output distribution of a clas-
sifier corresponds to the true label distribution, and thus whether aleatoric uncertainty is accurately reflected.

What is state-of-the-art? As apparent from Table 4, evaluation methods and datasets can vary tremen-
dously between different research works. This can make it hard to accurately compare different approaches
in a fair manner. Nevertheless, we try to draw some conclusion about the state-of-art in this research
direction to the best extent possible: For image classification, the posterior (Charpentier et al., 2020) and
natural posterior network (Charpentier et al., 2021) provide the best results on the tested benchmarks, both
in terms of task performance and uncertainty quality. When the training an extra normalizing flow creates
too much computational overhead, prior networks (Malinin & Gales, 2018) with the PAC-based regularizer
(Haussmann et al., 2019; see Table 5 for final form) or a simple entropy regularizer (Appendix B.2) can be
used. In the case of regression problems, the natural posterior network (Stadler et al., 2021) performs
better or on par with the evidential regression by Amini et al. (2020) or an ensemble Lakshminarayanan
et al. (2017) or MC Dropout (Gal & Ghahramani, 2016). For graph neural networks, the graph posterior
network (Stadler et al., 2021) and a ensemble provide similar performance, but with the former displaying
better uncertainty results. Again, this model requires training a NF, so a simpler fallback is provided by
evidential regression (Amini et al., 2020) with the improvement by Oh & Shin (2021). For NLP and count
prediction, the works of Shen et al. (2020) and Charpentier et al. (2021) are the only available instances
from this model family, respectively. In the latter case, ensembles and the evidential regression frame-
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work (Amini et al., 2020) produce a lower root mean-squared error, but worse uncertainty estimates on OOD.

Caveats Stadler et al. (2021) point out that much of the ability of posterior networks stems from the
addition of a NF, which have been shown to also sometimes behave unreliably on OOD data (Nalisnick
et al., 2019). Although the NFs in posterior networks operate on the latent and not the feature space, they
are also restricted to operate on features that the underlying network has learned to recognize. Recent work
by Dietterich & Guyer (2022) has hinted at the fact that networks might identify OOD by the absence of
known features, and not by the presence of new ones, providing a case in which posterior networks are likely
to fail. Such evidence on OOD data and adversarial examples has indeed been identified by a study by
Kopetzki et al. (2021). Exposing the model to (artificial) OOD data during training as done in the case of
Malinin & Gales (2018; 2019); Nandy et al. (2020); Zhao et al. (2019) might alleviate this issue, but will
never guarantee full coverage of all potential OOD cases. Lastly, Bengs et al. (2022) also prove how some of
the used loss function used for training evidential models do not fulfill desiderata for epistemic uncertainty,
pointing to a more fundamental flaw.

B Fundamental Derivations

This appendix section walks the reader through generalized versions of recurring theoretical results using
Dirichlet distributions in a Machine Learning context, such as their expectation in Appendix B.1, their
entropy in Appendix B.2 and the Kullback-Leibler divergence between two Dirichlets in Appendix C.3.

B.1 Expectation of a Dirichlet

Here, we show results for the quantities E[µk] and E[logµk]. For the first, we follow the derivation by Miller
(2011). Another proof is given by Lin (2016).

E[µk] =
∫

· · ·
∫
µk

Γ(α0)∏K
k′=1 Γ(α′

k)

K∏
k′=1

µ
αk′ −1
k′ dµ1 . . . dµK

Moving µαk−1
k out of the product:

=
∫

· · ·
∫ Γ(α0)∏K

k′=1 Γ(αk′)
µαk−1+1

k

∏
k′ ̸=k

µ
αk′ −1
k′ dµ1 . . . dµK (10)

For the next step, we define a new set of Dirichlet parameters with βk = αk + 1 and ∀k′ ̸= k : βk′ = αk′ .
For those new parameters, β0 =

∑
k βk = 1 + α0. So by virtue of the Gamma function’s property that

Γ(β0) = Γ(α0 + 1) = α0Γ(α0), replacing all terms in the normalization factor yields

=
∫

· · ·
∫
αk

α0

Γ(β0)∏K
k′=1 Γ(βk′)

K∏
k′=1

µ
βk′ −1
k′ dµ1 . . . dµK = αk

α0

where in the last step we obtain the final result, since the Dirichlet with new parameters βk must nevertheless
integrate to 1, and the integrals do not regard αk or α0. For the expectation E[logµk], we first rephrase
the Dirichlet distribution in terms of the exponential family (Kupperman, 1964). The exponential family
encompasses many commonly-used distributions, such as the normal, exponential, Beta or Poisson, which
all follow the form

p(x; η) = h(x) exp
(
ηTu(x) −A(η)

)
with natural parameters η, sufficient statistic u(x), and log-partition function A(η). For the Dirichlet
distribution, Winn (2004) provides the sufficient statistic as u(µ) = [log µ1, . . . ,µK ]T and the log-partition
function
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A(α) =
K∑

k=1
log Γ(αk) − log Γ(αo) (11)

By Mao (2019), we also find that by the moment-generating function that for the sufficient statistic, its
expectation can be derived by

E[u(x)k] = ∂A(η)
∂ηk

(12)

Therefore we can evaluate the expected value of logµk (i.e. the sufficient statistic) by inserting the definition
of the log-partition function in Equation (11) into Equation (12):

E[logµk] = ∂

∂αk

K∑
k=1

log Γ(αk) − log Γ(α0) = ψ(αk) − ψ(α0) (13)

which corresponds precisely to the definition of the digamma function as ψ(x) = d
dx log Γ(x).

B.2 Entropy of Dirichlet

The following derivation is adapted from Lin (2016), with the result stated in Charpentier et al. (2020) as
well.

H[µ] = −E[log p(µ|α)]

= −E
[
log
( 1
B(α)

K∏
k=1

µαk−1
k

)]

= −E
[
− logB(α) +

K∑
k=1

(αk − 1) logµk

]

= logB(α) −
K∑

k=1
(αk − 1)E[logµk]

Using Equation (13):

= logB(α) −
K∑

k=1
(αk − 1)

(
ψ(αk) − ψ(α0)

)
= logB(α) +

K∑
k=1

(αk − 1)ψ(α0) −
K∑

k=1
(αk − 1)ψ(αk)

= logB(α) + (α0 −K)ψ(α0) −
K∑

k=1
(αk − 1)ψ(αk)

B.3 Kullback-Leibler Divergence between two Dirichlets

The following result is presented using an adapted derivation by Lin (2016) and appears in Chen et al. (2018)
and Joo et al. (2020) as a starting point for their variational objective (see Appendix C.7). In the following
we use Dir(µ; α) to denote the optimized distribution, and Dir(µ; γ) the reference or target distribution.
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KL
[
p(µ|α)

∣∣∣∣∣∣p(µ|γ)
]

=E
[
log p(µ|α)

p(µ|γ)

]
= E

[
log p(µ|α)

]
− E

[
log p(µ|γ)

]
=E
[
− logB(α) +

K∑
k=1

(αk − 1) logµk

]

−E
[
− logB(γ) +

K∑
k=1

(γk − 1) logµk

]
Distributing and pulling out B(α) and B(γ) out of the expectation (they don’t depend on µ):

= − log B(γ)
B(α) + E

[ K∑
k=1

(αk − 1) logµk − (γk − 1) logµk

]

= − log B(γ)
B(α) + E

[ K∑
k=1

(αk − γk) logµk

]
Moving the expectation inward and using the identity E[µk] = ψ(αk) − ψ(α0) from Appendix B.1:

= − log B(γ)
B(α) +

K∑
k=1

(αk − γk)
(
ψ(αk) − ψ(α0)

)
The KL divergence is also used by some works as regularizer by penalizing the distance to a uniform Dirichlet
with γ = 1 (Sensoy et al., 2018). In this case, the result above can be derived to be

KL
[
p(µ|α)

∣∣∣∣∣∣p(µ|1)
]

= log Γ(K)
B(α) +

K∑
k=1

(αk − 1)
(
ψ(αk) − ψ(α0)

)
where the log Γ(K) term can also be omitted for optimization purposes, since it does not depend on α.

C Additional Derivations

In this appendix we present relevant results in a Machine Learning context, including from some of the
surveyed works, featuring as unified notation and annotated derivation steps. These include derivations
of expected entropy (Appendix C.1) and mutual information (Appendix C.2) as uncertainty metrics for
Dirichlet networks. Also, we derive a multitude of loss functions, including the l∞ norm loss of a Dirichlet
w.r.t. a one-hot encoded class label in Appendix C.3, the l2 norm loss in Appendix C.4, as well as the reverse
KL loss by Malinin & Gales (2019), the UCE objective Biloš et al. (2019); Charpentier et al. (2020) and
ELBO Shen et al. (2020); Chen et al. (2018) as training objectives (Appendices C.5 to C.7).

C.1 Derivation of Expected Entropy

The following derivation is adapted from Malinin & Gales (2018) appendix section C.4. In the following, we
assume that ∀k ∈ K : µk > 0:

Ep(µ| x,θ̂)

[
H
[
P (y|µ)

]]
=
∫
p(µ| x, θ̂)

(
−

K∑
k=1

µk logµk

)
dµ

= −
K∑

k=1

∫
p(µ| x, θ̂)

(
µk logµk

)
dµ
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Inserting the definition of p(µ| x, θ̂) ≈ p(µ| x,D):

= −
K∑

k=1

(
Γ(α0)∏K

k′=1 Γ(αk′)

∫
µk logµk

K∏
k′=1

µ
αk′ −1
k′ dµ

)

Singling out the factor µk:

= −
K∑

k=1

(
Γ(α0)

Γ(αk)
∏

k′ ̸=k Γ(αk′)µ
αk−1
k

∫
µk logµk

∏
k′ ̸=k

µ
αk′ −1
k′ dµ

)

Adjusting the normalizing constant (this is the same trick used in Appendix B.1):

= −
K∑

k=1

(
αk

α0

∫ Γ(α0 + 1)
Γ(αk + 1)

∏
k′ ̸=k Γ(αk′)µ

αk−1
k logµk

∏
k′ ̸=k

µ
αk′ −1
k′ dµ

)

Using the identity E[logµk] = ψ(αk) − ψ(α0) (Equation (13)). Since the expectation here is w.r.t to a
Dirichlet with concentration parameters αk + 1, we obtain

= −
K∑

k=1

αk

α0

(
ψ(αk + 1) − ψ(α0 + 1)

)

C.2 Derivation of Mutual Information

We start from the expression in Equation (8):

I
[
y,µ

∣∣∣x,D] = H

[
Ep(µ| x,D)

[
P (y|µ)

]]
− Ep(µ| x,D)

[
H
[
P (y|µ)

]]
Given that E[µk] = αk

α0
(Appendix B.1) and assuming that point estimate p(µ| x,D) ≈ p(µ| x, θ̂) is suffi-

cient (Malinin & Gales, 2018), we can identify the first term as the Shannon entropy −
∑K

k=1 µk logµk =
−
∑K

k=1
αk

α0
log αk

α0
. Furthermore, the second part we already derived in Appendix C.1 and thus we obtain:

= −
K∑

k=1

αk

α0
log αk

α0
+

K∑
k=1

αk

α0

(
ψ(αk + 1) − ψ(α0 + 1)

)

= −
K∑

k=1

αk

α0

(
log αk

α0
− ψ(αk + 1) + ψ(α0 + 1)

)

C.3 l∞ Norm Derivation

In this section we elaborate on the derivation of Tsiligkaridis (2019) deriving a generalized lp loss, upper-
bounding the l∞ loss. This in turn allows us to easily derive the l2 loss used by Sensoy et al. (2018); Zhao
et al. (2020). Here we assume the classification target y is provided in the form of a one-hot encoded label
y = [1y=1, . . . ,1y=K ]T .

Ep(µ| x,θ)
[
|| y −µ||∞

]
≤ Ep(µ| x,θ)

[
|| y −µ||p

]
(14)

Using Jensen’s inequality

≤
(
Ep(µ| x,θ)

[
|| y −µ||pp

])1/p

(15)
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Evaluating the expression with ∀k ̸= y : yk = 0:

=
(
E[(1 − µy)p] +

∑
k ̸=y

E[µp
k]
)1/p

(16)

In order to compute the expression above, we first realize that all components of µ are distributed according
to a Beta distribution Beta(α, β) (since the Dirichlet is a multivariate generalization of the beta distribution)
for which the moment-generating function is given as follows:

E[µp] = Γ(α+ p)Γ(β)Γ(α+ β)
Γ(α+ p+ β)Γ(α)Γ(β) = Γ(α+ p)Γ(α+ β)

Γ(α+ p+ β)Γ(α)

Given that the first term in Equation (14) is characterized by Beta(α0 − αy, αy) and the second one by
Beta(αk, α0 − αk), we can evaluate the result in Equation (14) using the moment generating function:

Ep(µ| x,θ)

[
|| y −µ||∞

]
≤

(
Γ(α0 − αy + p)Γ(α0 −��αy +��αy)
Γ(α0 −��αy + p+�

�αy)Γ(α0 − αy)
+
∑
k ̸=y

Γ(αk + p)Γ(��αk + α0 −��αk)
Γ(��αk + p+ α0 −��αk)Γ(αk)

) 1
p

=
(

Γ(α0 − αy + p)Γ(α0)
Γ(α0 + p)Γ(α0 − αy) +

∑
k ̸=y

Γ(αk + p)Γ(α0)
Γ(p+ α0)Γ(αk)

) 1
p

Factoring out common terms:

=

 Γ(α0)
Γ(α0 + p)

Γ(α0 − αy + p)
Γ(α0 − αy) +

∑
k ̸=y

Γ(αk + p)
Γ(αk)




1
p

Expressing α0 − αk =
∑

k ̸=y αk:

=
(

Γ(α0)
Γ(α0 + p)

) 1
p

Γ
(∑

k ̸=y αk + p
)

Γ
(∑

k ̸=y αk

) +
∑
k ̸=y

Γ(αk + p)
Γ(αk)


1
p

C.4 l2 Norm Loss Derivation

Here we present an adapted derivation by Sensoy et al. (2018) for the l2-norm loss to train Dirichlet networks.
Here we again use a one-hot vector for a label with y = [1y=1, . . . ,1y=K ]T .

Ep(µ| x,θ)

[
|| y −µ||22

]
= E

[ K∑
k=1

(1y=k − µk)2
]

(17)

= E
[ K∑

k=1
12

y=k − 2µk1y=k + µ2
k

]
(18)

=
K∑

k=1
12

y=k − 2E[µk]1y=k + E[µ2
k] (19)
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Using the identity that E[µ2
k] = E[µk]2 + Var(µk):

=
K∑

k=1
12

y=k − 2E[µk]1y=k + E[µk]2 + Var(µk) (20)

=
K∑

k=1

(
1y=k − E[µk]

)2
+ Var(µk) (21)

Finally, we use the result from Appendix B.1 and the result that Var(µk) = αk(α0 − αk)
α2

0(α0 + 1) (see Lin, 2016):

=
K∑

k=1

(
1y=k − αk

α0

)2
+ αk(α0 − αk)

α2
0(α0 + 1) (22)

C.5 Derivation of Reverse KL loss

Here we re-state and annotate the derivation of reverse KL loss by Malinin & Gales (2019) in more detail,
starting from the forward KL loss by Malinin & Gales (2018). Note that here, α̂ contains a dependence on k,
since Malinin & Gales (2018) let α̂k = µ̂kα̂0 with α̂0 being a hyperparameter and µ̂k = 1k=y +(−1k=yK+1)ε
and ε being a small number.

Ep(x,y)

[ K∑
k=1

1y=kKL
[
p(µ|α̂)

∣∣∣∣∣∣p(µ| x,θ)
]]

= Ep(x,y)

[ K∑
k=1

1y=k

∫
p(µ|α̂) log p(µ|α̂)

p(µ| x,θ)dµ

]
Writing the expectation explicitly:

=
∫ K∑

k=1
p(y = k,x)

K∑
k=1

1y=k

∫
p(µ|α̂) log p(µ|α̂)

p(µ| x,θ)dµdx

=
∫ K∑

k=1
p(x)P (y = k| x)

K∑
k=1

1y=k

∫
p(µ|α̂) log p(µ|α̂)

p(µ| x,θ)dµdx

= Ep(x)

[
K∑

k=1
P (y = k| x)

K∑
k=1

1y=k

∫
p(µ|α̂) log p(µ|α̂)

p(µ| x,θ)dµ

]

Adding factor in log, collapsing double sum:

= Ep(x)

[
K∑

k=1
P (y = k| x)

∫
p(µ|α̂) log

(
p(µ|α̂)

∑K
k=1 P (y = k| x)

p(µ| x,θ)
∑K

k=1 P (y = k| x)

)
dµ

]

Reordering, separating constant factor from log:

= Ep(x)

[∫ K∑
k=1

P (y = k| x)p(µ|α̂)
(

log
(∑K

k=1 P (y = k| x)p(µ|α̂)
p(µ| x,θ)

)

− log
( K∑

k=1
P (y = k| x)

)
︸ ︷︷ ︸

=0

)
dµ

]
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= Ep(x)

[
KL
[ K∑

k=1
P (y = k| x)p(µ|α̂)︸ ︷︷ ︸

Mixture of K Dirichlets

∣∣∣∣∣∣p(µ| x,θ)
]]

where we can see that this objective actually tries to minimizes the divergence towards a mixture of K
Dirichlet distributions. In the case of high data uncertainty, this is claimed incentivize the model to distribute
mass around each of the corners of the simplex, instead of the desired behavior shown in Figure 2c. Therefore,
Malinin & Gales (2019) propose to swap the order of arguments in the KL-divergence, resulting in the
following:

Ep(x)

[ K∑
k=1

P (y = k| x) · KL
[
p(µ| x,θ)

∣∣∣∣∣∣p(µ|α̂)
]]

= Ep(x)

[ K∑
k=1

p(y = k| x) ·
∫
p(µ| x,θ) log p(µ| x,θ)

p(µ|α̂) dµ

]
Reordering:

= Ep(x)

[∫
p(µ| x,θ)

K∑
k=1

P (y = k| x) log p(µ| x,θ)
p(µ|α̂) dµ

]

= Ep(x)

[
Ep(µ| x,θ)

[ K∑
k=1

P (y = k| x) log p(µ| x,θ) −
K∑

k=1
P (y = k| x) log p(µ|α̂)

]]

= Ep(x)

[∫
p(µ| x,θ)

(
log
( K∏

k=1
p(µ| x,θ)P (y=k| x)

)
− log

( K∏
k=1

p(µ|α̂)P (y=k| x)
))

dµ

]

= Ep(x)

[∫
p(µ| x,θ)

(
log
(
p(µ| x,θ)

∑K

k=1
P (y=k| x)

)

− log
( K∏

k=1

( 1
B(α)

K∏
k′=1

µ
αk′ −1
k′

)p(y=k| x)
))

dµ

]

= Ep(x)

[∫
p(µ| x,θ)

(
log
(
p(µ| x,θ)

)
− log

( K∏
k=1

( 1
B(α)

K∏
k′=1

µ
αk′ −1
k′

)P (y=k| x)
)
dµ

]

= Ep(x)

[∫
p(µ| x,θ)

(
log
(
p(µ| x,θ)

)
− log

(
1

B(α)

K∏
k′=1

µ

∑K

k=1
P (y=k| x)αk′ −1

k′

)
dµ

]

= Ep(x)

[
KL
[
p(µ| x,θ)||p(µ|ᾱ)

]]
where ᾱ =

K∑
k=1

p(y = k| x)αk′

Therefore, instead of a mixture of Dirichlet distribution, we obtain a single distribution whose parameters
are a mixture of the concentrations of each class.

C.6 Uncertainty-aware Cross-Entropy Loss

The uncertainty-aware cross-entropy loss in Biloš et al. (2019); Charpentier et al. (2020) has the form

LUCE = Ep(µ| x,θ)[log p(y|µ)] = E[logµy] = ψ(αy) − ψ(α0)

as p(y|µ) is given by the true label in form of a delta distribution, we can apply the result from Appendix B.1.
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C.7 Evidence-Lower Bound For Dirichlet Posterior Estimation

The evidence lower bound is a well-known objective to optimize the KL-divergence between an approximate
proposal and target distribution (Jordan et al., 1999; Kingma & Welling, 2014). We derive it based on
Chen et al. (2018) in the following for the Dirichlet case with a proposal distribution p(µ| x,θ) to the target
distribution p(µ|y). For the first part of the derivation, we omit the dependence on β for clarity.

KL
[
p(µ| x,θ)

∣∣∣∣p(µ|y)
]

= Ep(µ| x,θ)

[
log p(µ| x,θ)

p(µ|y)

]
= Ep(µ| x,θ)

[
log p(µ| x,θ)p(y)

p(µ, y)

]
Factorizing p(µ, y) = P (y|µ)p(µ), pulling out p(y) as it doesn’t depend on µ:

= Ep(µ| x,θ)

[
log p(µ| x,θ)

P (y|µ)p(µ)

]
+ p(y)

= Ep(µ| x,θ)

[
log p(µ| x,θ)

p(µ)

]
− Ep(µ| x,θ)

[
logP (y|µ)

]
+ p(y)

≤ KL
[
p(µ| x,θ)

∣∣∣∣p(µ)
]

− Ep(µ| x,θ)
[
logP (y|µ)

]
Now note that the second part of the result is the uncertainty-aware cross-entropy loss from Appendix C.6
and re-adding the dependence of p(µ) on γ, we can re-use our result regarding the KL-divergence between
two Dirichlets in Appendix B.3 and thus obtain:

LELBO = ψ(βy) − ψ(β0) − log B(β)
B(γ) +

K∑
k=1

(βk − γk)
(
ψ(βk) − ψ(β0)

)
(23)

which is exactly the solution obtained by both Chen et al. (2018) and Joo et al. (2020).

D Overview over Loss Functions

In Tables 5 and 6, we compare the forms of the loss function used by Evidential Deep Learning methods for
classification, using the consistent notation from the paper. Most of the presented results can be found in
the previous Appendix B and Appendix C. We refer to the original work for details about the objective of
Nandy et al. (2020).
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Table 5: Overview over objectives used by prior networks for classification.

Method Loss function Regularizer Comment

Prior networks
(Malinin & Gales, 2018)

log B(α̂)
B(α) +

∑K
k=1(αk − α̂k)

(
ψ(αk) − ψ(α0)

)
− log Γ(K)

B(α) +
∑K

k=1(αk − 1)(ψ(αk) − ψ(α0)) Target concentration parameters α̂ are created
using a label smoothing approach,

i.e. µ̂k =
{

1 − (K − 1)ε if y = k

ε if y ̸= k
.

Together with setting α̂0 as a hyperparameter,
α̂k = µ̂kα̂0

Prior networks
(Malinin & Gales, 2019)

log B(α̂)
B(α) +

∑K
k=1(αk − α̂k)

(
ψ(αk) − ψ(α0)

)
log B(ᾱ)

B(α) +
∑K

k=1(αk − ᾱk)
(
ψ(αk) − ψ(α0)

)
Similar to above, α̂(k)

c = 1c=kαin + 1
for in-distribution and ᾱ

(k)
c = 1c=kαout + 1

where we have hyperparameters set to αin = 0.01
and αout = 0. Then finally, α̂ =

∑K
k=1 p(y = k| x)α̂k

and ᾱ =
∑K

k=1 p(y = k| x)ᾱk.

Information Robust
Dirichlet Networks
(Tsiligkaridis, 2019)

(
Γ(α0)

Γ(α0+p)

) 1
p

Γ
(∑

k ̸=y
αk+p

)
Γ
(∑

k ̸=y
αk

) +
∑

k ̸=y
Γ(αk+p)

Γ(αk)


1
p

1
2
∑

k ̸=y(αk − 1)2(ψ(1)(αk) − ψ(1))(α0)) ψ(1) is the polygamma function defined as
ψ(1)(x) = d

dxψ(x).

Dirichlet via Function
Decomposition
(Biloš et al., 2019)

ψ(αy) − ψ(α0) λ1
∫ T

0 µk(τ)2dτ + λ2
∫ T

0 (ν − σ2(τ))2dτ Factors λ1 and λ2 that are treated as hyperparameters
that weigh first term pushing the for logit k to zero,
while pushing the variance in the first term to ν.

Prior network
with PAC Reg.
(Haussmann et al., 2019)

− logE
[∏K

k=1

(
αk

α0

)1k=y
] √

KL
[

p(µ|α)
∣∣∣∣p(µ|1)

]
−log δ

N − 1 The expectation in the loss function is evaluated
using parameter samples from a weight distribution.
δ ∈ [0, 1].

Ensemble Distribution
Distillation
(Malinin et al., 2020b)

ψ(α0) −
∑K

k=1 ψ(αk) + 1
M

∑M
m=1

∑K
k=1(αk − 1)

log p(y = k| x,θ(m))
- The objective uses predictions from a trained ensemble

with parameters θ1, . . . ,θM .

Prior networks with
representation gap
(Nandy et al., 2020)

− logµy − λin
K

∑K
k=1 σ(αk) −

∑
k=1

1
K logµk − λout

K

∑K
k=1 σ(αk) The main objective is being optimized on in-distribution,

the regularizer on out-of-distribution data. λin and
λout weighing terms and σ denotes the sigmoid function.

Prior RNN
(Shen et al., 2020)

∑
k=1 1k=y logµk − logB(α̃) + (α̂0 −K)ψ(α̂0) −

∑K
k=1(α̂k − 1)ψ(α̂k) Here, the entropy regularizer operates on a scaled version of the

concentration parameters α̃ = (IK − W)α, where W is learned.

Graph-based Kernel
Dirichlet dist. est. (GKDE)
(Zhao et al., 2020)

∑K
k=1

(
1y=k − αk

α0

)2
+ αk(α0−αk)

α2
0(α0+1) − log B(α)

B(α̂) +
∑K

k=1(αk − α̂k)
(
ψ(αk) − ψ(α0)

)
α̂ here corresponds to a uniform prior including some
information about the local graph structure. The authors
also use an additional knowledge distillation objective,
which was omitted here since it doesn’t related to the Dirichlet.
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Table 6: Overview over objectives used by posterior networks for classification.

Method Loss function Regularizer Comment

Evidential Deep Learning
(Sensoy et al., 2018)

∑K
k=1

(
1y=k − βk

β0

)2
+ βk(β0−βk)

β2
0 (β0+1) − log Γ(K)

B(β) +
∑K

k=1(βk − 1)(ψ(βk) − ψ(β0))

Variational Dirichlet
(Chen et al., 2018)

ψ(βy) − ψ(β0) − log B(β)
B(γ) +

∑K
k=1(βk − γk)

(
ψ(βk) − ψ(β0)

)
Regularized ENN
Zhao et al. (2019)

∑K
k=1

(
1y=k − βk

β0

)2
+ βk(β0−βk)

β2
0 (β0+1) −λ1Epout(x,y)

[
αy

α0

]
− λ2Epconfl.(x,y)

[∑K
k=1

(
βk

∑
k′ ̸=k

βk′
(

1−
|β

k′ −βk|
β

k′ +βk

)∑
k′ ̸=k

βk′

)]
The first term represents vacuity, i.e. the lack of evidence and is
optimized using OOD examples. The second term stands for dissonance,
and is computed using points with neighborhoods with different classes
from their own. λ1, λ2 are hyperparameters.

WGAN–ENN
(Hu et al., 2021)

∑K
k=1

(
1y=k − βk

β0

)2
+ βk(β0−βk)

β2
0 (β0+1) −λEpout(x,y)

[
αy

α0

]
Belief Matching
(Joo et al., 2020)

ψ(βy) − ψ(β0) − log B(β)
B(γ) +

∑K
k=1(βk − γk)

(
ψ(βk) − ψ(β0)

)
Posterior networks
(Charpentier et al., 2020)

ψ(βy) − ψ(β0) − logB(β) + (β0 −K)ψ(β0) −
∑K

k=1(βk − 1)ψ(βk)

Graph Posterior Networks
(Stadler et al., 2021)

ψ(βy) − ψ(β0) − logB(β) + (β0 −K)ψ(β0) −
∑K

k=1(βk − 1)ψ(βk)

Generative Evidential
Neural Network
(Sensoy et al., 2020)

−
∑K

k=1

(
Epin(x)

[
log(σ(fθ(x)))

]
+ Epout(x)

[
log(1 − σ(fθ(x)))

])
− log Γ(K)

B(β−y) +
∑

k ̸=y(βk − 1)(ψ(βk) − ψ(β0)) The main loss is a discriminative loss using ID and OOD samples,
generated by a VAE. The regularizer is taken over all classes
excluding the true class y (also indicated by β−y).
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