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Abstract

LLMs have marked a revolutonary shift, yet001
they falter when faced with compositional rea-002
soning tasks. Our research embarks on a quest003
to uncover the root causes of compositional004
reasoning failures of LLMs, uncovering that005
most of them stem from the improperly gen-006
erated or leveraged implicit reasoning results.007
Inspired by our empirical findings, we resort to008
Logit Lens and an intervention experiment to009
dissect the inner hidden states of LLMs. This010
deep dive reveals that implicit reasoning re-011
sults indeed surface within middle layers and012
play a causative role in shaping the final ex-013
plicit reasoning results. Our exploration further014
locates multi-head self-attention (MHSA) mod-015
ules within these layers, which emerge as the016
linchpins in accurate generation and leveraing017
of implicit reasoning results. Grounded on018
the above findings, we develop CREME, a019
lightweight method to patch errors in composi-020
tional reasoning via editing the located MHSA021
modules. Our empirical evidence stands tes-022
tament to CREME’s effectiveness, paving the023
way for autonomously and continuously en-024
hancing compositional reasoning capabilities025
in language models.026

1 Introduction027

Compositional reasoning stands as a pivotal mech-028

anism, unlocking the ability of learning systems029

to decompose complex tasks into manageable sub-030

tasks and tackle them step-by-step (Lu et al., 2023;031

Lake and Baroni, 2023). Despite the revolution-032

ary impact of Large Language Models (LLMs) on033

the NLP landscape, they struggle at basic compo-034

sitional reasoning tasks (Dziri et al., 2023). This035

shortcoming is specifically highlighted by Press036

et al. (2023), who brought attention to the con-037

cerning “compositionality gap” in the realm of038

question-answering tasks. It was observed that039

there is a substantial failure rate of ∼ 40% in040

two-hop compositional queries, even when they041

(a) Pre-Edit (b) Post-Edit

Figure 1: Logit Lens inspecting results. x-axis refers to
the layer; y-axis refers to the inspecting value (Eqn. 1).
red and blue lines trace the implicit (association football)
and explicit (England) reasoning results, respectively.

can successfully answer the individual single-hop 042

queries that make up the two-hop question. Re- 043

cent attempts improve the compositional reason- 044

ing capabilities of LLMs through carefully crafted 045

prompting strategies developed by experts (Wei 046

et al., 2022; Zhou et al., 2023), enabling LLMs 047

to autonomously rectify their compositional rea- 048

soning errors and continuously improve over time 049

remains a largely unexplored frontier. 050

This work, therefore, sets out to firstly delve into 051

the specific failures to understand (RQ1) what ac- 052

counts for these failures and (RQ2) which parts of 053

the LLMs are responsible for them, and secondly 054

develop strategies for patching these failures. Our 055

initial step involves an analysis of a very recent 056

dataset comprising compositional two-hop knowl- 057

edge queries (Zhong et al., 2023), selectively exam- 058

ining the cases where LLMs fail despite success- 059

fully answering the constituent single-hop queries. 060

To ensure our findings and methodologies offer 061

broad applicability, our analyses utilize two widely- 062

used open-sourced LLMs: OpenAlpaca-3B (Su 063

et al., 2023b) and LLaMA-2-7B (Touvron et al., 064

2023). Through meticulous examination of the 065

failure instances, we identify three prevalent types 066

of errors. Utilizing the Logit Lens tool (nostalge- 067

braist, 2020), each error type highlights a critical 068

shortfall in generating or leveraging the implicit 069

reasoning result necessary for the explicit reason- 070
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ing result1. This gap is particularly concerning071

as it contrasts sharply with the intuitive two-hop072

reasoning process inherent to human cognition. An073

illustrative example of a “Hasty Answer” error is074

depicted in Figure 1(a), where the model prema-075

turely concludes its reasoning without adequately076

incorporating the implicit reasoning result.077

The above observations motivate our further em-078

pirical inquiry to answer the first question of what079

accounts for these failures, from the perspective080

of whether LLMs are indeed aware of implicit rea-081

soning results during compositional reasoning. We082

inspect inner hidden states of LLMs via Logit Lens,083

from which we observe that implicit reasoning re-084

sults not only manifest within the LLMs’ interme-085

diate layers but also tend to precede the generation086

of explicit reasoning results, often emerging statis-087

tically earlier. Building on this, we further explore088

the relationship between implicit and explicit rea-089

soning results through an Intervention (Pearl, 2001;090

Li et al., 2023a) experiment, providing compelling091

evidence that the emergence of implicit reasoning092

results within LLMs plays a causative role in the093

generation of explicit reasoning results.094

The next question is, regarding RQ2, in which095

modules LLMs generate implicit reasoning results?096

Leveraging causal mediation analysis (Meng et al.,097

2022; Stolfo et al., 2023), we present both a com-098

positional query and its corresponding second-hop099

query to the LLM, resulting in the generation of100

two distinct computation graphs. We then inter-101

vene the computation graph G1, associated with102

the compositional query, by replacing the output103

of a single module with its counterpart from the104

second-hop computation graph G2. By identifying105

the modules whose replacement results in a sig-106

nificant enhancement in the predictive probability107

of the explicit reasoning result, we are able to lo-108

cate several specific outputs from the Multi-Head109

Self-Attention (MHSA). Intriguingly, the layers110

pinpointed through this approach show a strong111

correlation with those identified in preceding Inter-112

vention experiments. This congruence reinforces113

the hypothesis that implicit reasoning results are114

not only present but are actively consolidated and115

utilized within these specific layers of the LLM.116

Grounded on our findings into RQ1 and RQ2,117

we develop CREME (Correcting Compositional118

REasoning via Model Editing), a light-weight119

1Compositional two-hop queries require two-hop reason-
ing: implicit reasoning result is the first-hop reasoning result;
explicit reasoning result is the second-hop reasoning result.

model-editing method to patch errors in compo- 120

sitional reasoning. CREME follows Santurkar et al. 121

(2021); Meng et al. (2022) by regarding the out- 122

put matrix of the located MHSA, W l
o, as a linear 123

associative memory. To implement CREME, we 124

designate the input to W l
o in the computation graph 125

G1 as k∗ and the output from W l
o in G2 as v∗. We 126

then proceed to insert the pair (k∗, v∗) into W l
o, en- 127

suring that this insertion disrupts existing memories 128

within W l
o as minimally as possible. This objective 129

is achieved by solving a convex optimization prob- 130

lem, which strikes a nuanced balance between the 131

integration of new corrective information and the 132

preservation of existing knowledge. 133

Our main contributions and takeaways are sum- 134

marized below: (1) successful compositional rea- 135

soning within LLMs hinges on its awareness of gen- 136

erating and leveraging implicit reasoning results; 137

(2) MHSA modules in the middle layers (18/19-th 138

layer) are significantly in charge of properly gener- 139

ating and leveraging implicit reasoning results; (3) 140

by leveraging the second-hop computation graph 141

as a reference for editing the located MHSA mod- 142

ules, CREME proves to be highly performing, on 143

correctly answering not only the query used for 144

editing W l
o but also the paraphrased queries and 145

other compositional queries sharing the first-hop 146

knowledge as well as maintaining little effect on 147

irrelevant queries. 148

2 Background & Notation 149

2.1 Logit Lens 150

Logit Lens (nostalgebraist, 2020) is a widely used 151

for inspecting hidden states of LLMs (Dar et al., 152

2023; Geva et al., 2023; Katz and Belinkov, 2023; 153

Sakarvadia et al., 2023). The key idea of Logit 154

Lens is thus to interpret hidden states in middle 155

layers of LLMs via projecting them into the output 156

vocabulary space with the LM head Wu. When 157

presented with a specific hidden state htl and a set 158

of target tokens Ttgt, the Logit Lens is given as 159

follows: 160

L(htl , Ttgt) =
1

|Ttgt|
∑

k∈Ttgt

ptl [k], (1) 161

ptl = softmax(vtl ) = softmax(htlWu), (2) 162

where L(htl , Ttgt) measures how much information 163

around Ttgt is contained in htl . 164
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Error type Input Implicit result Correct final result Predicted final result
Distortion The nationality of the performer of the song “I Feel Love” is Donna Summer United States of America United Kingdom \ Italy

Incomplete Reasoning The head of state of the country where ORLAN holds citizenship is France Emmanuel Macron France
Hasty Answer I The capital city of the country where “Work from Home” originated is United States of America Washington, D.C. Los Angeles \ New York
Hasty Answer II The home country of the sport associated with Giorgio Chinaglia is association football England Italy

Table 1: Specific examples in Dgap for three types of common errors. “Predicted final result” column refers to the
wrong answers output by LLaMA-2-7B.

2.2 Compositional Reasoning and Dataset165

Compositional knowledge refers to knowledge166

items that are the compositions of several single-167

hop sub-knowledge items. Compositional reason-168

ing refers to the ability to answer the queries on169

compositional knowledge (e.g., verbalized in for-170

mat of QA or Cloze-Test) via a step-by-step rea-171

soning process. We denote a single-hop knowl-172

edge as a triple (s, r, o), where s, r, o represents173

subject, relationship and object respectively. The174

composed compositional two-hop knowledge is de-175

noted as (s1, r1, o1)⊕ (s2, r2, o2) where subscripts176

1 and 2 represent the first-hop and second-hop177

sub-knowledge (requiring o1 = s2 so that they can178

compose together). The dataset D (Appendix B)179

we used in this paper is sourced from Zhong et al.180

(2023). For each datum in D, it contains: (1) the181

compositional query on the compositional knowl-182

edge (s1, r1, o1) ⊕ (s2, r2, o2), (2) the first-hop183

query on (s1, r1, o1), (3) the second-hop query on184

(s2, r2, o2), and (4) the implicit reasoning result185

o1 and the explicit reasoning result o2. By way186

of example, the first-hop query is “What is the187

sport associated with (r1) Giorgio Chinaglia (s1)?188

association football (o1)”, the second-hop query is189

“What is the home country of (r2) association foot-190

ball (s2)? England (o2)” and the compositional191

query can be verbalized as “What is the home coun-192

try of (r2) the sport associated with (r1) Giorgio193

Chinaglia (s1)? England (o2)”.194

3 Analyzing Compositional Reasoning195

Errors196

Grounded on the observation of Press et al. (2023),197

we dive into the compositional reasoning failures:198

we identify three types of common errors among199

such failures and attribute the cause of these com-200

mon errors to the failure of generating implicit rea-201

soning result properly via inspecting hidden states.202

Three types of Common Errors We query203

LLMs with all of compositional queries and the204

corresponding single-hop queries in D. We fil-205

ter out two subsets of D: Dsingle and Dgap. For206

each datum (s1, r1, o1)⊕ (s2, r2, o2) in D, Dsingle207

contains the datum where the both of (s1, r1, o1)208

and (s2, r2, o2) are successfully answered. Among 209

Dsingle, Dgap contains the datum where the an- 210

swer for the compositional queries (s1, r1, o1) ⊕ 211

(s2, r2, o2) are mis-predicted.2 In our analysis of 212

Dgap, we have discerned a few common patterns 213

shared among a substantial portion of the failures. 214

Consequently, we have delineated three predomi- 215

nant types of errors, each characterized by distinct 216

features, as outlined below. Distortion: LLMs fail 217

to effectively generate implicit reasoning results in 218

the reasoning process. The predicted answer for the 219

first example in Table 1 is either United Kingdom or 220

Italy. Considering both as countries (corresponding 221

to nationality (r2)), we conclude that the informa- 222

tion about Donna Summer (o1) distorts in middle 223

hidden states. Incomplete Reasoning: LLMs di- 224

rectly output the first-hop reasoning result (o1). In 225

the second example of Table 1, LLaMA-2 outputs 226

France (o1) while the correct answer requires fur- 227

ther reasoning. the head of state of (r2) France (o1) 228

is Emmanuel Macron (o2). Hasty Answer: LLMs 229

predict the result without carefully reasoning. We 230

further subdivide this type of errors into two cate- 231

gories: I: LLMs finally predict a close result based 232

on the implicit reasoning result. For the third exam- 233

ple in Table 1: LLMs predict Los Angeles or New 234

York, both of which are famous city in the U.S.A., 235

implying that LLMs manage to generate the im- 236

plicit result (o1:U.S.A.) while fails to incorporate 237

“the capital of” (r2) to generate final result o2. II: 238

LLMs take short-cut instead of step-by-step rea- 239

soning, leading to incorrect answers. Consider the 240

fourth example in Table 1: the correct reasoning 241

process should be (1): the sport associated with (r1) 242

Giorgio Chinaglia (s1) is association football (o1); 243

followed by (2): the home country of (r2) associa- 244

tion football (o1) is England (o2). However, LLMs 245

erroneously attribute Italy as the answer. This mis- 246

step is attributed to LLMs’ tendency to directly 247

associate Giorgio Chinaglia (s1) – noted for his 248

Italian nationality – with the home country of the 249

sport (r2). 250

Analysis and Possible Explanation We aim to 251

analyze the cause of these errors via inspecting 252

2Please find details in Appendix D.2.
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(a) Distortion:Comp (b) Incomplete Reasoning:Comp (c) Hasty Answer I:Comp (d) Hasty Answer II:Comp

(e) Distortion:Reference (f) Incomplete Reasoning:Reference (g) Hasty Answer I:Reference (h) Hasty Answer II:Reference

Figure 2: Logit Lens results of examples of three error types. Comp is the result for compositional two-hop query;
Reference is the result for the corresponding second-hop query (as the reference for the compositional query). red
and blue lines trace the implicit and explicit results respectively. y-axis represents the inspecting value (Eqn. 1).

the inner workings of LLMs. We depict Logit253

Lens results of the examples of Table 1 (composi-254

tional queries) and their references (corresponding255

second-hop queries) in Figure 2, Leveraging Eqn. 1.256

Note that in Figure 2, results of second-hop inputs257

(subfigure (e)∼(h)) align well with the results in258

Figure 3. However, when we set our sights on re-259

sults of compositional inputs (subfigure (a)∼(d)),260

we get clues about the above three error types. In261

(a, Distortion) we observe that the peak for o1 does262

not emerge at all (probability∼ 1
|V | ), implying the263

distortion of the predictive information for o1 by264

context. In (b, Incomplete Reasoning), though o1265

emerge in middle layers, it is not intense enough266

(in comparison with (f)) to arise the final result o2.267

In Figure 10, we show another example where the268

peak probability of o1 aligns well with the result of269

the reference and correctly predict o2. In (c, Hasty270

Answer I) we observe that o1 emerge at the last271

layer, which is too late to incorporate second-hop272

information to generate o2. In (d, Hasty Answer273

II) although o1 (association football) also emerges,274

the peak probability of o1 is much lower than its275

reference (h). For comparison, we plot the Logit276

Lens of “the home country (r2) of Giorgio Chi-277

naglia (s1)” for “Italy” in Figure 9, which aligns278

with its corresponding compositional query well,279

advocating that LLMs predict through short-cut. In280

summary, all of these errors can be attributed to281

improperly generating implicit reasoning results.282

The implicit reasoning results either (1): do not283

notably emerge (Distortion) or (2): emerge but not284

(a) compositional queries (b) the second-hop queries

Figure 3: Logit Lens inspecting results with LLaMA-2-
7B. (a) refers to the averaged result for inputs of compo-
sitional two-hop queries and (b) refers to the averaged
result for second-hop queries. x-axis refers to the layer;
y-axis refers to the 0-1 normalized probability. Yellow
line and blue line refers to implicit results and explicit
results respectively.

intensely or timely enough to raise the explicit rea- 285

soning results(Incomplete Reasoning and Hasty 286

Answer). 287

4 Analyzing the Inner Hidden States of 288

LLMs for Compositional Reasoning 289

Providing that LLMs are capable to perform com- 290

positional step-by-step reasoning (Hou et al., 2023), 291

we hypothesize that they generate the implicit rea- 292

soning result o1 (the notation is aligned with Sec- 293

tion 2.2) in the process of compositional reasoning, 294

before finally obtaining the explicit reasoning re- 295

sult o2. We inspect inner hidden states of LLMs 296

via Logit Lens (Section 4.1) and observe that im- 297

plicit reasoning results emerge in middle layers, 298

implying that they may play a role in the compo- 299

sitional reasoning process (Section 4.1). To verify 300
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this hypothesis, we design an intervention experi-301

ment (Section 4.2) and demonstrate the emerging302

of o1 has causal effect on predicting o2 in the output303

layer (Section 4.2).304

4.1 Inspecting hidden states of LLMs305

Given an input of a compositional two-hop knowl-306

edge item (s1, r1, o1) ⊕ (s2, r2, o2), we denote307

hl, (l ∈ [1..L]) as the hidden states at the posi-308

tion of last input token and l-th layer. Leverag-309

ing Eqn. 1 we tokenize implicit result o1 and ex-310

plicit o2 into tokens: Ri (implicit) and Re (explicit),311

and inspect the information about Ri and Re in hl:312

L(hl, Ri) and L(hl, Re). We present the inspect-313

ing results averaging over D with LLaMA-2-7B in314

Figure 3(a). We observe that (1) both L(Ri, hl) and315

L(Re, hl) reach a peak and then decline with the316

layer increasing; (2) the peak of L(Ri, hl) appears317

at the earlier layer than L(Re, hl). Then we use318

the corresponding second-hop queries (s2, r2, o2)319

(s2 = o1) to repeat the inspecting experiment. The320

averaged result is depicted in Figure 3(b). We get321

the similar observations with the compositional322

two-hop queries, to some extent aligning their323

reasoning processes: both of the compositional324

query (implicitly containing o1) and the second-325

hop knowledge query (explicitly containing o1) gen-326

erate o1 in hidden states of middle layers before327

generating o2.328

The insights gleaned from the emergence of im-329

plicit results suggest a potential influence of them330

on compositional reasoning. In the subsequent331

analysis, we endeavor to elucidate how implicit rea-332

soning results, embedded within the hidden states333

of intermediary layers, exert a causal impact on334

the generation of explicit reasoning results.335

4.2 Verifying the Hypothesis via Intervention336

We recall the notations defined before. The tok-337

enizations of o1 and o2 are Ri and Re; the hid-338

den state of the last token at the l-th layer is hl.339

Accordingly, the probability distribution over the340

output vocabulary set V (with Eqn. 2) is pl =341

softmax(vl) = softmax(hl · Wu) ∈ R|V |. Our342

aim is to demonstrate how the information about343

o1 encoded in hidden states of middle layers plays344

a causal role in the prediction of o2. The technique345

of Intervention (Pearl, 2001; Li et al., 2023a) fits346

the objective, where we strategically intervene on347

these inner hidden states to eliminate the informa-348

tion related to o1 (through Logit Lens) and observe349

the resultant impact on predicting o2.350

Intervention We define the intervention Il : 351

hl → h∗l , where h∗l denotes the intervened hid- 352

den state. v∗l is the corresponding logits (through 353

Logit Lens) of h∗l : v∗l = h∗l · Wu. Denoting that 354

(before intervention) vmin = min
0≤j<|V |

{vl[j]}, we 355

expect v∗l meets the following constraints: 356

v∗l [j] =

{
vmin, j ∈ Ri,

vl[j], j ∈ [0..|V |)/Ri,
(3) 357

Which means, observing from Logit Lens, we elim- 358

inate the bias on o1 in h∗l in the computation 359

graph and minimize the side effects on the rest 360

tokens3. We solve the linear system v∗l = h∗l ·Wu 361

to get h∗l : h∗l = v∗l W
T
u (WuW

T
u )−1 (in case that 362

WuW
T
u is not full-rank, we use the Moore–Penrose 363

inverse (Dresden, 1920) instead). In our implemen- 364

tation, we calculate the difference value for the 365

purpose of numerical stability: 366

h∗l = hl + (v∗l − vl)W
T
u (WuW

T
u )−1. (4) 367

Effect We define the effect El of an intervention 368

Il is the difference between probabilities of pre- 369

dicting o2 (tokenization: Re) at the output layer L 370

before and after the intervention: 371

El = pL[Re]− pIlL [Re]. (5) 372

Ideally, we expect the intervention Il has the ef- 373

fect of decreasing the probability of predicting the 374

explicit reasoning result o2 (i.e., El > 0). 375

Result The Intervention experiment results (aver- 376

aged over D) are depicted in Figure 11. For each 377

experiment group, we set a comparison group 378

where we intervene on |Ri| tokens that are ran- 379

domly sampled from V . Comparing experiment 380

groups and comparison groups, we observe there 381

exist apparent positive effects (El > 0) when inter- 382

vening middle layers (for both LLaMA-2 and Ope- 383

nAlpaca, positive effects appear in 15-th to 20-th 384

layers) for experiment groups, suggesting that the 385

information about o1 may be generated and uti- 386

lized for generating o2 in these layers. Meanwhile, 387

there is nearly no notable positive effect for com- 388

parison groups across all layers. The results verify 389

our hypothesis that the information around implicit 390

reasoning results in middle layers play a role in 391

predicting explicit reasoning results. 392

3More discussion please refer to Appendix D.1.
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5 Locating Important Modules393

In previous analysis, we attribute compositional394

reasoning errors to improperly generating implicit395

reasoning results. In this section, we aim to inves-396

tigate if there sparsely exist some “key” modules397

(i.e., MHSA or MLP)4 in LLMs that are respon-398

sible for properly generating implicit reasoning399

results in hidden states of middle layers.400

5.1 Locating Methodology401

In Section 3, we observe that if inspecting results402

of the compositional query and its corresponding403

second-hop query align well, the compositional rea-404

soning process is usually in smooth going. Given405

this, combining the key idea in Causal Mediation406

Analysis (Meng et al., 2022; Stolfo et al., 2023),407

we propose the following locating method. (1)408

We run the LLM twice: once with the composi-409

tional query in Dgap in the length of T1 and once410

with its corresponding second-hop query in the411

length of T2. For the compositional pass, we de-412

note the module outputs in the computation graph413

as {ηtl |η ∈ {a,m}, l ∈ [1..L], t ∈ [1..T1]} (a for414

MHSA, m for MLP, l indexing layers, t indexing415

tokens). For the second-hop pass, we denote the416

outputs as {η̂tl |η ∈ {a,m}, l ∈ [1..L], t ∈ [1..T2]}.417

(2) We replace a single module output of inter-418

est in the compositional pass computation graph419

with its counterpart in the second-hop pass compu-420

tation graph. We focus on two token positions:421

the last subject token (which refers to (s1, r1)422

for compositional queries, e.g., “the sports associ-423

ated with Giorgio Chinaglia”) and the last token5.424

We denote the original probability of predicting o2425

as p(o2) and the probability after replacement as426

p(o2|η̂t
∗
l → ηtl ). (3): We define the effect of the427

replacement η̂t
∗
l → ηtl as p(o2|η̂t

∗
l → ηtl )− p(o2).428

5.2 Insight429

We depict the Average Indirect Effect (AIE) of430

replacements over modules, tokens, and layers in431

Figure 4. We observe that replacing the MHSA out-432

put at the position of (last-token, 18\19-th layer)433

has the largest effect on finally predicting the cor-434

rect answer o2. Interestingly, this coincides with435

the intervention experiment results in Figure 11,436

implying that MHSA modules of these positions437

play an important role in properly accumulating438

4We introduce the LLM architecture in Appendix C.1
5These two positions have been demonstrated as most

informative for factual reasoning (Meng et al., 2022).

(a) LLaMA-2-7B (b) OpenAlpaca-3B

Figure 4: AIE for replacements. “last”: last token;
“subject”: last subject token; “mlp”: replace the MLP
output; “attn”: replace the MHSA output. Brighter
positions indicate replacements of larger effect (more
important).

and leveraging implicit reasoning results. 439

6 Patching Compositional Reasoning 440

Grounded on the empirical insights in Section 4 and 441

Section 5, we are poised to introduce the CREME 442

approach, designed to correct compositional rea- 443

soning failures via editing the parameters of MHSA 444

at the located positions. We demonstrate its su- 445

periority through comparative analyses with two 446

recent baselines for correcting compositional rea- 447

soning (Sakarvadia et al., 2023; Ghandeharioun 448

et al., 2024) and a a widely recognized model edit- 449

ing baseline (Meng et al., 2022). 450

Specifically, our edit objective is the MHSA out- 451

put matrix at the l-th layer W l
O (for detailed de- 452

scription, please refer to Eqn. 7). Following San- 453

turkar et al. (2021), we view W l
O as a linear as- 454

sociative memory (Kohonen, 1972): W l
O ∈ Rd×d 455

operates as a key-value store for a set of vector keys 456

K = [k1|k2|...] and corresponding vector values 457

V = [v1|v2|...], by solving (W l
O)

TK = V . 458

For a given compositional query and its corre- 459

sponding second-hop query, we run the LLM twice: 460

once with the compositional query and once with 461

the second-hop query. In the first pass with the 462

compositional query, the input of W l
O at the last 463

token position is k∗ ∈ Rd×1; in the second pass 464

with the corresponding second-hop query, the out- 465

put of W l
O at the last token position is v∗ ∈ Rd×1. 466

We aim to edit W l
O to Ŵ l

O such that: 467

minimize ∥(Ŵ l
O)

TK − V ∥2F and (Ŵ l
O)

Tk∗ = v∗, 468

where the Frobenius norm guarantees consistent 469

predictions on irrelevant queries while the con- 470

straint implements the edit as an insertion of 471

(k∗, v∗) into the linear memory Ŵ l
O. Following 472

Meng et al. (2022), we derive a closed form so- 473

lution: Ŵ l
O = W l

O + (C−1k∗)
TΛT where C = 474
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KKT is a constant to estimate the uncentered co-475

variance of k (note that k is randomly sampled476

from Wikipedia to represent irrelevant queries) and477

Λ = (v∗ − (W l
O)

Tk∗)/(C
−1k∗)

Tk∗. Hopefully,478

the edited LLMs are able to properly generate im-479

plicit reasoning results at the located position and480

thus alleviate failures of compositional reasoning.481

6.1 Dataset, Baseline and Evaluation Metric482

Dataset The dataset Dedit we use for editing and483

evaluating LLMs is built based on the Dgap fil-484

tered in Section 3. For each example in Dedit, it485

has the following fields: (1) Original input Io is486

a cloze test form of the compositional two-hop487

query. Accordingly, we also have the correct an-488

swer (ground-truth) and the originally predicted489

wrong answer for Io: Ao and Ão, respectively6. In490

the experiment, we use Io and its corresponding491

second-hop query to edit the LLM. (2) Paraphras-492

ing input Ip is a paraphrase of Io. Note that Ao and493

Ão are also applicable to Ip. (3) Generalization494

input Ig is a compositional two-hop query where495

its first-hop sub-knowledge is shared with Io while496

the second-hop sub-knowledge is different from Io.497

We denote the correct answer for Ig is Ag. (4) Ir-498

relevant input Ii is a compositional two-hop query499

that is irrelevant to Io and does not share the final500

answer with Io. Detailed information about Dedit501

is available in Appendix B.502

Baseline We choose two related works in the503

field of correcting compositional reasoning errors504

through manipulating the inner workings of LLMs:505

Memory Injection (Sakarvadia et al., 2023) and506

CoT-PatchScopes (Ghandeharioun et al., 2024) as507

our baselines. Memory Injection enhances the com-508

positional reasoning through explicitly injecting509

the implicit reasoning result (so-called “memory”)510

into the hidden states in the residual stream. CoT-511

PatchScopes corrects the compositional reasoning512

through mimicking the noted Chain-of-Thought513

(CoT) reasoning (Wei et al., 2022) to re-route514

forward computation. Besides, we also compare515

CREME with ROME (Meng et al., 2022), a state-516

of-the-art model editing method. Detailed imple-517

mentations are available in Appendix D.518

Evaluation Metric In order to comprehensively519

validate the effectiveness of CREME, we propose520

four evaluation metrics: Correction, Paraphrasing,521

Generalization and Specificity. Following Sakar-522

6e.g.,for the fourth case in Table 1:Ao=England; Ão=Italy.

vadia et al. (2023), all the metrics are formulated on 523

the basis of Improvement Percentage (IP), which is 524

calculated as IP(I, A) = pM∗ (A|I)−pM(A|I)
pM(A|I) . This 525

formula quantifies the enhancement in prediction 526

probability of an answer A given an input query I , 527

facilitated by the post-edit LLM M∗ in comparison 528

to the pre-edit LLM M. Specificially, Correction 529

quantifies IP(Io, Ao) (larger is better); Paraphras- 530

ing is IP(Ip, Ao) (larger is better); Generalization 531

is IP(Ig, Ag) (larger is better) and Specificity is 532

IP(Ii, Ao) (smaller is better). CoT-PatchScopes, 533

due to its nature of input-dependent, only fits the 534

Correction evaluation. We report the average re- 535

sults over Dedit in Section 6.2. 536

6.2 Experiment Results 537

The main experiment results are shown in Table 2. 538

For brevity, we omit ×100% for each IP value. We 539

observe that CREME achieves better performance 540

than baselines on all metrics, not only achieving 541

notable improvement on Io (the query used for 542

editing), but also effectively generalizing to Ip 543

(paraphrased queries). Interestingly, editing with 544

Io also improves (at most +366%) the compo- 545

sitional reasoning on Ig (only sharing first-hop 546

knowledge with Io), demonstrating the effective- 547

ness of CREME on generating proper implicit rea- 548

soning results in middle layers. Besides, the Speci- 549

ficity score of CREME is low, showing that the 550

CREME does not aimlessly improve the probabil- 551

ity of predicting Ao for irrelevant inputs Ii. In com- 552

parison, the Correction score of Memory Injection 553

(+221% for LLaMA-2) is almost the same with the 554

original paper7 while we find it is less effective to 555

generalize to Ip and Ig. Moreover, its high Speci- 556

ficity score implies its shortcoming of aimlessly im- 557

proving the probability of predicting Ao. We also 558

show IP(Io, Ão) in Figure 6. A good correction 559

method should have little positive improvement 560

on predicting the wrong answer Ão. We observe 561

that p(Ão|Io) approximately remains unchanged 562

with CREME, while is apparently enlarged with 563

Memory Injection and PatchScopes. 564

One natural concern arises regarding the suffi- 565

ciency of Correction and Paraphrasing metrics in 566

practice. To this end, we evaluate the probability 567

of an event where the probability of predicting Ao 568

7Nonetheless, it still falls far behind CREME. Given that
both CREME and Memory Injection aim to enhance the infor-
mation of implicit reasoning results encoded in intermediary
hidden states, we attribute the efficacy of CREME to its com-
patibility with models.
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Evaluation Metrics C(↑) P(↑) G(↑) S(↓)
LLaMA-2-7B 3.2% 2.3% 13.1% 0.3%

CoT-PatchScopes +1.20 – – –
Memory Injection +2.21 +0.30 +0.32 +26.72
CREME (Ours) +17.0 +7.99 +1.27 +0.86

OpenAlpaca-3B 7.2% 7.0% 13.5% 0.6%

CoT-PatchScopes +0.91 – – –
Memory Injection +0.98 +0.45 +0.75 +2.93
CREME (Ours) +43.3 +23.71 +3.61 +1.24

Table 2: CREME versus baselines with the proposed
four metrics: C for “Correction”, P for “Paraphrasing”,
G for “Generalization” and S for “Specificity”.

Input Types Correction Input Io Paraphrasing Input Ip
LLaMA-2-7B
Original 59.5% 35.7%
+CoT-PatchScopes 53.0% –
+Memory Injection 63.0% 40.3%
+CREME(Ours) 87.5% 52.9%

OpenAlpaca-3B
Original 58.0% 42.7%
+CoT-PatchScopes 57.3% –
+Memory Injection 58.7% 43.8%
+CREME(Ours) 95.3% 70.5%

Table 3: The event probability of p(Ao) > p(Ão).

exceeds that of predicting Ão: p(Ao)>p(Ão). We569

compare CREME against baselines using this new570

metric and two types of input (Io and Ip) in Table 3.571

The results underscore CREME’s efficacy in sig-572

nificantly improving the event probability, thereby573

outperforming the unedited LLM and establishing574

a considerable lead over the two baselines.575

Although CREME is not comparable to tradi-576

tional model editing methods (the latter require577

Ao for editing, while CREME does not), we com-578

pare CREME with a well-regarded model editing579

method: ROME (Meng et al., 2022) for a com-580

prehensive investigation. The results8 are shown581

in Table 4. Our findings reveal that while ROME582

marginally surpasses CREME in terms of the Cor-583

rection score of ROME – attributable to ROME’s584

direct application of Ao for editing and its opti-585

mization procedure designed to entirely fit p(Ao)586

– CREME performs obviously better than ROME587

in paraphrased, generalization and irrelevant cases.588

This highlights the effectiveness of CREME on589

correcting compositional reasoning.590

In Figure 5, we show the effects of editing dif-591

ferent layers, where results align well with the592

results of the locating experiment (Figure 4).593

8Correction and Paraphrasing scores are using the event
probability of p(Ao|I) > p(Ão|I).

Method ROME (w. ground-truth) CREME (w.o. ground-truth)

Correction(↑) 98.0% 95.3%
Paraphrasing(↑) 62.5% 70.5%
Generalization(↑) +1.24 +3.61
Specificity(↓) +5.37 +1.24

Table 4: Comparing CREME and ROME (Meng et al.,
2022) (applied on OpenAlpaca-3B). “w. ground-truth”
refers to that ROME requires Ao for editing.

7 Related Work 594

Compositional Reasoning of LLMs LLMs fail 595

to solve a large proportion of compositional multi- 596

hop questions, even successfully solving all their 597

single-hop sub-questions (Press et al., 2023; Dziri 598

et al., 2023). Early works towards mitigating this 599

issue typically prepend crafted demonstration ex- 600

emplars containing the “thought process” of solv- 601

ing the compositional query step-by-step and en- 602

courage LLMs to imitate the process via in-context 603

learning (Nye et al., 2021; Wei et al., 2022; Zhou 604

et al., 2023; Drozdov et al., 2023; Press et al., 2023). 605

Recent works turn to inspect the inherent composi- 606

tional reasoning mechanism (Hou et al., 2023) of 607

LLMs. Sakarvadia et al. (2023) manually injects 608

implicit reasoning results into LLMs at the middle 609

layers to correct compositional reasoning failures. 610

(Ghandeharioun et al., 2024) fixes compositional 611

reasoning errors through re-routing inner hidden 612

representations in the computation graph to mimic 613

chain-of-thought reasoning process. Nonetheless, 614

their interventions in the reasoning process are 615

rough so that the improvement is limited and hardly 616

generalize to other related queries. To this end, we 617

elaborately analyze the cause of compositional rea- 618

soning failures, locate a small set of parameters 619

in LLMs that are responsible for such failures and 620

precisely edit them to correct such failures. 621

8 Conclusion 622

In this paper we study and patch the compositional 623

reasoning of LLMs. Through examining failure 624

instances and conducting diverse analysis experi- 625

ments, we demonstrate successful compositional 626

reasoning within LLMs hinges on its awareness 627

of generating and leveraging implicit reasoning re- 628

sults. Moreover, we locate few important MHSA 629

modules in LLMs that are responsible for prop- 630

erly generating and leveraging implicit reasoning 631

results via causal mediation analysis. To this end, 632

we propose CREME, to compositional reasoning 633

failures via editing the located MHSA parameters 634

and empirically demonstrate its superiority. 635
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Limitations636

Technique Part of our observation and experi-637

ments in Section 4 and Section 3 are on the basis638

of Logit Lens (nostalgebraist, 2020). Though Logit639

Lens is a widely used tool for analyzing the inner640

workings of language models (Geva et al., 2022,641

2023; Dar et al., 2023; Sakarvadia et al., 2023;642

Katz and Belinkov, 2023; Ram et al., 2023), we643

acknowledge that it is only an approximate way to644

interpret the information in the inner hidden states645

of the LLMs (Belrose et al., 2023). Nonetheless,646

the residual stream architecture of Transformers647

guarantees that Logit Lens makes sense to a large648

extent. In our experiments, we try to conduct ex-649

periments with different techniques for the cross-650

validation of our observations and conclusions (By651

way of example, the observations in the locating652

experiments (Section 5) to some extent validate653

the observations of the intervention experiments in654

Section 4.2).655

LLM Due to the constraints of available com-656

putation resource, we are able to conduct most of657

our experiments with LLMs of seven billion scale658

(LLaMA-2-7B (Touvron et al., 2023)) and three659

billion scale (OpenAlpaca-3B (Su et al., 2023b)).660

Both of these two LLMs are fully open-sourced and661

popular in academic community and real-world ap-662

plications (Wu et al., 2023; Wang et al., 2024; Hou663

et al., 2023; Li et al., 2023b). In the future work,664

we aim to validate our conclusions on LLMs of665

larger scale.666

Task In this work, we mainly focus on the task667

of the compositional reasoning on factual knowl-668

edge, which is generally pursued by lots of research669

works (Misra et al., 2023; Press et al., 2023; Zhong670

et al., 2023; Sakarvadia et al., 2023). We aim to val-671

idate our main conclusion about the significance of672

implicit reasoning results in the compositional rea-673

soning process in other types of compositional rea-674

soning task (Lu et al., 2023; Hou et al., 2023)(e.g.,675

Arithmetic Reasoning for multiple operands) in the676

future work.677

Ethical Considerations678

We study the inner workings for the composi-679

tional reasoning of LLMs, which helps the black-680

box LLMs become more transparent and trustwor-681

thy (Räuker et al., 2023). The CREME method682

introduced in this work is originally designed for683

correcting the compositional reasoning failures of684

LLMs. CREME only require slightly update a 685

small set of parameters in LLMs and can generalize 686

to a number of related queries (paraphrased queries 687

or compositional queries sharing first-hop knowl- 688

edge with the query used for conducting CREME). 689

However, just like traditional model editing meth- 690

ods (De Cao et al., 2021; Mitchell et al., 2022; 691

Meng et al., 2022, 2023), it may also be utilized to 692

insert inaccurate (or out-of-date) information into 693

the pretrained LLMs. 694
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Eleventh International Conference on Learning Rep-960
resentations.961

A Related Works on Mechanistic962

Interpretability and Model Editing963

Mechanistic Interpretability and Model Edit-964

ing Mechanistic Interpretability, interpreting in-965

ner workings of LLMs, is drawing an increasing966

attention of NLP researchers. Logit Lens (nos-967

talgebraist, 2020) is proposed to interpret hidden968

states at the middle layers of LLMs via project-969

ing them to the output vocabulary space with the970

LM head. Subsequent works (Geva et al., 2021,971

2022; Dar et al., 2023; Katz and Belinkov, 2023)972

further explain how LLMs build precise next to-973

ken predictions. Another line of MI works focus974

on inspecting factual knowledge encoded in the975

LLMs: they first locate such factual knowledge976

in pretrained LLMs (Dai et al., 2022; Geva et al.,977

2023; Li et al., 2023b) and then edit them through978

updating a small set of parameters of LLMs (Meng979

et al., 2022, 2023; Hase et al., 2023), which is980

so-called “locate-then-edit” model editing (Ju and981

Zhang, 2023). In this paper, we shed light on the982

mechanism of compositional reasoning on factual983

knowledge and borrow the idea from “locate-then-984

edit” model editing to correct compositional rea-985

soning failures of LLMs.986

B Datasets987

Dataset for Non-Editing Experiments Here988

we mainly introduce the dataset we use for Non-989

Editing experiments (including inspecting experi-990

ments in Section 4.1, intervention experiments in991

Section 4.2, inference experiments in Section 3 and992

locating experiments in Section 5.) The dataset993

D we use in this paper is sourced from (Zhong994

et al., 2023), a dataset containing plenty of high-995

quality compositional multi-hop reasoning cases.996

For the ease of our study and following the set-997

ting of (Press et al., 2023), we collect 1,000 two-998

hop knowledge items (each with its two single sub-999

knowledge) as the base of our dataset. For each1000

datum in the dataset, it contains the following com-1001

ponent: (1) four paraphrased compositional two-1002

hop knowledge (s1, r1, o1)⊕ (s2, r2, o2)(o1 = s2)1003

queries: one of them is in Cloze-Test form and the1004

other three is in Question form; (2) two paraphrased1005

first-hop sub-knowledge (s1, r1, o1) queries: one is1006

in Cloze-Test form and another is in Question form;1007

(3) two paraphrased second-hop sub-knowledge1008

(s2, r2, o2) queries: one is in Cloze-Test form and 1009

another is in Question form; and (4) the results 1010

for compositional reasoning: the intermediate im- 1011

plicit reasoning result o1 (meanwhile is the an- 1012

swer for the first-hop queries) and the final explicit 1013

reasoning result o2 (meanwhile is the answer for 1014

the second-hop queries). Following (Meng et al., 1015

2022; Geva et al., 2023; Zhong et al., 2023; Press 1016

et al., 2023), We use the Question form queries 1017

in the inference experiment (Section 3) and Cloze- 1018

Test form queries in most of the rest experiments 1019

in this paper. Below is an example for the datum in 1020

our dataset. 1021

1022
{ 1023

"compositional question query": [ 1024
"Which writer's country of 1025

citizenship is the same as the 1026
author of \"Misery\"?", 1027

"What country does the author of 1028
\"Misery\" and another writer 1029
share their citizenship?", 1030

"What is the nationality of the 1031
author of \"Misery\"?" 1032

], 1033
"compositional cloze query": "The 1034

nationality of the author of \"Misery\" 1035
is", 1036

"first-hop question query": "Who is the 1037
author of \"Misery\"?" 1038

"first-hop cloze query": "The author of 1039
\"Misery\" is" 1040

"second-hop question query": "What is the 1041
nationality of Stephen King?" 1042

"second-hop cloze query": "The nationality 1043
of Stephen King is", 1044

"compositional answer": "United States of 1045
America", // explicit reasoning result 1046

"first-hop answer": "Stephen King", // 1047
implicit reasoning result 1048

"second-hop answer": "United States of 1049
America" 1050

} 10511052

Dataset for Editing Experiments Here we 1053

mainly introduce the dataset we use for conduct- 1054

ing and evaluating CREME (Correcting Composi- 1055

tional Reasoning via Model Editing) in Section 6. 1056

The dataset Dedit we use for editing and evaluating 1057

LLMs is built on top of the dataset Dgap filtered 1058

in Section 3: for a LLM M: we focus on the 1059

example that M succeeds to predict the correct 1060

answer given any of single-hop inputs in it while 1061

fails to correctly predict the answer for the corre- 1062

sponding compositional two-hop input in it. In 1063

this section, we are going to correct these compo- 1064

sitional reasoning failures. Specifically, for each 1065

example in Dedit, it has the following components: 1066

(1) Original input Io, refers to a cloze test form of 1067
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the compositional two-hop knowledge mentioned1068

above. Accordingly, we also have the correct an-1069

swer (ground-truth) and the originally predicted1070

wrong answer for Io: Ao and Ão, respectively9. (2)1071

Paraphrasing input Ip, refers to a paraphrase (e.g.,1072

cloze test → question) of Io (we collect 3.39 Ip1073

for each Io in average). Note that Ip shares the Ao1074

and Ão with Io. (3) Generalization input Ig, refers1075

to a verbalized compositional two-hop knowledge1076

where the first-hop sub-knowledge is shared with1077

Io and the second-hop sub-knowledge is different1078

from Io (we collect 2.64 Ig for each Io in average).1079

We denote the correct answer for Ig is Ag. (4) Irrel-1080

evant input Ii, refers to a verbalized compositional1081

two-hop knowledge that is irrelevant to Io and does1082

not share the final answer with Io (we collect 9.491083

Ii for each Io in average). Below is an example1084

for the dataset (corresponding to the Incomplete1085

Reasoning type of errors in Section 3).1086

1087
{1088

"Original Input": "The capital of the1089
country that Lou Pearlman is a citizen1090
of is",1091

"Correct Answer for I_o": "Washington, D.C.",1092
"Predicted Wrong Answer for I_o": "United1093

States of America",1094
"Paraphrasing Input":[1095

"What is the capital of the country to1096
which Lou Pearlman belonged?",1097

"Which city serves as the capital of the1098
country where Lou Pearlman was a1099
citizen?",1100

"In which city is the capital of the1101
country where Lou Pearlman had1102
citizenship?",1103

"The capital of the country to which Lou1104
Pearlman belonged is",1105

...1106
],1107
"Generalization Input": [1108

"The official language of the country1109
that Lou Pearlman is a citizen of1110
is",1111

"What is the official language of the1112
country that Lou Pearlman is a1113
citizen of?",1114

...1115
],1116
"Generalization Answer": [1117

"American English",1118
"American English",1119
...1120

]1121
"Irrelevant Input": [1122

"Which continent is the country that1123
Emma Bunton is a citizen of located1124
in?",1125

"The official language of the country1126
that Thierry Mugler is a citizen of1127
is",1128

9E.g., for the first case in Table 1: Ao=England; Ão=Italy.

... 1129
], 1130
"Irrelevant Answer": [ 1131

"Europe", 1132
"French", 1133
... 1134

] 1135
} 11361137

C Language Models 1138

C.1 LLM Architecture 1139

Current Large Language Models (LLMs, in this 1140

paper, we conduct most of the experiments with 1141

two popular and open-sourced LLMs10: LLaMA-2- 1142

7B (Touvron et al., 2023) and OpenAlpaca-3B (Su 1143

et al., 2023b; Taori et al., 2023).) are mostly built 1144

on the basis of traditional Transformer (Vaswani 1145

et al., 2017) (Decoder). They are typically con- 1146

sist of an embedding layer E, an output language 1147

model (LM) head Wu and a stack of repetitive 1148

Transformer blocks between E and Wu. 1149

Embedding Layer Given a tokenized input 1150

inp = [t1, t2, ..., tN ], where each ti (1 ≤ i ≤ N) 1151

is a one-hot vector of |V | (V is the vocabulary 1152

set) dimensions, the embedding layer is actually 1153

an embedding matrix E ∈ R|V |×d, projecting the 1154

input sparse one-hot vectors into d-dimensional 1155

hidden space: inp · E = [h10, h
2
0, ..., h

N
0 ]. hi0 (1 ≤ 1156

i ≤ N) ∈ Rd is the initial hidden state that is for- 1157

warded into the first Transformer block (Note that 1158

we omit the description for the rotary positional 1159

embedding (RoPE) (Su et al., 2023a) added at each 1160

Transformer block of the network). 1161

Transformer Block A Transformer block (or a 1162

Transformer layer) typically has two sub-modules: 1163

a Multi-Head Self-Attention (MHSA) layer and a 1164

Multi-Layer Perceptron (MLP) layer. We denote 1165

the hidden states at the input and output of the l- 1166

th (1 ≤ l ≤ L) Transformer Block are hl−1 and 1167

hl respectively (Since hidden states of all token 1168

positions are forwarded parallelly, we define hl ≜ 1169

[h1l , h
2
l , ..., h

N
l ] ∈ RN×d to represent the whole 1170

hidden states of the l-th layer.). Then we have: 1171

hl = hl−1 + al +ml ∈ RN×d (6) 1172

where al and ml refer to the MHSA output and the 1173

MLP output. 1174

10Due to the page limit, we sometimes present the results
with one of them while readers can find the rest results in
Appendix E.
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MHSA layer of l-th Transformer block contains1175

four matrices: W l
Q,W

l
K ,W l

V ,W
l
O ∈ Rd×d. Let1176

H denote the number of attention heads. Then the1177

parameters in each matrix can be equally divided1178

into H parts: each of them is an individual atten-1179

tion head (e.g., for the j-th head, 1 ≤ j ≤ H):1180

W l,j
Q ,W l,j

K ,W l,j
V ∈ Rd× d

H and W l,j
O ∈ R

d
H
×d.1181

Then we first compute the attention value for the1182

j-th head: (M ∈ {0, 1}N×N is the attention mask1183

matrix)1184

Al,j = softmax(
(hl−1W

l,j
Q )(hl−1W

l,j
K )T√

d/H
⊙M)1185

headjl = Al,j(hl−1W
l,j
V ) ∈ RN×d/H1186

1187

The final output of the MHSA al is to concatenate1188

these heads together:1189

al = Concat(head1l , head2l , ..., headHl )W l
O ∈ RN×d

(7)
1190

MLP layer of l-th Transformer block contains two1191

matrices: Wup ∈ Rd×d′ , Wdown ∈ Rd′×d (in1192

LLaMA-2 (Touvron et al., 2023), d′ = 8
3d) and1193

a non-linear activation function SwiGLU (Shazeer,1194

2020) σ. The output of the MLP ml can be com-1195

puted as follows:1196

ml = σ((al + hl−1)Wup)Wdown ∈ RN×d1197

LM Head Let us denote the output of the last1198

Transformer block (at the position of last token) is1199

hNL (for LLaMA-2-7B: L = 32; for OpenAlpaca-1200

3B: L = 26.). The LM head is a matrix Wu ∈1201

Rd×|V | to project the hidden state hNL ∈ Rd back1202

to the output vocabulary space (probability distribu-1203

tion over the vocabulary set V ) to predict the next1204

token:1205

pNL = softmax(hNLWu) (8)1206

C.2 LLaMA-21207

LLaMA-2 (Touvron et al., 2023) is a collection1208

of pretrained and fine-tuned generative text mod-1209

els ranging in scale from 7 billion to 70 billion1210

parameters. In this paper, due to the computation1211

resource restraints, we focus on the 7 billion ver-1212

sion: LLaMA-2-7b-hf11, which is a popular open-1213

sourced LLM in both academic researches and in-1214

dustrial applications. LLaMA-2-7B has 32 lay-1215

ers (32 transformer blocks), a vocabulary size of1216

11https://huggingface.co/meta-llama/
Llama-2-7b-hf

32,000 and a hidden dimension of 4,096. In the 1217

inference experiments of this paper, we adopt the 1218

default generation configuration for LLaMA-2-7B 1219

provided by Meta: 1220

1221
\\LLaMA-2-7B generation configuration 1222
GEN_CONFIGS["llama2-7b"]={ 1223
"bos_token_id": 1, 1224
"do_sample": True, 1225
"eos_token_id": 2, 1226
"pad_token_id": 0, 1227
"temperature": 0.6, 1228
"max_length": 50, 1229
"top_p": 0.9, 1230
"transformers_version": "4.31.0.dev0" 1231

} 12321233

C.3 OpenAlpaca 1234

OpenAlpaca (Su et al., 2023b) is also an popular 1235

instruction-following LLM12 (fully open-sourced 1236

version of Alpaca (Taori et al., 2023)). We adopt 1237

the 3 billion version: OpenAlpaca-3B13, for we 1238

want to introduce some variation of parameter 1239

scales into our experiments. OpenAlpaca-3B has 1240

26 layers (26 transformer blocks), a vocabulary size 1241

of 32,000 and a hidden dimension of 4,096. In the 1242

inference experiments of this paper, we adopt the 1243

default generation configuration for OpenAlpaca- 1244

3B provided by Su et al. (2023b): 1245

1246
\\OpenAlpaca generation configuration 1247
GEN_CONFIGS["openalpaca-3b"]={ 1248

"do_sample": True, 1249
"top_k": 50, 1250
"top_p": 0.9, 1251
"generate_len": 128 1252

"transformers_version": "4.31.0.dev0" 1253
} 12541255

D Implementation Details 1256

D.1 Intervention 1257

In the Intervention experiments (Section 4.2), a nat- 1258

ural worry about the preciseness of the “interven- 1259

tion” manipulation is whether our intervention will 1260

direct affect the probability (observing via Logit 1261

Lens) of explicit reasoning results or not. Hope- 1262

fully, the intervention only works on the “implicit 1263

reasoning result” (Ri) while due to the restriction 1264

of softmax function, the explicit reasoning result 1265

might also be affected by the intervention. In prac- 1266

tical, this effect (caused by softmax function) on 1267

the “explicit reasoning result” (Re) is rather in- 1268

12https://github.com/yxuansu/OpenAlpaca
13https://huggingface.co/openllmplayground/

openalpaca_3b_600bt_preview
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significant (∼ 3e − 5) and always increasing the1269

probability (given that the summation of all proba-1270

bilities over the vocabulary is one, our intervention1271

decrease the probability of Ri, naturally improving1272

probabilities for all other tokens.), and hence we do1273

not need to worry about this “side effect”. Another1274

potential “side effect” brought by the intervention1275

is caused for the approximation when solving the1276

inverse matrix with PyTorch 14. Sometimes, the1277

numerical error brought by the approximation can1278

slightly decrease the probability of Re (observing1279

via Logit Lens at the intervened layer). To mitigate1280

the possibility that the final effect (in Figure 11)1281

is attributed to this “side effect”, We additionally1282

apply the following re-checking procedure (Our1283

aim is that (1): we re-check whether the interven-1284

tion decrease the probability of Re, and (2): if so,1285

we manually remedy this “side effect”.). We first1286

calculate the intervened hidden state h∗l :1287

h∗l = hl + (h∗l − hl)

= hl + (v∗l − vl)W
T
u (WuW

T
u )−1

(9)1288

Concentrating on Re, we project h∗l to the raw1289

logits h∗lWu and check if there is decreasement1290

on the probability of Re.1291

∆vl[j] =

{
v[j]− (h∗lWu)[j], j ∈ Re

0, j ∈ [0..M)/Re

(10)1292

Then we re-update the hidden state:1293

h∗,recheck
l = h∗l +∆vlW

T
u (WuW

T
u )−1 (11)1294

D.2 Inference Experiment1295

In line with Zhong et al. (2023) and Press et al.1296

(2023), we adopt the question-form queries to1297

check if LLMs have the single-hop knowledges and1298

whether they can compose them together to answer1299

compositional two-hop questions. The main rea-1300

son behind using question-form queries is that it is1301

convenient for us to use prompting and In-Context1302

examples to make LLMs directly output the answer.1303

As for the prompt for the question queries, follow-1304

ing Zhong et al. (2023), we prepend eight differ-1305

ent demonstrations (namely exemplars) to guide1306

LLMs. Note that, in our experiments, we eliminate1307

the possibility that LLMs directly “copy” the cor-1308

rect answer from the in-context demonstrations by1309

manually filtering out those demonstrations with1310

14https://pytorch.org/docs/stable/generated/
torch.linalg.inv.html

the same answer with the questions we want to 1311

query. Below is an example for our prompting: 1312

1313
Q: In which country was Tohar Butbul granted 1314

citizenship? A: Israel\n // eight 1315
demonstrations 1316

Q: Who was Nissan 200SX created by? A: Nissan\n 1317
Q: What continent is the country where Prickly 1318

Pear grows located in? A: Europe\n 1319
Q: In which country is the company that created 1320

Nissan 200SX located? A: Japan\n 1321
Q: Which continent is the country where the 1322

director of My House Husband: Ikaw Na! was 1323
educated located in? A: Asia\n 1324

Q: What country was the location of the Battle 1325
of Pressburg? A: Hungary\n 1326

Q: What is the country of citizenship of 1327
Charles II of Spain? A: Spain\n 1328

Q: Who was Chevrolet Biscayne created by? A: 1329
Chevrolet\n 1330

Q: What is the name of the head of state of the 1331
country that Ellie Kemper is a citizen of? 1332
//our query (e.g., compositional question) 13331334

D.3 Important Module Locating 1335

We implement our locating method on the basis 1336

of Causal Tracing (Meng et al., 2022). Following 1337

Meng et al. (2022)’s implementation, we also use a 1338

“window” intervention(a few layers before and after 1339

the intervened layer). In their original codebase, 1340

they set window size to be 10. In our experiments: 1341

we find that setting window size to be 2 is enough 1342

for us to effectively locate important modules. 1343

D.4 Model Editing:CREME 1344

We implement our CREME on the basis of (hiy- 1345

ouga, 2023). The method is described in Section 6. 1346

The edit objective is the MHSA output matrix of 1347

l-th layer W l
O. W l

O ∈ Rd×d operates as a key-value 1348

store for a set of vector keys K = [k1|k2|...] and 1349

corresponding vector values V = [v1|v2|...], by 1350

solving (W l
O)

TK = V . For a given compositional 1351

two-hop query and its corresponding second-hop 1352

query, we run the LLM twice: once with the compo- 1353

sitional query and once with the second-hop query. 1354

We denote that: in the first pass with compositional 1355

query, the input of W l
O at the last token position 1356

is k∗ ∈ Rd×1; in the second pass with the corre- 1357

sponding second-hop query, the output of W l
O at 1358

the last token position is v∗ ∈ Rd×1. In practice, 1359

when calculating k∗ and v∗, we prepend tens of 1360

random tokens to the compositional query and the 1361

corresponding second-hop query to mimic context 1362

environments, and get multiple input vectors and 1363

output vectors. Then we average input vectors and 1364

output vectors of different context environment to 1365
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get k∗ and v∗, respectively. The edited matrix is:1366

Ŵ l
O = W l

O + (C−1k∗)
TΛT where C = KKT1367

is a constant to estimate the uncentered covari-1368

ance of k (with a sample Wikipedia of text) and1369

Λ = (v∗ − (W l
O)

Tk∗)/(C
−1k∗)

Tk∗.1370

D.5 Memory Injection1371

We manually inject memories of implicit reasoning1372

results in to the residual stream of middle layers.1373

Note that in the original implementation (Sakarva-1374

dia et al., 2023), they set a hyper-parameter, mag-1375

nitude, to control the strength of injection. In our1376

experiments, we sweep over the possibilities of1377

injecting memories into any single middle layer.1378

For each layer, we search the magnitude from 1 to1379

10. As for the matrix used for projecting the im-1380

plicit reasoning results from the vocabulary space1381

back into the hidden space, we try three different1382

approaches: W T
u (in line with the original paper),1383

W+
u (Moore–Penrose inverse) and W T (WW T )−1.1384

We find that W T
u is always more effective.1385

D.6 CoT-PathScopes1386

We follow the original implementation in Ap-1387

pendix.E. of the PatchScopes paper (Ghandehar-1388

ioun et al., 2024). Rerouting the hidden states (at1389

the last token position) from source layers to target1390

layers. We use the p∗M(Ao|Io)−pM(Ao|Io)
pM(Ao|Io) to select1391

the best source layer and target layer.1392

D.7 ROME1393

We adopt the hiyouga (2023)’s implementation of1394

ROME (Meng et al., 2022). The hyperparameters is1395

in line with their original implementation (hiyouga,1396

2023; Zhang et al., 2024):1397

1398
layers=[5],1399
fact_token="subject_last",1400
v_num_grad_steps=20,1401
v_lr=1e-1,1402
v_weight_decay=1e-3,1403
clamp_norm_factor=4,1404
kl_factor=0.0625,14051406

Besides, following the convention of model editing1407

works (Meng et al., 2022, 2023), we also use the1408

Cloze-Test form queries to edit LLMs. Note that1409

in compositional queries, the “subject” is usually1410

expressed as the description text containing s1 and1411

r1. We treat the description text as the “subject”1412

(e.g., “The sport associated with Giorgio Chinaglia”1413

(association football)).1414

Figure 5: Effects of different editing layers.

Figure 6: Edit effect on the wrong answer Ão. We
anticipate an ideal editing method has little positive
effect on predicting Ão.

E Additional Results 1415

E.1 Logit Lens Inspecting Results 1416

In this section, we mainly present (1): the statistical 1417

Logit Lens inspecting results, (2): a case validating 1418

our Hasty Answer II observation (in Section 3) 1419

and (3): a case validating our Incomplete Rea- 1420

soning observation (in Section 3). The statistical 1421

inspecting result for OpenAlpaca-3B is depicted in 1422

Figure 8. Note that the emerging of “implicit result” 1423

seems not as notable as the results of LLaMA-2-7B 1424

in Figure 3, the reason is that the layers of emerg- 1425

ing peaks for OpenAlpaca-3B are dispersive in the 1426

middle layers. We also provide the Logit Lens in- 1427

specting results for a single case in Figure 7 for 1428

readers’ reference. The cases validating Hasty An- 1429

swer II and Incomplete Reasoning are depicted 1430

in Figure 9 and Figure 10, respectively. 1431

E.2 Intervention Results 1432

We present the results for the Intervention experi- 1433

ment (in Section 4.2) in Figure 11. For each experi- 1434

ment group, we set a comparison group where we 1435

intervene on |Ri| tokens that are randomly sam- 1436

pled from V . Comparing experiment groups and 1437

comparison groups, we observe there exist apparent 1438

positive effects (El > 0) when intervening middle 1439
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Testing type Input Prediction w.o. CREME Prediction w. CREME
Hasty Answer II

Paraphrasing What is the citizenship of the creator of C. Auguste Dupin? France American
Paraphrasing What is the nationality of the creator of C. Auguste Dupin? France United States of America
Paraphrasing The country where the creator of C. Auguste Dupin is a citizen is France United States of America

Generalization Which city did the creator of C. Auguste Dupin die in? Paris Baltimore, Maryland
Incomplete Reasoning

Paraphrasing What is the capital of the country where Sven Väth is a citizen? Germany Berlin
Paraphrasing In what city is the capital located of the country that Sven Väth is a citizen of? Germany Berlin

Generalization The official language of the country that Sven Väth is a citizen of is Germany German

Table 5: Case study for correcting the (1) Hasty Answer II error: the original input (used for correcting) is “The
country that the creator of C. Auguste Dupin belongs to is”. The original prediction is “France” (Reference: C.
Auguste Dupin is French, while his creator Edgar Allan Poe. is American.); and (2) Incomplete Reasoning error:
the original input (used for correcting) is “The capital of the country that Sven Väth is a citizen of is”. The original
prediction is “Germany” (Reference: Berlin.).

(a) (b)

Figure 7: Logit Lens inspecting results with
OpenAlpaca-3B for a single case. (a) refers to the
averaged result for inputs of compositional two-hop
knowledge and (b) refers to the averaged result for the
inputs of second single-hop knowledge. x-axis refers to
the layer; y-axis refers to the 0-1 normalized probability.
Yellow line and blue line refers to implicit results and
explicit results respectively.

(a) (b)

Figure 8: Statistical Logit Lens inspecting results with
OpenAlpaca-3B. (a) refers to the averaged result for
inputs of compositional two-hop knowledge and (b)
refers to the averaged result for the inputs of second
single-hop knowledge. x-axis refers to the layer; y-
axis refers to the 0-1 normalized probability. Yellow
line and blue line refers to implicit results and explicit
results respectively. The layers of emerging peaks for
OpenAlpaca-3B are dispersive in the middle layers.

(a) (b)

Figure 9: Logit Lens results for the Hasty Answer II
error type. We investigate the probability of “Giogrio
Chinaglia” (as the implicit reasoning result) and “Italy”
(predicted final answer): the compositional input and the
corresponding second-hop input fit well now, implying
that the model short-cut “Giogrio Chinaglia” and “the
home country of” to reason the wrong answer “Italy”.

(a) (b)

Figure 10: A success example in comparison with “In-
complete Reasoning” error cases. (a) is the inspect-
ing result for compositional two-hop query and (b) is
the inspecting result for the reference (corresponding
second-hop query). These two results align well (in (a),
the implicit reasoning result is properly generated.) and
hence the final explicit reasoning results are successfully
predicted.
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(a) LLaMA-2-7B (b) OpenAlpaca-3B

Figure 11: Intervention experiment: Brighter color indi-
cates the intervention effect is more significant. In each
subfigure, the upper row refers to the experiment group
and the lower row refers to the comparison group.

layers (for both LLaMA-2 and OpenAlpaca, pos-1440

itive effects appear in 15-th ∼ 20-th layers) for1441

experiment groups, suggesting that the information1442

about o1 may be generated and utilized for generat-1443

ing o2 in these layers. Meanwhile, there is nearly1444

no notable positive effect for comparison groups1445

across all layers. The results verify our hypothe-1446

sis that the information around implicit reasoning1447

results in middle layers play a role in predicting1448

explicit reasoning results.1449

E.3 Memory Injection1450

The heatmap of averaged results for Memory In-1451

jection (Sakarvadia et al., 2023) are depicted in1452

Figure 12. According to this heatmap, for LLaMA-1453

2-7B: we adopt the magnitude of 7 and inject layer1454

of 3, for OpenAlpaca-3B: we adopt the magnitude1455

of 10 and inject layer of 26.1456

E.4 PatchScopes1457

The heatmap for PatchScopes (Ghandeharioun1458

et al., 2024) are depicted in Figure 13. The qualita-1459

tive are basically in align with the original paper:1460

positive effects distributed in the area where the1461

source layer is larger than the target layer. Accord-1462

ing to this heatmap, for LLaMA-2-7B: we set the1463

source layer to be 12 and the target layer to be 4,1464

for OpenAlpaca-3B: we set the source layer to be1465

13 and the target layer to be 7.1466

E.5 Additional Results of CREME1467

We additionally show IP(Io, Ão) in Figure 6. Hope-1468

fully, a good correction method has little positive1469

improvement for the prediction of wrong answer1470

Ão. We observe that p(Ão|Io) approximately re-1471

mains unchanged for CREME, while is apparently1472

enlarged with Memory Injection and PatchScopes.1473

In Figure 5, we show the effects of different editing1474

(a)

(b)

Figure 12: (a) depicts the results for LLaMA-2-7B and
(b) depicts the results for OpenAlpaca-3B. In each sub-
figure, x-axis refers to the layer of injecting implicit
reasoning memories; y-axis refers to the magnitude of
injecting memories.
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(a) (b)

(c) (d)

Figure 13: PatchScopes Results: (a) LLaMA-2-7B, p∗
M(Ao|Io)−pM(Ao|Io)

pM(Ao|Io) ; (b) LLaMA-2-7B, p∗
M(Ão|Io)−pM(Ão|Io)

pM(Ão|Io)
;

(c) OpenAlpaca-3B, p∗
M(Ao|Io)−pM(Ao|Io)

pM(Ao|Io) ; (d) OpenAlpaca-7B, p∗
M(Ão|Io)−pM(Ão|Io)

pM(Ão|Io)
.
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layer, where the effect of editing layer 19 largely1475

surpasses editing other layers (5,10,23,29). This1476

results align well with the results of the locating1477

experiment (Figure 4).1478

E.6 Showcase of CREME1479

We use specific cases to show the effect of leverag-1480

ing CREME to correct the compositional reasoning1481

failures of LLaMA-2-7B in Table 5.1482
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