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Abstract

Despite rapid advances in AI, evaluation methods haven’t kept pace, leading to1

grandiose claims about general capabilities being supported by narrow benchmark2

performances. This creates a misleading assessment of an AI’s true capabilities. To3

address this gap, this paper introduces a structured framework, leveraging principles4

from measurement theory, to more rigorously connect evaluation evidence to the5

claims being made. This approach helps reason about whether, for example, strong6

math performance indicates broad reasoning ability or just math test-taking skill.7

By scrutinizing the validity claims derived from evaluations, the framework aids in8

better decision-making and is demonstrated through detailed case studies on vision9

and language models.10

1 Introduction11

While AI systems have advanced, norms for their evaluation have lagged (details on the (co)evaluation12

of benchmarks and claims and misalignment in Appendix C and D). Grand claims, such as “human-13

expert-level reasoning,” are often supported by narrow evidence, like high accuracy on International14

Math Olympiad (IMO) problems [1]. This creates a significant “inferential leap” between the15

measurement and the claim. This paper argues for rigorously applying the concept of validity, i.e.,16

the degree to which evidence supports the interpretation and use of test scores for a specific purpose17

[2] (more detailed definition and description in Appendix B). In this work we demonstrate how18

validity is not an inherent property of a measurement but depends on the context, the claim, and the19

claim’s consequences [3, 4]—we proved detailed case studies in Appendix D.20

We ground our work in the following definitions. A measurement instrument (e.g., a benchmark21

or survey) is the tool used to collect data, producing a measurement such as accuracy or error22

rates. An evaluation interprets these measurements in context (e.g., a specific domain like medical23

question answering), while a claim generalizes from the evaluation to assert something about system24

capabilities (real-world utility of clinical AI). A criterion is a directly measurable concept (e.g.,25

accuracy on a dataset), whereas a construct is an abstract concept (e.g., reasoning or trustworthiness)26

that must be operationalized through proxies and indicators.27

A core limitation in AI discourse is that strong performance on a benchmark is often used to make28

sweeping claims about a construct without sufficient supporting evidence. Furthermore, many29

benchmarks do not distinguish between being measures of constructs or criteria.30

Contribution. The paper proposes a structured and flexible framework for assessing claim validity.31

For instance, this allows us to understand how broad of a claim can be made from a given benchmark.32

Establishing validity is an iterative process that requires evaluating the conceptual gap between33

measurement and claim. The framework leverages five primary forms of validity from psychometrics,34

outlined in Table 1, to build a robust evidentiary case.35
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Table 1: We provide an overview of the different forms of validity considered in this work, along with
key questions to ask in their assessment. We adopt a view on validity closest to [5]. This includes
aspects from [4] and [3]’s views on validity.

Validity Type Description Example Benchmark: GPQA Accuracy
Example Construct: Scientific Reasoning

Content Validity Does your evaluation cover all relevant cases? Does GPQA sufficiently capture the full content
of scientific reasoning across domains, or does
it overemphasize certain subfields (e.g., physics,
chemistry) while neglecting others?

Criterion Validity Does your evaluation correlate with a known vali-
dated standard?

Does GPQA accuracy predict other validated indi-
cators of reasoning, such as performance on gradu-
ate qualifying exams or common-sense reasoning
benchmarks?

Construct Validity Does your evaluation truly measure the intended
construct?

Does GPQA capture the essential components of
scientific reasoning and only those components,
rather than domain memorization or test-taking
tricks?

External Validity Does your evaluation generalize across different
environments or settings?

Does excelling at GPQA translate to solving open-
ended or applied problems in diverse contexts,
such as lab-based experiments or clinical reasoning
tasks?

Consequential Validity Does your evaluation consider the real-world im-
pact of test interpretation and use?

Does emphasizing GPQA in AI development risk
overstating reasoning ability, potentially leading to
premature deployment in high-stakes domains like
science or medicine?

Importance. This focus on validity is critical because AI evaluations inform high-stakes decisions36

with real-world consequences, from regulatory classification under the EU AI Act to guiding internal37

model development. Without rigorous validity checks, evaluations can create a false sense of security38

or incentivize “teaching to the test” rather than genuine capability improvement [6]. This work aims39

to identify these limitations and provide a practical, claim-aware framework to ensure AI assessments40

are used and interpreted appropriately.41

2 Background and Related Work42

Validity Gaps in Current AI Evaluations and Related Work. AI evaluation has advanced with43

systems but increasingly diverges from claims of real-world utility, exposing shortcomings across44

content, criterion, construct, external, and consequential validity (Appendix C; Table 1). Early45

i.i.d. tests supported content validity, while pretraining and transfer introduced criterion validity via46

downstream performance [7–13]. Rising concerns about spurious correlations, distribution shifts, and47

causal representations [14–23] have elevated external, consequential, and construct validity [24–27].48

Still, benchmarks remain influential, aligning stakeholders and providing criterion validity [28–49

30, 9, 24, 31, 32, 8], but do not guarantee reliable deployment [33]. Foundation models amplify these50

gaps as narrow datasets fail to capture abstract constructs like reasoning [34–38], lack predictive51

utility [33], and undermine consequential validity [39–41]. Calls for validity frameworks [42–49]52

include METRICEVAL [45] and ECBD [50], though these emphasize instrument design, while we53

focus on what claims even limited evaluations can support [51]. Others apply measurement theory [52–54

54], distinguishing background, systematized, and operationalized concepts; our framework extends55

this through nomological networks [4], mapping concepts and evidence under the Duhem–Quine56

thesis. Building on Wallach et al [53], we argue evaluations must situate constructs within broader57

networks, treating them as both conventions and emergent properties [55, 56]. Ultimately, validity58

concerns both claims and evaluations [4], and our framework offers practical tools to assess whether59

evaluations support the claims they are used to justify.60

Risks to Validity and Operationalizable Strategies for Mitigation. AI assessments face recurrent61

risks to valid inference across content, external, criterion, construct, and consequential validity, and62

we summarize practical checks and remedies here (Appendix A; Table 2). Importantly, we find63

that general-purpose ‘benchmarks’ are currently an insufficient sole evaluation mechanism for the64

real-world utility of AI systems. Content validity risks include limited coverage of important content,65

but can improved with expert review, synthetic data, and documented through content mapping [2, 3].66

External validity risks include selection bias, unrealistic test conditions, and interaction effects, but67

can be improved through stress tests, A/B tests and cross-condition performance comparisons, and68

sensitivity analyses [57–59]. Criterion validity risks include criterion contamination through spurious69
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Figure 1: Decision process for establishing validity. For the decision processes that do not directly go
through establishing construct or criterion validity, our argument is not that those forms of validity are
irrelevant, but rather that they may be trivially satisfied in the context of the measurement, evaluation,
and claim.

correlations and insufficient score range, but can be improved with longitudinal studies and evidence70

from correlations to gold-standards and predictions of real-world utility [60, 61]. Construct validity71

risks include structural (poor factor structure; inadequate measurement range), convergent (high72

measurement error), and discriminant (construct overlap), but can be improved via hypothesis tests73

and factor modeling, with support from item–test correlations and demonstrated lack of overlap74

with unrelated constructs [3, 62–65]. Consequential validity risks include bias and fairness concerns,75

perverse incentives that encourage gaming, and harmful policy consequences, which can be assessed76

with anticipatory ethics, impact audits, and ethical stress testing, using stakeholder feedback, fairness77

and reliability improvements, and documented real-world effects as evidence [3, 66–71]. While the78

framework foregrounds common risks and mitigations, additional context-specific risks will arise,79

requiring continuous reassessment and refinement.80

3 A Framework for Claim-Centered Validity Assessment in AI Evaluation81

In this section, we introduce a general framework for reasoning about validity in AI evaluation82

and apply it to a concrete example (GPQA). The goal is to clarify when and how different forms83

of validity matter most for supporting a claim with a given measurement and evaluation (Fig. 1).84

While all forms are always relevant, some may be trivially satisfied depending on the measurement–85

evaluation–claim context; our approach prioritizes the forms that are decision-critical, extending prior86

perspectives [53]. This view aligns with Lissitz and Samuelsen [5], who (in contrast to Messick et87

al. [3]) caution that collapsing all validation into “construct validity” obscures distinctions among test88

uses and the kinds of evidence required. Concretely, validity evidence depends on which of three89

goals is paramount [5]: (i) utility determination—does the test support appropriate decisions for its90

stated purpose? (ii) theoretical support—does it cohere with the guiding theory? and (iii) impact91

evaluation—do decisions based on the assessment yield beneficial, fair, intended outcomes?92

We operationalize this via three guiding questions: (a) Is the object of the claim a criterion (directly93

measurable) or a construct (abstract)? (b) Is the measurement the same as the claim’s object? (c) If94

different, does the measurement directly imply the claim, or is a mediating construct required? In all95

cases, content and external validity must be established. When the claim’s object is a different criterion96

than what is measured, criterion validity is central (predictive or concurrent). When neither the object97

nor an external standard is available, valid claims must proceed via a mediating construct, demanding98

construct validity (structural, convergent, discriminant) together with an explicit nomological network99

linking constructs to observables.100

Nomological networks. Claims about or depending constructs cannot be validated in isolation—101

Duhem–Quine thesis: they gain meaning through relationships to other constructs and observable102

indicators. Cronbach and Meehl’s nomological network [4] provides a map of hypothesized associa-103

tions among constructs and criteria in a graphical model. In modern AI evaluation, explicit networks104
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for key constructs (e.g., reasoning subskills) are often missing, complicating construct-level claims.105

Our stance complements [53] and the systematization then operationalization lens of [54]: networks106

clarify how background concepts become systematized and linked to measures.107

3.1 Paths for Evidence with GPQA as an example108

We give classes of applications of these guiding questions below with GPQA as an example, a109

benchmark increasingly used as evidence for reasoning [72, 73]. The same measurement may fail110

to support broad claims yet still be highly useful for narrower ones. Our framework accommodates111

inevitably imperfect measurement, enabling valid but narrower claims when measurements are112

limited. Figure 1 provides the steps of inquiry to investigate validity. Detailed analysis for GPQA113

and other datasets is included in Appendix D.114

Criterion-Aligned Evidence: The claim object is a criterion and directly measured. Here,115

construct and criterion validity are trivially satisfied; the focus is on content and external validity.116

Example (GPQA → GPQA-like accuracy). Content: expert-curated GPQA items support validity,117

but gaps in subfield representation may remain. Expert review, adversarial analysis, and red-teaming118

can surface can improve content validity [74].1 External: Limited by QA format, one needs to probe119

generalization to other formats via cross-test comparisons and non-QA settings.120

Criterion-Adjacent Evidence: Claim object is a (different) criterion. When the measured proxy121

and the claim’s criterion differ—either as proxies of the same construct or of related constructs—122

criterion validity is central. Example (GPQA → general scientific QA). Concurrent validity could be123

established by correlations with graduate qualifying exams, and predictive validity by prospective124

scientific assessments. If infeasible, reasoning must proceed via a nomological network. Without125

such a network, evaluators risk over-generalization (e.g., physics-heavy GPQA success misread as126

broad reasoning). When proxies reflect different constructs (e.g., scientific vs. medical reasoning),127

inter-construct links must be validated before drawing cross-criterion-level claims.128

Construct-Targeted Evidence: Claim object is a construct. Example (GPQA → scientific or129

general reasoning). Construct validity requires evidence of structural (expected subskills), convergent130

(correlation with other reasoning measures), and discriminant (not reducible to memorization) validity.131

Factor analysis and latent-variable methods can separate reasoning from recall [76]. Content and132

external validity confirm coverage and generalizability, while criterion validity—when appropriate133

standards exist—can further support construct-level claims.134

Consequential Validity. Finally, consequential validity considers whether decisions based on an135

assessment produce beneficial outcomes. For GPQA, strong scores may support targeted educational136

or research uses, but overgeneralizing to “broad reasoning” risks misdeployment (e.g., replacing137

experts with models tuned to MC tasks). Clear guidelines, scope limits, and impact audits help align138

deployment with validated capabilities.139

4 Conclusion140

AI evaluation must evolve beyond benchmarks to address the gap between measurements and the real-141

world claims built on them. Our framework centers validity—content, external, criterion, construct,142

and consequential—as the lens for linking evidence to claims, highlighting risks, mitigation strategies,143

and pathways for reasoning under imperfect measurement. By making explicit the relationships144

among instruments, measurements, evaluations, and claims, and situating them within nomological145

networks, we help prevent overgeneralization and ensure claims are scientifically grounded and146

context-sensitive. The framework serves diverse stakeholders, researchers, policymakers, corpo-147

rations, funders, and civil society, by offering shared vocabulary and tools for assessing whether148

evidence truly supports the claims at hand. Crucially, it emphasizes iterative feedback, transparency,149

and collective accountability: validity is not a one-time test but an ongoing process that adapts as150

systems, stakes, and societal expectations change. In this way, AI evaluation becomes claim-aware,151

evidence-driven, and trustworthy, supporting decisions that are both defensible and aligned with152

real-world needs.153

1Thresholding continuous scores to categorical decisions (e.g., pass/fail) can decouple a well-measured
property from a valid claim if the cut score is misaligned with context; see standard setting [75].
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A Evidence of Validity585

Table 2: Common risks to validity, investigation tools, and evidence exemplars.

Validity Common risks Investigation Tools Evidence Exemplar
Content
Validity □ Coverage deficiency

□ Construct irrelevance
□ Imbalanced mixture of con-

tent

□ Expert review
□ Red-teaming / adversari-

ally designed evaluations
□ Synthetic data generation

or edge cases

□ Documentation of how
test items comprehensively
cover the construct

□ Explicit mapping of test
content to abstract frame-
works or industry stan-
dards

□ Coverage analysis

Criterion
Validity Predictive and Concurrent Valid-

ity
□ Criterion contamination
□ Criterion deficiency
□ Restricted range
□ Temporal/other shifts

□ Real-world longitudinal
studies

□ Real-world behavioral test-
ing

□ Scaling-law predictive
models

□ Validated criterion studies
□ Periodic post-deployment

testing

□ Correlation with an exist-
ing validated benchmark or
gold standard

□ Evidence that higher
scores in evaluation met-
rics predict real-world
utility

Table continues on the next page
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Table 2 continued from previous page
Validity Common risks Investigation Tools Evidence Exemplar

Construct
Validity

Structural:
□ Rank deficiency
□ Poor factor structure
□ Item interdependence
□ Response format bias
□ Complex measurement

range

□ Theory building and hy-
pothesis testing

□ Factor modeling
□ Studies of process

□ Observed changes in test
performance under con-
trolled conditions

□ Item-test correlations
□ Emergent substructures in

model behavior

Convergent:
□ Irrelevant or weakly re-

lated evaluations
□ High measurement error in

scoring
□ Restricted range (ceil-

ing/floor effects)
□ Confounding (e.g., memo-

rization, format)

□ Benchmark suites for a
construct (e.g., reasoning)

□ Representation probing
(e.g., causal mediation
analysis of embeddings)

□ High correlation with other
measures that assess the
same construct

□ Empirical clustering of
model behaviors that align
with constructs

Discriminant:
□ Construct overlap
□ Format-induced correla-

tions

□ Orthogonal datasets
□ Decomposable metrics

□ Low or non-significant cor-
relation with measures of
distinct constructs

□ Evidence that evaluation
does not overlap with un-
related dimensions

Table continues on the next page
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Table 2 continued from previous page
Validity Common risks Investigation Tools Evidence Exemplar
External
Validity □ Sample bias

□ Unrealistic testing condi-
tions

□ Temporal variability
□ Interaction effects
□ Experimenter effects
□ Task-specific bias

□ Red-teaming
□ Stress testing
□ A/B testing
□ Transfer testing
□ Population-stratified evalu-

ations

□ Performance comparisons
across different popula-
tions, environments, or set-
tings

□ Sensitivity analysis show-
ing consistent performance
under varying conditions

□ Independent replication of
results in different contexts
or regions

Consequential
Validity □ Bias / Fairness

□ Adaptive overfitting
□ Misuse of results
□ Unintended incentives
□ Policy and systematic con-

sequences
□ Temporal and other shift

□ Stakeholder interviews and
feedback loops

□ Societal impact audits
□ Ethical stress testing
□ Stakeholder feedback

□ Documented instances of
evaluation-driven improve-
ments in safety, reliability,
and fairness

□ Impact studies
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B Validity586

Validity refers to the extent to which a test accurately measures what it is intended to measure.587

Validity has a rich history, originally developed in the context of drawing valid conclusions from588

tests, much like how we now aim to draw valid conclusions from AI evaluations. One of the earliest589

forms of validity is face validity, which refers to the extent to which a test appears to measure what590

it claims to, based on intuitive judgment. For instance, one may ask if symbolic regression from591

BigBench [77] even appears to measure reasoning. However, relying on face validity alone can be592

misleading. As Charles Mosier [78] famously observed:593

“This form [face validity] is also gratifying to the ego of the unwary test constructor. It implies that594

his knowledge and skill in the area of test construction are so great that he can unerringly design595

a test with the desired degree of effectiveness in predicting job success or in evaluating defined596

personality characteristics, and that he can do this so accurately that any further empirical verification597

is unnecessary. So strong is this ego complex that if statistical verification is sought and found lacking,598

the data represent something to be explained away by appeal to sampling errors or other convenient599

rationalization, rather than by scientific evidence which must be admitted into full consideration.”600

A more structured form of validity emerged with content validity, which ensures that a test compre-601

hensively covers all relevant aspects of the construct it aims to measure. For instance, one may ask if602

mathematical problem-solving benchmarks cover all relevant aspects of reasoning. Content validity is603

also typically assessed through expert judgment rather than statistical validation. Charles Lawshe [79]604

later formalized this concept with the Content Validity Ratio (CVR), a method for quantifying expert605

agreement on test content.606

Moving toward empirical rigor, predictive validity assesses a test’s ability to forecast an outcome of607

interest, typically a future outcome. This concept, introduced by Robert Thorndike in the mid-20th608

century during the rise of standardized testing, became central to fields like educational assessment,609

employment testing, and aptitude measurement [80]. For example, the predictive validity of SAT610

scores for college GPA or cognitive ability tests for job performance has led to their widespread611

use for other outcomes [81]. In the context of AI evaluation, one may ask “Does accuracy on612

IMO benchmarks predict accuracy in textbook linear algebra questions?” While predictive validity613

measures the correlation between a test and a future outcome, concurrent validity measures the614

correlation between a test and a validated standard applied at the same time under the same conditions.615

Predictive and concurrent validity make up criterion validity [2].616

While criterion validity is useful for assessing direct correlations between tests and desired criteria,617

its limitations became apparent when evaluating abstract constructs, like psychological traits, rather618

than simple outcome-based predictions. In their seminal work on construct validity, [4] highlighted619

these limitations. For example, while SAT scores may predict GPA, they may not reliably measure620

intelligence, as GPA is influenced by grading biases and other factors. Recognizing the risks of621

relying solely on criterion-based validity, Cronbach and Meehl introduced construct validity, which622

assesses the extent to which a test truly captures the theoretical construct it purports to measure.623

Two key sources of evidence necessary for construct validity introduced by Campbell and Fiske624

(1959) are [82]:625

• Convergent validity—the degree to which a test correlates with other measures of the same626

construct.627

• Discriminant validity—the degree to which a test does not correlate with measures of628

unrelated constructs.629

Implicitly, this framework also includes structural validity [4, 3], which examines whether a test’s630

internal structure aligns with the theoretical construct it is designed to measure. This is often assessed631

using factor analysis or other dimensionality evaluations.632

Cronbach and Meehl categorize validity into three primary forms:633

1. Content validity—ensuring a test comprehensively represents the concept it aims to measure.634

2. Criterion validity—evaluating how well a test correlates with external measures, which635

include predictive and concurrent validity. Concurrent validity refers to a test’s agreement636

with a validated measure applied at the same time under the same conditions.637
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3. Construct validity—assessing the theoretical alignment between a test and its intended638

construct.639

Beyond these core types, external validity refers to the extent to which a study’s findings can be640

generalized beyond its specific conditions. External validity examines whether results hold across641

different populations, settings, and time periods. Campbell and Stanley [83] were among the first to642

systematically define external validity, identifying factors like selection bias and situational specificity643

as risks to generalizability.644

In response to Cronbach and Meehl’s framework, which emphasized the theoretical and statistical645

relationships between measures, [3, 84] introduced consequential validity on the basis that validity is646

not just about measurement accuracy but also about the real-world impact of test interpretation and647

use. However, unlike [3], we do not unify all facets of validity under construct validity. We adopt648

the view of [5] where the use of a measurement determines what is necessary to support validity.649

Importantly, this may not require construct validity.650

[85] offers a different view: validity is a property of the test itself, and a test is valid if and only if651

it measures the construct it purports to measure. In this view, questions of use or consequence are652

orthogonal to validity; what matters is whether the test causally reflects variation in the construct.653

This perspective draws a clear boundary between measurement and interpretation, placing the burden654

of validity squarely on the psychometric relationship between construct and test score. While655

theoretically clean, this stance omits considerations critical to our context, namely, how test outputs656

are used to make decisions. We, therefore, depart from Borsboom’s definition, instead adopting a657

broader view in which validity also encompasses downstream consequences and use cases, particularly658

when evaluating AI systems deployed in high-stakes settings.659

While these validity concepts were originally developed for psychological and educational testing,660

they provide a powerful lens for evaluating AI models. In the next section, we examine how these661

classical validity forms translate into the context of modern AI evaluation.662

C The (Co)Evolution of evaluations and claims663

C.1 Vision664

The evolution of AI benchmarks has been closely tied to the kinds of conclusions researchers aimed665

to draw and the evidence available at the time—Figure 2. In the 1960s to 1980s, benchmarks were666

hyper-localized, focusing on narrowly defined technical tasks like edge detection and simple shape667

recognition. The goal was primarily technical exploration—improving algorithmic efficiency—so the668

scope of conclusions was very narrow and directly supported by the evaluations carried out.669

In the 1990s, AI benchmarks became more structured and began incorporating more applied tasks. A670

notable example is MNIST [86] for handwritten digit classification, which provided a standardized671

way to evaluate machine learning models. This trend continued into the early 2000s, with datasets such672

as UIUC Cars [87] for vehicle detection and Caltech-101 (2003) [88] for object recognition. While673

these benchmarks remained narrow in scope, they represented a step toward evaluating AI on more674

applied tasks, bridging the gap between theoretical research and practical applications. However,675

evaluations were still primarily designed for well-defined technical interests, with conclusions676

remaining local—focused on determining which techniques were most effective for the specific task677

being evaluated. During this period, researchers also became increasingly aware of content validity,678

recognizing that different datasets captured different aspects of classification tasks, which in turn679

influenced dataset design and evaluation methodologies [89, 90].680

By the mid-2000s, large-scale benchmarks such as PASCAL VOC (2007) [91] introduced greater681

complexity, expanding evaluation beyond simple classification tasks. Later, in the late 2000s,682

CIFAR-10 and CIFAR-100 [92] further pushed the field toward standardized comparisons in object683

recognition. During this period, criterion validity also gained prominence, as benchmark results were684

increasingly used to compare models in ways that suggested performance rankings carried external685

significance. However, construct validity remained largely unexplored—models were evaluated based686

on their outputs rather than on the reasoning processes behind their decisions. As a result, while687

evaluations became more sophisticated, they remained focused on performance metrics rather than688

deeper insights into model behavior. By this stage, the focus of AI evaluation began shifting from689
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Benchmarks
● Canny Edge Detection (1986)
● MIT Vision Test Suite 

(1970s–1980s)

Models
● Laplacian and Difference of 

Gaussians

Primary Validity Considerations
● None

Benchmarks
● MNIST (1998)
● Caltech-101 (2003)
● UIUC Cars (2005)

Models
● Support Vector Machine
● Multilayer Perceptron

Primary Validity Considerations
● Content Validity

Benchmarks
● PASCAL VOC (2005)
● CIFAR-10/100 (2009)

Models
● Support Vector Machine
● Bag of Visual Words
● Early CNNs

Primary Validity Considerations
● Content and External Validity

Benchmarks
● ImageNet (2012)

Models
● Deep neural networks for 

classification
○ Alexnet (2011), ResNet 

(2015), etc.

Primary Validity Considerations
● Content, External, Criterion 

Validity

Benchmarks
● COCO (2014)
● ADE20K (2017)

Models
● Deep neural networks for 

object detection, scene 
parsing, segmentation. Etc.

○ YOLO (2016), Mask 
R-CNN (2017), HRNet 
(2019)

Primary Validity Considerations
● Content, External, Criterion, 

Construct Validity

Benchmarks
● TDUIC (2018)
● VLUE (2021)

Models
● VilBERT (2019), CLIP (2021), 

Flamingo (2022)

Primary Validity Considerations
● Content, External, Criterion, 

Construct Validity

Figure 2: Coevolution of benchmarks, models, and the type of validity necessary for common
conclusions for vision.

isolated dataset-specific improvements to broader claims about model robustness and transferability690

across different domains.691

The 2010s marked a turning point with the ImageNet revolution. The introduction of ImageNet [7]692

and the ILSVRC [8] competition (2010) provided large-scale, diverse, and complex benchmarks that693

dramatically reshaped AI research. During the early 2010s, the focus remained on improving accuracy694

in image classification and object detection. However, by the mid-2010s, AI evaluation expanded695

beyond leaderboards to real-world applications, particularly in medical imaging and autonomous696

driving. Researchers increasingly recognized the importance of content validity and external validity,697

leading to the widespread practice of testing models across multiple datasets to assess robustness.698

As benchmark results gained influence, criterion validity became central—accuracy on ImageNet was699

frequently treated as a proxy for predicting downstream AI capabilities in vision. However, construct700

validity remained largely unaddressed in the early years. By the mid-2010s, early concerns emerged701

as researchers identified shortcut learning, adversarial vulnerabilities, and spurious correlations,702

leading to growing interest in understanding how models made decisions beyond raw accuracy. The703

rise of segmentation (COCO [93], ADE20K [94]) and video analysis benchmarks (Kinetics, AVA)704

reflected an effort to capture more complex real-world tasks, but fundamental concerns about model705

robustness and bias persisted.706

In the 2020s, the rise of multimodal and foundation models introduced even greater evaluation707

challenges. Benchmarks such as VQA [95], VLUE [96], and TDIUC [97] attempted to assess708

multimodal reasoning, but defining what these benchmarks truly measured became increasingly709

difficult. Construct validity became a major concern as researchers debated whether these benchmarks710

genuinely assessed constructs like reasoning and understanding or merely exposed a model’s ability711

to exploit statistical correlations in large datasets (Sec. ??). Unlike earlier benchmarks, which712

primarily focused on accuracy, modern benchmarks aim to evaluate the latent properties of AI713

systems [98]. However, fundamental questions about the validity of these evaluations remain714

unresolved, particularly in assessing generalization, robustness, and true reasoning ability.715
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Benchmarks
● MMLU (2021)
● BIG-Bench (2023)
● GPQA (2024)
● AlpacaEval (2023)

Models
● Decoder Transformers:

○ GPT-¾
○ LLaMA
○ Gemini, 

Claude
Primary Validity Considerations

● Content, External, Criterion, 
Construct, Consequential 
Validity

Benchmarks
● ELIZA (1966)
● SHRDLU (1971)

Models
● Rule-based systems
● Pattern matching
● Finite-state morphology
● Handcrafted grammars

Primary Validity Considerations
● None

Benchmarks
● MUC (1987-1997)
● Penn Treebank (1993)
● TREC (1990s)
● WMT (1990s-2000s)

Models
● Statistical parsing
● Phrase-based MT
● Syntax-based MT 

Primary Validity Considerations
● Content Validity, Criterion 

Validity 

Benchmarks
● bAbI (2016)
● SNLI (2015)
● SQuAD (2016)
● Natural Questions (2019)

Models
● Memory networks: 

LSTM,RNN

Primary Validity Considerations
● Content, Criterion, External 

Validity

Benchmarks
● SQuAD 2.0 (2018)
● SWAG (2018)
● GLUE (2018)
● SuperGLUE (2019)

Models
● Enocder-Decoder:

○ BERT
○ RoBERTa
○ T5

Validity Considerations
● Content, External, Criterion 

Validity

Figure 3: Coevolution of benchmarks, models, and the type of validity necessary for common
conclusions for language.

Across these decades, benchmarks evolved alongside the conclusions stakeholders sought to make.716

Early benchmarks required little discussion of validity because they were purely technical exercises.717

As AI models became more ambitious and claims about their capabilities expanded, benchmarks had718

to keep up—introducing concerns about content, external, and criterion validity. More recently, as AI719

systems move toward multimodal reasoning and foundation models, discussions of construct validity720

have become central. As models grow in complexity, the challenge is no longer just about designing721

better benchmarks—it’s about defining what those benchmarks are actually supposed to measure in722

the first place.723

C.2 Language724

Language model benchmarks have seen an evolution from focusing on primarily basic questions of725

criterion validity against human performance to more nuanced considerations of other validity in726

more recent years—Figure 3. In the Blocks World Era (1960s-1980s), NLP evaluation was primarily727

qualitative and demonstration-based, lacking standardized metrics entirely. Systems like ELIZA728

(1966) [99] and SHRDLU (1971) [100] were evaluated through anecdotal observations of how users729

interacted with them in highly constrained environments. ELIZA simulated a psychotherapist using730

simple pattern matching, while SHRDLU operated in a “blocks world” where users could issue731

commands to manipulate virtual objects. Validity considerations during this era were minimal and732

largely implicit. Content validity was severely limited by extremely narrow domains, criterion733

validity was nonexistent without standardized measurements, and construct validity wasn’t addressed734

as researchers weren’t attempting to measure specific capabilities like “reasoning” or “understanding.”735

External validity was particularly weak as systems couldn’t generalize beyond their constrained736

environments. Success was measured simply by the system’s ability to maintain seemingly intelligent737

conversations or follow instructions rather than through quantitative performance metrics or validity738

criteria. The North Star Era (1990s-2000s) marked a paradigm shift toward empirical evaluation739

with standardized benchmarks inspired by information retrieval traditions, where benchmarks with740
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quantitative metrics and clearly defined train, validation ,and test split gave the field a proverbial741

“North Star” to aim towards. Initiatives like the Message Understanding Conferences (MUC) and the742

Penn Treebank established common datasets, clearly defined tasks, and metrics such as precision,743

recall, and F-score for comparing systems. This era introduced the first rigorous validity consid-744

erations, though still narrow in scope. Benchmarks like TREC [101] and WMT [102] established745

improved criterion validity through standardized metrics that allowed consistent measurement across746

systems and time. Content validity improved but remained limited to specific linguistic tasks. Nascent747

construct validity concerns emerged as researchers began considering what abilities their tasks were748

actually measuring. However, external validity remained largely unaddressed as benchmarks weren’t749

designed to generalize beyond their specific contexts. Consequential validity still wasn’t a major750

consideration, as NLP applications weren’t yet widely deployed with significant societal impact.751

In the early 2010s, many language benchmarks, such as SQuAD [103] and SNLI [104], focused on752

individual tasks such as reading comprehension or natural language claims such as entailment or con-753

tradiction. The primary focus was on establishing baseline comparisons against human performance754

to create criterion validity for the benchmarks. However, such benchmarks had limitations to other755

aspect,s such as content validity due to limited focus on specific linguistic tasks and face validity756

due to narrow objectives and methods used to solve the task (both SQuAD and SNLI can be cast as757

relatively simple classification problems for which we can measure a gold standard of correctness).758

Other validity types were not heavily considered at this time.759

In the mid to late 2010s, the field began to focus more on multi-task evaluation, which was rep-760

resented by benchmarks such as GLUE [105] and SentEval [106]. During this time, emerging761

validity concerns became prominent. More sophisticated human baselines were required to maintain762

criterion validity,and broader task coverage led to great content validity. However, concerns about763

the underlying mechanisms that could explain performance began to emerge, which reflects early764

concerns about construct validity.765

In the late 2010s there were key changes in language model evaluation. Benchmarks like Super-766

GLUE [107] aimed to resolve validity concerns with rigorous multi-annotator baselines, broader767

task selection, more attention to the demographics of annotators, and the first considerations of768

social impact and gaming. However, the lack of structural validity evidence and external validation769

remained as challenges. There were also few analyses of convergent/discriminant validity in studies.770

The 2020s marked a shift toward comprehensive knowledge evaluation with benchmarks like MMLU771

[108], reflecting a growing recognition that language models were advancing beyond narrow linguistic772

tasks to broader knowledge and reasoning capabilities. MMLU introduced several innovations in773

validity considerations: it established expert-level performance as the criterion validity benchmark774

rather than average human performance, expanded content validity through coverage of 57 subjects775

across multiple domains, and highlighted crucial external validity concerns through studies showing776

sensitivity to answer ordering and other conditions that should not have an effect on the downstream777

performance for an “intelligent” agent (as measured with respect to an expert). The evolution of778

MMLU reflects broader trends in the field’s approach to validity. Earlier benchmarks like SQuAD779

primarily focused on criterion validity through human performance comparisons, while MMLU780

attempted to address multiple validity types simultaneously. However, new challenges emerged:781

convergent validity became more complex as models showed inconsistent performance across related782

tasks (e.g., philosophy versus morality questions), and discriminant validity concerns arose around783

distinguishing between memorization and reasoning capabilities. This progression has led to the784

current state of language model evaluation, characterized by greater sophistication in validity consid-785

erations but also a clearer recognition of inherent limitations. Recent work has highlighted the need786

for better convergent validity across benchmarks and more robust methods for assessing reasoning787

abilities. The field has moved from treating benchmarks as simple performance metrics to viewing788

them as complex instruments requiring multiple types of validation evidence [109].789
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D Case Studies790

D.1 GPQA791

Table 3: A Graduate-Level Google-Proof Question Answering Benchmark (GPQA) [73] Application.
A subjective score for validity—the standard for “reasonable” is demonstrating that obvious risks to
invalidity are addressed: : reasonable; : proceed with caution; : insufficient. Even for a score
of “reasonable,” there will be weaknesses in the evidence. The score is given because the strengths
outweigh the weaknesses in terms of determining the validity of the claim from that evidence. This is
never a binary classification nor complete, and should rather be a cyclic process—for instance, as our
forms of what constitutes graduate-level chemistry may evolve over time and from school to school.

Claims from Graduate-Level Google-Proof Question Answering (GPQA) Benchmark Accuracy Report Card
Claims Content Criterion Construct External Consequential
1. AI systems can accurately answer graduate-level special-
ized multiple-choice questions in biology, physics, and chem-
istry.
2. AI systems can accurately answer graduate-level special-
ized questions in specialized scientific domains.
3. AI systems can exhibit general reasoning abilities that can
transfer beyond current human specialization.

Description of dataset. The GPQA (Graduate-Level Google-Proof Question Answering) bench-792

mark is a challenging dataset comprising 448 multiple-choice questions crafted by domain experts in793

biology, physics, and chemistry [73]. These questions are designed to be exceptionally difficult, with794

experts holding or pursuing PhDs in the respective fields achieving an accuracy of 65% (74% when795

excluding clear mistakes identified retrospectively). Notably, highly skilled non-expert validators,796

even with unrestricted web access and spending over 30 minutes per question, attained only 34%797

accuracy, underscoring the ”Google-proof” nature of the dataset. State-of-the-art AI systems also798

find this benchmark challenging; for instance, a GPT-4 based model achieved 39% accuracy. The799

GPQA dataset serves as a valuable resource for developing scalable oversight methods, aiming to800

enable human experts to effectively supervise and extract truthful information from AI systems that801

may surpass human capabilities.802

Object of Claim: Multiple-choice questions in biology, physics, and chemistry accuracy.803

Claim 1: AI models can accurately answer graduate-level specialized multiple-choice questions in804

biology, physics, and chemistry — criterion is accuracy on such questions.805

Evidence: Accuracy on multiple-choice questions in biology, physics, and chemistry.806

Validity of Claim from Evidence:807

1. Content Validity808

• Strength: Expert-curated questions ensure high-quality, relevant content across key809

topics in biology, physics, and chemistry. The performance gap between experts and810

non-experts confirms the questions assess specialized knowledge.811

• Weakness: The dataset’s construction criteria may exclude some relevant questions,812

potentially leading to over- or underrepresentation of certain subfields.813

• Suggestions: Conduct systematic content mapping across subfields to ensure balanced814

representation. Include expert diversity analysis to mitigate potential biases in question815

selection.816

2. Criterion Validity817

• Strength: Human expert accuracy provides a meaningful external criterion, reinforcing818

concurrent validity.819

• Weakness: Criterion validity could be stronger with comparisons to other specialized820

science Q/A benchmarks. Predictive validity is untested—no evidence that GPQA821

accuracy predicts future performance on exams or coursework, for example.822

• Suggestions: Compare performance with established science Q&A benchmarks. Con-823

duct longitudinal studies tracking how benchmark performance predicts success on824

real graduate exams.825
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3. Construct Validity826

• Since the claim is strictly about accuracy on a defined criterion, construct validity is827

not necessary to evaluate this specific claim.828

4. External Validity829

• Strength: The test mirrors a real-world setting—human experts develop the questions,830

and the evaluation format aligns with academic multiple-choice assessments. GPQA831

includes diverse topics within its disciplines.832

• Weakness: Similar to the criterion validity gap, GPQA accuracy is not compared to833

other multiple-choice science tests, leaving external generalization unverified.834

• Suggestions: Validate against different question formats and compare performance835

across multiple science benchmarks.836

5. Consequential Validity837

• Strength: The AI-expert performance gap prevents premature claims of AI superiority,838

mitigating risks of overestimating AI scientific knowledge. However, models have839

quickly improved in this benchmark2. GPQA-trained models could support science840

education as study tools.841

• Weakness: If AI models reach high accuracy, stakeholders may overgeneralize their842

competence, assuming they have true expertise in physics, biology, and chemistry,843

despite lacking deeper scientific reasoning skills.844

• Suggestions: Develop clear guidance for stakeholders on interpreting results. Create845

documentation explicitly distinguishing multiple-choice performance from broader846

scientific expertise.847

Object of Claim: Domain-specific scientific competency.848

Claim 2: AI models can accurately answer graduate-level questions in specialized scientific do-849

mains—criterion is accuracy on such questions.850

Evidence: Accuracy on [N] multiple-choice questions in biology, physics, and chemistry.851

Validity of Claim from Evidence:852

1. Content Validity853

• Strength: Expert-curated, high-quality questions covering key topics in biology, physics,854

and chemistry. Non-expert performance gap supports specialization.855

• Weakness: Limited to three disciplines, excluding other specialized scientific domains856

(e.g., medicine, engineering). Only Q/A questions, excluding fill-in-the-blank or857

open-ended questions.858

• Suggestions: Expand questions to include other scientific subdomains. Conduct sys-859

tematic content mapping across subfields to ensure balanced representation. Include860

expert diversity analysis to mitigate potential biases in question selection.861

2. Criterion Validity862

• Strength: Human expert accuracy serves as a strong external criterion (concurrent863

validity). AI-expert performance gap reinforces benchmark credibility.864

• Weakness: No predictive validity—GPQA accuracy is not tested against future perfor-865

mance on other specialized assessments.866

• Suggestions: Establish correlations with performance on real graduate program assess-867

ments. Develop predictive validity studies tracking model performance across time and868

domains.869

3. Construct Validity (importantly, this may be trivially satisfied if we have strong enough870

criterion validity.)871

• Strength: Expert-curated questions in biology, physics, and chemistry are designed872

to capture fundamental aspects of specialized scientific knowledge. This suggests873

that the construct measured—domain-specific scientific competence—has meaningful874

representation, and high accuracy should correlate with understanding key scientific875

principles.876

2https://www.youtube.com/watch?v=ZANbujPTvOY.
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• Weakness: GPQA’s focus on biology, physics, and chemistry limits its ability to capture877

the overall construct of “specialized scientific knowledge,” as other fields like medicine878

and engineering require different reasoning and knowledge structures. Moreover, the879

paper does not provide evidence linking GPQA performance to external measures of880

scientific competence (such as standardized test scores), leaving its alignment with881

related constructs unclear. Finally, the multiple-choice format may favor recognition or882

memorization over deeper analytical reasoning, potentially failing to capture key facets883

like synthesis and in-depth understanding.884

• Suggestions: To improve construct validity, expand GPQA to include additional do-885

mains (e.g., medicine, engineering) and correlate its scores with independent stan-886

dardized assessments to establish convergent and discriminant validity. Additionally,887

incorporating alternative formats like open-ended questions and problem-solving tasks888

will better capture domain-specific scientific competence.889

4. External Validity890

• Strength: Real-world, expert-created multiple-choice questions ensure relevance. Cov-891

erage across multiple subfields increases generalization within biology, physics, and892

chemistry.893

• Weakness: No evidence of generalization to other science assessments (e.g., (non-894

)multiple choice PhD qualifying exams).895

• Suggestions: Test generalization to other assessment formats including written exams,896

oral defenses, and research proposal evaluations.897

5. Consequential Validity898

• Strength: AI-expert performance gap prevents overstating AI’s scientific capabilities;899

models could support science education.900

• Weakness: Risk of overgeneralization—high scores may be misinterpreted as broad901

scientific expertise beyond tested domains.902

• Suggestions: Create clear limitations documentation highlighting specific domains903

where evidence supports or doesn’t support performance claims.904

Object of Claim: Reasoning.905

Claim 3: AI models exhibit general reasoning abilities.906

Evidence: Accuracy on [N] multiple-choice questions in biology, physics, and chemistry.907

Validity of Claim from Evidence:908

1. Content Validity909

• Strength: Covers multiple scientific disciplines, requiring some level of reasoning910

beyond factual recall.911

• Weakness: Multiple-choice format limits assessment of forms of reasoning like logical912

deduction, or abstract problem-solving.913

• Suggestions: Develop specific reasoning-focused questions that isolate logical deduc-914

tion from domain knowledge. Include diverse reasoning types (inductive, deductive,915

abductive).916

2. Criterion Validity917

• Strength: Human expert accuracy serves as a real-world external criterion, and the AI-918

expert performance gap indicates a meaningful benchmark for reasoning capabilities.919

• Weakness: GPQA tests factual and applied knowledge rather than abstract reasoning920

skills. No predictive validity—performance on GPQA is not tested against other921

established reasoning benchmarks (e.g., LSAT-style logical reasoning or problem-922

solving tests).923

• Suggestions: Compare performance against established reasoning benchmarks like924

LSAT, GRE analytical, and domain-independent logical reasoning tests.925

3. Construct Validity926
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• Strength: AI performance on GPQA correlates with success in structured question-927

answering tasks, suggesting some reasoning component. Additionally, the dataset can928

distinguish between human experts and non-experts.929

• Weakness: Does not separate reasoning from memorization—AI models may exploit930

dataset patterns rather than apply logical deduction. While non-experts with access to931

Google perform worse than experts, non-experts are given a limited time per question,932

which may not sufficiently show that models have not been trained on such questions.933

No convergent validity—GPQA accuracy is not correlated with performance on ex-934

plicit reasoning assessments. No discriminant validity—It is unclear whether GPQA935

measures reasoning ability or just domain-specific knowledge.936

• Suggestions: Conduct factor analysis to distinguish reasoning from memorization.937

Demonstrate convergent validity with dedicated reasoning assessments and discriminant938

validity from pure knowledge recall.939

4. External Validity940

• Strength: GPQA questions require problem-solving across multiple disciplines, in-941

creasing the likelihood that some reasoning ability is being tested.942

• Weakness: Reasoning should generalize across domains, but GPQA only includes three943

scientific fields. No evidence that AI models with high GPQA accuracy perform well944

on general reasoning tasks outside science (e.g., logical puzzles, mathematical proofs,945

legal or philosophical reasoning).946

• Suggestions: Test performance on reasoning tasks across non-scientific domains in-947

cluding logic puzzles, mathematical proofs, and philosophical arguments.948

5. Consequential Validity949

• Strength: If GPQA successfully measures reasoning, AI models excelling on it could950

serve as decision-support tools in scientific research or education.951

• Weakness: Overgeneralization risk—high GPQA accuracy may lead to misinterpreting952

AI as possessing broad, human-like reasoning abilities when it may only excel at953

structured multiple-choice problems.954

• Suggestions: Develop clear performance interpretation guidelines specifying which955

reasoning capabilities are supported by evidence versus which remain speculative.956
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D.2 MMLU957

Table 4: A Massive Multitask Language Understanding (MMLU) [108] Application. A subjective
score for validity—the standard for “reasonable” is demonstrating that obvious risks to invalidity
are addressed: : reasonable; : proceed with caution; : insufficient. Even for a score of
“reasonable,” there will be weaknesses in the evidence. The score is given because the strengths
outweigh the weaknesses in terms of determining the validity of the claim from that evidence. This is
never a binary classification nor complete, and should rather be a cyclic process.

Claims from MMLU Benchmark Accuracy Report Card
Claims Content Criterion Construct External Consequential
1. Language models can demonstrate broad knowledge across
diverse academic and professional subjects.
2. Language models can perform expert-level reasoning
across specialized domains.
3. MMLU performance predicts a model’s general language
understanding capabilities.

Description of dataset. Massive Multitask Language Understanding (MMLU) is a benchmark958

designed to test natural language understanding across 57 subjects spanning STEM, humanities,959

social sciences, and professional fields. It consists of multiple-choice questions (four options) drawn960

from standardized tests like the GRE and medical licensing exams, LSAT exams, and various exams961

oriented towards domain specific knowledge in the fields listed above962

Object of Claim: Broad knowledge across diverse subjects.963

Claim 1: Language models can demonstrate broad knowledge across diverse academic and profes-964

sional subjects.965

Evidence: Accuracy on [N] multiple-choice questions spanning 57 subjects across STEM, humani-966

ties, social sciences, and professional fields, drawing from practice questions for standardized tests967

such as the Graduate Record Examination and the United States Medical Licensing Examination.968

Validity of Claim from Evidence:969

1. Content Validity970

• Strength: MMLU covers an extensive range of domains (57 subjects) spanning STEM,971

humanities, social sciences, and professional fields.972

• Weakness: The multiple-choice format with only four options limits the depth of under-973

standing that can be assessed, and some subjects may have inadequate representation.974

• Suggestions: Conduct detailed content mapping to ensure proportional representation975

across domains and expand beyond multiple-choice to include open-ended responses.976

2. Criterion Validity977

• Strength: MMLU has been shown to correlate with downstream performance on978

other capability oriented tasks, demonstrating predictive validity. Related work on979

benchmarking measured correlation of MMLU scores with the aggregate of scores on980

MMLU and other capability benchmarks, and found that MMLU to have a very high981

correlation only behind MedQA and Arc Challenge [110].982

• Weakness: There are inconsistencies in how well MMLU correlates with other measures983

of related capabilities (e.g., models performing well on philosophy but poorly on984

morality despite their relatedness).985

• Suggestions: Conduct more systematic studies correlating MMLU performance with986

other established benchmarks of knowledge across domains.987

3. Construct Validity988

• Strength: The benchmark draws from standardized tests designed to measure knowl-989

edge in respective fields.990

• Weakness: MMLU doesn’t effectively distinguish between recall and reasoning lack-991

ing discriminant validity; high performance could indicate mere memorization from992

training data scraped from the internet rather than deep understanding.993
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• Suggestions: Add questions that explicitly test reasoning or precision versus recall, and994

incorporate analysis of model explanations, not just final answers.995

4. External Validity996

• Strength: Using questions from standardized tests provides some real-world grounding.997

• Weakness: Significant issues undermine generalizability: labeling errors (57% of Virol-998

ogy questions contain errors), answer ordering effects, and the constrained multiple-999

choice format. This suggests an independent reproduction of MMLU might present1000

different results.1001

• Suggestions: Implement rigorous quality control (as in MMLU-Pro), test with varied1002

answer orderings, and expand beyond multiple-choice formats.1003

5. Consequential Validity1004

• Strength: MMLU has successfully become a standard benchmark driving industry1005

progress in language model development.1006

• Weakness: There is a risk of overoptimization as models are increasingly designed1007

specifically to perform well on MMLU multiple choice, and might overfit to doing well1008

on easily testable questions rather than broad subject knowledge (Goodhart’s Law).1009

• Suggestions: Regularly update the benchmark with new questions and maintain clear1010

documentation about what MMLU does and doesn’t measure.1011

Object of Claim: Expert-level reasoning.1012

Claim 2: Language models can perform expert-level reasoning across specialized domains.1013

Evidence: MMLU compares model performance against estimated expert-level accuracy (89.8%)1014

and measures performance across specialized domains from medicine to formal logic.1015

Validity of Claim from Evidence:1016

1. Content Validity1017

• Strength: MMLU includes questions from specialized professional domains that require1018

some domain expertise.1019

• Weakness: Multiple-choice questions as they are written within MMLU primarily tests1020

factual knowledge rather than complex reasoning processes experts employ.1021

• Suggestions: Include multi-step reasoning problems and questions requiring application1022

of principles to novel scenarios.1023

2. Criterion Validity1024

• Strength: Performance is benchmarked against estimated expert-level accuracy (89.8%)1025

so MMLU has a good claim to concurrent validity1026

• Weakness: The benchmark cannot distinguish between memorized answers and expert1027

reasoning. Error analysis shows 39% of incorrect answers on MMLU-Pro stem from1028

reasoning errors despite correct knowledge, meaning the correlation with correct1029

answers might be spurious.1030

• Suggestions: Incorporate expert validation of both answers and reasoning paths, perhaps1031

through analysis of model explanations.1032

3. Construct Validity1033

• Strength: Some questions require application of domain knowledge rather than simple1034

facts.1035

• Weakness: The benchmark doesn’t capture expert reasoning processes, only the final1036

answers lacking structural validity.1037

• Suggestions: Develop metrics to evaluate reasoning quality, not just answer correctness,1038

and include questions that cannot be solved through memorization alone. Elicit experts1039

per domain for their reasoning process, as well as suggestions for relevant question1040

formats and protocols.1041

4. External Validity1042
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• Strength: Using standardized test questions provides some grounding in real assess-1043

ment practices. As mentioned earlier, there is some evidence MMLU performance is1044

correlated with performance on other capability benchmarks.1045

• Weakness: Multiple-choice tests do not capture the open-ended, iterative nature of1046

expert reasoning in real-world contexts. Changing answer ordering can also affect1047

scores which an expert should be invariant to.1048

• Suggestions: Develop supplementary benchmarks with more authentic professional1049

tasks and varied formats. Perhaps where the model provides reasoning chains and is1050

evaluated with a reward model calibrated to expert preference.1051

5. Consequential Validity1052

• Strength: The benchmark has helped identify strengths and weaknesses in model1053

capabilities across different domains.1054

• Weakness: High MMLU scores might create an illusion that models can replace domain1055

expert judgement, leading to inappropriate applications.1056

• Suggestions: Provide clear guidance on the limitations of what MMLU scores indicate1057

about true expert-level reasoning.1058

Object of Claim: Predictive power for general capabilities.1059

Claim 3: MMLU performance predicts a model’s general language understanding capabilities.1060

Evidence: MMLU has been highly correlated with downstream quality and capability, as noted by1061

industry teams building large language models and supported by research on observational scaling1062

laws.1063

Validity of Claim from Evidence:1064

1. Content Validity1065

• Strength: MMLU covers a wide range of domains, providing breadth in assessment1066

that is a non-trivial subset of understanding of “general” topics, if such topics are the1067

enumeration of all academic topics.1068

• Weakness: It doesn’t cover all aspects of language understanding, particularly creative,1069

open-ended, or interactive capabilities. It also doesn’t cover areas of knowledge that1070

aren’t readily measured in academic settings.1071

• Suggestions: Supplement with other benchmarks measuring different facets of language1072

understanding and areas that don’t easily map to academic fields of study such as humor.1073

2. Criterion Validity1074

• Strength: Research on observational scaling laws notes that when running a PCA on1075

evaluation performance of prominent benchmarks against downstream performance,1076

variation in MMLU explains a large fraction of variation [109]. As mentioned earlier in1077

claim 1 and claim 2, research shows MMLU scores correlate well with performance on1078

other tasks, supporting its use as a general predictor [110]. Combined with the earlier1079

observation that performance is benchmarked against estimated expert-level accuracy1080

(89.8%), this gives MMLU a good claim to concurrent validity.1081

• Weakness: Correlation patterns are inconsistent across different types of tasks and1082

domains [111].1083

• Suggestions: Develop a more nuanced framework showing which aspects of MMLU1084

best predict which types of downstream capabilities or rely on the observational scaling1085

laws framework.1086

3. Construct Validity1087

• Strength: The benchmark captures some aspects of knowledge acquisition and applica-1088

tion.1089

• Weakness: ”Natural language understanding” as a construct encompasses much more1090

than multiple-choice question answering, including discourse comprehension, pragmat-1091

ics, and nuanced interpretation none of which are covered here.1092

• Suggestions: Clarify the specific sub-constructs of language understanding that MMLU1093

actually measures.1094
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4. External Validity1095

• Strength: The breadth of subjects provides some basis for generalization, assuming we1096

are focused on breadth and a more shallow definition of generality rather than depth.1097

• Weakness: MMLU’s format and limitations (answer ordering effects, label errors)1098

raise questions about how well scores generalize to real-world language understanding1099

tasks [111, 112].1100

• Suggestions:1101

5. Consequential Validity1102

• Strength: MMLU has influenced productive research directions in language model1103

development, such as BigBench, GPQA, GAIA and other benchmarks that test language1104

models on a broad set of tasks.1105

• Weakness: Over-reliance on MMLU as a general capability metric could lead to1106

narrowly optimized models for the benchmark rather than genuinely more capable ones.1107

This can lead to overstating progress and capabilities of the latest models and systems,1108

i.e. models such as Phi-1 and Mistral which overfits to GSM8k and saw large drops in1109

performance when tested on a new private split [113].1110

• Suggestions: Develop complementary metrics that capture aspects of language under-1111

standing not measured by MMLU, and emphasize a balanced assessment approach.1112
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D.3 ImageNet1113

Table 5: An ImageNet [7, 8] Application. A subjective score for validity—the standard for “reason-
able” is demonstrating that obvious risks to invalidity are addressed: : reasonable; : proceed with
caution; : insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in determining the validity of
the claim from that evidence. This evaluation is an iterative process, acknowledging that both the
benchmark and its interpretations may evolve over time.

Claims from ImageNet Validity Assessment Report Card
Claims Content Criterion Construct External Consequential
1. ImageNet tests how well models learn complex associa-
tions between images and labels.
2. ImageNet gauges the ability to learn semantically general
visual features for object classification.
3. ImageNet measures overall visual understanding of a
model.

Description of dataset. ImageNet [7, 8] (specifically ILSVRC 2012) is a benchmark for predicting1114

an image’s label from a fixed set of 1000 diverse categories. The dataset—curated primarily from1115

Flickr with human annotation—is evaluated using accuracy/error rate and precision/recall metrics.1116

Object of Claim: Predictive accuracy.1117

Claim 1: Model architectures can learn to accurately predict predefined image labels.1118

Evidence: Performance on accuracy/error rate and precision/recall metrics.1119

Validity of Claim 1 from Evidence:1120

1. Content Validity1121

• Strength: The dataset covers 1000 diverse categories with extensive natural variabil-1122

ity—including differences in poses, lighting, backgrounds, and fine-grained distinctions1123

(e.g., different dog breeds)—making it well-suited to assess image–label associations.1124

• Weakness: It is confined to static, natural RGB images and does not include other1125

modalities (e.g., grayscale medical images or hyperspectral data) or dynamic contextual1126

information (e.g., actions or inter-object relationships). Label noise may also affect1127

accuracy metrics [114].1128

• Suggestions: Clearly specify that ImageNet targets static natural images, and consider1129

integrating supplementary datasets to represent additional image types or contextual1130

settings.1131

2. Criterion Validity1132

• Strength: There is robust evidence that performance on ImageNet is both predictive1133

of downstream task success (models excelling on ImageNet often perform well on1134

benchmarks such as CIFAR or Caltech, and in real-world applications like wildlife1135

classification [115]) and concurrent with human-annotated labels under similar condi-1136

tions [116, 117, 9].1137

3. External Validity1138

• Strength: The dataset is representative of real-world natural images, and its utility1139

has been demonstrated under varying conditions (differences in image quality, size,1140

and even in applications to non-traditional domains such as medical imaging [118]1141

and adversarially constructed settings [24]. Note, this is not about trained model1142

performance (e.g., [10]); it is about the external validity of model ability to learn and1143

predict accurately, i.e., necessitates training and evaluating in a new setting rather than1144

transporting trained models to a new setting.1145

4. Construct Validity1146

• Since the claim is strictly about accuracy on a defined criterion, construct validity is1147

not necessary to evaluate this specific claim.1148
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5. Consequential Validity1149

• Strength: The clear quantification of labeling accuracy offers a concrete performance1150

metric, facilitating transparent and reproducible comparisons.1151

• Weakness: There is a risk that high ImageNet accuracy may be misinterpreted as1152

reflecting comprehensive visual understanding, potentially leading to overconfident1153

real-world deployments.1154

• Suggestions: Advise stakeholders that ImageNet performance should be interpreted1155

strictly as a measure of static image classification and that complementary evaluations1156

are necessary to assess broader aspects of visual intelligence.1157

Object of Claim: Learning of semantically general visual features.1158

Claim 2: ImageNet evaluates the ability of models to learn transferable visual features that are useful1159

for object classification.1160

Evidence: Performance gains in fine-tuning tasks when using models pretrained on ImageNet,1161

compared to those trained from scratch.1162

Validity of Claim 2 from Evidence:1163

1. Content Validity1164

• Strength: The wide coverage of natural image phenomena—including fine-grained1165

details and numerous object classes—supports the learning of varied and versatile1166

visual features.1167

• Weakness: It may not comprehensively represent features present in non-natural or1168

synthetic environments, nor fully capture abstract contextual cues.1169

• Suggestions: Consider integrating supplementary datasets that include synthetic, non-1170

natural, or contextually complex images to achieve a more comprehensive assessment.1171

2. Criterion Validity1172

• Strength: Empirical studies (e.g., [9]) show that ImageNet pretraining is strongly1173

predictive of improved fine-tuning and transfer learning outcomes and that performance1174

is concurrent with established classification tasks, addressing both the predictive and1175

concurrent dimensions.1176

• Weakness: Although the predictive correlation is robust, direct and extensive concurrent1177

comparisons with alternative feature assessment methods are less common.1178

• Suggestions: Enhance validation by conducting side-by-side evaluations comparing1179

learned features across different pretraining methods and downstream tasks.1180

3. Construct Validity1181

• Strength: The improvement in fine-tuning performance suggests that the learned1182

features are semantically rich and transferable. This provides evidence of structural1183

validity (as features capture fundamental visual components), convergent validity1184

(via correlation with downstream task performance), and discriminant validity (in1185

differentiating meaningful features from noise).1186

• Weakness: It is challenging to definitively establish that these benefits are due to1187

genuine generalization of visual features rather than overfitting to ImageNet-specific1188

patterns, leaving the discriminant aspect less clear.1189

• Suggestions: Continually perform in-depth analyses—such as saliency mapping or1190

kernel visualization—to further elucidate the nature of the learned features and clarify1191

the extent of structural, convergent, and discriminant validity [119].1192

4. External Validity1193

• Strength: The benefits of ImageNet pretraining have been observed across multiple1194

downstream benchmarks, suggesting that the learned features generalize beyond the1195

confines of natural images [9, 116].1196

• Weakness: The degree of generalizability across the span of domains (e.g., synthetic or1197

non-natural images) remains to be fully validated.1198
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• Suggestions: Broaden external validation by pretraining on a more diverse set of data1199

and assessing performance on cross-domain tasks.1200

5. Consequential Validity1201

• Strength: The transformative impact of ImageNet pretraining in advancing computer1202

vision is well-documented, highlighting its practical benefits.1203

• Weakness: An overreliance on fine-tuning improvements may obscure limitations in1204

the intrinsic quality of the learned features, risking overgeneralization regarding model1205

capability.1206

• Suggestions: Clearly communicate that fine-tuning gains indicate enhanced perfor-1207

mance in specific settings rather than a comprehensive measure of visual feature quality;1208

encourage complementary evaluations focused specifically on feature robustness.1209

Object of Claim: Visual understanding.1210

Claim 3: ImageNet provides an indication of a model’s overall visual understanding beyond simple1211

label prediction or isolated feature representation.1212

Evidence: Performance on the standard classification task under controlled evaluation conditions,1213

independent of training context.1214

Validity of Claim 3 from Evidence:1215

1. Content Validity1216

• Strength: The task of image classification is well-defined and widely used as a proxy1217

for certain aspects of visual understanding.1218

• Weakness: Relying solely on classification does not capture the full range of visual un-1219

derstanding, which includes spatial reasoning, object detection, contextual awareness,1220

and causal interpretation. Understanding is multitask, including detection, segmenta-1221

tion, etc., which are not sufficiently investigated.1222

• Suggestions: Complement the classification task with additional evaluations—such as1223

object detection, visual question answering, or spatial reasoning challenges—to more1224

fully capture the construct.1225

2. Criterion Validity1226

• Strength: Classification accuracy is a clear and quantifiable metric that enables direct1227

comparison across models, addressing both predictive and concurrent aspects to some1228

degree.1229

• Weakness: There is limited evidence that high performance on this narrow task reliably1230

predicts the broader and deeper aspects of overall visual understanding.1231

• Suggestions: Compare ImageNet classification results with those from benchmarks1232

explicitly designed to evaluate advanced visual reasoning and interpretative skills.1233

3. Construct Validity1234

• Strength: Operationalizing visual understanding as performance on image labeling1235

provides a measurable framework that reflects a basic structural organization of visual1236

recognition. However, it offers only limited convergent evidence with tasks requiring1237

integrated reasoning and does not fully differentiate (discriminant validity) between1238

mere pattern recognition and comprehensive understanding.1239

• Weakness: This narrow operational approach may oversimplify the construct, favoring1240

models that exploit dataset biases rather than achieving holistic visual comprehension.1241

• Suggestions: Introduce complementary evaluation tasks (e.g., visual question an-1242

swering or spatial reasoning challenges) to capture additional dimensions of visual1243

understanding and enhance assessments of structural, convergent, and discriminant1244

validity.1245

4. External Validity1246

• Strength: ImageNet’s evaluation framework is reproducible, and similar performance1247

trends have been observed across related image-based tasks.1248
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• Weakness: Its ability to generalize to tasks requiring integrated reasoning, spatial1249

awareness, and contextual interpretation remains unconfirmed.1250

• Suggestions: Validate the broader aspects of visual understanding by employing a1251

wider array of benchmarks that emphasize multidimensional reasoning and contextual1252

evaluation.1253

5. Consequential Validity1254

• Strength: The benchmark has stimulated important discussions on the limitations of1255

measuring visual intelligence solely via classification, underscoring the need for more1256

comprehensive evaluation methods.1257

• Weakness: High classification accuracy might be erroneously interpreted as evidence1258

of complete visual understanding, potentially misleading real-world applications.1259

• Suggestions: Provide clear guidelines on the interpretative scope of ImageNet re-1260

sults and promote complementary measures to capture the full spectrum of visual1261

intelligence.1262
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D.4 MedQA1263

Table 6: MedQA [120] Application. A subjective score for validity—the standard for “reasonable”
is demonstrating that obvious risks to invalidity are addressed: : reasonable; : proceed with
caution; : insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in terms of determining the validity
of the claim from that evidence. This is never a binary classification nor complete and should rather
be a cyclic process.

Claims from MedQA Benchmark Accuracy Report Card
Claims Content Criterion Construct External Consequential
1. AI models can accurately answer USMLE-style multiple-
choice questions in core medical fields (e.g., internal medicine,
pediatrics).
2. AI models can accurately answer advanced specialized
medical questions across diverse clinical subfields (e.g., on-
cology, psychiatry).
3. AI models exhibit general (human-like) medical reasoning
abilities.

Description of dataset. The MedQA benchmark is a large-scale, multilingual dataset crafted for1264

open-domain question answering in the medical domain. It consists of multiple-choice questions1265

drawn from professional medical board exams in English (12’723 questions), simplified Chinese1266

(34’251 questions), and traditional Chinese (14’123 questions) testing complex clinical reasoning.1267

Unlike prior QA datasets, MedQA emphasizes real-world diagnostic decision-making, requiring1268

systems to retrieve and interpret evidence from extensive medical textbook corpora.1269

Object of Claim: Multiple-choice questions in USMLE core fields.1270

Claim 1: AI models can accurately answer USMLE-style multiple-choice questions in core medical1271

fields (e.g., internal medicine, pediatrics).1272

Evidence: Accuracy on MedQA, a curated dataset containing 12,723 English USMLE-style multiple-1273

choice questions, part of a larger multilingual collection that includes 34,251 simplified Chinese and1274

14,123 traditional Chinese questions. Original baseline models achieved only 36.7% accuracy on the1275

English questions, while recent LLMs have reached 90% accuracy on this benchmark.1276

Validity of Claim from Evidence:1277

1. Content Validity1278

• Strength: The question set covers standard USMLE core areas (internal medicine,1279

pediatrics, OB/GYN, surgery), curated by medical professionals. The gap between1280

expert vs. non-expert performance helps confirm that the items do measure specialized1281

knowledge.1282

• Weakness: Even “core” USMLE topics might be incomplete (e.g., narrower coverage1283

of pediatrics vs. adult medicine).1284

• Suggestions: Do a content-mapping across subdomains to ensure each core field1285

is represented proportionally. Include item analyses by domain experts to identify1286

underrepresented subtopics.1287

2. Criterion Validity1288

• Strength: If the claim is specifically “accuracy on USMLE-style questions,” then1289

MedQA directly measures that criterion. High performance against human experts or1290

official pass thresholds bolsters concurrent validity.1291

• Weakness: There is limited predictive validity—we do not know if high scores on1292

MedQA predict performance on subsequent medical assessments, other board certifica-1293

tions, or related medical knowledge evaluations.1294

• Suggestions: Compare MedQA performance to known USMLE pass rates or step1295

scores. Conduct longitudinal or prospective studies to see if a model that excels on1296

MedQA also performs robustly in real USMLE test trials.1297

3. Construct Validity1298
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• Strength: TBD1299

• Weakness: While USMLE questions are designed to test integrated medical knowledge1300

and clinical decision-making, LLMs might leverage statistical patterns in their training1301

data rather than demonstrating the intended construct. Many multiple-choice questions1302

can be solved via pattern matching or memorization without genuine conceptual1303

understanding.1304

• Suggestions: Further analyze how the model arrives at answers. Include open-ended or1305

explanation-based items to confirm it is using medical reasoning (rather than memorized1306

patterns).1307

4. External Validity1308

• Strength: Because USMLE is a well-established exam format, it is somewhat represen-1309

tative of real licensing test questions.1310

• Weakness: The model’s performance is not tested in truly “real-world” situations (e.g.,1311

diagnosing patients with partial information). Variation in language, test format, or1312

question style might degrade performance.1313

• Suggestions: Assess generalizability by testing with alternative question sources (e.g.,1314

NBME question banks, other medical boards), including different item formats (e.g.,1315

free-response, extended matching).1316

5. Consequential Validity1317

• Strength: If model performance is below human experts, it prevents overestimation of1318

AI’s clinical capabilities; the benchmark helps calibrate expectations.1319

• Weakness: If the model achieves high scores, there is a risk that stakeholders assume1320

it can practice medicine or make reliable diagnoses—something USMLE-style Q&A1321

alone does not prove.1322

• Suggestions: Provide guidance that warns against using MedQA results as a proxy1323

for “clinical readiness.” Create disclaimers, ethics reviews, or guidelines so that high1324

MedQA accuracy is not over-interpreted as real-world medical competency.1325

Object of Claim: Advanced specialized medical Q/A accuracy.1326

Claim 2: AI models can accurately answer advanced specialized medical questions across diverse1327

clinical subfields (e.g., oncology, psychiatry, cardiology).1328

Evidence: The same MedQA multiple-choice items, which may include some specialized subtopics1329

but are typically broad “licensing exam” style.1330

Validity of Claim from Evidence:1331

1. Content Validity1332

• Strength: USMLE exams do include a range of subfields. If MedQA is properly1333

sampled, it will have at least basic coverage in oncology, psychiatry, etc.1334

• Weakness: “Advanced specialized” questions in niche fields (e.g., transplant immunol-1335

ogy, pediatric oncology) are usually not heavily represented in general licensing exams,1336

so coverage may be thin.1337

• Suggestions: Evaluate how many questions truly belong to each advanced specialty.1338

Expand the dataset or collect specialized question sets from relevant board exams (e.g.,1339

ABIM Oncology boards).1340

2. Criterion Validity1341

• Strength: If specialists or specialized board pass rates are used as a reference, some1342

measure of concurrent validity might be feasible.1343

• Weakness: We lack direct evidence that performance on these general medical exams1344

transfers to in-depth specialty boards or practice.1345

• Suggestions: Correlate MedQA scores with actual performance on specialized board-1346

style question sets. Conduct predictive analyses to see whether high performance in1347

general med licensing implies success in more advanced specialties.1348

3. Construct Validity1349
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• Strength: High MedQA accuracy suggests some knowledge of specialized subfields.1350

The benchmark captures certain aspects of clinical reasoning, including diagnostic pat-1351

tern recognition, treatment, management and application of domain-specific knowledge1352

in areas like oncology, cardiology, and psychiatry, though in a constrained multiple-1353

choice format.1354

• Weakness: “Advanced specialized competence” is a broader construct than a general1355

licensing exam can measure. True advanced knowledge typically requires deeper rea-1356

soning and domain-specific problem-solving, not just broad-spectrum test items. MCQ1357

format doesn’t capture critical elements of specialized practice such as open-ended1358

diagnostic reasoning, iterative decision-making based on evolving clinical information,1359

managing uncertainty, and generating (rather than selecting) management plans.1360

• Suggestions: Use specialized test banks or real advanced clinical vignettes. Check1361

convergent validity: does a model that excels at MedQA also excel at an oncology-1362

focused question set, for example?1363

4. External Validity1364

• Strength: If the subfield questions in MedQA truly reflect real exam conditions, there1365

is some external relevance, as these exams are designed to assess knowledge that1366

specialized experts need to demonstrate for certification, suggesting the model shares1367

at least some abilities with trained specialists.1368

• Weakness: Real clinicians in advanced specialties face more complex tasks than1369

multiple-choice. We do not know if “exam success” generalizes to real specialist1370

scenarios (e.g., reading labs, imaging).1371

• Suggestions: Compare the model performance to other specialized exams or real-world1372

performance data, like mock boards or practical OSCE (Objective Structured Clinical1373

Examination) tasks.1374

5. Consequential Validity1375

• Strength: Since MedQA is drawn from a real medical practitioner exam (USMLE), it1376

helps us assess whether models share one key aspect of medical expert competence,1377

guarding against employing models that don’t pass this necessary (but not necessarily1378

sufficient) bar for being able to address specialized medical questions.1379

• Weakness: There is a risk that stakeholders might over-interpret performance. Specif-1380

ically, since MedQA cannot adequately cover the depth and diversity of all medical1381

specialties, high overall performance might mistakenly be used as proof that the model1382

is capable in particular specialties that weren’t well-represented in the benchmark. This1383

could lead to inappropriate deployment in specialized domains where the model lacks1384

adequate capabilities.1385

• Suggestions: Provide disclaimers, track real-world usage carefully, and ensure domain1386

experts remain in the loop before trusting the system with advanced clinical decision-1387

making.1388

Object of Claim: Reasoning.1389

Claim 3: AI models exhibit general (human-like) medical reasoning abilities.1390

Evidence: Same accuracy results on MedQA multiple-choice questions.1391

Validity of Claim from Evidence:1392

1. Content Validity1393

• Strength: Medical licensing questions often require some reasoning (diagnostic logic,1394

integrative thinking), so it is not purely rote.1395

• Weakness: While MedQA includes reasoning-oriented questions, it cannot cover the1396

full breadth of medical reasoning scenarios. Important instances like reasoning about1397

novel specialized cases, emergency decision-making with incomplete information, or1398

longitudinal patient management are likely underrepresented content-wise.1399

• Suggestions: Include question types that explicitly test reasoning steps, causal infer-1400

ences, or open-ended rationales, rather than single-select answers.1401

2. Criterion Validity1402
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• Strength: TBD1403

• Weakness: The claim ’general medical reasoning’ is an abstract construct for which1404

no single, universally accepted criterion measure exists. MedQA performance alone1405

doesn’t provide evidence of correlation with any established reasoning assessments1406

that might serve as imperfect but useful criteria.1407

• Suggestions: Compare performance on specialized “reasoning tests” (e.g., medical1408

logic puzzles, case simulations). Show that high MedQA scorers also do well on1409

validated reasoning exams for medical students or residents.1410

3. Construct Validity1411

• Strength: TBD1412

• Weakness: The model’s question-answer patterns might rely on memorized knowledge1413

or superficial cues—meaning it does not necessarily demonstrate the deeper mental1414

processes clinicians use.1415

• Suggestions: Separate knowledge recall from genuine inference (factor analysis, re-1416

quiring step-by-step justifications). Show strong correlations with tasks specifically1417

designed to test “reasoning,” not just recall.1418

4. External Validity1419

• Strength: TBD1420

• Weakness: “General reasoning” implies an ability that transfers to any problem domain,1421

but we only have evidence from a medical exam standpoint. No demonstration it1422

generalizes to other fields or even beyond multiple-choice contexts.1423

• Suggestions: Evaluate the same model on other reasoning-heavy tasks (e.g., logic1424

puzzles, legal reasoning sets, real-time patient simulations) to see if it truly exhibits1425

domain-general reasoning.1426

5. Consequential Validity1427

• Strength: If the model’s limitations are made explicit, at least we avoid the pitfall of1428

claiming broad, “human-level” reasoning from a single test.1429

• Weakness: Over interpretation of high MedQA accuracy might lead to the illusion that1430

the model “thinks like a doctor.” This could encourage unsupervised use in clinical1431

settings.1432

• Suggestions: Provide disclaimers clarifying that test performance ̸= human clinical rea-1433

soning. Develop ethical guidelines so that strong test scores do not lead to unqualified1434

acceptance of AI’s medical judgments.1435

38



D.5 SQuAD1436

Table 7: SQuAD [103] Application. A subjective score for validity—the standard for “reasonable”
is demonstrating that obvious risks to invalidity are addressed: : reasonable; : proceed with
caution; : insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in terms of determining the validity
of the claim from that evidence. This is never a binary classification nor complete, and should rather
be a cyclic process.

Claims from SQuAD Benchmark Accuracy Report Card
Claims Content Criterion Construct External Consequential
1. The evaluated model can accurately identify the most
relevant snippet of a high quality encyclopedia passage for
answering a question about the passage.
2. The evaluated model can accurately identify the most
relevant snippet of an online text passage for answering a
question about the passage.
3. The evaluated model exhibits human-level reading compre-
hension.

Description of benchmark. The SQuAD benchmark (v1.0) was initially released in fall 2016,1437

before large pre-trained models like BERT or GPT-2 were developed (cite). It consists of over 100k1438

questions drawn from over 500 selected English Wikipedia articles. Each problem in the benchmark1439

consists of: 1) a passage (a paragraph from an article); 2) a question about the passage; 3) a span of1440

the passage which contains the answer to the question. Answers to each problem are spans of the1441

passage.1442

Object of Claim: Identifying the most relevant snippet of a high quality encyclopedia passage for1443

answering a question about the passage.1444

Claim 1: The evaluated model can accurately identify the most relevant snippet of a encyclopedia1445

passage for answering a question about the passage.1446

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,1447

and are therefore considered high quality. Around 500 articles on various subjects are used as1448

passages for questions. 100,000 questions are used. The questions are original, human-constructed1449

by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match1450

accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.1451

A human baseline from vetted crowdworkers is included, which also serves as a measure of human1452

annotator agreement on the correct answer to passages. The authors analyze answer types and find1453

that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),1454

capable of only surface-level pattern matching, is shown to perform much worse than the human1455

baseline.1456

Validity of Claim from Evidence:1457

1. Content Validity1458

• Strength: Uses a large number and variety of questions and answer types. Exclusively1459

uses highly ranked Wiki pages. Uses a relatively large number of Wiki pages to draw1460

passages from.1461

• Weakness: TBD1462

• Suggestions: Using a larger number of Wiki pages would add to the content coverage1463

of questions/answers.1464

2. Criterion Validity1465

• Strength: Annotator agreement on the answer snippets to passages is high and, therefore,1466

demonstrates the answers to the questions are indeed correct/reliable. Crowdsource1467

workers are also vetted before being accepted as annotators, strengthening this point.1468

As expected, human beings perform significantly better than a logistic regressor on1469

SQuAD 1.0. This demonstrates that simple, surface-level pattern matching (the only1470

thing a simple logistic regressor is capable of) is insufficient for solving questions on1471

SQuAD 1.0.1472
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• Weakness: No evidence provided for predictive validity.1473

• Suggestions: Some justification of basic predictive validity would be helpful here, such1474

as a comparison of model performance on the benchmark to a downstream task, e.g.1475

rate of question-answer completion of crowdsource worker with and without access to1476

the model as a tool. Still, I feel that there is generally reasonable evidence/justification1477

provided.1478

3. Construct Validity1479

• Not applicable, since we are measuring a criterion, not a construct.1480

4. External Validity1481

• Strength: TBD1482

• Weakness: Although there is no clear evidence provided in the SQuAD paper of external1483

validity (aside from the reassurance of its content validity via the diversity of topic and1484

writing style of Wiki articles), the fact the claim is so narrow reduces the importance of1485

this lack of evidence and warrants caution, rather than outright insufficiency.1486

• Suggestions: That being said, some evidence that would improve this borderline1487

external validity is evaluation of a greater variety of encyclopedia formats, such as1488

translated encyclopedia entries, which would build confidence in the likelihood that1489

model performance on SQuAD would generalize across encyclopedic text.1490

5. Consequential Validity1491

• Strength: The authors mention that the size of the question and answer bank allows it to1492

double as a large source of high-quality training data for question-answering systems,1493

thereby offering a unique advantage in advancing model performance at this task.1494

• Weakness: The authors don’t consider potential downstream harms of the subject matter1495

included and excluded in the 500 Wiki articles used for generating the benchmark1496

questions, such as the articles being biased toward a particular culture, country, disci-1497

pline, etc. This could lead to model development disproportionately focusing on the1498

overrepresented subject matter at the cost of excluded subjects.1499

• Suggestions: A basic consideration or analysis of the distribution of subject matter of1500

the questions used in the benchmark would be useful for identifying if the concern1501

mentioned in ‘Weakness’ is warranted or not.1502

Object of Claim: Identifying the most relevant snippet of an online text passage for answering a1503

question about the passage.1504

Claim 2: The evaluated model can accurately identify the most relevant snippet of an online text1505

passage for answering a question about the passage.1506

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,1507

and are therefore considered high quality. Around 500 articles on various subjects are used as1508

passages for questions. 100,000 questions are used. The questions are original, human-constructed1509

by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match1510

accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.1511

A human baseline from vetted crowdworkers is included, which also serves as a measure of human1512

annotator agreement on the correct answer to passages. The authors analyze answer types and find1513

that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),1514

capable of only surface-level pattern matching, is shown to perform much worse than the human1515

baseline.1516

Validity of Claim from Evidence:1517

1. Content Validity1518

• Strength: A relatively large number of high-quality Wiki articles. A large number and1519

variety of questions and answers.1520

• Weakness: Only high-quality encyclopedic text is used for passages, excluding many1521

other types of online text (e.g. fiction, poetry, news articles, product catalogs, etc.).1522

• Suggestions: In order to cover content validity for online text (i.e. essentially any1523

text), the benchmark would need to be augmented with many other types of texts,1524
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since high-quality Wiki articles are, when considered among ‘any text’, a quite niche1525

subject/format/style. Hence, SQuAD 1.0 falls far short of solid coverage in this case.1526

2. Criterion Validity1527

• Strength: Annotator agreement on the answer snippets to passages is high and, therefore,1528

demonstrates the answers to the questions are indeed correct/reliable. Crowdsource1529

workers are also vetted before being accepted as annotators, strengthening this point.1530

As expected, human beings perform significantly better than a logistic regressor on1531

SQuAD 1.0. This demonstrates that simple, surface-level pattern matching (the only1532

thing a simple logistic regressor is capable of) is insufficient for solving questions on1533

SQuAD 1.0.1534

• Weakness: No evidence provided for predictive validity.1535

• Suggestions: A comparison of model performance on the benchmark to a downstream1536

task, e.g., rate of question-answer completion of crowdsource worker with and without1537

access to the model as a tool.1538

3. Construct Validity1539

• Strength: The structure of the task exactly matches that of the object of the claim:1540

identifying the most relevant snippet of a passage to answer a given question. The fact1541

that a simple sliding window method and logistic regressor significantly underperform1542

a human at the task indicates the benchmark is able to tell apart rudimentary, surface-1543

level pattern matching (i.e. the sliding window and logistic regressor’s capabilities)1544

from human-level comprehension and answering on the task. This serves as basic1545

discriminant validity.1546

• Weakness: The paper doesn’t provide comparisons with other snippet-based question-1547

answering datasets, or other web text-based question-answering datasets in general,1548

which might measure a similar construct.1549

• Suggestions: The construct validity of the benchmark could be reinforced with more1550

and more detailed comparisons of model performance on SQuAD v1.0 with other span-1551

based question-answering benchmarks, or other web text-based question-answering1552

benchmarks in general.1553

4. External Validity1554

• Strength: N/A1555

• Weakness: No evidence provided.1556

• Suggestions: When considering the much broader setting of ‘any text’, evidence of1557

generalization and consistency of performance across varied settings is much more1558

important. Since the SQuAD 1.0 paper doesn’t provide direct evidence of this, we1559

must count this validity insufficient. One way to address this validity type would be to1560

perform small-scale experiments with question-answering (via identifying snippets of1561

a given passage) on particularly rare or odd text, and see how well it matches up with1562

the ranking and performance of models on the main benchmark. In fact, something1563

to this effect was done in a later paper with adversarial text (cite), and it revealed that1564

model performance was significantly lower on the adversarial text compared to the1565

main benchmark.1566

5. Consequential Validity1567

• Strength: The authors mention that the size of the question and answer bank allows it to1568

double as a large source of high-quality training data for question-answering systems,1569

thereby offering a unique advantage in advancing model performance at this task.1570

• Weakness: The authors don’t consider potential downstream harms of only assessing1571

performance on encyclopedic text when claiming performance on online text in general.1572

For instance, models that perform well on non-fiction text may do poorly on fiction1573

text. Unaware of this, a teacher may provide the ‘high performing’ model as a study1574

aid for a fantasy novel, thereby harming educational outcomes for her students.1575

• Suggestions: In this case, including consideration of the potential ramifications of the1576

poor content and external validity of the benchmark would be important for adequately1577

addressing the consequences of the use of the benchmark. Likewise, the remedy to1578

these concerns would be addressing and improving the content and external validity of1579

41



the benchmark, since the downstream adverse impacts originate from these flaws in the1580

benchmark design.1581

Object of Claim: Human-level reading comprehension.1582

Claim 3: The model exhibits human-level reading comprehension.1583

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,1584

and are therefore considered high quality. Around 500 articles on various subjects are used as1585

passages for questions. 100,000 questions are used. The questions are original, human-constructed1586

by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match1587

accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.1588

A human baseline from vetted crowdworkers is included, which also serves as a measure of human1589

annotator agreement on the correct answer to passages. The authors analyze answer types and find1590

that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),1591

capable of only surface-level pattern matching, is shown to perform much worse than the human1592

baseline.1593

Validity of Claim from Evidence:1594

1. Content Validity1595

• Strength: A relatively large number of high-quality Wiki articles. A large number and1596

variety of questions and answers in the passage+question+snippet answer format.1597

• Weakness: The same content pitfalls of claim #2 apply here too: high-quality encyclo-1598

pedic text is quite a niche category, and it doesn’t include many other major types of1599

text, such as fiction, poetry, cooking recipes, etc. An important type of answer is also1600

missing from the benchmark’s content (more to say on this in structural validity): the1601

answer of ‘there isn’t enough information’. Knowing when you don’t know is a critical1602

part of human-level reading comprehension, but this type of question is never asked in1603

the SQuAD v1.0 benchmark.1604

• Suggestions: Similar to the previous claim, the inclusion of other types of text would1605

be an important way to address content shortcomings. In addition, adding a greater1606

diversity of question content (particularly, questions where there isn’t enough infor-1607

mation provided to answer the question), as was done in SQuAD v2.0, would be1608

critical to addressing content shortcomings. More plausibly content-related issues are1609

addressed under construct validity, particularly structural validity, as those concerns1610

more appropriately fall under structure.1611

2. Criterion Validity1612

• Strength: Annotator agreement on the answer snippets to passages is high and, therefore,1613

demonstrates the answers to the questions are indeed correct/reliable. Crowdsource1614

workers are also vetted before being accepted as annotators, strengthening this point.1615

As expected, human beings perform significantly better than a logistic regressor on1616

SQuAD v1.0 under matched conditions. This demonstrates that simple, surface-level1617

pattern matching (the only thing a simple logistic regressor is capable of) is insufficient1618

for solving questions on SQuAD 1.0.1619

• Weakness: No evidence provided for predictive validity.1620

• Suggestions: Although there are many shortcomings with SQuAD v1.0 as a benchmark1621

for the given claim, when considering criterion validity isolated from other major1622

issues (e.g. content, construct, and external validity), we see preliminary evidence that1623

the evaluation results do coincide with a validated standard (mainly confirmation of1624

expected results from human test-takers and ‘dumb’ models). Still, given the other1625

shortcomings of the benchmark, the lack of predictive validity weighs more on the1626

inadequacy of the overall criterion validity, leading it to be rated lower than for the1627

other claims. One way to address this weakness is to, similar to previous suggestions,1628

collect evidence on the usefulness of a high performing model as a tool to assist student1629

reading comprehension by, say, measuring test-taker reading comprehension scores on1630

an assessment with and without access to the model.1631

3. Construct Validity1632

• Strength: One part of human-level reading comprehension involves being able to select1633

the appropriate snippet of a passage to answer a given question, and SQuAD v1.01634
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covers the structure of this scenario well. The fact that a simple sliding window method1635

and logistic regressor significantly underperform a human indicates the benchmark is1636

able to tell apart rudimentary, surface-level pattern matching (i.e. the sliding window1637

and logistic regressor’s capabilities) from human-level comprehension and answering1638

on the task. This serves as basic discriminant validity.1639

• Weakness: Many aspects of the structure of human-level reading comprehension are1640

unaccounted for. For example, open-ended short-response is not a type of capability1641

tested, nor multiple-choice selection, nor decision-making based on external informa-1642

tion, despite these activities being key aspects and expressions of human-level reading1643

comprehension. Related to concerns of structural validity, there are important related1644

but different constructs to human-level reading comprehension that SQuAD v1.0 is1645

unable to tell apart. For example, human-level reading comprehension requires being1646

able to synthesize an original response that isn’t contained in the passage or question1647

provided. But, SQuAD v1.0 would be unable to tell apart a model capable of ‘original1648

synthesis’ compared to a model that is merely capable of a ‘lesser’ reading comprehen-1649

sion and can only identify the correct answer if it sees it in the passage (i.e. is directly1650

contained in a snippet of the passage). The paper also doesn’t provide comparisons1651

with other reading comprehension benchmarks.1652

• Suggestions: Many of the risks to construct validity of this benchmark stem from1653

the structural invalidities, particularly the lack of a variety of ‘answering paradigms’1654

assessed. Adding question formats that cover a broader range of reading compre-1655

hension tasks would help remedy this. In addition, providing examples/analysis of1656

convergent validity i.e. comparisons of model results on SQuAD v1.0 to other reading1657

comprehension benchmarks.1658

4. External Validity1659

• Strength: N/A1660

• Weakness: No evidence provided.1661

• Suggestions: Given reading comprehension is such a general ability/area, external1662

validity plays a key role in the overall validation of a human-level reading comprehen-1663

sion benchmark since it lends confidence to the fact that results from an evaluation1664

will generalize to various unseen cases. For example, evidence of high performing1665

models also being able to correctly answer questions on ‘trick’/adversarial text or oddly1666

formatted text would be important in building confidence in the generalizability of1667

reading comprehension performance based on SQuAD performance. Since there isn’t1668

clear, direct evidence of this kind provided in the paper, there is little support for the1669

claim’s external validity.1670

5. Consequential Validity1671

• Strength: The authors mention that the size of the question and answer bank allows it to1672

double as a large source of high-quality training data for question-answering systems,1673

thereby offering a unique advantage in advancing model performance at this task.1674

• Weakness: Similar qualms as for claim #2: the weakness of content, construct, and1675

external validity in particular make relying on this benchmark to assess human-level1676

reading comprehension potentially harmful. For example, trusting a ‘high-performing’1677

model to serve as a tutor for struggling students in an English reading class could lead1678

to miseducation of those students due to, say, the model being incapable of sufficiently1679

good comprehension of non-encyclopedic information (like a fantasy novel).1680

• Suggestions: In this case, including consideration of the potential ramifications of the1681

poor content, construct, and external validity of the benchmark would be important for1682

adequately addressing the consequences of the use of the benchmark. Likewise, the1683

remedy to these concerns would be addressing and improving the content, construct,1684

and external validity of the benchmark, since the downstream adverse impacts originate1685

from these initial flaws in the benchmark design.1686
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