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Abstract

Despite rapid advances in Al, evaluation methods haven’t kept pace, leading to
grandiose claims about general capabilities being supported by narrow benchmark
performances. This creates a misleading assessment of an Al’s true capabilities. To
address this gap, this paper introduces a structured framework, leveraging principles
from measurement theory, to more rigorously connect evaluation evidence to the
claims being made. This approach helps reason about whether, for example, strong
math performance indicates broad reasoning ability or just math test-taking skill.
By scrutinizing the validity claims derived from evaluations, the framework aids in
better decision-making and is demonstrated through detailed case studies on vision
and language models.

1 Introduction

While Al systems have advanced, norms for their evaluation have lagged (details on the (co)evaluation
of benchmarks and claims and misalignment in Appendix [C|and D). Grand claims, such as “human-
expert-level reasoning,” are often supported by narrow evidence, like high accuracy on International
Math Olympiad (IMO) problems [[L]. This creates a significant “inferential leap” between the
measurement and the claim. This paper argues for rigorously applying the concept of validity, i.e.,
the degree to which evidence supports the interpretation and use of test scores for a specific purpose
[2]] (more detailed definition and description in Appendix [B]). In this work we demonstrate how
validity is not an inherent property of a measurement but depends on the context, the claim, and the
claim’s consequences [3l 4]—we proved detailed case studies in Appendix

We ground our work in the following definitions. A measurement instrument (e.g., a benchmark
or survey) is the tool used to collect data, producing a measurement such as accuracy or error
rates. An evaluation interprets these measurements in context (e.g., a specific domain like medical
question answering), while a claim generalizes from the evaluation to assert something about system
capabilities (real-world utility of clinical AI). A criterion is a directly measurable concept (e.g.,
accuracy on a dataset), whereas a construct is an abstract concept (e.g., reasoning or trustworthiness)
that must be operationalized through proxies and indicators.

A core limitation in Al discourse is that strong performance on a benchmark is often used to make
sweeping claims about a construct without sufficient supporting evidence. Furthermore, many
benchmarks do not distinguish between being measures of constructs or criteria.

Contribution. The paper proposes a structured and flexible framework for assessing claim validity.
For instance, this allows us to understand how broad of a claim can be made from a given benchmark.
Establishing validity is an iterative process that requires evaluating the conceptual gap between
measurement and claim. The framework leverages five primary forms of validity from psychometrics,
outlined in Table[I] to build a robust evidentiary case.
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Table 1: We provide an overview of the different forms of validity considered in this work, along with
key questions to ask in their assessment. We adopt a view on validity closest to [S]]. This includes
aspects from [4] and [3]]’s views on validity.

Validity Type Description Example Benchmark: GPQA Accuracy
Example Construct: Scientific Reasoning
Content Validity Does your evaluation cover all relevant cases? Does GPQA sufficiently capture the full content
of scientific reasoning across domains, or does
it overemphasize certain subfields (e.g., physics,
chemistry) while neglecting others?
Criterion Validity Does your evaluation correlate with a known vali- | Does GPQA accuracy predict other validated indi-
dated standard? cators of reasoning, such as performance on gradu-
ate qualifying exams or common-sense reasoning
benchmarks?
Construct Validity Does your evaluation truly measure the intended | Does GPQA capture the essential components of
construct? scientific reasoning and only those components,
rather than domain memorization or test-taking
tricks?
External Validity Does your evaluation generalize across different | Does excelling at GPQA translate to solving open-
environments or settings? ended or applied problems in diverse contexts,
such as lab-based experiments or clinical reasoning
tasks?
Consequential Validity | Does your evaluation consider the real-world im- | Does emphasizing GPQA in Al development risk
pact of test interpretation and use? overstating reasoning ability, potentially leading to
premature deployment in high-stakes domains like
science or medicine?

Importance. This focus on validity is critical because Al evaluations inform high-stakes decisions
with real-world consequences, from regulatory classification under the EU Al Act to guiding internal
model development. Without rigorous validity checks, evaluations can create a false sense of security
or incentivize “teaching to the test” rather than genuine capability improvement [6]. This work aims
to identify these limitations and provide a practical, claim-aware framework to ensure Al assessments
are used and interpreted appropriately.

2 Background and Related Work

Validity Gaps in Current AI Evaluations and Related Work. Al evaluation has advanced with
systems but increasingly diverges from claims of real-world utility, exposing shortcomings across
content, criterion, construct, external, and consequential validity (Appendix [C} Table [I). Early
i.i.d. tests supported content validity, while pretraining and transfer introduced criterion validity via
downstream performance [[7H13]. Rising concerns about spurious correlations, distribution shifts, and
causal representations [[14H23|] have elevated external, consequential, and construct validity [24H27].
Still, benchmarks remain influential, aligning stakeholders and providing criterion validity [28-
30,19 24} 311 32} 18], but do not guarantee reliable deployment [33]]. Foundation models amplify these
gaps as narrow datasets fail to capture abstract constructs like reasoning [34H38]], lack predictive
utility [33]], and undermine consequential validity [39-41]]. Calls for validity frameworks [42H49]
include METRICEVAL [45]] and ECBD [50], though these emphasize instrument design, while we
focus on what claims even limited evaluations can support [51]]. Others apply measurement theory [S2-
54], distinguishing background, systematized, and operationalized concepts; our framework extends
this through nomological networks [4], mapping concepts and evidence under the Duhem—Quine
thesis. Building on Wallach et al [53]], we argue evaluations must situate constructs within broader
networks, treating them as both conventions and emergent properties [55,56]. Ultimately, validity
concerns both claims and evaluations [4], and our framework offers practical tools to assess whether
evaluations support the claims they are used to justify.

Risks to Validity and Operationalizable Strategies for Mitigation. Al assessments face recurrent
risks to valid inference across content, external, criterion, construct, and consequential validity, and
we summarize practical checks and remedies here (Appendix [A} Table [2). Importantly, we find
that general-purpose ‘benchmarks’ are currently an insufficient sole evaluation mechanism for the
real-world utility of Al systems. Content validity risks include limited coverage of important content,
but can improved with expert review, synthetic data, and documented through content mapping [2, 3]
External validity risks include selection bias, unrealistic test conditions, and interaction effects, but
can be improved through stress tests, A/B tests and cross-condition performance comparisons, and
sensitivity analyses [S7H59]. Criterion validity risks include criterion contamination through spurious
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Figure 1: Decision process for establishing validity. For the decision processes that do not directly go
through establishing construct or criterion validity, our argument is not that those forms of validity are
irrelevant, but rather that they may be trivially satisfied in the context of the measurement, evaluation,
and claim.

correlations and insufficient score range, but can be improved with longitudinal studies and evidence
from correlations to gold-standards and predictions of real-world utility [60} 61]. Construct validity
risks include structural (poor factor structure; inadequate measurement range), convergent (high
measurement error), and discriminant (construct overlap), but can be improved via hypothesis tests
and factor modeling, with support from item—test correlations and demonstrated lack of overlap
with unrelated constructs [3}162165]. Consequential validity risks include bias and fairness concerns,
perverse incentives that encourage gaming, and harmful policy consequences, which can be assessed
with anticipatory ethics, impact audits, and ethical stress testing, using stakeholder feedback, fairness
and reliability improvements, and documented real-world effects as evidence [3}166-71]]. While the
framework foregrounds common risks and mitigations, additional context-specific risks will arise,
requiring continuous reassessment and refinement.

3 A Framework for Claim-Centered Validity Assessment in AI Evaluation

In this section, we introduce a general framework for reasoning about validity in Al evaluation
and apply it to a concrete example (GPQA). The goal is to clarify when and how different forms
of validity matter most for supporting a claim with a given measurement and evaluation (Fig. [I).
While all forms are always relevant, some may be trivially satisfied depending on the measurement—
evaluation—claim context; our approach prioritizes the forms that are decision-critical, extending prior
perspectives [S3]. This view aligns with Lissitz and Samuelsen [5]], who (in contrast to Messick et
al. [3]]) caution that collapsing all validation into “construct validity” obscures distinctions among test
uses and the kinds of evidence required. Concretely, validity evidence depends on which of three
goals is paramount [3]: (i) utility determination—does the test support appropriate decisions for its
stated purpose? (ii) theoretical support—does it cohere with the guiding theory? and (iii) impact
evaluation—do decisions based on the assessment yield beneficial, fair, intended outcomes?

We operationalize this via three guiding questions: (a) Is the object of the claim a criterion (directly
measurable) or a construct (abstract)? (b) Is the measurement the same as the claim’s object? (c) If
different, does the measurement directly imply the claim, or is a mediating construct required? In all
cases, content and external validity must be established. When the claim’s object is a different criterion
than what is measured, criterion validity is central (predictive or concurrent). When neither the object
nor an external standard is available, valid claims must proceed via a mediating construct, demanding
construct validity (structural, convergent, discriminant) together with an explicit nomological network
linking constructs to observables.

Nomological networks. Claims about or depending constructs cannot be validated in isolation—
Duhem—Quine thesis: they gain meaning through relationships to other constructs and observable
indicators. Cronbach and Meehl’s nomological network [4] provides a map of hypothesized associa-
tions among constructs and criteria in a graphical model. In modern Al evaluation, explicit networks
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for key constructs (e.g., reasoning subskills) are often missing, complicating construct-level claims.
Our stance complements [S3[] and the systematization then operationalization lens of [54]: networks
clarify how background concepts become systematized and linked to measures.

3.1 Paths for Evidence with GPQA as an example

We give classes of applications of these guiding questions below with GPQA as an example, a
benchmark increasingly used as evidence for reasoning [[72, [73]]. The same measurement may fail
to support broad claims yet still be highly useful for narrower ones. Our framework accommodates
inevitably imperfect measurement, enabling valid but narrower claims when measurements are
limited. Figure [I] provides the steps of inquiry to investigate validity. Detailed analysis for GPQA
and other datasets is included in Appendix D]

Criterion-Aligned Evidence: The claim object is a criterion and directly measured. Here,
construct and criterion validity are trivially satisfied; the focus is on content and external validity.
Example (GPQA — GPQA-like accuracy). Content: expert-curated GPQA items support validity,
but gaps in subfield representation may remain. Expert review, adversarial analysis, and red-teaming
can surface can improve content validity [74]{1_-] External: Limited by QA format, one needs to probe
generalization to other formats via cross-test comparisons and non-QA settings.

Criterion-Adjacent Evidence: Claim object is a (different) criterion. When the measured proxy
and the claim’s criterion differ—either as proxies of the same construct or of related constructs—
criterion validity is central. Example (GPQA — general scientific QA). Concurrent validity could be
established by correlations with graduate qualifying exams, and predictive validity by prospective
scientific assessments. If infeasible, reasoning must proceed via a nomological network. Without
such a network, evaluators risk over-generalization (e.g., physics-heavy GPQA success misread as
broad reasoning). When proxies reflect different constructs (e.g., scientific vs. medical reasoning),
inter-construct links must be validated before drawing cross-criterion-level claims.

Construct-Targeted Evidence: Claim object is a construct. Example (GPQA — scientific or
general reasoning). Construct validity requires evidence of structural (expected subskills), convergent
(correlation with other reasoning measures), and discriminant (not reducible to memorization) validity.
Factor analysis and latent-variable methods can separate reasoning from recall [76]. Content and
external validity confirm coverage and generalizability, while criterion validity—when appropriate
standards exist—can further support construct-level claims.

Consequential Validity. Finally, consequential validity considers whether decisions based on an
assessment produce beneficial outcomes. For GPQA, strong scores may support targeted educational
or research uses, but overgeneralizing to “broad reasoning” risks misdeployment (e.g., replacing
experts with models tuned to MC tasks). Clear guidelines, scope limits, and impact audits help align
deployment with validated capabilities.

4 Conclusion

Al evaluation must evolve beyond benchmarks to address the gap between measurements and the real-
world claims built on them. Our framework centers validity—content, external, criterion, construct,
and consequential—as the lens for linking evidence to claims, highlighting risks, mitigation strategies,
and pathways for reasoning under imperfect measurement. By making explicit the relationships
among instruments, measurements, evaluations, and claims, and situating them within nomological
networks, we help prevent overgeneralization and ensure claims are scientifically grounded and
context-sensitive. The framework serves diverse stakeholders, researchers, policymakers, corpo-
rations, funders, and civil society, by offering shared vocabulary and tools for assessing whether
evidence truly supports the claims at hand. Crucially, it emphasizes iterative feedback, transparency,
and collective accountability: validity is not a one-time test but an ongoing process that adapts as
systems, stakes, and societal expectations change. In this way, Al evaluation becomes claim-aware,
evidence-driven, and trustworthy, supporting decisions that are both defensible and aligned with
real-world needs.

'Thresholding continuous scores to categorical decisions (e.g., pass/fail) can decouple a well-measured
property from a valid claim if the cut score is misaligned with context; see standard setting [[75]].
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sss A Evidence of Validity

Table 2: Common risks to validity, investigation tools, and evidence exemplars.

Validity Common risks Investigation Tools Evidence Exemplar
Content
Validity (] Coverage deficiency [ Expert review [J Documentation of how
O Construct irrelevance [0 Red-teaming / adversari- test items comprehensively
O TImbalanced mixture of con- ally designed evaluations cover the construct
tent 00 Synthetic data generation Explicit mapping of test
or edge cases content to abstract frame-
works or industry stan-
dards
Coverage analysis
Criterion Predictive and Concurrent Valid-
Validity ity 00 Real-world longitudinal Correlation with an exist-
A Criter o studies ing validated benchmark or
riterion contamination .
o . [0 Real-world behavioral test- gold standard
[ Criterion deficiency ing Evidence that higher
(] Restricted range O Scaling-law  predictive scores in e.:valuation met-
O Temporal/other shifts models Hes predict  real-world
utili
U] Validated criterion studies Y
0 Periodic post-deployment

testing

Table continues on the next page
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Table continued from previous page

Validity Common risks Investigation Tools Evidence Exemplar
Structural: . .
Construct ) O Theory building and hy- O Observed changes in test
Validity U Rank deficiency pothesis testing performance under con-
O Poor factor structure O Factor modeling trolled conditions
O Item interdependence O Studies of process Item-test correlations
[0 Response format bias Emergent substructures in
model behavior
O Complex measurement
range
Convergent: . . . .
8 00 Benchmark suites for a High correlation with other
U {Hezievanlt or weakly  re- construct (e.g., reasoning) measures that assess the
ated evaluations . .
) ) [J Representation  probing same construct
) High measurement error in (e.g., causal mediation Empirical clustering of
scoring analysis of embeddings) model behaviors that align
[] Restricted range (ceil- with constructs
ing/floor effects)
0 Confounding (e.g., memo-
rization, format)
Discriminant: Lo
ac . 00 Orthogonal datasets Low or non-significant cor-
onstruct overla . i i
: p 00 Decomposable metrics r(?la.tlon with measures of
U Format-induced correla- distinct constructs

tions

Evidence that evaluation
does not overlap with un-
related dimensions

Table continues on the next page
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Table continued from previous page

Validity Common risks Investigation Tools Evidence Exemplar
External
Validity 00 Sample bias O Red-teaming O Performance comparisons
O Unrealistic testing condi- [ Stress testing across d}fferent popula-
tions . tions, environments, or set-
O A/B testing tings
[0 Temporal variability :
. ) Transfer testing Sensitivity analysis show-
[ Interaction effects O Population-stratified evalu- ing consistent performance
[0 Experimenter effects ations under varying conditions
00 Task-specific bias Independent replication of
results in different contexts
or regions
Consequential
Validity J Bias / Fairness O Stakeholder interviews and Documented instances of
] Adaptive overfitting feedback loops evaluation-driven improve-
. . . ments in safety, reliability,
[] Misuse of results O Soclletal impact a1'1d1ts and fairness Y Y
[0 Unintended incentives [ Ethical stress testing Impact studies
O Policy and systematic con- [ Stakeholder feedback
sequences
[0 Temporal and other shift
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B Validity

Validity refers to the extent to which a test accurately measures what it is intended to measure.
Validity has a rich history, originally developed in the context of drawing valid conclusions from
tests, much like how we now aim to draw valid conclusions from Al evaluations. One of the earliest
forms of validity is face validity, which refers to the extent to which a test appears to measure what
it claims to, based on intuitive judgment. For instance, one may ask if symbolic regression from
BigBench [77] even appears to measure reasoning. However, relying on face validity alone can be
misleading. As Charles Mosier [78]] famously observed:

“This form [face validity] is also gratifying to the ego of the unwary test constructor. It implies that
his knowledge and skill in the area of test construction are so great that he can unerringly design
a test with the desired degree of effectiveness in predicting job success or in evaluating defined
personality characteristics, and that he can do this so accurately that any further empirical verification
is unnecessary. So strong is this ego complex that if statistical verification is sought and found lacking,
the data represent something to be explained away by appeal to sampling errors or other convenient
rationalization, rather than by scientific evidence which must be admitted into full consideration.”

A more structured form of validity emerged with content validity, which ensures that a test compre-
hensively covers all relevant aspects of the construct it aims to measure. For instance, one may ask if
mathematical problem-solving benchmarks cover all relevant aspects of reasoning. Content validity is
also typically assessed through expert judgment rather than statistical validation. Charles Lawshe [[79]]
later formalized this concept with the Content Validity Ratio (CVR), a method for quantifying expert
agreement on test content.

Moving toward empirical rigor, predictive validity assesses a test’s ability to forecast an outcome of
interest, typically a future outcome. This concept, introduced by Robert Thorndike in the mid-20th
century during the rise of standardized testing, became central to fields like educational assessment,
employment testing, and aptitude measurement [80]. For example, the predictive validity of SAT
scores for college GPA or cognitive ability tests for job performance has led to their widespread
use for other outcomes [81]. In the context of Al evaluation, one may ask “Does accuracy on
IMO benchmarks predict accuracy in textbook linear algebra questions?” While predictive validity
measures the correlation between a test and a future outcome, concurrent validity measures the
correlation between a test and a validated standard applied at the same time under the same conditions.
Predictive and concurrent validity make up criterion validity [2].

While criterion validity is useful for assessing direct correlations between tests and desired criteria,
its limitations became apparent when evaluating abstract constructs, like psychological traits, rather
than simple outcome-based predictions. In their seminal work on construct validity, [4] highlighted
these limitations. For example, while SAT scores may predict GPA, they may not reliably measure
intelligence, as GPA is influenced by grading biases and other factors. Recognizing the risks of
relying solely on criterion-based validity, Cronbach and Meehl introduced construct validity, which
assesses the extent to which a test truly captures the theoretical construct it purports to measure.

Two key sources of evidence necessary for construct validity introduced by Campbell and Fiske
(1959) are [82]:

» Convergent validity—the degree to which a test correlates with other measures of the same
construct.

* Discriminant validity—the degree to which a test does not correlate with measures of
unrelated constructs.

Implicitly, this framework also includes structural validity [4, 3], which examines whether a test’s
internal structure aligns with the theoretical construct it is designed to measure. This is often assessed
using factor analysis or other dimensionality evaluations.

Cronbach and Meehl categorize validity into three primary forms:

1. Content validity—ensuring a test comprehensively represents the concept it aims to measure.

2. Criterion validity—evaluating how well a test correlates with external measures, which
include predictive and concurrent validity. Concurrent validity refers to a test’s agreement
with a validated measure applied at the same time under the same conditions.
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3. Construct validity—assessing the theoretical alignment between a test and its intended
construct.

Beyond these core types, external validity refers to the extent to which a study’s findings can be
generalized beyond its specific conditions. External validity examines whether results hold across
different populations, settings, and time periods. Campbell and Stanley [83]] were among the first to
systematically define external validity, identifying factors like selection bias and situational specificity
as risks to generalizability.

In response to Cronbach and Meehl’s framework, which emphasized the theoretical and statistical
relationships between measures, [3}[84] introduced consequential validity on the basis that validity is
not just about measurement accuracy but also about the real-world impact of test interpretation and
use. However, unlike [3]], we do not unify all facets of validity under construct validity. We adopt
the view of [5]] where the use of a measurement determines what is necessary to support validity.
Importantly, this may not require construct validity.

[85] offers a different view: validity is a property of the test itself, and a test is valid if and only if
it measures the construct it purports to measure. In this view, questions of use or consequence are
orthogonal to validity; what matters is whether the test causally reflects variation in the construct.
This perspective draws a clear boundary between measurement and interpretation, placing the burden
of validity squarely on the psychometric relationship between construct and test score. While
theoretically clean, this stance omits considerations critical to our context, namely, how test outputs
are used to make decisions. We, therefore, depart from Borsboom’s definition, instead adopting a
broader view in which validity also encompasses downstream consequences and use cases, particularly
when evaluating Al systems deployed in high-stakes settings.

While these validity concepts were originally developed for psychological and educational testing,
they provide a powerful lens for evaluating AI models. In the next section, we examine how these
classical validity forms translate into the context of modern Al evaluation.

C The (Co)Evolution of evaluations and claims

C.1 Vision

The evolution of AI benchmarks has been closely tied to the kinds of conclusions researchers aimed
to draw and the evidence available at the time—Figure [2] In the 1960s to 1980s, benchmarks were
hyper-localized, focusing on narrowly defined technical tasks like edge detection and simple shape
recognition. The goal was primarily technical exploration—improving algorithmic efficiency—so the
scope of conclusions was very narrow and directly supported by the evaluations carried out.

In the 1990s, Al benchmarks became more structured and began incorporating more applied tasks. A
notable example is MNIST [86] for handwritten digit classification, which provided a standardized
way to evaluate machine learning models. This trend continued into the early 2000s, with datasets such
as UIUC Cars [87] for vehicle detection and Caltech-101 (2003) [88]] for object recognition. While
these benchmarks remained narrow in scope, they represented a step toward evaluating Al on more
applied tasks, bridging the gap between theoretical research and practical applications. However,
evaluations were still primarily designed for well-defined technical interests, with conclusions
remaining local—focused on determining which techniques were most effective for the specific task
being evaluated. During this period, researchers also became increasingly aware of content validity,
recognizing that different datasets captured different aspects of classification tasks, which in turn
influenced dataset design and evaluation methodologies [89, 90].

By the mid-2000s, large-scale benchmarks such as PASCAL VOC (2007) [91] introduced greater
complexity, expanding evaluation beyond simple classification tasks. Later, in the late 2000s,
CIFAR-10 and CIFAR-100 [92] further pushed the field toward standardized comparisons in object
recognition. During this period, criterion validity also gained prominence, as benchmark results were
increasingly used to compare models in ways that suggested performance rankings carried external
significance. However, construct validity remained largely unexplored—maodels were evaluated based
on their outputs rather than on the reasoning processes behind their decisions. As a result, while
evaluations became more sophisticated, they remained focused on performance metrics rather than
deeper insights into model behavior. By this stage, the focus of Al evaluation began shifting from
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e Content, External, Criterion,
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Figure 2: Coevolution of benchmarks, models, and the type of validity necessary for common
conclusions for vision.

isolated dataset-specific improvements to broader claims about model robustness and transferability
across different domains.

The 2010s marked a turning point with the ImageNet revolution. The introduction of ImageNet [7]]
and the ILSVRC [8]] competition (2010) provided large-scale, diverse, and complex benchmarks that
dramatically reshaped Al research. During the early 2010s, the focus remained on improving accuracy
in image classification and object detection. However, by the mid-2010s, Al evaluation expanded
beyond leaderboards to real-world applications, particularly in medical imaging and autonomous
driving. Researchers increasingly recognized the importance of content validity and external validity,
leading to the widespread practice of testing models across multiple datasets to assess robustness.

As benchmark results gained influence, criterion validity became central—accuracy on ImageNet was
frequently treated as a proxy for predicting downstream Al capabilities in vision. However, construct
validity remained largely unaddressed in the early years. By the mid-2010s, early concerns emerged
as researchers identified shortcut learning, adversarial vulnerabilities, and spurious correlations,
leading to growing interest in understanding how models made decisions beyond raw accuracy. The
rise of segmentation (COCO [93]], ADE20K [94])) and video analysis benchmarks (Kinetics, AVA)
reflected an effort to capture more complex real-world tasks, but fundamental concerns about model
robustness and bias persisted.

In the 2020s, the rise of multimodal and foundation models introduced even greater evaluation
challenges. Benchmarks such as VQA [93]], VLUE [96], and TDIUC [97] attempted to assess
multimodal reasoning, but defining what these benchmarks truly measured became increasingly
difficult. Construct validity became a major concern as researchers debated whether these benchmarks
genuinely assessed constructs like reasoning and understanding or merely exposed a model’s ability
to exploit statistical correlations in large datasets (Sec. ??). Unlike earlier benchmarks, which
primarily focused on accuracy, modern benchmarks aim to evaluate the latent properties of Al
systems [98]. However, fundamental questions about the validity of these evaluations remain
unresolved, particularly in assessing generalization, robustness, and true reasoning ability.
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Figure 3: Coevolution of benchmarks, models, and the type of validity necessary for common
conclusions for language.

Across these decades, benchmarks evolved alongside the conclusions stakeholders sought to make.
Early benchmarks required little discussion of validity because they were purely technical exercises.
As Al models became more ambitious and claims about their capabilities expanded, benchmarks had
to keep up—introducing concerns about content, external, and criterion validity. More recently, as Al
systems move toward multimodal reasoning and foundation models, discussions of construct validity
have become central. As models grow in complexity, the challenge is no longer just about designing
better benchmarks—it’s about defining what those benchmarks are actually supposed to measure in
the first place.

C.2 Language

Language model benchmarks have seen an evolution from focusing on primarily basic questions of
criterion validity against human performance to more nuanced considerations of other validity in
more recent years—Figure [3| In the Blocks World Era (1960s-1980s), NLP evaluation was primarily
qualitative and demonstration-based, lacking standardized metrics entirely. Systems like ELIZA
(1966) [99] and SHRDLU (1971) [100] were evaluated through anecdotal observations of how users
interacted with them in highly constrained environments. ELIZA simulated a psychotherapist using
simple pattern matching, while SHRDLU operated in a “blocks world” where users could issue
commands to manipulate virtual objects. Validity considerations during this era were minimal and
largely implicit. Content validity was severely limited by extremely narrow domains, criterion
validity was nonexistent without standardized measurements, and construct validity wasn’t addressed
as researchers weren’t attempting to measure specific capabilities like “reasoning” or “understanding.”
External validity was particularly weak as systems couldn’t generalize beyond their constrained
environments. Success was measured simply by the system’s ability to maintain seemingly intelligent
conversations or follow instructions rather than through quantitative performance metrics or validity
criteria. The North Star Era (1990s-2000s) marked a paradigm shift toward empirical evaluation
with standardized benchmarks inspired by information retrieval traditions, where benchmarks with

21



741
742
743
744
745
746
747
748
749
750
751

752
753
754
755

757
758
759

760
761
762
763
764

766
767

769
770

771
772
773
774
775
776
777
778
779
780
781
782

784
785
786
787
788
789

quantitative metrics and clearly defined train, validation ,and test split gave the field a proverbial
“North Star” to aim towards. Initiatives like the Message Understanding Conferences (MUC) and the
Penn Treebank established common datasets, clearly defined tasks, and metrics such as precision,
recall, and F-score for comparing systems. This era introduced the first rigorous validity consid-
erations, though still narrow in scope. Benchmarks like TREC [101]] and WMT [102]] established
improved criterion validity through standardized metrics that allowed consistent measurement across
systems and time. Content validity improved but remained limited to specific linguistic tasks. Nascent
construct validity concerns emerged as researchers began considering what abilities their tasks were
actually measuring. However, external validity remained largely unaddressed as benchmarks weren’t
designed to generalize beyond their specific contexts. Consequential validity still wasn’t a major
consideration, as NLP applications weren’t yet widely deployed with significant societal impact.

In the early 2010s, many language benchmarks, such as SQuAD [103]] and SNLI [[104]], focused on
individual tasks such as reading comprehension or natural language claims such as entailment or con-
tradiction. The primary focus was on establishing baseline comparisons against human performance
to create criterion validity for the benchmarks. However, such benchmarks had limitations to other
aspect,s such as content validity due to limited focus on specific linguistic tasks and face validity
due to narrow objectives and methods used to solve the task (both SQuAD and SNLI can be cast as
relatively simple classification problems for which we can measure a gold standard of correctness).
Other validity types were not heavily considered at this time.

In the mid to late 2010s, the field began to focus more on multi-task evaluation, which was rep-
resented by benchmarks such as GLUE [105] and SentEval [106]. During this time, emerging
validity concerns became prominent. More sophisticated human baselines were required to maintain
criterion validity,and broader task coverage led to great content validity. However, concerns about
the underlying mechanisms that could explain performance began to emerge, which reflects early
concerns about construct validity.

In the late 2010s there were key changes in language model evaluation. Benchmarks like Super-
GLUE [107] aimed to resolve validity concerns with rigorous multi-annotator baselines, broader
task selection, more attention to the demographics of annotators, and the first considerations of
social impact and gaming. However, the lack of structural validity evidence and external validation
remained as challenges. There were also few analyses of convergent/discriminant validity in studies.

The 2020s marked a shift toward comprehensive knowledge evaluation with benchmarks like MMLU
[LO8], reflecting a growing recognition that language models were advancing beyond narrow linguistic
tasks to broader knowledge and reasoning capabilities. MMLU introduced several innovations in
validity considerations: it established expert-level performance as the criterion validity benchmark
rather than average human performance, expanded content validity through coverage of 57 subjects
across multiple domains, and highlighted crucial external validity concerns through studies showing
sensitivity to answer ordering and other conditions that should not have an effect on the downstream
performance for an “intelligent” agent (as measured with respect to an expert). The evolution of
MMLU reflects broader trends in the field’s approach to validity. Earlier benchmarks like SQuAD
primarily focused on criterion validity through human performance comparisons, while MMLU
attempted to address multiple validity types simultaneously. However, new challenges emerged:
convergent validity became more complex as models showed inconsistent performance across related
tasks (e.g., philosophy versus morality questions), and discriminant validity concerns arose around
distinguishing between memorization and reasoning capabilities. This progression has led to the
current state of language model evaluation, characterized by greater sophistication in validity consid-
erations but also a clearer recognition of inherent limitations. Recent work has highlighted the need
for better convergent validity across benchmarks and more robust methods for assessing reasoning
abilities. The field has moved from treating benchmarks as simple performance metrics to viewing
them as complex instruments requiring multiple types of validation evidence [109].
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D Case Studies

D.1 GPQA

Table 3: A Graduate-Level Google-Proof Question Answering Benchmark (GPQA) [[73] Application.
A subjective score for validity—the standard for “reasonable” is demonstrating that obvious risks to

invalidity are addressed: ok} reasonable; !.: proceed with caution; X: insufficient. Even for a score
of “reasonable,” there will be weaknesses in the evidence. The score is given because the strengths
outweigh the weaknesses in terms of determining the validity of the claim from that evidence. This is
never a binary classification nor complete, and should rather be a cyclic process—for instance, as our

forms of what constitutes graduate-level chemistry may evolve over time and from school to school.
Claims from Graduate-Level Google-Proof Question Answering (GPQA) Benchmark Accuracy Report Card
Claims Content | Criterion | Construct | External | Consequential

1. Al systems can accurately answer graduate-level special- oK} oK} oK} oK} !
ized multiple-choice questions in biology, physics, and chem-
istry.

2. Al systems can accurately answer graduate-level special- ! ! A A !
ized questions in specialized scientific domains.

3. Al systems can exhibit general reasoning abilities that can ! X X X !
transfer beyond current human specialization.

Description of dataset. The GPQA (Graduate-Level Google-Proof Question Answering) bench-
mark is a challenging dataset comprising 448 multiple-choice questions crafted by domain experts in
biology, physics, and chemistry [73]]. These questions are designed to be exceptionally difficult, with
experts holding or pursuing PhDs in the respective fields achieving an accuracy of 65% (74% when
excluding clear mistakes identified retrospectively). Notably, highly skilled non-expert validators,
even with unrestricted web access and spending over 30 minutes per question, attained only 34%
accuracy, underscoring the "Google-proof” nature of the dataset. State-of-the-art Al systems also
find this benchmark challenging; for instance, a GPT-4 based model achieved 39% accuracy. The
GPQA dataset serves as a valuable resource for developing scalable oversight methods, aiming to
enable human experts to effectively supervise and extract truthful information from Al systems that
may surpass human capabilities.

Object of Claim: Multiple-choice questions in biology, physics, and chemistry accuracy.

Claim 1: Al models can accurately answer graduate-level specialized multiple-choice questions in
biology, physics, and chemistry — criterion is accuracy on such questions.

Evidence: Accuracy on multiple-choice questions in biology, physics, and chemistry.

Validity of Claim from Evidence:

1. Content Validity 0K

» Strength: Expert-curated questions ensure high-quality, relevant content across key
topics in biology, physics, and chemistry. The performance gap between experts and
non-experts confirms the questions assess specialized knowledge.

* Weakness: The dataset’s construction criteria may exclude some relevant questions,
potentially leading to over- or underrepresentation of certain subfields.

* Suggestions: Conduct systematic content mapping across subfields to ensure balanced
representation. Include expert diversity analysis to mitigate potential biases in question
selection.

2. Criterion Validity 0K
* Strength: Human expert accuracy provides a meaningful external criterion, reinforcing
concurrent validity.

» Weakness: Criterion validity could be stronger with comparisons to other specialized
science Q/A benchmarks. Predictive validity is untested—no evidence that GPQA
accuracy predicts future performance on exams or coursework, for example.

* Suggestions: Compare performance with established science Q&A benchmarks. Con-
duct longitudinal studies tracking how benchmark performance predicts success on
real graduate exams.
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3. Construct Validity OK]

* Since the claim is strictly about accuracy on a defined criterion, construct validity is
not necessary to evaluate this specific claim.

4. External Validity &3

 Strength: The test mirrors a real-world setting—human experts develop the questions,
and the evaluation format aligns with academic multiple-choice assessments. GPQA
includes diverse topics within its disciplines.

* Weakness: Similar to the criterion validity gap, GPQA accuracy is not compared to
other multiple-choice science tests, leaving external generalization unverified.

» Suggestions: Validate against different question formats and compare performance
across multiple science benchmarks.

5. Consequential Validity !

» Strength: The Al-expert performance gap prevents premature claims of Al superiority,
mitigating risks of overestimating Al scientific knowledge. However, models have
quickly improved in this benchmarkﬂ GPQA-trained models could support science
education as study tools.

» Weakness: If Al models reach high accuracy, stakeholders may overgeneralize their
competence, assuming they have true expertise in physics, biology, and chemistry,
despite lacking deeper scientific reasoning skills.

* Suggestions: Develop clear guidance for stakeholders on interpreting results. Create
documentation explicitly distinguishing multiple-choice performance from broader
scientific expertise.

Object of Claim: Domain-specific scientific competency.

Claim 2: AI models can accurately answer graduate-level questions in specialized scientific do-
mains—criterion is accuracy on such questions.

Evidence: Accuracy on [N] multiple-choice questions in biology, physics, and chemistry.

Validity of Claim from Evidence:

1. Content Validity !

o Strength: Expert-curated, high-quality questions covering key topics in biology, physics,
and chemistry. Non-expert performance gap supports specialization.

* Weakness: Limited to three disciplines, excluding other specialized scientific domains
(e.g., medicine, engineering). Only Q/A questions, excluding fill-in-the-blank or
open-ended questions.

» Suggestions: Expand questions to include other scientific subdomains. Conduct sys-
tematic content mapping across subfields to ensure balanced representation. Include
expert diversity analysis to mitigate potential biases in question selection.

2. Criterion Validity *

» Strength: Human expert accuracy serves as a strong external criterion (concurrent
validity). Al-expert performance gap reinforces benchmark credibility.

* Weakness: No predictive validity—GPQA accuracy is not tested against future perfor-
mance on other specialized assessments.

* Suggestions: Establish correlations with performance on real graduate program assess-
ments. Develop predictive validity studies tracking model performance across time and
domains.

3. Construct Validity ! (importantly, this may be trivially satisfied if we have strong enough
criterion validity.)

» Strength: Expert-curated questions in biology, physics, and chemistry are designed
to capture fundamental aspects of specialized scientific knowledge. This suggests
that the construct measured—domain-specific scientific competence—has meaningful
representation, and high accuracy should correlate with understanding key scientific
principles.

“https://www.youtube.com/watch?v=ZANbujPTvOY,
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* Weakness: GPQA’s focus on biology, physics, and chemistry limits its ability to capture
the overall construct of “specialized scientific knowledge,” as other fields like medicine
and engineering require different reasoning and knowledge structures. Moreover, the
paper does not provide evidence linking GPQA performance to external measures of
scientific competence (such as standardized test scores), leaving its alignment with
related constructs unclear. Finally, the multiple-choice format may favor recognition or
memorization over deeper analytical reasoning, potentially failing to capture key facets
like synthesis and in-depth understanding.

* Suggestions: To improve construct validity, expand GPQA to include additional do-
mains (e.g., medicine, engineering) and correlate its scores with independent stan-
dardized assessments to establish convergent and discriminant validity. Additionally,
incorporating alternative formats like open-ended questions and problem-solving tasks
will better capture domain-specific scientific competence.

4. External Validity !

* Strength: Real-world, expert-created multiple-choice questions ensure relevance. Cov-
erage across multiple subfields increases generalization within biology, physics, and
chemistry.

* Weakness: No evidence of generalization to other science assessments (e.g., (non-
)multiple choice PhD qualifying exams).

» Suggestions: Test generalization to other assessment formats including written exams,
oral defenses, and research proposal evaluations.

5. Consequential Validity !
» Strength: Al-expert performance gap prevents overstating AI’s scientific capabilities;
models could support science education.

* Weakness: Risk of overgeneralization—high scores may be misinterpreted as broad
scientific expertise beyond tested domains.

* Suggestions: Create clear limitations documentation highlighting specific domains
where evidence supports or doesn’t support performance claims.

Object of Claim: Reasoning.
Claim 3: Al models exhibit general reasoning abilities.
Evidence: Accuracy on [N] multiple-choice questions in biology, physics, and chemistry.

Validity of Claim from Evidence:

1. Content Validity !
» Strength: Covers multiple scientific disciplines, requiring some level of reasoning
beyond factual recall.

* Weakness: Multiple-choice format limits assessment of forms of reasoning like logical
deduction, or abstract problem-solving.

* Suggestions: Develop specific reasoning-focused questions that isolate logical deduc-
tion from domain knowledge. Include diverse reasoning types (inductive, deductive,
abductive).

2. Criterion Validity X
» Strength: Human expert accuracy serves as a real-world external criterion, and the Al-
expert performance gap indicates a meaningful benchmark for reasoning capabilities.

* Weakness: GPQA tests factual and applied knowledge rather than abstract reasoning
skills. No predictive validity—performance on GPQA is not tested against other
established reasoning benchmarks (e.g., LSAT-style logical reasoning or problem-
solving tests).

* Suggestions: Compare performance against established reasoning benchmarks like
LSAT, GRE analytical, and domain-independent logical reasoning tests.

3. Construct Validity X
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o Strength: Al performance on GPQA correlates with success in structured question-
answering tasks, suggesting some reasoning component. Additionally, the dataset can
distinguish between human experts and non-experts.

» Weakness: Does not separate reasoning from memorization—AI models may exploit
dataset patterns rather than apply logical deduction. While non-experts with access to
Google perform worse than experts, non-experts are given a limited time per question,
which may not sufficiently show that models have not been trained on such questions.
No convergent validity—GPQA accuracy is not correlated with performance on ex-
plicit reasoning assessments. No discriminant validity—It is unclear whether GPQA
measures reasoning ability or just domain-specific knowledge.

* Suggestions: Conduct factor analysis to distinguish reasoning from memorization.
Demonstrate convergent validity with dedicated reasoning assessments and discriminant
validity from pure knowledge recall.

4. External Validity X

» Strength: GPQA questions require problem-solving across multiple disciplines, in-
creasing the likelihood that some reasoning ability is being tested.

* Weakness: Reasoning should generalize across domains, but GPQA only includes three
scientific fields. No evidence that Al models with high GPQA accuracy perform well
on general reasoning tasks outside science (e.g., logical puzzles, mathematical proofs,
legal or philosophical reasoning).

* Suggestions: Test performance on reasoning tasks across non-scientific domains in-
cluding logic puzzles, mathematical proofs, and philosophical arguments.

5. Consequential Validity *

» Strength: If GPQA successfully measures reasoning, Al models excelling on it could
serve as decision-support tools in scientific research or education.

* Weakness: Overgeneralization risk—high GPQA accuracy may lead to misinterpreting
Al as possessing broad, human-like reasoning abilities when it may only excel at
structured multiple-choice problems.

* Suggestions: Develop clear performance interpretation guidelines specifying which
reasoning capabilities are supported by evidence versus which remain speculative.
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D.2 MMLU

Table 4: A Massive Multitask Language Understanding (MMLU) [108]] Application. A subjective
score for validity—the standard for “reasonable” is demonstrating that obvious risks to invalidity

are addressed: (3: reasonable; !: proceed with caution; X: insufficient. Even for a score of
“reasonable,” there will be weaknesses in the evidence. The score is given because the strengths
outweigh the weaknesses in terms of determining the validity of the claim from that evidence. This is

never a binary classification nor complete, and should rather be a cyclic process.
Claims from MMLU Benchmark Accuracy Report Card

Claims Content | Criterion | Construct | External | Consequential
1. Language models can demonstrate broad knowledge across & [oK] ! ! [oK]
diverse academic and professional subjects.

2. Language models can perform expert-level reasoning ! ! X X !
across specialized domains.

3. MMLU performance predicts a model’s general language ) ) X X )

understanding capabilities.

Description of dataset. Massive Multitask Language Understanding (MMLU) is a benchmark
designed to test natural language understanding across 57 subjects spanning STEM, humanities,
social sciences, and professional fields. It consists of multiple-choice questions (four options) drawn
from standardized tests like the GRE and medical licensing exams, LSAT exams, and various exams
oriented towards domain specific knowledge in the fields listed above

Object of Claim: Broad knowledge across diverse subjects.

Claim 1: Language models can demonstrate broad knowledge across diverse academic and profes-
sional subjects.

Evidence: Accuracy on [N] multiple-choice questions spanning 57 subjects across STEM, humani-
ties, social sciences, and professional fields, drawing from practice questions for standardized tests
such as the Graduate Record Examination and the United States Medical Licensing Examination.

Validity of Claim from Evidence:

1. Content Validity 0K

 Strength: MMLU covers an extensive range of domains (57 subjects) spanning STEM,
humanities, social sciences, and professional fields.

* Weakness: The multiple-choice format with only four options limits the depth of under-
standing that can be assessed, and some subjects may have inadequate representation.

* Suggestions: Conduct detailed content mapping to ensure proportional representation
across domains and expand beyond multiple-choice to include open-ended responses.

2. Criterion Validity 0K

» Strength: MMLU has been shown to correlate with downstream performance on
other capability oriented tasks, demonstrating predictive validity. Related work on
benchmarking measured correlation of MMLU scores with the aggregate of scores on
MMLU and other capability benchmarks, and found that MMLU to have a very high
correlation only behind MedQA and Arc Challenge [[L10].

* Weakness: There are inconsistencies in how well MMLU correlates with other measures
of related capabilities (e.g., models performing well on philosophy but poorly on
morality despite their relatedness).

* Suggestions: Conduct more systematic studies correlating MMLU performance with
other established benchmarks of knowledge across domains.

3. Construct Validity !

* Strength: The benchmark draws from standardized tests designed to measure knowl-
edge in respective fields.

» Weakness: MMLU doesn’t effectively distinguish between recall and reasoning lack-
ing discriminant validity; high performance could indicate mere memorization from
training data scraped from the internet rather than deep understanding.
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* Suggestions: Add questions that explicitly test reasoning or precision versus recall, and
incorporate analysis of model explanations, not just final answers.

4. External Validity !

* Strength: Using questions from standardized tests provides some real-world grounding.

* Weakness: Significant issues undermine generalizability: labeling errors (57% of Virol-
ogy questions contain errors), answer ordering effects, and the constrained multiple-
choice format. This suggests an independent reproduction of MMLU might present
different results.

* Suggestions: Implement rigorous quality control (as in MMLU-Pro), test with varied
answer orderings, and expand beyond multiple-choice formats.

5. Consequential Validity !

o Strength: MMLU has successfully become a standard benchmark driving industry
progress in language model development.

* Weakness: There is a risk of overoptimization as models are increasingly designed
specifically to perform well on MMLU multiple choice, and might overfit to doing well
on easily testable questions rather than broad subject knowledge (Goodhart’s Law).

* Suggestions: Regularly update the benchmark with new questions and maintain clear
documentation about what MMLU does and doesn’t measure.

Object of Claim: Expert-level reasoning.

Claim 2: Language models can perform expert-level reasoning across specialized domains.
Evidence: MMLU compares model performance against estimated expert-level accuracy (89.8%)
and measures performance across specialized domains from medicine to formal logic.

Validity of Claim from Evidence:

1. Content Validity !
* Strength: MMLU includes questions from specialized professional domains that require
some domain expertise.

* Weakness: Multiple-choice questions as they are written within MMLU primarily tests
factual knowledge rather than complex reasoning processes experts employ.

* Suggestions: Include multi-step reasoning problems and questions requiring application
of principles to novel scenarios.

2. Criterion Validity 0K

o Strength: Performance is benchmarked against estimated expert-level accuracy (89.8%)
so MMLU has a good claim to concurrent validity

* Weakness: The benchmark cannot distinguish between memorized answers and expert
reasoning. Error analysis shows 39% of incorrect answers on MMLU-Pro stem from
reasoning errors despite correct knowledge, meaning the correlation with correct
answers might be spurious.

* Suggestions: Incorporate expert validation of both answers and reasoning paths, perhaps
through analysis of model explanations.

3. Construct Validity X
* Strength: Some questions require application of domain knowledge rather than simple
facts.

* Weakness: The benchmark doesn’t capture expert reasoning processes, only the final
answers lacking structural validity.

* Suggestions: Develop metrics to evaluate reasoning quality, not just answer correctness,
and include questions that cannot be solved through memorization alone. Elicit experts
per domain for their reasoning process, as well as suggestions for relevant question
formats and protocols.

4. External Validity X
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 Strength: Using standardized test questions provides some grounding in real assess-
ment practices. As mentioned earlier, there is some evidence MMLU performance is
correlated with performance on other capability benchmarks.

* Weakness: Multiple-choice tests do not capture the open-ended, iterative nature of
expert reasoning in real-world contexts. Changing answer ordering can also affect
scores which an expert should be invariant to.

* Suggestions: Develop supplementary benchmarks with more authentic professional
tasks and varied formats. Perhaps where the model provides reasoning chains and is
evaluated with a reward model calibrated to expert preference.

5. Consequential Validity !

» Strength: The benchmark has helped identify strengths and weaknesses in model
capabilities across different domains.

* Weakness: High MMLU scores might create an illusion that models can replace domain
expert judgement, leading to inappropriate applications.

* Suggestions: Provide clear guidance on the limitations of what MMLU scores indicate
about true expert-level reasoning.

Object of Claim: Predictive power for general capabilities.

Claim 3: MMLU performance predicts a model’s general language understanding capabilities.
Evidence: MMLU has been highly correlated with downstream quality and capability, as noted by
industry teams building large language models and supported by research on observational scaling
laws.

Validity of Claim from Evidence:

1. Content Validity !

» Strength: MMLU covers a wide range of domains, providing breadth in assessment
that is a non-trivial subset of understanding of “general” topics, if such topics are the
enumeration of all academic topics.

* Weakness: It doesn’t cover all aspects of language understanding, particularly creative,
open-ended, or interactive capabilities. It also doesn’t cover areas of knowledge that
aren’t readily measured in academic settings.

* Suggestions: Supplement with other benchmarks measuring different facets of language
understanding and areas that don’t easily map to academic fields of study such as humor.

2. Criterion Validity !

 Strength: Research on observational scaling laws notes that when running a PCA on
evaluation performance of prominent benchmarks against downstream performance,
variation in MMLU explains a large fraction of variation [109]]. As mentioned earlier in
claim 1 and claim 2, research shows MMLU scores correlate well with performance on
other tasks, supporting its use as a general predictor [110]. Combined with the earlier
observation that performance is benchmarked against estimated expert-level accuracy
(89.8%), this gives MMLU a good claim to concurrent validity.

* Weakness: Correlation patterns are inconsistent across different types of tasks and
domains [[L11]].

* Suggestions: Develop a more nuanced framework showing which aspects of MMLU
best predict which types of downstream capabilities or rely on the observational scaling
laws framework.

3. Construct Validity X

o Strength: The benchmark captures some aspects of knowledge acquisition and applica-
tion.

* Weakness: ”Natural language understanding” as a construct encompasses much more
than multiple-choice question answering, including discourse comprehension, pragmat-
ics, and nuanced interpretation none of which are covered here.

* Suggestions: Clarify the specific sub-constructs of language understanding that MMLU
actually measures.

29



1085 4. External Validity X

1096 * Strength: The breadth of subjects provides some basis for generalization, assuming we
1097 are focused on breadth and a more shallow definition of generality rather than depth.
1098 * Weakness: MMLU’s format and limitations (answer ordering effects, label errors)
1099 raise questions about how well scores generalize to real-world language understanding
1100 tasks [111}[112].

1101 » Suggestions:

1102 5. Consequential Validity !

1103 * Strength: MMLU has influenced productive research directions in language model
1104 development, such as BigBench, GPQA, GAIA and other benchmarks that test language
1105 models on a broad set of tasks.

1106 » Weakness: Over-reliance on MMLU as a general capability metric could lead to
1107 narrowly optimized models for the benchmark rather than genuinely more capable ones.
1108 This can lead to overstating progress and capabilities of the latest models and systems,
1109 i.e. models such as Phi-1 and Mistral which overfits to GSM8k and saw large drops in
1110 performance when tested on a new private split [[113]].

1111 * Suggestions: Develop complementary metrics that capture aspects of language under-
1112 standing not measured by MMLU, and emphasize a balanced assessment approach.
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D.3 ImageNet

Table 5: An ImageNet [7, 18] Application. A subjective score for validity—the standard for “reason-
able” is demonstrating that obvious risks to invalidity are addressed: E8: reasonable; ! : proceed with
caution; X: insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in determining the validity of
the claim from that evidence. This evaluation is an iterative process, acknowledging that both the

benchmark and its interpretations may evolve over time.
Claims from ImageNet Validity Assessment Report Card

Claims Content | Criterion | Construct | External | Consequential
1. ImageNet tests how well models learn complex associa- o] oK oK] oK d

tions between images and labels.

2. ImageNet gauges the ability to learn semantically general ! & ! ! !

visual features for object classification.

3. ImageNet measures overall visual understanding of a X X X X X
model.

Description of dataset. ImageNet [7,I8] (specifically ILSVRC 2012) is a benchmark for predicting
an image’s label from a fixed set of 1000 diverse categories. The dataset—curated primarily from
Flickr with human annotation—is evaluated using accuracy/error rate and precision/recall metrics.

Object of Claim: Predictive accuracy.
Claim 1: Model architectures can learn to accurately predict predefined image labels.
Evidence: Performance on accuracy/error rate and precision/recall metrics.

Validity of Claim 1 from Evidence:

1. Content Validity oK]

* Strength: The dataset covers 1000 diverse categories with extensive natural variabil-
ity—including differences in poses, lighting, backgrounds, and fine-grained distinctions
(e.g., different dog breeds)—making it well-suited to assess image—label associations.

* Weakness: It is confined to static, natural RGB images and does not include other
modalities (e.g., grayscale medical images or hyperspectral data) or dynamic contextual
information (e.g., actions or inter-object relationships). Label noise may also affect
accuracy metrics [[114]].

* Suggestions: Clearly specify that ImageNet targets static natural images, and consider
integrating supplementary datasets to represent additional image types or contextual
settings.

2. Criterion Validity 0K

 Strength: There is robust evidence that performance on ImageNet is both predictive
of downstream task success (models excelling on ImageNet often perform well on
benchmarks such as CIFAR or Caltech, and in real-world applications like wildlife
classification [[115]]) and concurrent with human-annotated labels under similar condi-
tions [116} 1117, 9].

3. External Validity &5

 Strength: The dataset is representative of real-world natural images, and its utility
has been demonstrated under varying conditions (differences in image quality, size,
and even in applications to non-traditional domains such as medical imaging [118]
and adversarially constructed settings [24]. Note, this is not about trained model
performance (e.g., [10]); it is about the external validity of model ability to learn and
predict accurately, i.e., necessitates training and evaluating in a new setting rather than
transporting trained models to a new setting.

4. Construct Validity OK]

* Since the claim is strictly about accuracy on a defined criterion, construct validity is
not necessary to evaluate this specific claim.
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5. Consequential Validity *

 Strength: The clear quantification of labeling accuracy offers a concrete performance
metric, facilitating transparent and reproducible comparisons.

» Weakness: There is a risk that high ImageNet accuracy may be misinterpreted as
reflecting comprehensive visual understanding, potentially leading to overconfident
real-world deployments.

* Suggestions: Advise stakeholders that ImageNet performance should be interpreted
strictly as a measure of static image classification and that complementary evaluations
are necessary to assess broader aspects of visual intelligence.

Object of Claim: Learning of semantically general visual features.

Claim 2: ImageNet evaluates the ability of models to learn transferable visual features that are useful
for object classification.

Evidence: Performance gains in fine-tuning tasks when using models pretrained on ImageNet,
compared to those trained from scratch.

Validity of Claim 2 from Evidence:

1. Content Validity !

o Strength: The wide coverage of natural image phenomena—including fine-grained
details and numerous object classes—supports the learning of varied and versatile
visual features.

* Weakness: It may not comprehensively represent features present in non-natural or
synthetic environments, nor fully capture abstract contextual cues.

» Suggestions: Consider integrating supplementary datasets that include synthetic, non-
natural, or contextually complex images to achieve a more comprehensive assessment.

2. Criterion Validity 0K

» Strength: Empirical studies (e.g., [9]) show that ImageNet pretraining is strongly
predictive of improved fine-tuning and transfer learning outcomes and that performance
is concurrent with established classification tasks, addressing both the predictive and
concurrent dimensions.

* Weakness: Although the predictive correlation is robust, direct and extensive concurrent
comparisons with alternative feature assessment methods are less common.

* Suggestions: Enhance validation by conducting side-by-side evaluations comparing
learned features across different pretraining methods and downstream tasks.

3. Construct Validity !

» Strength: The improvement in fine-tuning performance suggests that the learned
features are semantically rich and transferable. This provides evidence of structural
validity (as features capture fundamental visual components), convergent validity
(via correlation with downstream task performance), and discriminant validity (in
differentiating meaningful features from noise).

* Weakness: 1It is challenging to definitively establish that these benefits are due to
genuine generalization of visual features rather than overfitting to ImageNet-specific
patterns, leaving the discriminant aspect less clear.

* Suggestions: Continually perform in-depth analyses—such as saliency mapping or
kernel visualization—to further elucidate the nature of the learned features and clarify
the extent of structural, convergent, and discriminant validity [119].

4. External Validity !

o Strength: The benefits of ImageNet pretraining have been observed across multiple
downstream benchmarks, suggesting that the learned features generalize beyond the
confines of natural images [9, [116].

» Weakness: The degree of generalizability across the span of domains (e.g., synthetic or
non-natural images) remains to be fully validated.
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* Suggestions: Broaden external validation by pretraining on a more diverse set of data
and assessing performance on cross-domain tasks.

5. Consequential Validity !

* Strength: The transformative impact of ImageNet pretraining in advancing computer
vision is well-documented, highlighting its practical benefits.

* Weakness: An overreliance on fine-tuning improvements may obscure limitations in
the intrinsic quality of the learned features, risking overgeneralization regarding model
capability.

* Suggestions: Clearly communicate that fine-tuning gains indicate enhanced perfor-
mance in specific settings rather than a comprehensive measure of visual feature quality;
encourage complementary evaluations focused specifically on feature robustness.

Object of Claim: Visual understanding.

Claim 3: ImageNet provides an indication of a model’s overall visual understanding beyond simple
label prediction or isolated feature representation.

Evidence: Performance on the standard classification task under controlled evaluation conditions,
independent of training context.

Validity of Claim 3 from Evidence:

1. Content Validity X

 Strength: The task of image classification is well-defined and widely used as a proxy
for certain aspects of visual understanding.

* Weakness: Relying solely on classification does not capture the full range of visual un-
derstanding, which includes spatial reasoning, object detection, contextual awareness,
and causal interpretation. Understanding is multitask, including detection, segmenta-
tion, etc., which are not sufficiently investigated.

» Suggestions: Complement the classification task with additional evaluations—such as
object detection, visual question answering, or spatial reasoning challenges—to more
fully capture the construct.

2. Criterion Validity X

* Strength: Classification accuracy is a clear and quantifiable metric that enables direct
comparison across models, addressing both predictive and concurrent aspects to some
degree.

» Weakness: There is limited evidence that high performance on this narrow task reliably
predicts the broader and deeper aspects of overall visual understanding.

* Suggestions: Compare ImageNet classification results with those from benchmarks
explicitly designed to evaluate advanced visual reasoning and interpretative skills.

3. Construct Validity X

» Strength: Operationalizing visual understanding as performance on image labeling
provides a measurable framework that reflects a basic structural organization of visual
recognition. However, it offers only limited convergent evidence with tasks requiring
integrated reasoning and does not fully differentiate (discriminant validity) between
mere pattern recognition and comprehensive understanding.

* Weakness: This narrow operational approach may oversimplify the construct, favoring
models that exploit dataset biases rather than achieving holistic visual comprehension.

* Suggestions: Introduce complementary evaluation tasks (e.g., visual question an-
swering or spatial reasoning challenges) to capture additional dimensions of visual
understanding and enhance assessments of structural, convergent, and discriminant
validity.

4. External Validity X

* Strength: ImageNet’s evaluation framework is reproducible, and similar performance
trends have been observed across related image-based tasks.
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1249 * Weakness: Its ability to generalize to tasks requiring integrated reasoning, spatial

1250 awareness, and contextual interpretation remains unconfirmed.

1251 * Suggestions: Validate the broader aspects of visual understanding by employing a
1252 wider array of benchmarks that emphasize multidimensional reasoning and contextual
1253 evaluation.

1254 5. Consequential Validity X

1255  Strength: The benchmark has stimulated important discussions on the limitations of
1256 measuring visual intelligence solely via classification, underscoring the need for more
1257 comprehensive evaluation methods.

1258 » Weakness: High classification accuracy might be erroneously interpreted as evidence
1259 of complete visual understanding, potentially misleading real-world applications.

1260 * Suggestions: Provide clear guidelines on the interpretative scope of ImageNet re-
1261 sults and promote complementary measures to capture the full spectrum of visual
1262 intelligence.
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D4 MedQA

Table 6: MedQA [120] Application. A subjective score for validity—the standard for “reasonable”
is demonstrating that obvious risks to invalidity are addressed: E8: reasonable; ! : proceed with
caution; X insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in terms of determining the validity
of the claim from that evidence. This is never a binary classification nor complete and should rather

be a cyclic process.
Claims from MedQA Benchmark Accuracy Report Card

Claims Content | Criterion | Construct | External | Consequential
1. AI models can accurately answer USMLE-style multiple- o] o] ! ! !

choice questions in core medical fields (e.g., internal medicine,

pediatrics).

2. Al models can accurately answer advanced specialized ! ! ! ! !
medical questions across diverse clinical subfields (e.g., on-
cology, psychiatry).

3. Al models exhibit general (human-like) medical reasoning ! X X X
abilities.

Description of dataset. The MedQA benchmark is a large-scale, multilingual dataset crafted for
open-domain question answering in the medical domain. It consists of multiple-choice questions
drawn from professional medical board exams in English (12’723 questions), simplified Chinese
(34’251 questions), and traditional Chinese (14’123 questions) testing complex clinical reasoning.
Unlike prior QA datasets, MedQA emphasizes real-world diagnostic decision-making, requiring
systems to retrieve and interpret evidence from extensive medical textbook corpora.

Object of Claim: Multiple-choice questions in USMLE core fields.

Claim 1: Al models can accurately answer USMLE-style multiple-choice questions in core medical
fields (e.g., internal medicine, pediatrics).

Evidence: Accuracy on MedQA, a curated dataset containing 12,723 English USMLE-style multiple-
choice questions, part of a larger multilingual collection that includes 34,251 simplified Chinese and
14,123 traditional Chinese questions. Original baseline models achieved only 36.7% accuracy on the
English questions, while recent LLMs have reached 90% accuracy on this benchmark.

Validity of Claim from Evidence:

1. Content Validity 0K

» Strength: The question set covers standard USMLE core areas (internal medicine,
pediatrics, OB/GYN, surgery), curated by medical professionals. The gap between
expert vs. non-expert performance helps confirm that the items do measure specialized
knowledge.

* Weakness: Even “core” USMLE topics might be incomplete (e.g., narrower coverage
of pediatrics vs. adult medicine).

* Suggestions: Do a content-mapping across subdomains to ensure each core field
is represented proportionally. Include item analyses by domain experts to identify
underrepresented subtopics.

2. Criterion Validity 0K

o Strength: 1If the claim is specifically “accuracy on USMLE-style questions,” then
MedQA directly measures that criterion. High performance against human experts or
official pass thresholds bolsters concurrent validity.

* Weakness: There is limited predictive validity—we do not know if high scores on
MedQA predict performance on subsequent medical assessments, other board certifica-
tions, or related medical knowledge evaluations.

* Suggestions: Compare MedQA performance to known USMLE pass rates or step
scores. Conduct longitudinal or prospective studies to see if a model that excels on
MedQA also performs robustly in real USMLE test trials.

3. Construct Validity !
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o Strength: TBD

* Weakness: While USMLE questions are designed to test integrated medical knowledge
and clinical decision-making, LLMs might leverage statistical patterns in their training
data rather than demonstrating the intended construct. Many multiple-choice questions
can be solved via pattern matching or memorization without genuine conceptual
understanding.

* Suggestions: Further analyze how the model arrives at answers. Include open-ended or
explanation-based items to confirm it is using medical reasoning (rather than memorized
patterns).

4. External Validity !

* Strength: Because USMLE is a well-established exam format, it is somewhat represen-
tative of real licensing test questions.

* Weakness: The model’s performance is not tested in truly “real-world” situations (e.g.,
diagnosing patients with partial information). Variation in language, test format, or
question style might degrade performance.

* Suggestions: Assess generalizability by testing with alternative question sources (e.g.,
NBME question banks, other medical boards), including different item formats (e.g.,
free-response, extended matching).

5. Consequential Validity !

* Strength: If model performance is below human experts, it prevents overestimation of
AT’s clinical capabilities; the benchmark helps calibrate expectations.

» Weakness: If the model achieves high scores, there is a risk that stakeholders assume
it can practice medicine or make reliable diagnoses—something USMLE-style Q&A
alone does not prove.

* Suggestions: Provide guidance that warns against using MedQA results as a proxy
for “clinical readiness.” Create disclaimers, ethics reviews, or guidelines so that high
MedQA accuracy is not over-interpreted as real-world medical competency.

Object of Claim: Advanced specialized medical Q/A accuracy.

Claim 2: AI models can accurately answer advanced specialized medical questions across diverse
clinical subfields (e.g., oncology, psychiatry, cardiology).

Evidence: The same MedQA multiple-choice items, which may include some specialized subtopics
but are typically broad “licensing exam” style.

Validity of Claim from Evidence:

1. Content Validity !

» Strength: USMLE exams do include a range of subfields. If MedQA is properly
sampled, it will have at least basic coverage in oncology, psychiatry, etc.

* Weakness: “Advanced specialized” questions in niche fields (e.g., transplant immunol-
ogy, pediatric oncology) are usually not heavily represented in general licensing exams,
so coverage may be thin.

* Suggestions: Evaluate how many questions truly belong to each advanced specialty.
Expand the dataset or collect specialized question sets from relevant board exams (e.g.,
ABIM Oncology boards).

2. Criterion Validity !
 Strength: If specialists or specialized board pass rates are used as a reference, some
measure of concurrent validity might be feasible.

* Weakness: We lack direct evidence that performance on these general medical exams
transfers to in-depth specialty boards or practice.

* Suggestions: Correlate MedQA scores with actual performance on specialized board-
style question sets. Conduct predictive analyses to see whether high performance in
general med licensing implies success in more advanced specialties.

3. Construct Validity !

36



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363

1364

1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

1375

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

1389
1390
1391

1392

1393

1394
1395
1396
1397
1398
1399
1400
1401

1402

» Strength: High MedQA accuracy suggests some knowledge of specialized subfields.
The benchmark captures certain aspects of clinical reasoning, including diagnostic pat-
tern recognition, treatment, management and application of domain-specific knowledge
in areas like oncology, cardiology, and psychiatry, though in a constrained multiple-
choice format.

* Weakness: “Advanced specialized competence” is a broader construct than a general
licensing exam can measure. True advanced knowledge typically requires deeper rea-
soning and domain-specific problem-solving, not just broad-spectrum test items. MCQ
format doesn’t capture critical elements of specialized practice such as open-ended
diagnostic reasoning, iterative decision-making based on evolving clinical information,
managing uncertainty, and generating (rather than selecting) management plans.

* Suggestions: Use specialized test banks or real advanced clinical vignettes. Check
convergent validity: does a model that excels at MedQA also excel at an oncology-
focused question set, for example?

4. External Validity !

o Strength: If the subfield questions in MedQA truly reflect real exam conditions, there
is some external relevance, as these exams are designed to assess knowledge that
specialized experts need to demonstrate for certification, suggesting the model shares
at least some abilities with trained specialists.

* Weakness: Real clinicians in advanced specialties face more complex tasks than
multiple-choice. We do not know if “exam success” generalizes to real specialist
scenarios (e.g., reading labs, imaging).

* Suggestions: Compare the model performance to other specialized exams or real-world
performance data, like mock boards or practical OSCE (Objective Structured Clinical
Examination) tasks.

5. Consequential Validity !

o Strength: Since MedQA is drawn from a real medical practitioner exam (USMLE), it
helps us assess whether models share one key aspect of medical expert competence,
guarding against employing models that don’t pass this necessary (but not necessarily
sufficient) bar for being able to address specialized medical questions.

* Weakness: There is a risk that stakeholders might over-interpret performance. Specif-
ically, since MedQA cannot adequately cover the depth and diversity of all medical
specialties, high overall performance might mistakenly be used as proof that the model
is capable in particular specialties that weren’t well-represented in the benchmark. This
could lead to inappropriate deployment in specialized domains where the model lacks
adequate capabilities.

* Suggestions: Provide disclaimers, track real-world usage carefully, and ensure domain
experts remain in the loop before trusting the system with advanced clinical decision-
making.

Object of Claim: Reasoning.
Claim 3: Al models exhibit general (human-like) medical reasoning abilities.
Evidence: Same accuracy results on MedQA multiple-choice questions.

Validity of Claim from Evidence:

1. Content Validity !

 Strength: Medical licensing questions often require some reasoning (diagnostic logic,
integrative thinking), so it is not purely rote.

* Weakness: While MedQA includes reasoning-oriented questions, it cannot cover the
full breadth of medical reasoning scenarios. Important instances like reasoning about
novel specialized cases, emergency decision-making with incomplete information, or
longitudinal patient management are likely underrepresented content-wise.

* Suggestions: Include question types that explicitly test reasoning steps, causal infer-
ences, or open-ended rationales, rather than single-select answers.

2. Criterion Validity X
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o Strength: TBD

* Weakness: The claim ’general medical reasoning’ is an abstract construct for which
no single, universally accepted criterion measure exists. MedQA performance alone
doesn’t provide evidence of correlation with any established reasoning assessments
that might serve as imperfect but useful criteria.

* Suggestions: Compare performance on specialized “reasoning tests” (e.g., medical
logic puzzles, case simulations). Show that high MedQA scorers also do well on
validated reasoning exams for medical students or residents.

3. Construct Validity X

* Strength: TBD

* Weakness: The model’s question-answer patterns might rely on memorized knowledge
or superficial cues—meaning it does not necessarily demonstrate the deeper mental
processes clinicians use.

» Suggestions: Separate knowledge recall from genuine inference (factor analysis, re-
quiring step-by-step justifications). Show strong correlations with tasks specifically
designed to test “reasoning,” not just recall.

4. External Validity X

* Strength: TBD

* Weakness: “General reasoning” implies an ability that transfers to any problem domain,
but we only have evidence from a medical exam standpoint. No demonstration it
generalizes to other fields or even beyond multiple-choice contexts.

* Suggestions: Evaluate the same model on other reasoning-heavy tasks (e.g., logic
puzzles, legal reasoning sets, real-time patient simulations) to see if it truly exhibits
domain-general reasoning.

5. Consequential Validity !

 Strength: If the model’s limitations are made explicit, at least we avoid the pitfall of
claiming broad, “human-level” reasoning from a single test.

* Weakness: Over interpretation of high MedQA accuracy might lead to the illusion that
the model “thinks like a doctor.” This could encourage unsupervised use in clinical
settings.

* Suggestions: Provide disclaimers clarifying that test performance ## human clinical rea-
soning. Develop ethical guidelines so that strong test scores do not lead to unqualified
acceptance of AI’s medical judgments.
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D.5 SQuAD

Table 7: SQuAD [103]] Application. A subjective score for validity—the standard for “reasonable”

is demonstrating that obvious risks to invalidity are addressed: EZ: reasonable; ! : proceed with

caution; X: insufficient. Even for a score of “reasonable,” there will be weaknesses in the evidence.
The score is given because the strengths outweigh the weaknesses in terms of determining the validity
of the claim from that evidence. This is never a binary classification nor complete, and should rather

be a cyclic process.

Claims from SQuAD Benchmark Accuracy Report Card
Claims Content | Criterion | Construct | External | Consequential
1. The evaluated model can accurately identify the most [oK] [oK] [oK] ! !
relevant snippet of a high quality encyclopedia passage for
answering a question about the passage.

2. The evaluated model can accurately identify the most X [oK] b X X
relevant snippet of an online text passage for answering a
question about the passage.

3. The evaluated model exhibits human-level reading compre- X ! X X X
hension.

Description of benchmark. The SQuAD benchmark (v1.0) was initially released in fall 2016,
before large pre-trained models like BERT or GPT-2 were developed (cite). It consists of over 100k
questions drawn from over 500 selected English Wikipedia articles. Each problem in the benchmark
consists of: 1) a passage (a paragraph from an article); 2) a question about the passage; 3) a span of
the passage which contains the answer to the question. Answers to each problem are spans of the
passage.

Object of Claim: Identifying the most relevant snippet of a high quality encyclopedia passage for
answering a question about the passage.

Claim 1: The evaluated model can accurately identify the most relevant snippet of a encyclopedia
passage for answering a question about the passage.

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,
and are therefore considered high quality. Around 500 articles on various subjects are used as
passages for questions. 100,000 questions are used. The questions are original, human-constructed
by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match
accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.
A human baseline from vetted crowdworkers is included, which also serves as a measure of human
annotator agreement on the correct answer to passages. The authors analyze answer types and find
that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),
capable of only surface-level pattern matching, is shown to perform much worse than the human
baseline.

Validity of Claim from Evidence:

1. Content Validity 0K

» Strength: Uses a large number and variety of questions and answer types. Exclusively
uses highly ranked Wiki pages. Uses a relatively large number of Wiki pages to draw
passages from.

e Weakness: TBD

* Suggestions: Using a larger number of Wiki pages would add to the content coverage
of questions/answers.

2. Criterion Validity 0K

 Strength: Annotator agreement on the answer snippets to passages is high and, therefore,
demonstrates the answers to the questions are indeed correct/reliable. Crowdsource
workers are also vetted before being accepted as annotators, strengthening this point.
As expected, human beings perform significantly better than a logistic regressor on
SQuAD 1.0. This demonstrates that simple, surface-level pattern matching (the only
thing a simple logistic regressor is capable of) is insufficient for solving questions on
SQuAD 1.0.
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* Weakness: No evidence provided for predictive validity.

* Suggestions: Some justification of basic predictive validity would be helpful here, such
as a comparison of model performance on the benchmark to a downstream task, e.g.
rate of question-answer completion of crowdsource worker with and without access to
the model as a tool. Still, I feel that there is generally reasonable evidence/justification
provided.

3. Construct Validity OK]

* Not applicable, since we are measuring a criterion, not a construct.

4. External Validity !

 Strength: TBD

* Weakness: Although there is no clear evidence provided in the SQuAD paper of external
validity (aside from the reassurance of its content validity via the diversity of topic and
writing style of Wiki articles), the fact the claim is so narrow reduces the importance of
this lack of evidence and warrants caution, rather than outright insufficiency.

* Suggestions: That being said, some evidence that would improve this borderline
external validity is evaluation of a greater variety of encyclopedia formats, such as
translated encyclopedia entries, which would build confidence in the likelihood that
model performance on SQuAD would generalize across encyclopedic text.

5. Consequential Validity !

o Strength: The authors mention that the size of the question and answer bank allows it to
double as a large source of high-quality training data for question-answering systems,
thereby offering a unique advantage in advancing model performance at this task.

* Weakness: The authors don’t consider potential downstream harms of the subject matter
included and excluded in the 500 Wiki articles used for generating the benchmark
questions, such as the articles being biased toward a particular culture, country, disci-
pline, etc. This could lead to model development disproportionately focusing on the
overrepresented subject matter at the cost of excluded subjects.

* Suggestions: A basic consideration or analysis of the distribution of subject matter of
the questions used in the benchmark would be useful for identifying if the concern
mentioned in ‘Weakness’ is warranted or not.

Object of Claim: Identifying the most relevant snippet of an online text passage for answering a
question about the passage.

Claim 2: The evaluated model can accurately identify the most relevant snippet of an online text
passage for answering a question about the passage.

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,
and are therefore considered high quality. Around 500 articles on various subjects are used as
passages for questions. 100,000 questions are used. The questions are original, human-constructed
by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match
accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.
A human baseline from vetted crowdworkers is included, which also serves as a measure of human
annotator agreement on the correct answer to passages. The authors analyze answer types and find
that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),
capable of only surface-level pattern matching, is shown to perform much worse than the human
baseline.

Validity of Claim from Evidence:

1. Content Validity X
o Strength: A relatively large number of high-quality Wiki articles. A large number and
variety of questions and answers.

* Weakness: Only high-quality encyclopedic text is used for passages, excluding many
other types of online text (e.g. fiction, poetry, news articles, product catalogs, etc.).

* Suggestions: In order to cover content validity for online text (i.e. essentially any
text), the benchmark would need to be augmented with many other types of texts,

40



1525
1526

1527

1528
1529
1530
1531
1532
1533
1534

1535

1536
1537
1538

1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
15562
1553

1554

1555
1556

1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1567

1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

since high-quality Wiki articles are, when considered among ‘any text’, a quite niche
subject/format/style. Hence, SQuAD 1.0 falls far short of solid coverage in this case.

2. Criterion Validity 0K

 Strength: Annotator agreement on the answer snippets to passages is high and, therefore,
demonstrates the answers to the questions are indeed correct/reliable. Crowdsource
workers are also vetted before being accepted as annotators, strengthening this point.
As expected, human beings perform significantly better than a logistic regressor on
SQuAD 1.0. This demonstrates that simple, surface-level pattern matching (the only
thing a simple logistic regressor is capable of) is insufficient for solving questions on
SQuAD 1.0.

* Weakness: No evidence provided for predictive validity.

* Suggestions: A comparison of model performance on the benchmark to a downstream
task, e.g., rate of question-answer completion of crowdsource worker with and without
access to the model as a tool.

3. Construct Validity !

o Strength: The structure of the task exactly matches that of the object of the claim:
identifying the most relevant snippet of a passage to answer a given question. The fact
that a simple sliding window method and logistic regressor significantly underperform
a human at the task indicates the benchmark is able to tell apart rudimentary, surface-
level pattern matching (i.e. the sliding window and logistic regressor’s capabilities)
from human-level comprehension and answering on the task. This serves as basic
discriminant validity.

* Weakness: The paper doesn’t provide comparisons with other snippet-based question-
answering datasets, or other web text-based question-answering datasets in general,
which might measure a similar construct.

* Suggestions: The construct validity of the benchmark could be reinforced with more
and more detailed comparisons of model performance on SQuAD v1.0 with other span-
based question-answering benchmarks, or other web text-based question-answering
benchmarks in general.

4. External Validity X

e Strength: N/A
* Weakness: No evidence provided.

* Suggestions: When considering the much broader setting of ‘any text’, evidence of
generalization and consistency of performance across varied settings is much more
important. Since the SQuAD 1.0 paper doesn’t provide direct evidence of this, we
must count this validity insufficient. One way to address this validity type would be to
perform small-scale experiments with question-answering (via identifying snippets of
a given passage) on particularly rare or odd text, and see how well it matches up with
the ranking and performance of models on the main benchmark. In fact, something
to this effect was done in a later paper with adversarial text (cite), and it revealed that
model performance was significantly lower on the adversarial text compared to the
main benchmark.

5. Consequential Validity X

* Strength: The authors mention that the size of the question and answer bank allows it to
double as a large source of high-quality training data for question-answering systems,
thereby offering a unique advantage in advancing model performance at this task.

* Weakness: The authors don’t consider potential downstream harms of only assessing
performance on encyclopedic text when claiming performance on online text in general.
For instance, models that perform well on non-fiction text may do poorly on fiction
text. Unaware of this, a teacher may provide the ‘high performing’ model as a study
aid for a fantasy novel, thereby harming educational outcomes for her students.

* Suggestions: In this case, including consideration of the potential ramifications of the
poor content and external validity of the benchmark would be important for adequately
addressing the consequences of the use of the benchmark. Likewise, the remedy to
these concerns would be addressing and improving the content and external validity of
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the benchmark, since the downstream adverse impacts originate from these flaws in the
benchmark design.

Object of Claim: Human-level reading comprehension.

Claim 3: The model exhibits human-level reading comprehension.

Evidence: The Wiki articles used are drawn from highly ranked pages according to Project Nayuki,
and are therefore considered high quality. Around 500 articles on various subjects are used as
passages for questions. 100,000 questions are used. The questions are original, human-constructed
by vetted crowdsource workers, and are designed to be difficult. Both a strict metric (exact match
accuracy) and a fuzzy metric (F1 overlap score) are used to determine model and human performance.
A human baseline from vetted crowdworkers is included, which also serves as a measure of human
annotator agreement on the correct answer to passages. The authors analyze answer types and find
that they are varied, such as dates, locations, and quantities. A ‘dumb’ model (logistic regressor),
capable of only surface-level pattern matching, is shown to perform much worse than the human
baseline.

Validity of Claim from Evidence:

1. Content Validity X

 Strength: A relatively large number of high-quality Wiki articles. A large number and
variety of questions and answers in the passage+question+snippet answer format.

* Weakness: The same content pitfalls of claim #2 apply here too: high-quality encyclo-
pedic text is quite a niche category, and it doesn’t include many other major types of
text, such as fiction, poetry, cooking recipes, etc. An important type of answer is also
missing from the benchmark’s content (more to say on this in structural validity): the
answer of ‘there isn’t enough information’. Knowing when you don’t know is a critical
part of human-level reading comprehension, but this type of question is never asked in
the SQuAD v1.0 benchmark.

* Suggestions: Similar to the previous claim, the inclusion of other types of text would
be an important way to address content shortcomings. In addition, adding a greater
diversity of question content (particularly, questions where there isn’t enough infor-
mation provided to answer the question), as was done in SQuAD v2.0, would be
critical to addressing content shortcomings. More plausibly content-related issues are
addressed under construct validity, particularly structural validity, as those concerns
more appropriately fall under structure.

2. Criterion Validity !

* Strength: Annotator agreement on the answer snippets to passages is high and, therefore,
demonstrates the answers to the questions are indeed correct/reliable. Crowdsource
workers are also vetted before being accepted as annotators, strengthening this point.
As expected, human beings perform significantly better than a logistic regressor on
SQuAD v1.0 under matched conditions. This demonstrates that simple, surface-level
pattern matching (the only thing a simple logistic regressor is capable of) is insufficient
for solving questions on SQuAD 1.0.

* Weakness: No evidence provided for predictive validity.

* Suggestions: Although there are many shortcomings with SQuUAD v1.0 as a benchmark
for the given claim, when considering criterion validity isolated from other major
issues (e.g. content, construct, and external validity), we see preliminary evidence that
the evaluation results do coincide with a validated standard (mainly confirmation of
expected results from human test-takers and ‘dumb’ models). Still, given the other
shortcomings of the benchmark, the lack of predictive validity weighs more on the
inadequacy of the overall criterion validity, leading it to be rated lower than for the
other claims. One way to address this weakness is to, similar to previous suggestions,
collect evidence on the usefulness of a high performing model as a tool to assist student
reading comprehension by, say, measuring test-taker reading comprehension scores on
an assessment with and without access to the model.

3. Construct Validity X

o Strength: One part of human-level reading comprehension involves being able to select
the appropriate snippet of a passage to answer a given question, and SQuAD v1.0
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covers the structure of this scenario well. The fact that a simple sliding window method
and logistic regressor significantly underperform a human indicates the benchmark is
able to tell apart rudimentary, surface-level pattern matching (i.e. the sliding window
and logistic regressor’s capabilities) from human-level comprehension and answering
on the task. This serves as basic discriminant validity.

* Weakness: Many aspects of the structure of human-level reading comprehension are
unaccounted for. For example, open-ended short-response is not a type of capability
tested, nor multiple-choice selection, nor decision-making based on external informa-
tion, despite these activities being key aspects and expressions of human-level reading
comprehension. Related to concerns of structural validity, there are important related
but different constructs to human-level reading comprehension that SQuAD v1.0 is
unable to tell apart. For example, human-level reading comprehension requires being
able to synthesize an original response that isn’t contained in the passage or question
provided. But, SQuAD v1.0 would be unable to tell apart a model capable of ‘original
synthesis’ compared to a model that is merely capable of a ‘lesser’ reading comprehen-
sion and can only identify the correct answer if it sees it in the passage (i.e. is directly
contained in a snippet of the passage). The paper also doesn’t provide comparisons
with other reading comprehension benchmarks.

* Suggestions: Many of the risks to construct validity of this benchmark stem from
the structural invalidities, particularly the lack of a variety of ‘answering paradigms’
assessed. Adding question formats that cover a broader range of reading compre-
hension tasks would help remedy this. In addition, providing examples/analysis of
convergent validity i.e. comparisons of model results on SQuAD v1.0 to other reading
comprehension benchmarks.

4. External Validity X

o Strength: N/A
* Weakness: No evidence provided.

* Suggestions: Given reading comprehension is such a general ability/area, external
validity plays a key role in the overall validation of a human-level reading comprehen-
sion benchmark since it lends confidence to the fact that results from an evaluation
will generalize to various unseen cases. For example, evidence of high performing
models also being able to correctly answer questions on ‘trick’/adversarial text or oddly
formatted text would be important in building confidence in the generalizability of
reading comprehension performance based on SQuAD performance. Since there isn’t
clear, direct evidence of this kind provided in the paper, there is little support for the
claim’s external validity.

5. Consequential Validity X

* Strength: The authors mention that the size of the question and answer bank allows it to
double as a large source of high-quality training data for question-answering systems,
thereby offering a unique advantage in advancing model performance at this task.

* Weakness: Similar qualms as for claim #2: the weakness of content, construct, and
external validity in particular make relying on this benchmark to assess human-level
reading comprehension potentially harmful. For example, trusting a ‘high-performing’
model to serve as a tutor for struggling students in an English reading class could lead
to miseducation of those students due to, say, the model being incapable of sufficiently
good comprehension of non-encyclopedic information (like a fantasy novel).

* Suggestions: In this case, including consideration of the potential ramifications of the
poor content, construct, and external validity of the benchmark would be important for
adequately addressing the consequences of the use of the benchmark. Likewise, the
remedy to these concerns would be addressing and improving the content, construct,
and external validity of the benchmark, since the downstream adverse impacts originate
from these initial flaws in the benchmark design.
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