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Abstract: The transition to a decarbonized energy sector, driven by the integration of
Renewable Energy Sources (RESs), smart building technology, and the rise of Electric
Vehicles (EVs), has highlighted the need for optimized energy system planning. Increasing
EV adoption creates additional challenges for charging infrastructure and grid demand,
while proactive and informed decisions by residential EV users can help mitigate such chal-
lenges. Our work develops a smart residential charging framework that assists residents
in making informed decisions about optimal EV charging. The framework integrates a
machine-learning-based forecasting engine that consists of two components: a stacking and
voting meta-ensemble regressor for predicting EV charging load and a bidirectional LSTM
for forecasting national net energy exchange using real-world data from local road traffic,
residential charging sessions, and grid net energy exchange flow. The combined forecasting
outputs are passed through a data-driven weighting mechanism to generate probabilistic
recommendations that identify optimal charging periods, aiming to alleviate grid stress and
ensure efficient operation of local charging infrastructure. The framework’s modular design
ensures adaptability to local charging infrastructure within or nearby building complexes,
making it a versatile tool for enhancing energy efficiency in residential settings.

Keywords: electric vehicle charging; recommender system; dynamic load management;
smart grid; forecasting; machine learning

1. Background
1.1. Introduction

The effects of climate change have heightened awareness about the need for energy
sector decarbonization. This transition towards decarbonization is already reshaping the
ways energy is produced, distributed, and consumed globally. The development of Re-
newable Energy Sources (RESs) and intelligent grid systems, coupled with the widespread
adoption of Electric Vehicles (EVs), has made electric power system planning, schedul-
ing, and operation central components of sustainability initiatives. EVs have become an
established alternative to Internal Combustion Engine Vehicles (ICEVs), as policymakers
worldwide incentivize a push towards realizing carbon neutrality [1,2]. In 2023, approx-
imately 40 million electric passenger cars were in operation globally, with new EV sales
surpassing the previous year by 3.5 million, accounting for 18% of all new vehicle sales [3].
At the same time, the growing adoption of smart building technologies, enabled by Inter-
net of Things (IoT) technology and advanced data analytics, has revolutionized energy
management strategies [4]. This shift is vital for enhancing overall energy efficiency and
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facilitating the effective integration of RESs into existing grids [5–7]. Looking ahead, smart
residential buildings are envisioned to become proactive [8], integrating advanced sensor
networks and communication technologies, thereby enabling seamless, bidirectional in-
teraction with energy distribution systems and fostering more efficient, adaptive energy
management [9–11]. Assessment tools such as the Smart Readiness Indicator (SRI) play a
key role in evaluating a building’s capacity to optimize energy consumption through the
integration of smart technologies. By quantitatively assessing factors like energy efficiency,
grid interaction, and occupant requirements, the SRI facilitates more informed decision-
making across various building types [12–14]. In smart building environments and EV
charging scenarios, the integration of the SRI encourages adaptive energy strategies [15–17],
ensuring grid-friendly charging and improved system resilience [18].

The primary objective of this research was to develop a smart charging recommenda-
tion framework that enhances the decision-making process for residents. This framework
was contextualized through a real-world case study in Norway, where it leveraged residen-
tial EV charging session data alongside local passenger car mobility patterns. Our work
initially focused on a comprehensive analysis of charging session characteristics, which in-
formed the development of ML algorithms for predicting localized EV charge loads. These
forecasting results were subsequently integrated into the recommender system, which
identified prospective periods of both low national grid-level electricity demand and local
charging demand. This approach contributes to optimizing grid flexibility and ensures
the smooth operation of local charging infrastructure, mitigating the risk of overloads.
Additionally, it potentially promotes cost-effectiveness and enhanced energy efficiency
by aligning charging with off-peak periods for residential users. Beyond its immediate
operational benefits for residential EV charging, our proposed recommendation framework
distinguishes itself through its customizability and adaptability:

• The modular design of the ML-based forecasting engine facilitates the integration of
additional data streams—such as national grid energy flows—ensuring that the system
remains responsive to evolving energy market dynamics as well as user requirements.

• The framework employs a dynamic weighting mechanism for the forecast values,
which underpins the generation of a probabilistic recommendation. This flexible
mechanism can be recalibrated based on local and regional/national data streams,
thereby optimizing energy usage recommendations across a broader spectrum of
operational scenarios.

1.2. EV Charging Operations

EV charging operations pose significant challenges to the stability of local power sub-
stations, national grids, and electrical grids. One approach to addressing these challenges
is Smart Charging (SC) [19–21]. SC can be implemented in two main ways: User-Managed
Charging (UMC), where users independently decide when and for how long to charge
based on available information and pricing policies, or Supplier-Managed Charging (SMC),
where the charging process is controlled by the system operator using data provided by
the user [22]. Our focus is on UMC, where users/residents can adopt more flexible energy
consumption patterns supported by systems that provide signals to encourage them to
make more intelligent decisions about their energy use. Coupled with the emergence of
smart grids in urban areas [23,24] and the integration of building smart energy management
systems [25], this has elevated the significance of enhanced decision-making in charging
operations [26,27].

Understanding EV energy demands and charging patterns is crucial for developing
accurate forecasting methods and optimizing charging infrastructure management [28,29].
Two major factors are involved: the quantity of energy required, and the timing of the
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charging activity [30]. However, the frequent unpredictability of users’ charging habits and
behaviors—including variations in start time, duration, and energy demand—complicates
the scheduling and optimization of charging sessions [31–33]. Consequently, the integration
of EVs into existing power grids poses significant challenges to stability, necessitating the
development of advanced forecasting and Demand Side Management (DSM) strategies that
can dynamically adjust to real-time demand fluctuations [34]. The study of [35] reviewed
various DSM strategies (load shifting, peak shaving), while also addressing the challenges of
systemic uncertainties. It examined diverse modeling and optimization methods, including
linear programming, metaheuristic algorithms (such as PSO), and hybrid approaches—used
to enhance EV scheduling and energy management.

In the residential context, EV charging behavior can be generally categorized into
three distinct patterns:

• Peak Charging: Occurring when vehicle owners charge their vehicles immediately
after work, coinciding with periods of heightened residential electricity demand.
The simultaneous increase in residential electricity consumption and EV charging can
significantly elevate grid load peaks, potentially requiring DSM interventions such as
load-shifting strategies.

• Off-Peak Charging: Involving delayed or controlled charging, this pattern typically oc-
curs during night hours when electricity rates are lower and overall demand is reduced.
Off-peak charging offers the opportunity to flatten the load curve and improve grid
stability by shifting energy consumption to periods with surplus generation capacity.

• Stochastic Charging: Characterized by sporadic charging events based on immediate
needs or personal habits, this pattern is the most unpredictable. Its random nature
complicates accurate forecasting. Nonetheless, such charging behavior tends to be less
prevalent in residential scenarios compared to public charging in commercial areas.

1.3. Related Work

Advanced forecasting methods are essential to predict such charging patterns effec-
tively, as they enable better optimization of the probabilistic profile of the EV charge load.
The widespread deployment of EV charging stations—encompassing public networks
as well as private facilities at residences and workplaces—has resulted in an extensive
accumulation of charging-related data [36]. Traditionally, load forecasting has relied on
statistical-based algorithms. However, with this exponential increase in available data,
emerging studies suggest that data-driven algorithms demonstrate more robust behavior
compared to conventional statistical methods for load forecasting [37–39]. Specifically,
the shift towards ML and DL approaches reflects their enhanced ability to capture the
complex, non-linear relationships and temporal dependencies inherent in EV charging
data [40,41]. Recent research has focused on smart charging techniques that leverage
data-driven methodologies and optimization algorithms to dynamically optimize charging
schedules, mitigate grid stress, and enhance the integration of RES. In this section, we
highlight key relevant studies.

Kara et al. [42] utilized charging events, encompassing EV arrival and departure times
and charging power levels, to estimate EV charge load and assess the advantages of smart
charging strategies. Their framework evaluated two case studies: one demonstrated that
behind-the-meter EV aggregations could reduce monthly electricity costs by up to 24.8%
under time-of-use pricing, and another showed that controlled charging reduced the EV
peak load contribution by a median of 37%, shifting approximately 0.25 kWh (≈2.8%) per
session from peak to off-peak periods.

Brady et al. [43] applied a stochastic simulation approach to generate schedules for
daily travel and charging profiles. Their probabilistic charging decision model calculates
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the likelihood of an EV being charged upon arrival at a destination, taking into account the
current State of Charge (SoC), available parking time, and the specific journey in progress.

The work of [44] proposed a hybrid CNN-LSTM model for multi-step EV charge
load forecasting in smart buildings, outperforming traditional methods. By leveraging
convolutional layers to extract localized temporal features and LSTM layers to capture
long-term dependencies, the model effectively addresses complex dynamics, achieving
high accuracy.

The work in [45] assessed the impact of ambient temperature, traffic conditions
(e.g., congestion), and spatiotemporal distribution on EV charge load forecasting, uti-
lizing Monte Carlo simulations. In particular, by incorporating ambient temperature and
traffic condition factors, the forecasting accuracy was improved by around 38%.

In [46], a novel multilayer iterative stochastic dynamic programming (MISDP) frame-
work was introduced for optimizing energy management in residential settings with
integrated electric vehicles. The approach decomposes the problem into two iterative
layers: an external layer that adapts to stochastic fluctuations in electricity prices and
residential demand, and an internal layer that fine-tunes real-time EV battery charging and
discharging strategies. This dual-layer scheme minimizes energy costs, while extending
battery life and maintaining grid stability.

To enhance grid stability amid rising EV charging demands, researchers in [47] pro-
posed an innovative integration strategy that leverages dynamic scheduling and control
algorithms. By fusing real-time data—such as battery state-of-charge, arrival/departure
times, and real-time pricing—from both distribution system operators and EV owners,
the system continuously refines its charging and discharging schedules. This iterative
optimization identifies optimal energy injection moments, reducing peak loads, improv-
ing voltage profiles, and minimizing losses, while maximizing the financial benefits for
EV owners.

The work of [48] introduced a novel valley-filling heuristic for optimizing electric
vehicle charging to enhance grid stability. It presented a Load Conservation Valley-Filling
(LCVF) method that builds on classical and optimistic valley-filling strategies by preserving
EV load allocation states across iterations, thereby reducing oscillatory behavior. Evaluated
across various scenarios, LCVF achieved up to a 20% reduction in peak demand compared
to traditional methods, demonstrating improved energy efficiency and grid reliability.

This paper [49] presents an integrated approach to optimize the sizing of battery
energy storage systems (BESS) for residential households, specifically addressing the
energy requirements of EV charging infrastructure in conjunction with PVs. Using LSTM to
forecast monthly load profiles, the approach identifies the optimal BESS capacity needed to
capture surplus solar energy and perform peak shaving. The integration of real-time pricing
further refines energy management, reducing both operational costs and installation size.

The work in [50] presented a novel charging method that exploits a building’s idle
power capacity to manage EV charging efficiently. Central to this solution is an intelligent
scheduling and control algorithm that dynamically adjusts the charging current for each
EV. By incorporating user-specific inputs (e.g., SoC, available charging time), the system
formulates a non-linear minimization problem. The objective is to minimize the gap
between the time needed to reach the desired SoC and the time available for charging,
while also respecting the building’s power limitations. The algorithm employs a Sequential
Least Squares Programming (SLSQP) method to iteratively determine the optimal charging
current allocation for each vehicle, ensuring efficient power usage and overall system safety.
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2. Methodology
2.1. Data Description

Our case study focuses on residential buildings with EV charging infrastructure,
as detailed in [51]. The Risvollan housing complex in Trondheim, Norway, accommodates
2400 residents across 1113 apartments. Its EV charging network includes up to 764 Charging
Points (CPs) in private and shared parking areas. CPs are located in individual parking
spots for residents or shared parking zones.

The charging infrastructure balances the EV demand in each garage, ensuring they
remain within the specified overall power limit. All charging sessions registered include
plug-in times, plug-out times, and charged energy. From January 2019 to January 2020,
6878 charging sessions were registered. The EVs can charge at 24 different parking loca-
tions, each with an Advanced Measurement System (AMS) type of meter measuring the
aggregated EV charge load. We focused on data from two main garages (Bl2 & A1), as more
than 35% of the total charging sessions of the housing complex occurred in these garages.
We also incorporated the hourly traffic flow data of passenger cars in six nearby traffic
locations. The data were collected from a web portal [52], and more details can be found in
this study [53]. The overall elements of the final dataset utilized in our work are described
in Table 1.

Table 1. Dataset description.

Field Description Units

Charging sessions
session_ID Unique charging session ID –
Garage_ID Garage address identifier –
User_ID User identifier –
User_type Charger ownership (Private/Shared) –
Start_plugin Plug-in date and time DateTime
Start_plugin_hour Hour of plug-in (00–23) –
End_plugout Plug-out date and time DateTime
El_kWh Charged energy kWh
Duration_hours EV connection duration Hours
weekdays_start Plug-in weekday Monday–Sunday
Plugin_category 3-h interval category e.g., morning, afternoon

EV charge load (Garages B12 & A1)
date_from Start time DateTime
date_to End time DateTime
AMS_kWh Hourly aggregated load kWh

Local traffic flow
date_from Start time DateTime
date_to End time DateTime
Nearby Locations Hourly number of vehicles Count

Net energy exchange (Norway)
date Timestamp DateTime

Net energy exchange Amount of electric energy
imported/exported MWh

Table 2 provides descriptive statistics for EV charge load for both garages. To provide a
more intricate view of the dataset, a set of key figures was produced to visualize the notable
patterns in EV charging behavior. Figure 1 presents a frequency histogram depicting the
distribution of charging session durations, while Figure 2 shows the daily distribution of
plug-in and plug-out times. Figure 3 shows the connection time, private and shared, for all
CP sessions of the Risvollan complex.
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Table 2. Descriptive statistics for EV charge load (kWh).

Descriptive Statistics Garage B12 Garage A1

Count 9424 8285
Mean 2.9772 1.0314
Std. 4.2723 2.0760
Min. 0.0000 0.0280

25th Percentile 0.0500 0.0290
Median 0.4000 0.0290

75th Percentile 4.5000 0.6400
Max. 26.4588 18.2180

Figure 1. Frequency histogram of EV charging session duration framework (lighter shades of blue
correspond to longer charging durations).

(a) Plug-in time (b) Plug-out time

Figure 2. Daily distributions of plug-in and plug-out times (All CPs).

(a) Connection time (Private) (b) Connection time (Shared)

Figure 3. Daily distributions of charging connection time (All CPs).
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Most charging sessions lasted fewer than five hours; however, a secondary peak in
the 10–15 h range suggests that a subset of users intentionally left their vehicles plugged in
for extended periods, such as overnight charging. There were clear differences between
shared and private sessions with regard to plug-in and plug-out times. For private users,
plug-in times for their vehicles primarily occurred during the afternoon (i.e., 3–9 PM), while
shared chargers exhibited increased activity during the morning to early afternoon period
(9 AM to 3 PM), especially on weekdays. Regarding plug-out times, the highest proportion
of private users disconnected their vehicles between 6 and 9 AM, most likely to commence
their daily commute. In contrast, shared chargers displayed a more balanced distribution
of plug-out times. This suggests that shared chargers may be utilized by a broader range
of residents (not solely those commuting to work), thereby allowing greater flexibility for
charging during working hours, as seen with work-from-home residents.

Regarding connection times, in private charging arrangements, vehicle owners typi-
cally do not face external constraints when disconnecting once charging is complete. Conse-
quently, vehicles often remain plugged in for extended periods (especially overnight). This
contributed to the secondary peak in connection durations of 10–15 h (Figure 1). In shared
charging, there is an expectation that users free up the charging station as soon as the SoC
is sufficient, which generally encourages more targeted and shorter charging sessions.

2.2. Net Energy Exchange Data (Norway)

Norway, a leading renewable energy producer in the EU, relies heavily on hydroelectric
power, leading to grid variations influenced by integration with renewable energy sources
(RES). A notable characteristic of Norway’s hydropower system is its substantial storage
capacity. The country accounts for half of Europe’s reservoir storage capacity, and over
75% of its production capacity is flexible [54]. This flexible system stores water during low
demand, optimizing resource allocation during peak demand periods. A key metric of
energy demand trends is the total net energy exchange, representing imports (negative
values) and exports (positive values) on the national grid [55]. Day-ahead pricing data
show electricity costs fluctuate within a 24 h cycle, typically lowest at night and weekends,
and highest during the day [56]. This pattern aligns with hydropower operational practices,
where plants often disengage from the energy grid during low-demand periods, typically
during late-evening and night-time hours, to store water, ensuring there are sufficient
reserves to be used for daytime peaks in energy demand. During these periods, the grid
relies more on energy imports from neighboring countries’ thermal power plant-based
output, which provides low-cost electricity during off-peak periods [55], hence driving the
end-consumer electricity pricing downward. Figure 4 illustrates this operational strategy
by highlighting the temporal variations in grid exchange. Negative values denote energy
imports, while positive values indicate exports.

Specifically, selected days in 2019 reveal two distinct net energy exchange peaks—one
occurring in the early morning (approximately 7–8 AM) and another in the late afternoon
(around 5–6 PM). In contrast, during nighttime hours (i.e., from 10 PM to approximately
5–6 AM), the net energy exchanges trend toward zero and negative values, reflecting a
period of increased reliance on energy imports.
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Figure 4. Hourly net energy exchange flow in Norway.

2.3. Preprocessing and Feature Engineering

Since the target variable (EV charge load) exhibited differing magnitudes between
the two garages (Table 2), normalization was applied using Min-Max scaling to rescale
the target values to a common range, ensuring consistency for model training. Outliers
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exceeding the 99.99th percentile were capped at their respective maximum values to
mitigate the influence of extreme observations. Additionally, time-based interpolation was
used to fill in any missing values, thereby maintaining the continuity of the dataset for
model training.

• Temporal features: Seasonality features were generated by partitioning timestamps
into categorical variables (e.g., hour, day, week, and month). Additional features, such
as off-peak hours, were synthesized to better capture variations in charging and traffic
patterns. Then, a sinusoidal positional encoding method was utilized to preserve the
inherent periodicity of these features. For a given temporal feature x (e.g., the hour
of the day) with a known maximum value xmax (for instance, 24 for hours), cyclical
encoding is defined by the following transformations:

xsin = sin
(

2πx
xmax

)
, xcos = cos

(
2πx
xmax

)
.

This mapping projects the value x onto the unit circle, ensuring that values near the
cycle boundaries (e.g., 23:00 and 00:00) are close in the transformed space.

• Other features: Two additional exogenous features were included in the dataset:

– Public/Private Charging Share: Charging sessions were classified into shared
and private categories. The hourly proportion for each category was computed
by aggregating the session durations, which were first recorded on a minute-by-
minute basis and subsequently summed to obtain an hourly total.

– Local Traffic Flow Indicator: This feature quantifies the variability of local traffic
patterns by employing dimensionality reduction. Specifically, Principal Compo-
nent Analysis (PCA) was applied to traffic flow data collected from six nearby
locations (Figure 5) over the preceding eight hours. The data were then pro-
jected onto the first principal component, which was subsequently utilized as a
training feature.

Figure 5. Locations of measured traffic flow near the Risvolan area.
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2.4. Forecasting Approach

During implementation, various ML and DL algorithms were trained and tested for
one-step-ahead forecasting, with the best-performing models selected for further tuning.
The evaluation included tree-based and non-tree-based ML algorithms, as well as Recurrent
Neural Networks (RNNs), which are well-suited for time series forecasting. Before ap-
plying regression techniques, data standardization was performed, since non-tree-based
algorithms and RNNs require scaled features.

The final feature matrix was constructed using the Sliding Window (SW) technique [57],
which creates lagged variables by shifting data in 24 h increments. Let

{xt}T
t=1, xt ∈ RF,

denote the original time series data, where F is the number of features per time step.
To generate lagged variables with a 24 h shift, a sliding window of length L is applied.
Specifically, for the ith sample, the sliding window is defined as

Xi =


xi

xi+24
...

xi+(L−1)·24

 ∈ RL×F.

For RNN models, the entire dataset was organized as a three-dimensional tensor:

X ∈ RN×L×F,

where N is the total number of samples, L represents the number of time steps (lagged
observations), and F is the number of features. For models that do not explicitly capture
temporal dependencies (such as tree-based models), the sliding window samples are
flattened into a two-dimensional feature matrix, where the time steps are concatenated
along the feature dimension.

In our work, the window length L was chosen as 24, corresponding to 24 h. This
decision was motivated by empirical knowledge and the observed daily cyclical patterns
in residential EV charging behavior. Experiments confirmed that a 24 h lag effectively
captured the daily recurring patterns in EV load, maximizing forecasting performance,
while avoiding unnecessary expansion of the feature space.

The forecasting approach is specifically tailored to one-step-ahead prediction, where
the model forecasts the immediate subsequent value based on historical data. This targeted
strategy ensures timely and precise predictions, which are critical for dynamic EV charging
recommendation, as it enables rapid updates with the most recent information, reducing
forecast uncertainty. The overall forecast modeling methodology is illustrated in Figure 6.

2.4.1. EV Charge Load Forecasting

Based on empirical experience, for the forecast of the next hour EV charge load, we
tested different key base ML regressors such as LightGBM (LGBM), HistGradientBoosting
(HGB), XGBoost (XGB), CatBoost (CB), Gradient Boosting (GB), Extra Trees (ET), Huber
Regressor (HR), and Lasso Lars CV (LLCV). Our strategy was to evaluate these base models
and select the best-performing ones in terms of accuracy, to develop a meta-ensemble
regressor that utilized both stacking and voting strategies. The selected models were
hyperparameter-tuned using empirical knowledge and the grid search method.
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Figure 6. Overview of the forecasting approach.

Let f1, f2, . . . , fM denote a set of M base regressors trained to forecast the next hour’s
EV charge load. For an input x, each base model produces a prediction

ŷj(x) = f j(x), j = 1, 2, . . . , M.

Stacking Strategy: In stacking, the forecasts of the selected base regressors are used as
training features to form the vector:

ŷ(x) =


ŷ1(x)
ŷ2(x)

...
ŷM(x)

,

Then, a meta-learner g maps these features to the final output:

ŷ(x) = g
(
ŷ1(x), ŷ2(x), . . . , ŷM(x)

)
.

Voting Strategy: In this case, the final forecast is computed as the weighted average of
the base regressors’ forecasts:

ŷ(x) =
M

∑
j=1

αj ŷj(x),

subject to
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M

∑
j=1

αj = 1 and αj ≥ 0, ∀ j.

The weights αj are chosen based on the relative performance of the base models.
Stacking and Voting Meta-Ensemble Regressor (SVMER): In our approach, we selected

the best-performing base models based on their observed accuracy. Their predictions were
then combined in the stacking framework, where the meta-learner was implemented as a
voting regressor:

ŷ(x) = g
(
ŷ1(x), . . . , ŷM(x)

)
=

M

∑
j=1

αj ŷj(x).

For the meta-learner, we selected a combination of linear (LLCV) and tree-based
regressors (ET, GB). This selection enables the ensemble to capture both linear trends
and potential nonlinear interactions among the base forecasts. To ensure robustness and
mitigate overfitting, we employed a 5-fold Cross-Validation (CV) strategy during the meta-
learning phase. Specifically, the training data were divided into five equal parts; for each
fold, the base regressors were trained on four parts and used to generate predictions on
the remaining part. These out-of-fold forecasts served as unbiased inputs for training the
voting regressor. Since each forecast is produced by a model that has not been exposed to
the corresponding subset of data, this approach yields more reliable estimates of model
performance and enhances the overall generalization.

2.4.2. Net Energy Exchange Forecasting

Similarly to the localized EV charge load time series, based on the available historical
data, we developed a forecasting model for Norway’s net electric energy exchange. Consid-
ering that the net energy exchange data comprise a large univariate time series spanning
four years (2019–2023), a dataset substantially larger than that used for the local EV charge
load, we opted to experiment with DL methods. In particular, RNN architectures were
selected, due to their proven ability to capture long-term temporal dependencies in se-
quential data, especially when trained on extensive datasets. We developed and evaluated
three established RNN-based models: Long Short-Term Memory (LSTM), its bidirectional
variant (biLSTM), and Gated Recurrent Unit (GRU).

A comprehensive exploration of various network architectures and hyperparameter
settings was conducted to optimize the one-step-ahead forecasting accuracy. Key hyperpa-
rameters were carefully optimized to balance model complexity and generalization ability.
All three models employed a shared stacked architecture consisting of three recurrent layers
with dropout regularization. In our configuration, each recurrent layer was set to 24 hidden
units, and a dropout rate of 0.2 was applied to mitigate overfitting. We adopted the ReLU
activation function and the Adam optimizer.

2.5. Smart Charging Recommendation Framework

In our recommendation framework, we integrate local EV charge load data with
Norway’s net electric energy fluctuation profile to generate smart charging recommenda-
tions. Benefiting the outcomes of the two developed forecasting models, the framework
is designed to be reproducible and easily adaptable to diverse use cases and building
configurations, making it a versatile tool for residents and EV users to optimize their
charging decisions.

The framework determines a confidence level that assesses the energy efficiency of EV
charging within the next hour based on the forecast EV charge load and the national net
energy exchange. Confidence levels are calculated using a weighting mechanism applied
to the forecast values. The weighting is guided by boundary conditions, which are defined
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based on the data distribution; in particular, the quartiles extracted for the period analyzed
(2019). Lower values (below Q1 ) for both the EV charge load and net energy exchange are
assigned higher weights, while higher values are penalized. These weights, combined with
the forecasting model accuracies (R2), yield the final confidence level.

We define the forecast variables as follows:

FEV = Forecast EV charging load (kWh),

FNEE = Forecast net energy exchange (MWh).

The historical quartiles are denoted by

Q1,EV, Q3,EV (for EV charge load),

Q1,NEE, Q3,NEE (for net energy exchange).

For any forecast value x (either FEV or FNEE) with corresponding quartiles Q1 and Q3,
define the weight function as

ω(x; Q1, Q3) =


1, if x ≤ Q1,

Q3 − x
Q3 − Q1

, if Q1 < x < Q3,

0, if x ≥ Q3.

(1)

Thus, the weights for the forecasts are

ωEV = ω
(

FEV; Q1,EV, Q3,EV
)
,

ωNEE = ω
(

FNEE; Q1,NEE, Q3,NEE
)
.

Let the forecasting accuracies (R2 values) be:

AEV = Accuracy for the EV charge load model,

ANEE = Accuracy for the net energy exchange model.

Using a balancing parameter λ ∈ [0, 1], the overall confidence score C is computed as

C = λ (ωEV · AEV) + (1 − λ) (ωNEE · ANEE) (2)

Finally, the continuous confidence score C is mapped to five discrete probability classes,
ranging from ‘Very Low’ to ‘Very High’. These categories aim to provide a qualitative
assessment of the confidence in energy-efficient EV charging.

Confidence Level =



Very High, if C ≥ 0.8,

High, if 0.6 ≤ C < 0.8,

Medium, if 0.4 ≤ C < 0.6,

Low, if 0.2 ≤ C < 0.4,

Very Low, if C < 0.2.

(3)

The overall methodological concept of the residential recommendation framework is
depicted in Figure 7.
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Figure 7. Design overview of the residential EV recommendation framework, based on Equations (1)–(3).

Utilizing the forecasts generated by the trained models and the developed smart
charging recommendation methodology, residents and EV users can be promptly notified of
favorable charging conditions. These conditions are determined based on two main factors:

• A lower national energy demand, which typically correlates with reduced electricity
costs for residential users.

• A short-term assessment of the anticipated charging load, ensuring that the cumu-
lative demand remains within the normal operating power limit of the residential
block’s charging infrastructure and serving as an indicator of increased availability of
shared CP.

3. Experimental Results and Discussion
3.1. Forecasting Results

This research demonstrates a step-by-step approach for forecasting EV charge load
and national net energy exchange using both ML and DL models. The experimental
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results validated the proposed methods, with high forecasting accuracy achieved for both
targets. The developed smart charging recommendation framework shows promising
potential for guiding EV users to charge during periods of lower grid demand, thereby
enhancing energy efficiency and reducing electricity costs. Seasonal variations and external
factors (such as weather conditions and traffic diversions) may influence the variability in
forecast outcomes.

Table 3 illustrates the base regression models utilized and tested against the SVMER.
The results indicate that the developed SVMER model clearly outperformed the base
models, providing more accurate forecasts. By combining multiple models, SVMER can
aggregate their strengths, reducing the risk that an error in a single base model will
disproportionately affect the final prediction and mitigate their weaknesses, leading to
improved overall performance.

Table 3. EV charge load forecasting model performance metrics (best values shown in bold).

Model R2 RMSE MAE CVRMSE NRMSE

Test data-Garage B12

SVMER 0.798 1.950 1.201 0.642 0.079
LGBM 0.758 2.105 1.257 0.708 0.088
HGBR 0.757 2.111 1.266 0.710 0.088
CB 0.763 2.085 1.286 0.701 0.087
XGB 0.735 2.201 1.331 0.740 0.092
DTR 0.696 2.358 1.392 0.793 0.098
KNN 0.655 2.514 1.598 0.845 0.105
RF 0.753 2.127 1.257 0.715 0.089
HR 0.688 2.389 1.352 0.803 0.100

Test data-Garage A1

SVMER 0.809 0.933 0.467 0.908 0.056
LGBM 0.775 0.955 0.477 0.932 0.066
HGBR 0.772 0.961 0.485 0.937 0.066
CB 0.776 0.952 0.490 0.928 0.066
XGB 0.750 1.007 0.504 0.982 0.070
DTR 0.719 1.067 0.525 1.041 0.074
KNN 0.524 1.390 0.765 1.355 0.096
RF 0.770 0.965 0.475 0.941 0.067
HR 0.712 1.081 0.494 1.054 0.075

Train data

SVMER (Garage B12) 0.827 1.417 0.903 0.477 0.059
SVMER (Garage A1) 0.839 0.738 0.389 0.725 0.041

Based on the experimental modeling results, we selected the best-performing base
models to develop a meta-ensembling learner (SVMER). The selected models and overall
structure of the meta-ensembling learner are depicted in Figure 8.

Figure 8. SVMER model primary structure.
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For the net energy exchange case, the RNNs proved more accurate than traditional
ML algorithms. The results of the tested RNN models showed that all models achieved
high forecasting accuracies in predicting the next hour’s net energy exchange (Table 4).
The observed high forecasting accuracy can be attributed to the clear periodic pattern
exhibited by the net energy exchange between daytime and nighttime. This recurring
cycle was effectively captured by the implemented RNNs, showcasing their ability to
discern and replicate complex temporal dependencies. This was further enhanced by
the substantial volume of data used for training (about three years of historical data).
The biLSTM model had a slightly better performance, most likely due to its ability to
capture both past and future contextual information—a critical factor for modeling complex
sequential dependencies. Hence, it was finally chosen to predict the values to be fed into
the recommendation framework.

Table 4. Net energy exchange model performance metrics.

Model R2 RMSE MAE CVRMSE NRMSE

Test data

LSTM 0.9617 0.031 0.023 0.061 0.043
biLSTM 0.9624 0.031 0.023 0.06 0.043
GRU 0.9567 0.033 0.024 0.064 0.046

Concerning potential overfitting effects, as illustrated in Figure 9, the training and
validation metrics remained closely aligned throughout the training process, showing no
significant deviations that would suggest overfitting. Both curves steadily decreased and
eventually converged to stable values, indicating that the model was effectively learning
underlying patterns in the data, while maintaining a robust generalization performance.

3.2. Charging Recommendations

We selected indicative results for most hours of the day to showcase the outcome
of the developed charging recommendation framework, as depicted in Table 5. Initially,
we noticed that in certain instances—such as the case on 16 March 2019 at 12:00:00—the
probability of efficient charging remained low or medium, despite a negative net energy
forecast. This apparent inconsistency is attributable to the balancing parameter, λ, which
was set to 0.5 in our study. By assigning equal weight to the net energy forecast and the
local EV charge load, the framework allows for the possibility that a high local load, even
in the presence of a negative net energy forecast, may moderate the overall recommenda-
tion probability.

From a 24 h periodic point of view, during late night hours and very early morning
hours, the probability of a more efficient charge was high, likely due to the lower power
demand, highlighted by the energy imports. For mid-day and afternoon hours, there was
an indication of a low probability of an efficient charge. This can probably be attributed to
the fact that these are mostly peak hours in terms of energy consumption on the national
grid level and to the high number of EV plug-ins.

Concerning the morning hours (i.e., 06:00–11:00), the patterns seemed less clear in
terms of consistency. There were mornings with a low-to-medium probability of efficient
charging, but there were also cases with an indication for more efficient charging. This
could be partly attributed to fluctuations in the net energy exchange, potentially influenced
by weather conditions and seasonal shifts, such as increased solar energy in summer or
reduced hydropower during freezing conditions.
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Table 5. Smart charging recommendation framework selected results.

Time (Local) Net Energy Forecast (MWh) EV Charge Load Forecast
(kWh)

Probability of Efficient
Charge

2019-03-01 06:00:00 1746.58 0.32 Low
2019-03-01 07:00:00 −815.20 0.70 Medium
2019-03-01 08:00:00 164.16 0.63 Medium

2019-08-16 09:00:00 2744.52 0.35 Low
2019-08-16 10:00:00 1704.57 9.09 Very Low
2019-08-16 11:00:00 1550.41 0.22 Low

2019-03-16 10:00:00 −3436.45 0.22 Very High
2019-03-16 11:00:00 −3389.84 0.19 Very High
2019-03-16 12:00:00 −3494.69 10.05 Medium

2019-04-07 12:00:00 1760.57 0.49 Low
2019-04-07 13:00:00 −1290.92 3.25 Low
2019-04-07 14:00:00 −453.22 6.05 Low

2020-01-29 12:00:00 3130.09 0.13 Low
2020-01-29 13:00:00 2941.38 0.41 Low
2020-01-29 14:00:00 2765.86 6.32 Very Low

2019-07-16 14:00:00 −221.96 0.29 Medium
2019-07-16 15:00:00 −1757.87 0.93 Medium
2019-07-16 16:00:00 1744.21 4.54 Low
2019-07-16 17:00:00 362.66 3.30 Low
2019-07-16 18:00:00 1059.23 4.66 Low

2019-05-08 19:00:00 2462.33 4.67 Very Low
2019-05-08 20:00:00 2168.85 8.59 Very Low
2019-05-08 21:00:00 1986.10 9.89 Very Low

2019-06-01 23:00:00 −2897.51 1.03 Very High
2019-06-02 00:00:00 −2798.59 4.67 High
2019-06-02 01:00:00 −2558.05 0.22 Very High

2019-05-05 02:00:00 −2722.13 5.03 High
2019-05-05 03:00:00 −2584.82 0.17 Very High
2019-05-05 04:00:00 −2490.52 5.75 High
2019-05-05 05:00:00 −2592.87 0.19 Very High

Figure 9. Net energy exchange biLSTM model train–validation metrics.

4. Conclusions
Smart EV charging, empowered by data-driven forecasting methods, has the potential

to enhance user decision-making and ensure the optimal operation of local charging
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infrastructure, while providing the flexibility needed to alleviate peak electricity demand
on the grid. This study investigated the time series forecasting of EV charge load and net
energy exchange, two critical inputs for a smart EV charging recommendation framework
designed to assist residents in making informed charging decisions.

The first step was a one-step time series forecasting of EV charge load and net energy
exchange. A variety of ML and DL models were tested, and the best-performing models
were selected. In particular, for forecasting EV charge load, a robust meta-learner—referred
to as the Stacking and Voting Meta-Ensemble Regressor (SVMER)—was developed by
combining multiple base models using stacking and voting strategies. This ensemble
approach leveraged the diversity of models to generalize better to unseen data, a crucial
aspect in time series forecasting, where future conditions may diverge from historical data.

The second step was to develop a data-driven charging recommendation mechanism.
This mechanism suggests optimal strategies for residents to charge their EVs based on the
forecasting engine output. It probabilistically identifies prospective periods of low grid-
level electricity and local charging demand and advises EV users to charge their vehicles
within the next hour. In alignment with the SRI’s primary objectives, this empowers
residents to optimize energy efficiency by responding to dynamic grid signals, thereby
enhancing the overall intelligence and energy performance of their smart homes.

The experimental results revealed that efficient EV charging was typically highest
when a negative net energy forecast, indicating a surplus of energy, aligned with a low local
EV charge load. In accordance with that, charging efficiency was generally higher during
off-peak hours (late night and early morning) and lower during peak periods (mid-day and
afternoon). That said, although some recommendations indicated high efficiency, others
only achieved moderate or low efficiency, even under favorable grid conditions. This
variation is largely driven by the balancing parameter λ, which in our study was set to
equally weight the net energy forecast and local EV charge load. Under this configuration,
a high local load affects the overall recommendation probability, even when surplus energy
is available. The framework also prioritizes the optimal performance of the local charging
infrastructure, mitigating the risk of overloading. Additionally, the charging efficiency was
generally higher during off-peak hours (late night and early morning) and lower during
peak periods (mid-day and afternoon), with some morning variability likely due to weather
and seasonal effects.

The added value of our recommendation framework is its inherent adaptability and
modular design. Designed to accommodate evolving energy market dynamics, the frame-
work allows seamless integration of additional data streams, such as energy flows from
the national grid. This adaptability ensures that the system remains responsive to regional
energy variations and policy changes, and thus adaptable to a wide range of geographical
locations. Importantly, the framework functions as a decision-making indicator system
for residential users, guiding them toward optimal charging times, without attempting to
synchronize EV charging with intermittent RESs on a national scale, a task better suited to
top-down grid-level management.

4.1. Implications

The outcomes of this study have several broader implications for stakeholders, with a
particular focus on benefiting the end-user:

1. Residents of future smart buildings who also drive EVs. The proposed frame-
work offers a user-centric decision support tool that enables them to optimize their
charging schedules.

2. Charge Point Operators (CPOs) can offer personalized recommendations to users and
implement dynamic pricing and service strategies. For instance, during peak grid
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demand, prices at certain charging points might increase to incentivize users to charge
at off-peak times or locations with lower grid stress.

3. If implemented on a larger scale, Distribution System Operators (DSOs) and CPOs can
collaborate to create more efficient Demand Response (DR) solutions. The predictive
capabilities not only support the synchronization of local charging decisions with
broader grid conditions but can also help facilitate the incorporation of RESs and
Vehicle-to-Grid (V2G) technologies.

4.2. Limitations and Future Work

This work has certain limitations that need to be acknowledged. Starting from the
training process, the training dataset was confined to charging data from only two garages,
which may not adequately capture the diverse patterns and variations inherent in broader
time series datasets. The forecasting engine’s predictive performance could benefit from
incorporating additional data from a diverse range of case study building complexes with
EV infrastructure. This enrichment would ensure that the model more accurately reflects
local conditions. In certain cases, the framework produced inconsistent recommendations
and lacked a concrete pattern. These findings underscore the need for further research.
Potential areas of future expansion involve the following main aspects:

• A more detailed sensitivity analysis of the balancing parameter, λ. Future work should
explore the development of an adaptive weighting scheme that dynamically adjusts
based on real-time grid conditions and local charging infrastructure constraints, which
could further enhance the robustness of the recommendations.

• Enhance the methodology by incorporating multi-step ahead forecasting and expand-
ing the training dataset to include additional charging data and longer timeframes.
Validate the models on new data and investigate their improvement in terms of
forecasting accuracy and generalization.

• Regarding the cost-effectiveness aspect, the framework could be further enhanced by
incorporating Day-ahead Market (DAM) energy price data. This enhancement would
enable the framework to provide more accurate recommendations during periods of
low electricity pricing. This could contribute to establishing economic incentives for
EV users with respect to charging operations.
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Abbreviations
The following abbreviations are used in this manuscript:

AEV Accuracy (R2) of the EV charging load forecasting model
ANEE Accuracy (R2) of the net energy exchange forecasting model
AMS Advanced Measurement Systems
biLSTM bidirectional Long Short-Term Memory
BESS Battery Energy Storage System
CB CatBoost
CNN Convolutional Neural Network
CP Charging Point
CV Cross-Validation
CVRMSE Coefficient of Variation in the Root Mean Square Error
DAM Day-ahead Market
DR Demand Response
DSM Demand Side Management
DL Deep Learning
DSO Distribution System Operator
DTR Decision Tree Regressor
EV Electric Vehicle
ET Extra Trees
FEV Forecast EV charge load (kWh)
FNEE Forecast net energy exchange (MWh)
GB Gradient Boosting
GRU Gated Recurrent Unit
HGBR HistGradientBoosting Regressor
HR Huber Regressor
ICEV Internal Combustion Engine Vehicle
IoT Internet of Things
KNN K-Nearest Neighbors
λ Balancing factor between local charge load & net energy exchange forecasts (0 ≤ λ ≤ 1)
LCVF Load Conservation Valley-Filling
LGBM LightGBM
LLCV Lasso Lars Cross-Validation
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MISDP Multilayer Iterative Stochastic Dynamic Programming
ML Machine Learning
MLP Multi-Layer Perceptron
NEE Net Energy Exchange
NRMSE Normalized Root Mean Square Error
PCA Principal Component Analysis
PSO Particle Swarm Optimization
Q1,EV First quartile of EV charging load
Q1,NEE First quartile of net energy exchange
PV Photovoltaics
R2 Coefficient of Determination
RF Random Forest
RNN Recurrent Neural Network
RES Renewable Energy Sources
SC Smart Charging
SLSQP Sequential Least Squares Programming
SRI Smart Readiness Indicator
SVMER Stacking and Voting Meta-Ensemble Regressor
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UMC User-managed Charging
V2G Vehicle-to-Grid
XGB XGBoost
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53. Tsalikidis, N.; Mystakidis, A.; Koukaras, P.; Ivaškevičius, M.; Morkunaite, L.; Fokaides, P.; Tjortjis, C.; Tzovaras, D. Urban
Traffic Congestion Prediction: A Multi-Step Approach Utilizing Sensor Data and Weather Information. Smart Cities 2024, 7, 10.
[CrossRef]

54. Norwegian Ministry of Energy. Key Facts About the Norwegian Renewable Energy Sector. 2024. Available online: https:
//energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/ (accessed on 30 November 2024).

55. Statnett. Data from the Power System—Statnett. 2023. Available online: https://www.statnett.no/en/for-stakeholders-in-the-
power-industry/data-from-the-power-system/#import-and-export (accessed on 1 September 2023).

56. Nord Pool. Day-Ahead Electricity Prices—Nordpool Group. 2023. Available online: https://data.nordpoolgroup.com/auction/
day-ahead/prices (accessed on 30 November 2023).

57. Lee, C.H.; Lin, C.R.; Chen, M.S. Sliding-Window Filtering: An Efficient Algorithm for Incremental Mining. In Proceedings of
the International Conference on Information and Knowledge Management, Atlanta, GA, USA, 5–10 October 2001; pp. 263–270.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/en18051245
http://dx.doi.org/10.1109/ACCESS.2024.3491379
http://dx.doi.org/10.1016/j.enbuild.2021.110923
https://trafikkdata.atlas.vegvesen.no
http://dx.doi.org/10.3390/smartcities7010010
https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/
https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/data-from-the-power-system/#import-and-export
https://www.statnett.no/en/for-stakeholders-in-the-power-industry/data-from-the-power-system/#import-and-export
https://data.nordpoolgroup.com/auction/day-ahead/prices
https://data.nordpoolgroup.com/auction/day-ahead/prices
http://dx.doi.org/10.1145/502585.502630

	Background
	Introduction
	EV Charging Operations
	Related Work

	Methodology
	Data Description
	Net Energy Exchange Data (Norway)
	Preprocessing and Feature Engineering
	Forecasting Approach
	EV Charge Load Forecasting
	Net Energy Exchange Forecasting

	Smart Charging Recommendation Framework

	Experimental Results and Discussion
	Forecasting Results
	Charging Recommendations

	Conclusions
	Implications
	Limitations and Future Work

	References

