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ABSTRACT

Physics-informed neural networks (PINNs) have shown promise in solving com-
plex partial differential equations (PDEs). However, certain training pathologies
have emerged, compromising both convergence and prediction accuracy in practi-
cal applications. In this paper, we propose to use condition number as an innova-
tive metric to diagnose and rectify the pathologies in PINNs. Inspired by classical
numerical analysis, where the condition number measures sensitivity and stability,
we highlight its pivotal role in the training dynamics of PINNs. We delineate a
theory that elucidates the relationship between reduced condition numbers and im-
proved error control, as well as better convergence. Subsequently, we present an
algorithm that leverages preconditioning to enhance the condition number. Eval-
uations on 18 PDE problems showcase the superior performance of our method.
Significantly, in 7 of these problems, our method reduces errors by an order of
magnitude. Furthermore, in 2 distinct cases, our approach pioneers a solution,
slashing relative errors from roughly 100% to below 6% and 21%, respectively.

1 INTRODUCTION

Numerical methods, such as finite difference and finite element methods, discretize partial differ-
ential equations (PDEs) into linear equations to attain approximate solutions. Such discretizations
can be computationally burdensome, especially for PDE-constrained problems that demand frequent
solver calls. Recently, physics-informed neural network (PINN) (Raissi et al., 2019) and its exten-
sions (Pang et al., 2019; Yang et al., 2021; Liu et al., 2022) have emerged as powerful tools for
tackling these challenges. By integrating PDE residuals into the loss function, PINNs not only en-
sure that the neural network adheres to the physical constraints but also maintain its versatility for
a spectrum of PDE-related problems, including inverse problems (Chen et al., 2020; Jagtap et al.,
2022) and physics-informed reinforcement learning (PIRL) (Liu & Wang, 2021; Martin & Schaub,
2022). While PINNs have successes over various domains (Zhu et al., 2021; Cai et al., 2021; Huang
& Wang, 2022), their full potential and capabilities remain under-explored.

Several studies (Mishra & Molinaro, 2022; De Ryck & Mishra, 2022; De Ryck et al., 2022; Guo &
Haghighat, 2022) have theoretically demonstrated the proficiency of PINNs in addressing a vast ma-
jority of well-posed PDE problems. Yet, Krishnapriyan et al. (2021) spotlights the training pathol-
ogy inherent to PINNs and shows their failure in even moderately complex problems1 encountered
in real-world scenarios. As illustrated in Figure 1, such pathology can substantially hinder conver-
gence and prediction accuracy. While some researchers attribute the pathology to the unbalanced
competition between PDE and boundary condition (BC) loss terms (Wang et al., 2021; 2022b), oth-
ers advocate for enforcement of the BC on the neural network, eliminating BC terms altogether
(Berg & Nyström, 2018; Sheng & Yang, 2021; Lu et al., 2021b; Sheng & Yang, 2022; Liu et al.,
2022). However, this challenge persists as previous approaches only partially address the pathology
when dealing with complex PDEs, such as the Navier-Stokes equations (Liu et al., 2022). Thus,
effective strategies to address this pathology still remain largely open.

In this work, we introduce the condition number as a novel metric, motivated by its pivotal role in
understanding computational stability and precision, to accurately quantify pathologies in PINNs.

1The term “complex problems” is employed here to describe PDEs characterized by nonlinearity, irregular
geometries, multi-scale phenomena, or chaotic behaviors. For an in-depth discussion, see Hao et al. (2022).
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(a) Convergence dynamics: mean ± std (b) Error landscape: PINN (left) vs. Ours (right)

Figure 1: An illustrative example of learning 1D wave equation. (a) PINN baselines (only a subset
are shown) grapple with prolonged plateaus and severe oscillations during training. In contrast, our
preconditioned PINN (PCPINN) can converge quickly and achieve much lower L2 relative error
(L2RE). (b) PINN wanders in the high-error zone (red), while ours dives deep and eventually con-
verges. Scatters mark the model parameters in each iteration. Details are elaborated in Section 5.3.

Further, we present an algorithm specifically designed to optimize this metric, enhancing both ac-
curacy and convergence. In traditional numerical analysis, the condition number acts as a beacon,
highlighting the sensitivity of a function’s output relative to its input. A higher condition number
typically indicates potential issues, such as susceptibility to errors, often making algorithmic conver-
gence challenging. This insight is particularly relevant in machine learning’s complex optimization
landscape. In this context, the condition number emerges as a vital tool to identify potential pit-
falls. Given its profound significance in numerical analysis and its potential in machine learning, we
highlight its promise for addressing intricacies inherent to PINNs.

Specifically, we first theoretically demonstrate that, under appropriate assumptions, a lower condi-
tion number correlates with improved error control and faster convergence. We then propose an
algorithm that mitigates the condition number by incorporating a preconditioner into the loss func-
tion. To validate our theoretical framework, we evaluate our approach on selected PDE problems and
further benchmark it against a comprehensive PINN dataset (Hao et al., 2023), which encompasses
20 distinct forward PDEs and 2 inverse scenarios. Our results consistently show state-of-the-art
performance across most test cases. Notably, challenges previously deemed unsolvable for PINNs
now become tractable, with dramatic error reductions seen in cases like a 3D Poisson equation with
intricate geometry (reducing relative errors from nearly 100% to below 5%).

2 PRELIMINARIES

We start by presenting the problem formulation and reviewing physics-informed neural networks
(PINNs). We consider low-dimensional boundary value problems (BVPs) 2 that expect a solution u
satisfying that:

F [u] = f in Ω, (1)

with a boundary condition (BC) of u|∂Ω = g, where Ω is an open, bounded subset of Rd with
dimension d ≤ 4. Here, f : Ω → R and g : ∂Ω → R are known functions; F : V → W is a
partial differential operator including at most k-order partial derivatives, where k ∈ N+ and V,W
are normed subspaces of L2(Ω).

Assuming the well-posedness of our BVP, a fundamental property of formulations for physical prob-
lems, as indicated by Hilditch (2013), we can find a subspace S ⊂ F(V ). For every w ∈ S, there
exists a unique v ∈ V such thatF [v] = w and that v|∂Ω = g, that is, the BC. This allows us to define
F−1 : S → V as F−1[w] = v. Again, owing to the well-posedness, F−1 is continuous within S.
Conclusively, our solution can be framed as u = F−1[f ].

PINNs use a neural network uθ with parameters θ ∈ Θ to approximate the solution u, where
Θ = Rn represents the parameter space and n ∈ N+ is the number of parameters. The optimization

2Although not discussed, our method readily extends to problems involving vector-valued functions and
more general boundary conditions. Relevant experimental details can be found in Appendix D.
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problem of PINNs can be formalized as a constrained optimization problem:

min
θ∈Θ
∥F [uθ]− f∥ , subject to uθ|∂Ω = g. (2)

Two primary strategies to address the constraint are:

Lsoft(θ) = ∥F [uθ]− f∥2 + α∥uθ − g∥2∂Ω or Lhard(θ) = ∥F [ûθ]− f∥2 , (3)

where α ∈ R+, ∥ · ∥∂Ω denotes the norm evaluated at ∂Ω, and all the norms are estimated via
Monte Carlo integration. The first approach adds a penalty term for BC enforcement. However, as
highlighted by Wang et al. (2021), this can induce loss imbalances, leading to training instability. In
contrast, the second approach, as advocated by (Berg & Nyström, 2018; Lu et al., 2021b; Liu et al.,
2022), employs a specialized ansatz: ûθ(x) = l∂Ω(x)uθ(x) + g(x), with l∂Ω being a smoothed
distance function to ∂Ω. This method naturally adheres to the BC, mitigating potential imbalances.
We favor this approach and, for clarity, will subsequently omit the hat notation, assuming uθ fulfills
the BC.

Training Pathology. Despite the promise of hard-constraint methods, training divergence still oc-
curs in moderately complex PDEs (Liu et al., 2022). As noted by Krishnapriyan et al. (2021), minor
imperfectness during optimization can lead to an unexpectedly large error, substantially destabiliz-
ing training. Our subsequent analysis will delve into this pathology.

3 ANALYZING PINNS’ TRAINING DYNAMICS VIA CONDITION NUMBER

3.1 INTRODUCING CONDITION NUMBER

In the realm of numerical algorithms, condition number has long been a touchstone for understand-
ing the problem landscape (Süli & Mayers, 2003). For instance, in linear algebra, the condition
number of a matrix provides insights into the error amplification and propagation from input to
output, thus indicating potential stability issues. Furthermore, in deep learning, condition number
can be used to characterize the sensitivity of the network prediction. A “sensitive” model could be
vulnerable to some malicious adversarial noise (Beerens & Higham, 2023).

Drawing inspiration from the established knowledge, we propose to use condition numbers to quan-
tify the pathology of PINNs, offering a fresh perspective on their behavior.

Definition 3.1 (Condition Number). For the boundary value problem (BVP) in Eq. (1), denoted by
P , by assuming the neural network has sufficient approximation capability (see Assumption A.4),
the relative condition number for solving P with a PINN is defined as:

cond(P) = lim
ϵ→0+

sup
0<∥δf∥≤ϵ

θ∈Θ

∥δu∥
/
∥u∥

∥δf∥
/
∥f∥

, (4)

provided ∥u∥ ≠ 0, ∥f∥ ≠ 03, where δu = uθ − u and δf = F [uθ]− f .
Remark. The condition number signifies the asymptotic worst-case relative error in prediction for a
relative error in optimization (noticing thatL(θ) = ∥δf∥2). The problem is said to be ill-conditioned
if the condition number is large, indicating that a small optimization imperfectness can result in a
large prediction error. This suggests that the problem is highly sensitive to errors, complicating the
identification of the correct solution.

Aligning with the observation that most real-world physical phenomena exhibit smooth behavior
with respect to their sources, we assume that F−1 is locally Lipschitz continuous and present the
subsequent theorem.

Theorem 3.2. If F−1 is K-Lipschitz continuous with K ≥ 0 in some neighbourhood of f , we have:

cond(P) ≤ ∥f∥
∥u∥

K. (5)

3If ∥u∥ = 0 or ∥f∥ = 0, we can similarly define the absolute condition number by removing the two terms.
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Proof. We defer the proof to Appendix A.1.

Remark. It is worth emphasizing that K is fundamentally tied to the intrinsic nature of the prob-
lem, with its dependence on a specific algorithm being minimal. Consequently, algorithmic en-
hancements, whether in network architecture or training strategy, may not substantially mitigate the
pathology unless the problem is reformulated.

For specific cases such as linear PDEs, we could have simpler conditions for the condition number’s
existence (refer to Appendix A.2).

To provide a more hands-on understanding, we delve into a foundational problem in both mathe-
matics and physics, the Poisson equation. We consider the equation:

∆u(x) = f(x), x ∈ Ω = (0, 2π/P ),

u(x) = 0, x ∈ ∂Ω = {0, 2π/P}, (6)

where P is the system paratmer. Our objective is to draw insights about the condition number from
this scenario. Proceeding, we derive an analytical expression for the condition number.
Theorem 3.3. Consider the function spaces V = H2(Ω) and W = L2(Ω). Let F denote the
Laplacian operator mapping from V to W , i.e., F = ∆ : V → W . Define the inverse operator
F−1 : F(V )→ V such that for every w ∈ F(V ), F−1[w] = v, where v ∈ V is the unique function
satisfying F [v] = w with boundary condition v(0) = v(2π/P ) = 0. Then, the norm of F−1 is:

∥F−1∥ = 4

P 2
. (7)

Proof. For a detailed derivation, refer to Appendix A.3.

In light of Proposition A.5, the condition number cond(P) for our problem is elegantly captured by
4∥f∥
P 2∥u∥ . Although this example is foundational, it illuminates the delicate interplay between system
properties and condition numbers. As we transition to Section 5.2, we will delve deeper, exploring
three practical problems and investigating how to numerically exstimate the condition number.

3.2 HOW CONDITION NUMBER AFFECTS ERROR & CONVERGENCE

Next, we will discuss the correlation between the condition number and the error control as well as
the convergence rate of PINNs.
Corollary 3.4 (Error Control). Assuming that cond(P) <∞, there exists a function α : (0, ξ)→
R, ξ > 0 with limx→0+ α(x) = 0, such that for any ϵ ∈ (0, ξ),

∥uθ − u∥
∥u∥

≤ (cond(P) + α(ϵ))

√
L(θ)
∥f∥

, ∀θ ∈ Θ ∧
√
L(θ) ≤ ϵ. (8)

Proof. This theorem can be derived directly from Definition 3.1 (see Appendix A.4 for details).

Remark. For well-posed BVPs, it is known that there is no error when the loss L(θ) is precisely
zero. However, the magnitude of the error remains elusive when L(θ) is a small (but non-zero)
value (due to optimization error). This theorem provides clarity by establishing an asymptotic re-
lationship between the error and the loss function, where the condition number serves as a scaling
factor. Consequently, improving the condition number emerges as a pivotal step to ensuring greater
accuracy, as empirically validated in our ablation study (see Section 5.3).

Then, we will show how the condition number affects the convergence of PINNs. Firstly, we analyze
the local convergence under the gradient descent:

θ(k) = θ(k−1) − η∇θL(θ(k−1)), k = 1, 2, 3, . . . , (9)

where η > 0 is a fixed learning rate. Assuming θ(0) gets close enough to a sufficiently accurate
local minimum θ∗ (i.e., L(θ∗) ≈ 0), we can approximate L(θ) using its truncated Taylor expansion,
whose error is discussed in Appendix A.6. This tailored approach then allows us to treat the problem
akin to a convex optimization scenario, paving the way for the subsequent theorem.
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Theorem 3.5 (Local Convergence). Assuming that cond(P) <∞, starting from θ(0) which locates
in a small neighbourhood of θ∗, denoted by B(θ∗, r), r > 0, we run a gradient descent algorithm
for k ≥ 1 steps with a sufficiently small learning rate η (see Assumption A.12), it follows that:

∥uθ(k) − u∥
∥u∥

⪅

(
cond(P) + α

(
1√
k

))
∥θ(0) − θ∗∥√

2ηk∥f∥
, (10)

where ∥ · ∥ is the L2 vector norm and α : (0, ξ)→ R, ξ > 0 with limx→0+ α(x) = 0.

Proof. The proof is deferred to Appendix A.5.

Secondly, we discuss the global convergence of PINNs through the lens of the neural tangent kernel
(NTK) theory (Jacot et al., 2018; Wang et al., 2022c). Considering an infinitesimally small learning
rate, Eq. (9) becomes a continuous-time gradient flow:

dθ

dt
= −∇L̂(θ), t ∈ (0,+∞) ∧ θ(0) = θ(0), (11)

where L̂ is the loss function discretized on a set of collocation points {x(i)}Ni=1 (refer to Ap-
pendix A.7). We derive the following theorem.
Theorem 3.6 (Global Convergence). Let U be a set such that {uθ(t) | t ∈ [0,+∞)} ⊂ U . Suppose
that F−1 is Fréchet differentiable in F(U). Under the assumption that cond(P) < ∞ and other
assumptions in the NTK (Jacot et al., 2018; Wang et al., 2022c), the average convergence rate c(t)
at time t (see Appendix A.7 for a detailed definition) satisfies that:

c(t) ⪆
∥f∥2/(∥u∥2|Ω|)

(cond(P))2 + α(L(θ(t)))︸ ︷︷ ︸
condition number and physics

∥∥∥∥∂uθ(t)

∂θ

∥∥∥∥2︸ ︷︷ ︸
neural network

, (12)

where α : (0, ξ)→ R, ξ > maxt∈[0,+∞) L(θ(t)) with limx→0+ α(x) = 0.

Proof. The complete proof is given by Appendix A.7.

Remark. According to the above two theorems, a small condition number could greatly accelerate
the convergence. We empirically validate this finding in Section 5.2.

4 TRAINING PINNS WITH A PRECONDITIONER

In this section, we present a preconditioning method tailored to improve the condition number inher-
ent to the PDE problem addressed by PINNs. This method paves the way for superior convergence
and accuracy.

Discretization of PDEs. We begin with well-posed linear BVPs defined on a rectangular domain
Ω, where the differential operator F is linear. We employ the finite difference method (FDM) to
discretize the BVP on a N -point uniform mesh {x(i)}Ni=1: Au = b. Here, A ∈ RN×N is an
invertible sparse matrix, u = (u(x(i)))Ni=1

4, and b = (f(x(i)))Ni=1.

Preconditioning Algorithm. For slightly complex problems, the condition number may reach the
level of 103 (see Section 5.2). To improve it, a preconditioning algorithm is employed to compute
a matrix P to construct an equivalent linear system: P−1Au = P−1b. Prevalent preconditioning
algorithms such as incomplete LU (ILU) factorization (i.e., P = L̂Û ≈ A, where L̂, Û are sparse
invertible lower and upper triangular matrices, respectively) can reduce the condition number by
several orders of magnitude while keeping the time cost much cheaper than solving Au = b (Shabat
et al., 2018). This can be formulated as:

cond(P) ≈ ∥b∥
∥u∥
∥A−1∥ −→ ∥P

−1b∥
∥u∥

∥A−1P ∥ ≈ ∥A
−1b∥
∥u∥

∥A−1A∥ = 1, (13)

where ∥ ·∥ is the L2 vector/matrix norm. A detailed derivation is provided in Appendix B.1. Finally,
we can train PINNs with precomputed preconditioners as displayed in Algorithm 1.

4To be precise, u only approximately equal the point values of u due to the error of numerical shemes.
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Algorithm 1 Training PINNs with a preconditioner

1: Input: number of iterations K, mesh size N , learning rate η, and initial parameters θ(0)

2: Output: trained parameters θ(K)

3: Generate a mesh {x(i)}Ni=1 for the problem domain Ω
4: Assemble the linear system A, b, where A is a sparse matrix
5: Compute the preconditioner P = L̂Û via ILU, where L̂, Û are both sparse matrices
6: for k = 1, . . . ,K do
7: Evaluate the neural network uθ(k−1) on mesh points to obtain: uθ(k−1) = (uθ(k−1)(x(i)))Ni=1

8: Compute the loss function L†(θ(k−1)) by:

L†(θ) =
∥∥P−1(Auθ − b)

∥∥2 =
∥∥∥Û−1L̂−1(Auθ − b)

∥∥∥2 , (14)

which incorporates the following steps:
(a) Compute the residual r ← Auθ(k−1) − b

(b) Solve L̂y = r and let r ← y, which should be very fast since L̂ is sparse
(c) Solve Ûy = r and let r ← y
(d) Compute L†(θ(k−1)) = ∥r∥2

9: Update the parameters via gradient descent: θ(k) ← θ(k−1) − η∇θL†(θ(k−1))
10: end for

Note: In our implementation, there is no requirement to design a hard-constraint ansatz for uθ to
adhere to the boundary conditions (BC). This is because our linear equation Au = b inherently
encompasses the BC. Further details can be found in Appendix B.2.

Time-Dependent & Nonlinear Problems. While our primary focus in this section revolves
around linear and time-independent PDEs, our approach is readily extended to handle both time-
dependent and nonlinear problems with judicious adaptations. For time-dependent cases, there are
strategies like treating time as an additional spatial dimension or a time-stepping iterative approach.
As for nonlinear problems, techniques involve moving nonlinear terms to the bias b or utilizing
iterative methods such as the Newton-Raphson method. We have elaborated on these adaptation
strategies in Appendix B.3 for further reading.

Non-Uniform Mesh & Broader Numerical Schemes. While we employed the FDM with a uni-
form mesh for the sake of a streamlined formulation, it is essential to emphasize that this choice
does not restrict our method’s adaptability. In our implementation, we leverage more sophisticated
numerical schemes, such as the finite element method (FEM) paired with a non-uniform mesh.
To align the theory with this implementation, certain definitions, including norms, may necessi-
tate subtle adjustments. For instance, a non-uniform mesh might demand a norm definition like
∥ · ∥ = (

∫
Ω
|w(x) · (·)|2 dx) 1

2 , where w : Ω→ R represents a reweighting function.

5 NUMERICAL EXPERIMENTS

5.1 OVERVIEW

In this section, we design numerical experiments to address the following key questions:

• Q1: How can we calculate the condition number, and can it highlight pathology affecting
PINNs’ convergence and accuracy?
In Section 5.2, we propose two estimation methods, validated on a problem with a known
analytic condition number. We then apply these methods to approximate the condition
number for three practical problems and study its relationship to PINNs’ performance. Our
results underscore a strong correlation, indicating the correctness of our theory.

• Q2: Can the proposed preconditioning algorithm improve the pathology, thereby boosting
the performance in solving PDE problems?
In Section 5.3, we evaluate our preconditioned PINN (PCPINN) on a comprehensive PINN
benchmark (Hao et al., 2023) encompassing 20 PDEs from diverse fields. Employing the
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Figure 2: (a): Estimations of ∥F−1∥ across different P values, with the number after “FDM”
indicating the mesh size. (b): Strong linear correlation between normalized condition numbers and
associated errors. (c): Convergence in the wave equation across different condition numbers.

L2 relative error (L2RE) as a primary metric (and MSE, L1RE as auxiliary ones), our
approach sets a new benchmark: it reduces the error for 7 problems by a magnitude and
renders 2 previously unsolvable (L2RE ≈ 100%) problems solvable.

• Q3: Does our method require extensive computation time?
Figure 3a demonstrates that our approach is on par with PINN in terms of computational
efficiency and even outpaces it in several instances. Furthermore, while Figure 3b indicates
that neural network-based methods might not yet rival traditional solvers, they exhibit pro-
nounced benefits in scalability. This suggests potential significant speed advantages for
neural networks when addressing even larger problems.

Besides, the inverse problems are also studied (see Appendix D.3), and the supplementary experi-
mental materials are deferred in Appendix C, D, and Appendix E.

5.2 RELATIONSHIP BETWEEN CONDITION NUMBER AND ERROR & CONVERGENCE

In this section, we empirically validate the theoretical findings in Section 3, especially the role of
condition number in shaping the error and convergence dynamics of PINNs. Details of PDEs and
implementation can be found in Appendix C. All experimental results are the average of 5 trials.

We begin by introducing two pragmatic techniques to estimate the condition number when provided
the ground-truth solution:

1. Training a neural network to find the suprema in Eq. (4) with a small fixed ϵ;
2. Leveraging the finite difference method (FDM) to discretize the PDEs and subsequently

approximating the condition number using the matrix norm as discussed in Eq. (13).

To substantiate the reliability of these estimation techniques, we reconsider the 1D Poisson equation
presented in Section 3.1. With ∥u∥ and ∥f∥ computed straightforwardly, our focus pivots to approx-
imating ∥F−1∥. Figure 2a captures our estimations across varied P values, showcasing the close
alignment with our theorem.

Transitioning to more intricate scenarios, we probe 3 practical problems: wave, Helmholtz, and
Burgers’ equation. System parameters within each problem are different: frequency C in Wave,
source term parameter A in Helmholtz, and viscosity ν in Burgers. We vary the system parameter
and monitor the subsequent influence on the condition number and error.

Figure 2b unveils a strong, but simple linear correlation emerges between normalized condition
numbers and their corresponding errors, suggesting that the condition number could be a predictor
for PINN performance. This relationship, however, varies depending on the normalization tech-
niques used across different equations. For instance, in the wave equation, log(L2RE) exhibits a
linear relationship with log(cond(P)), while in Helmholtz, log(L2RE) aligns with

√
cond(P). A

detailed interpretation of these patterns, through the lens of physics, is discussed in Appendix C.4.
Lastly, Figure 2c underscores the condition number’s profound impact on convergence trajectories,
particularly evident in the wave equation, affirming the validity of our theoretical frameworks.
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Table 1: Summary of the benchmark challenges. A “✓(*)” denotes that all problems in the category
have the property. Otherwise, it is specific to the listed problems.

Problem Time-Dependency Nonlinearity Complex Geometry Multi-Scale Discontinuity High Frequency
Burgers1∼2 ✓(∗) ✓(∗) ✗ ✗ ✗ ✓(2)
Poisson3∼6 ✗ ✗ ✓(3 ∼ 5) ✓(6) ✓(5, 6) ✗

Heat7∼10 ✓(∗) ✓(10) ✓(9) ✓(7, 8, 10) ✗ ✓(8)
NS11∼13 ✓(∗) ✓(∗) ✓(12) ✓(13) ✗ ✗

Wave14∼16 ✓(∗) ✗ ✗ ✓(16) ✗ ✓(15)
Chaotic17∼18 ✓(∗) ✓(∗) ✗ ✓(∗) ✗ ✓(∗)

Table 2: Comparison of the average L2RE over 5 trials between our method and top PINN base-
lines. Best results are highlighted in blue and second-places in lightblue . “NA” denotes non-
convergence or unsuitability for a given case. “⋆” signifies our method outperforming others by an
order of magnitude or being the sole method to notably bring error under 100%.

Vanilla Loss Reweighting Optim Loss Fn Architecture
L2RE ↓ Ours

PINN PINN-w LRA NTK MAdam gPINN LAAF GAAF FBPINN

1d-C 1.42e-2 1.45e-2 2.63e-2 2.61e-2 1.84e-2 4.85e-2 2.16e-1 1.43e-2 5.20e-2 2.32e-1
Burgers

2d-C 5.23e-1 3.24e-1 2.70e-1 2.60e-1 2.75e-1 3.33e-1 3.27e-1 2.77e-1 2.95e-1 NA

2d-C⋆ 3.98e-3 6.94e-1 3.49e-2 1.17e-1 1.23e-2 2.63e-2 6.87e-1 7.68e-1 6.04e-1 4.49e-2

2d-CG⋆ 5.07e-3 6.36e-1 6.08e-2 4.34e-2 1.43e-2 2.76e-1 7.92e-1 4.80e-1 8.71e-1 2.90e-2

3d-CG⋆ 4.16e-2 5.60e-1 3.74e-1 1.02e-1 9.47e-1 3.63e-1 4.85e-1 5.79e-1 5.02e-1 7.39e-1
Poisson

2d-MS⋆ 6.40e-2 6.30e-1 7.60e-1 7.94e-1 7.48e-1 5.90e-1 6.16e-1 5.93e-1 9.31e-1 1.04e+0

2d-VC⋆ 3.11e-2 1.01e+0 2.35e-1 2.12e-1 2.14e-1 4.75e-1 2.12e+0 6.42e-1 8.49e-1 9.52e-1

2d-MS 2.84e-2 6.21e-2 2.42e-1 8.79e-2 4.40e-2 2.18e-1 1.13e-1 7.40e-2 9.85e-1 8.20e-2

2d-CG 1.50e-2 3.64e-2 1.45e-1 1.25e-1 1.16e-1 7.12e-2 9.38e-2 2.39e-2 4.61e-1 9.16e-2
Heat

2d-LT⋆ 2.11e-1 9.99e-1 9.99e-1 9.99e-1 1.00e+0 1.00e+0 1.00e+0 9.99e-1 9.99e-1 1.01e+0

2d-C 1.28e-2 4.70e-2 1.45e-1 NA 1.98e-1 7.27e-1 7.70e-2 3.60e-2 3.79e-2 8.45e-2

2d-CG 6.62e-2 1.19e-1 3.26e-1 3.32e-1 2.93e-1 4.31e-1 1.54e-1 8.24e-2 1.74e-1 8.27e+0NS

2d-LT 9.09e-1 9.96e-1 1.00e+0 1.00e+0 9.99e-1 1.00e+0 9.95e-1 9.98e-1 9.99e-1 1.00e+0

1d-C 1.28e-2 5.88e-1 2.85e-1 3.61e-1 9.79e-2 1.21e-1 5.56e-1 4.54e-1 6.77e-1 5.91e-1

2d-CG 5.85e-1 1.84e+0 1.66e+0 1.48e+0 2.16e+0 1.09e+0 8.14e-1 8.19e-1 7.94e-1 1.06e+0Wave

2d-MS⋆ 5.71e-2 1.34e+0 1.02e+0 1.02e+0 1.04e+0 1.01e+0 1.02e+0 1.06e+0 1.06e+0 1.03e+0

GS 1.44e-2 3.19e-1 1.58e-1 9.37e-2 2.16e-1 9.37e-2 2.48e-1 9.47e-2 9.46e-2 7.99e-2
Chaotics

KS 9.52e-1 1.01e+0 9.86e-1 9.57e-1 9.64e-1 9.61e-1 9.94e-1 1.01e+0 1.00e+0 1.02e+0

Abbreviations: “Optim” for optimizer, “MAdam” for MultiAdam, and “Loss Fn” for “Loss Function”.

5.3 BENCHMARK OF FORWARD PROBLEMS

We delve into the comprehensive PINN benchmark, PINNacle (Hao et al., 2023), encompassing 20
forward PDE problems and 10+ state-of-the-art PINN baselines. These problems, highlighted in
Table 1, span complexities from multi-scale behaviors to intricate geometries and diverse domains
from fluids to chaos, underscoring the benchmark’s depth and width. Further details can be gleaned
from (Hao et al., 2023).

Results and Performance. From the suite of 20, we appraised our method on 18 problems,
sidelining high-dimensional PDEs due to our method’s mesh-based inherency. The experimental
results are derived from 5 trials, with baseline outcomes sourced directly from the PINNacle paper.
In most cases, as detailed in Table 2, our method emerged superior, showcasing a remarkable er-
ror drop (by an order of magnitude) for 7 problems. In 2 of these, ours uniquely achieved feasible
solutions, with competitors approximating errors at nearly 100%. Our success is attributed to the
employed preconditioner, mitigating intrinsic pathologies and enhancing PINN performance. For
the supplementary results and experimental details, including PDEs, baselines, and implementation
specifics, please refer to Appendix E and Appendix D.
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Figure 3: (a): Computation time of PCPINN (ours) and vanilla PINN in selected problems, with
error bars showing the [min,max] in 5 trials. (b): Scaling of computational time relative to an 8K
grid size, contrasting our PCPINN with the preconditioned conjugate gradient method (PCG) and the
preconditioning (ILU). (c): Convergence under varying preconditioner precision, with the dashed
line for no preconditioner and the color bar for resultant condition numbers ∥P−1b∥

∥u∥ ∥A
−1P ∥.

Convergence Analysis. Using the 1D wave equation for illustration, our method’s convergence
dynamics surpass those of traditional baselines. As depicted in Figure 1a, we achieve superexpo-
nential convergence, while baselines show a slower, fluctuating trajectory. Notably, their fluctuations
look smaller than real because of the logarithm-scale vertical axis. This stark difference is further
accentuated in Figure 1b, where our method swiftly identifies the correct minimum, attributed to our
preconditioner’s ability to reshape the optimization landscape, facilitating rapid convergence with
minimal oscillations.

Computation Time Analysis. We contrast the computation time of our method with that of the
vanilla PINN across diverse problems including Wave1d-C, Burgers1d-C, Heat2d-VC, and NS2d-
C. As evident in Figure 3a, our method is efficient, sometimes even outpacing the baseline. This
efficiency is largely due to our rapid preconditioner calculation (basically less than 3s) and avoidance
of time-intensive automatic derivation. Furthermore, we assessed the scalability of our method,
the conjugate gradient method (used by the FEM solver), and the ILU for large-scale problems
like Poisson3d-CG. While the neural network currently lags behind traditional methods in speed,
its growth rate is remarkably slower by nearly two orders of magnitude. As Figure 3b suggests,
we anticipate superior scaling in even larger problems, thanks to the neural network’s capacity to
operate on low-dimensional manifolds, effectively mitigating the curse of dimensionality.

Ablation Study. In our approach, the pivotal factor is the precision of the preconditioner, measured
by the deviation between P and A. It is controlled by the drop tolerance in ILU. We conducted ab-
lation studies on this specific parameter across four Poisson equation problems. Figure 3c depicts
the convergence trajectory of our approach under varying condition numbers after preconditioning
in Poisson2d-C. The outcomes indicate a gradual performance decline of our method with decreas-
ing precision of the preconditioner. Absent a preconditioner, our method reverts to a PINN with a
discrete loss function, consequently failing to achieve convergence. This underscores the indispens-
able role of the preconditioner in enhancing the efficacy of PINNs, reinforcing our theoretical stance
that the condition number profoundly impacts convergence. Comprehensive experimental details
are available in Appendix D.4.

6 CONCLUSION

In this work, we have spotlighted the central role of the condition number in deciphering the chal-
lenges inherent to PINNs, establishing it as a novel metric for training pathology. By weaving
together insights from traditional numerical analysis with modern machine learning techniques, we
have demonstrated a direct correlation between a reduced condition number and improved PINN
performance. Our proposed algorithm, benchmarked against a comprehensive dataset, offers signif-
icant advancements in both accuracy and convergence, surmounting challenges previously deemed
intractable. This study not only marks a pivotal stride in PINN research but also sets a promising
trajectory for future endeavors in physics-informed machine learning.
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