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ABSTRACT

Message-Passing Monte Carlo (MPMC) was recently introduced as a novel
low-discrepancy sampling approach leveraging tools from geometric deep learn-
ing. While originally designed for generating uniform point sets, we extend
this framework to sample from general multivariate probability distributions F
with known probability density function. Our proposed method, Stein-Message-
Passing Monte Carlo (Stein-MPMC), minimizes a kernelized Stein discrepancy,
ensuring improved sample quality. Finally, we show that Stein-MPMC out-
performs competing methods, such as Stein Variational Gradient Descent and
(greedy) Stein Points, by achieving a lower Stein discrepancy.

1 INTRODUCTION

Approximating a probability distribution with a discrete set of points is a fundamental task in mod-
ern scientific computation with wide ranging applications, examples of which include uncertainty
quantification, Bayesian inference, and numerical integration. All of these problems correspond to
computing expectations of the form Ef (q) of a function q(x) in Rd with respect to a given distribu-
tion F with probability density function f(x). Monte Carlo (MC) methods are a popular choice for
approximating the integral by the sample mean of q evaluated on a set of N sample nodes {Xi}Ni=1
drawn IID from distribution F , i.e.,

Ef (q) =

∫
Rd

q(x)f(x)dx =

∫
Rd

q(x)dF (x) ≈ 1

N

N∑
i=1

q(Xi) (1)

for Xi
IID∼ F . Provided that the variance of the integrand is bounded, the standard Monte Carlo rate

of O(N−1/2) applies often necessitating a very large N when high precision is required. Therefore,
to obtain greater accuracy, or a faster convergence rate, one may replace the random evaluations by
a carefully chosen deterministic set that better represents the distribution F . These so-called low-
discrepancy points form the basis of quadrature rules that fall under the umbrella of quasi-Monte
Carlo (QMC) methods Dick et al. (2013); Hickernell et al. (2025).

Assume that the function q belongs to a reproducing kernel Hilbert space (RKHS) H of functions
from Rd → R equipped with an inner product ⟨·, ·⟩H and corresponding norm ∥ · ∥H. One can then
use the Cauchy-Schwarz inequality within H to derive an error bound on the approximation (1) as∣∣∣∣∣ 1N

N∑
i=1

q(Xi)−
∫
q dF

∣∣∣∣∣ ≤ ∥q∥HDH,F

(
{Xi}Ni=1

)
.

In the above, DH,F

(
{Xi}Ni=1

)
is referred to as the discrepancy, and the term ∥q∥H is a measure

of variation of the integrand; see Hickernell (1998) for further details. The discrepancy term mea-
sures how closely the empirical distribution of the discrete sample point set approximates the target
distribution F . Denote by k : Rd × Rd → R the reproducing kernel associated with the RKHS H.
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When both the integral kF :=
∫
k(x, ·) dF (x) ∈ H and kF,F :=

∫
kF dF are explicitly available,

the discrepancy can be calculated directly by

DH,F

(
{Xi}Ni=1

)
=

√√√√kF,F − 2

N

N∑
i=1

kF (Xi) +
1

N2

N∑
i,j=1

k(Xi,Xj). (2)

The case whenF is the uniform distribution is very well studied and several classical and computable
measures of discrepancy exist, along with many known constructions of uniform low-discrepancy
point sets and sequences; see Kuipers & Niederreiter (1974); Dick & Pillichshammer (2010); Dick
et al. (2022). For a nonuniform distribution F , computable discrepancy measures and corresponding
low-discrepancy point sets are not as widespread. Thus, hoping to exploit the existing constructions
for U [0, 1]d, there exist several transformations to map uniform low-discrepancy points to a nonuni-
form distribution F . For Gaussians, the Box-Muller transformation Box & Muller (1958) provides
a direct and easily computable transport map coupling the uniform distribution with the target F .
For general distributions F , in one dimension, the inverse CDF provides such a transport, while the
Rosenblatt transformation Rosenblatt (1952) extends this approach to higher dimensions. Numerous
methods have been developed to compute transport maps in practice, including normalizing flows
Rezende & Mohamed (2015), neural ODEs Chen et al. (2018a), or polynomial transports Marzouk
et al. (2017). Each of these approaches comes with its own challenges, mostly related to solving
highly nonconvex optimization problems. Overall, it is desirable to be able to effectively generate
low-discrepancy samples directly from a target distribution F .

When F is not the uniform distribution, direct optimization of the discrepancy (equation 2) can be a
difficult problem without a clear, efficient objective function to minimize. In recent years, there has
emerged an active area of research on this topic using variants of a procedure derived from Stein’s
method Stein (1972); see Gorham & Mackey (2017); Gorham et al. (2020); Barp et al. (2019);
Chen et al. (2018b); Han & Liu. (2018); Liu & Wang. (2016); Liu et al. (2016); Liu. (2017); Afzali
& Muthukumarana (2023); Fisher & Oates (2024) and references therein. The papers Gorham &
Mackey (2017); Chwialkowski et al. (2016); Liu et al. (2016) independently introduced the kernel
Stein discrepancy (KSD), one of several computable versions of the Stein discrepancy, which is used
to assess the “closeness” of a sample point set to a target distribution F .

1.1 OUR CONTRIBUTION

In this paper, we extend the Message-Passing Monte Carlo Rusch et al. (2024) framework to min-
imize a kernelized Stein discrepancy, ensuring improved sample quality from general multivariate
probability distributions F with known probability density function. We compare Stein Discrepancy
values against the point sets generated by the benchmark methods of Stein Variational Gradient De-
scent Liu & Wang. (2016) and Stein Points Chen et al. (2018b).

2 STEIN DISCREPANCY

The work of Gorham & Mackey (2015) introduced a new family of sample quality measures, known
as the Stein discrepancies, which can be used to measure the error in the approximation (1) without
explicitly integrating under F . Stein discrepancies are derived using Stein’s identity Stein (1972), a
key result in probability theory that relates the expectation of a derivative-based function to proper-
ties of a target distribution. There exist several computable versions of the Stein discrepancy family,
e.g., graph Stein discrepancies. However, kernel Stein discrepancies have gained most attention due
to their closed-form expression involving the sum of kernel evaluations over pairs of sample points.

More formally, for a Stein operator TF , the following holds∫
TF [p](x) dF (x) = 0 ∀p ∈ F ,

where F is a set of functions that are sufficiently smooth. Stein’s identity allows the construction of
such operators TF that characterize how well a distribution matches a target. When F is chosen as
a RKHS H with a reproducing kernel k, the image of H under TF is denoted as H0 = TFH. The
KSD is then computed using the reproducing kernel k0 of H0, defined as

k0(x, x
′) = TFT

∗
F k(x, x

′),
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Figure 1: Schematic of the MPMC model. The points are encoded to a high dimensional rep-
resentation then passed through multiple layers of a message-passing GNN where the underlying
computational graph is constructed based on nearest neighbors. Finally, the node-wise output repre-
sentations of the final layer of the GNN are decoded.

where T ∗
F is the adjoint of the Stein operator TF , acting on the second argument of the kernel. A

common choice for TF is the Langevin Stein operator defined by

TF p(x) = ∇ · (f(x)p(x))/f(x),

where ∇· is the divergence operator, and p is a vector-valued function in the RKHS Hd. This
operator leads to the Stein reproducing kernel

k0(x, x
′) =∇x · ∇x′k(x, x′) +∇xk(x, x

′) · ∇x′ log f(x′)

+∇x′k(x, x′) · ∇x log f(x) + k(x, x′)∇x log f(x) · ∇x′ log f(x′).

Stein kernels possess the nice property that k0,F =
∫
k0(x, ·)dF = 0 and k0,F,F =

∫
k0,F dF = 0.

Thus for some base kernel k, the KSD is computed from equation 2 as

DH0,F ({Xi}Ni=1) =

√√√√ 1

N2

N∑
i,j=1

k0(Xi,Xj). (3)

3 STEIN-MESSAGE-PASSING MONTE CARLO (STEIN-MPMC)

Message-Passing Monte Carlo (MPMC) Rusch et al. (2024) represents a significant advancement in
the field of quasi-Monte Carlo methods and general low-discrepancy sampling applications Chahine
et al. (2024). MPMC leverages tools from geometric deep learning, including graph neural net-
works (GNNs) and a message-passing framework, to effectively learn a transformation mapping
random input point set to uniform low-discrepancy points in the d-dimensional unit hypercube. In
the original MPMC framework (see Figure 1), the target is always the uniform distribution on the
d−dimensional hypercube and the training is guided by Warnock’s formula Warnock (1972) for the
L2-discrepancy – a classical measure of uniformity for sample point sets in [0, 1]d. In the proposed
Stein-MPMC model, as described below, the architecture is holistically similar, with the primary
change being the Stein discrepancy based objective function.

3.1 STEIN-MPMC MODEL

Our objective is to train a neural network to effectively learn a mapping to transform an initialized
sample point set {X}Ni=1 into points {X̂}Ni=1 that minimize the (kernel) Stein discrepancy (3) where
Xi, X̂i ∈ Rd for all 1 ≤ i ≤ N . The input point set will be generated randomly from target
distribution F where possible, i.e., Xi

IID∼ F for 1 ≤ i ≤ N . However, in principle, our initialized
training data can be taken as any reasonable set of points not judiciously chosen to be purposefully
far from the target F .

For the model architecture, we start by constructing an undirected computational graph G =
(V,E ⊆ V × V ), where V denotes the set of unordered nodes corresponding to the input
points {Xi}Ni=1, and E is the set of pair-wise connections between the nodes. We denote the 1-
neighborhood of a node i ∈ V as Ni = {j ∈ V : (i, j) ∈ E} and set

Ni = {j ∈ V : ∥Xi −Xj∥2 ≤ r}
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for a fixed radius r ∈ R. That is, every node i ∈ V is connected to every other node j ∈ V
that is within a neighborhood of radius r of node i. This local connectivity of nodes emphasizes
that the network should primarily consider near-by points when learning the transformation. The
main aspect of the Stein-MPMC model is the GNN layers based on the message-passing framework.
Message-passing GNNs are a family of parametric functions defined through local updates of hidden
node representations. More concretely, we iteratively update node features as,

Xl
i = ϕl

Xl−1
i ,

∑
j∈Ni

ψl(Xl−1
i ,Xl−1

j )

 , for all l = 1, . . . , L,

with Xl
i ∈ Rml for all nodes i. Moreover, we parameterize ϕl, ψl as ReLU-multilayer perceptrons

(MLPs), i.e., MLPs using the element-wise ReLU activation function, ReLU(x) = max(0, x), in-
between layers. We further encode the initial node features by an affine transformation, X0

i =
AencXi + benc for all i = 1, . . . , N , with weight matrix Aenc ∈ Rm0×d and bias benc ∈ Rm0 .
Finally, we decode the output of the final GNN layer by an affine transformation back into Rd,
i.e., X̂i = AdecX

L
i + bdec for all i = 1, . . . , N , with the weight matrix Adec ∈ Rd×mL , and bias

bdec ∈ Rd.

Lastly, the training objective is selected to be the kernel Stein discrepancy (3). Reasons for this
choice are two-fold; i) the kernelized version of Stein discrepancy has closed form and fast par-
allelizable computation of kernel evaluations of pairs of points, and ii) for carefully chosen base
kernels k in equation 3, there exist results that the KSD controls weak convergence to the target
distribution F ; see Chen et al. (2018b) and (Gorham & Mackey, 2017, Theorem 8).

4 RESULTS

The proposed Stein-MPMC method is empirically assessed and compared against existing bench-
mark methods. Precisely, we illustrate across two examples of target distribution F that Stein-
MPMC generates sample point sets with a smaller KSD with respect to F . In two dimensions only,
we examine a Gaussian mixture over the unbounded domain R2, and a distribution defined as the
product of two independent Beta distributions over the unit square.

4.1 EXPERIMENTAL DETAIL

For the base kernel function k in equation 2, we use the standard Radial Basis Function (RBF) kernel

k(x, x′) = exp

(
−∥x− x′∥2

2h2

)
.

where the bandwidth parameter h is not tuned separately for different experiments or methods and
instead, we apply the median heuristic across all experiments. Specifically, we take we take the

bandwidth to be h =
√

med2/2 log(N + 1) where med is the median of the pairwise distances
between the current sample point set. This choice is motivated to ensure a fair comparison across
methods and prevent confounding effects due to kernel tuning.

We compare Stein-MPMC against two established methods:

1. Stein Variational Gradient Descent (SVGD) Liu et al. (2016) generates point sample sets
from a target distribution F by performing a version of gradient descent on the Kullback-
Leibler (KL) divergence KL(·∥F ). Like Stein-MPMC, SVGD is a global optimization
method that updates all sample points simultaneously at each step.

2. Stein points Chen et al. (2018b) generates sequences of points from a distribution F via
greedy minimization of the KSD directly. Despite being a greedy sequential procedure,
rather than the global methods of SVGD and Stein-MPMC, Stein points is included in the
comparison due to its direct KSD optimization.

We generate samples using Stein-MPMC, SVGD, and Stein Points for values of N ranging from 20
to 500 in increments of 40, recording the corresponding KSD values. For the greedy Stein Points
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(a) Gaussian Mixture (b) Beta Product

Figure 2: KSD results for our two target distributions. Stein-MPMC yields smaller KSD values for
every N = 20, 60, 100, . . . , 500 across both distributions.

method, we track the KSD value at each instance of N during a single sequential run as the sample
set grows to 500 total points.

Full experimental details including optimization methods and lists of selected hyperparameters for
each method are given in Appendix A.

4.2 GAUSSIAN MIXTURE DISTRIBUTION

We first consider a Gaussian mixture model in two dimensions, which is somewhat of a standard
benchmark for variational inference methods. The target distribution is a two-component Gaussian
mixture

1

2
N (µ1,Σ1) +

1

2
N (µ2,Σ2),

where µ1 = (−1.5, 0), µ2 = (1.5, 0),Σ1 = Σ2 = I . KSD values for the three methods are shown in
Figure 2a, demonstrating that Stein-MPMC outperforms Stein Points and SVGD. For this Gaussian
mixture example, as N increases the differences between the methods become less pronounced.

4.3 BETA PRODUCT DISTRIBUTION

We also consider a Beta-distributed target density as an example of a bounded probability distribu-
tion. The target distribution is defined as the product of two independent Beta distributions

X ∼ Beta(αx, βx), Y ∼ Beta(αy, βy).

This distribution is supported on (0, 1) × (0, 1) and allows independent control over the shape of
each marginal through the parameters αx, βx, αy, βy . For our experiments, we set αx = 2, βx =
4, αy = 2, βy = 4. Discrepancy values for each method for this Beta distribution are given in Figure
2b and are consistent with those of the Gaussian mixture example; Stein-MPMC outperforms the
other methods with respect to KSD values for all tested instances of N .

5 DISCUSSION

Stein-MPMC effectively minimizes kernel Stein discrepancy, outperforming SVGD and Stein Points
by leveraging message-passing graph neural networks to solve the nonconvex global optimization
problem. The results support the existing notion that optimizing sample point distributions for a
pre-determined N allows for better sample uniformity compared to sequential generation. Future
work should explore its scalability to higher dimensions and the impact of adaptive kernel tuning to
further enhance sample quality.

5



Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference

ACKNOWLEDGMENTS

The work of NK was supported by the National Science Foundation (DMS Grant No. 2316011).
NK also gratefully acknowledges the Argonne Leadership Computing Facility (ALCF) for providing
GPU access which supported the computational aspects of this research. This work was supported
in part by the Postdoc.Mobility grant P500PT-217915 from the Swiss National Science Foundation,
the Schmidt AI2050 program (grant G-22-63172), and the Department of the Air Force Artificial
Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Department
of the Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation herein.

REFERENCES

Elham Afzali and Saman Muthukumarana. Gradient-free kernel conditional Stein discrepancy good-
ness of fit testing. Machine Learning with Applications, 12:100463, 2023.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework, 2019. URL https://arxiv.org/
abs/1907.10902.

A. Barp, F.-X. Briol, A. Duncan, M. Girolami, and L. Mackey. Minimum Stein discrepancy estima-
tors. In In Advances in Neural Information Processing Systems, pp. 12964–12976, 2019.

G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates. Annals of
Mathematical Statistics, 29(2):610–611, 1958.

Makram Chahine, T Konstantin Rusch, Zach J Patterson, and Daniela Rus. Improving effi-
ciency of sampling-based motion planning via message-passing Monte Carlo. arXiv preprint
arXiv:2410.03909, 2024.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018a. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

W. Y. Chen, L. Mackey, J. Gorham, F.-X. Briol, and C. J. Oates. Stein points. In ICML, 2018b.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In JMLR:
Workshop and Conference Proceedings, 2016.

Josef Dick and Friedrich Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and
Quasi–Monte Carlo Integration. Cambridge University Press, 2010.

Josef Dick, Frances Y. Kuo, and Ian H. Sloan. High-dimensional integration: The quasi-Monte
Carlo way. Acta Numerica, 22:133–288, 2013. doi: 10.1017/S0962492913000044.

Josef Dick, Peter Kritzer, and Friedrich Pillichshammer. Constructions of Lattice Rules, pp. 95–139.
Springer International Publishing, Cham, 2022.

M Fisher and C Oates. Gradient-free kernel Stein discrepancy. In NeurIPS, 2024.

J. Gorham and L. Mackey. Measuring sample quality with Stein’s method. In Cortes, C., Lawrence,
N. D., Lee, D. D., Sugiyama, M., and Garnett, R. (eds.), Adv. NIPS 28, pp. 226–234. Curran
Associates, Inc., 2015.

J. Gorham and L. Mackey. Measuring sample quality with kernels. In In Proceedings of the 34th
International Conference on Machine Learning, pp. 1292–1301, 2017.

Jackson Gorham, Anant Raj, and Lester Mackey. Stochastic Stein discrepancies. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS ’20, Red
Hook, NY, USA, 2020. Curran Associates Inc.

6

https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf


Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference

J. Han and Q. Liu. Stein variational gradient descent without gradient. In ICML, 2018.

Fred Hickernell. A generalized discrepancy and quadrature error bound. Mathematics of computa-
tion, 67(221):299–322, 1998.

Fred J. Hickernell, Nathan Kirk, and Aleksei G. Sorokin. Quasi-monte carlo methods: What, why,
and how?, 2025. URL https://arxiv.org/abs/2502.03644.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics.
Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

Q. Liu. Stein variational gradient descent as gradient flow. In NeurIPS, 2017.

Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In NeurIPS, 2016.

Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests. In Interna-
tional Conference on Machine Learning (ICML), pp. 276–284, 2016.

Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini. Sampling via measure
transport: an introduction. In Handbook of uncertainty quantification. Vol. 1, 2, 3, pp. 785–825.
Springer, Cham, 2017. ISBN 978-3-319-12384-4; 978-3-319-12385-1.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis
Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Machine Learn-
ing, volume 37 of Proceedings of Machine Learning Research, pp. 1530–1538, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/rezende15.
html.

M. Rosenblatt. Remarks on a multivariat transformation. The Annals of Mathematical Statistics, 23
(3):470–472, 1952.

T. K. Rusch, N. Kirk, M. Bronstein, C. Lemieux, and D. Rus. Message-passing Monte Carlo:
Generating low-discrepancy point sets via graph neural networks. Proceedings of the National
Academy of Sciences, 121(40):e2409913121, 2024.

C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent
random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 2: Probability Theory, pp. 583–602. University of California Press, 1972.

Tony T Warnock. Computational investigations of low-discrepancy point sets. In Applications of
number theory to numerical analysis, pp. 319–343. Elsevier, 1972.

7

https://arxiv.org/abs/2502.03644
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html


Accepted at the ICLR 2025 Workshop on Frontiers in Probabilistic Inference

A TRAINING DETAILS

All experiments have been run on NVIDIA DGX A100 GPUs.

A.1 STEIN-MPMC

Each model was trained for 50k epochs with the Adam optimizer Kingma & Ba (2017). Stein-
MPMC hyperparameters were tuned using Optuna Python package Akiba et al. (2019) random
search over the search spaces and distributions contained in Table 1.

Hyperparameter Range Distribution
learning rate [10−4, 10−2] log uniform
hidden size m0 = m1 = · · · = mL {32, 64, 128, 256} uniform
number of GNN layers L {1, 2, 3, 4, 5} uniform
weight decay [10−6, 10−2] log uniform

Table 1: Hyperparameter search-space and respective random distributions.

A.2 STEIN POINTS

Computation of theN th Stein point is dependent upon the already existingN−1 terms and requires
a global optimization to find XN ∈ Rd that minimizes the kernel Stein discrepancy of the total
N element set, holding {Xi}N−1

i=1 fixed. In Chen et al. (2018b), several numerical optimization
methods are considered to solve this argmin problem. In our experiments, we implement the Adam
optimizer with a learning rate of 0.01, selected after testing several judiciously chosen alternatives
for the learning rate.

A.3 STEIN VARIATIONAL GRADIENT DESCENT

The other global optimization method considered was Stein Variational Gradient Descent introduced
in Liu & Wang. (2016). SVGD was trained with the standard update rule

X
(t+1)
i = X

(t)
i + η

 1

n

n∑
j=1

k(Xi,Xj)∇ log f(Xj) +∇Xj
k(Xi,Xj)


where k is the base kernel (taken to be the RBF kernel with median bandwidth), step size η was
fixed at 0.001 and was run for a standard 50k iterations on each experiment.
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