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ABSTRACT

Backdoor adjustment is a technique in causal inference for estimating interven-
tional quantities from purely observational data. For example, in medical settings,
backdoor adjustment can be used to control for confounding and estimate the effec-
tiveness of a treatment. However, high dimensional treatments and confounders
pose a series of potential pitfalls: tractability, identifiability, optimization. In this
work, we take a generative modeling approach to backdoor adjustment for high
dimensional treatments and confounders. We cast backdoor adjustment as an
optimization problem in variational inference without reliance on proxy variables
and hidden confounders. Empirically, our method is able to estimate interventional
likelihood in a variety of high dimensional settings, including semi-synthetic X-ray
medical data. To the best of our knowledge, this is the first application of backdoor
adjustment in which all the relevant variables are high dimensional.

1 INTRODUCTION

Understanding causal relationships is central to many scientific disciplines such as healthcare and
economics. In these settings, professionals need to assess the importance of interventions (e.g.
treatments, policy changes) on societal outcomes (e.g. patient health, economic well-being). However,
determining interventional effects is challenging due to the presence of confounders, such as age,
gender, and income of participants. One approach is to directly collect interventional data using
randomized control trials (RCTs), but RCTs must be designed carefully (Schulz & Grimes, 2002) and
are costly with respect to time and money (Sørensen et al., 2006). As an alternative, causal inference
can be used to estimate interventional quantities from observational data alone (Pearl, 1995). Given
modeling assumptions encoded in a DAG, Pearl’s backdoor adjustment (Pearl, 2009b) estimates
interventional likelihood by re-weighting the observational likelihood of the outcomes to block the
influence of confounding variables.

This paper makes progress towards the application of backdoor adjustments for high-dimensional
datasets. In many real-world scenarios, we frequently encounter treatments, outcomes, and con-
founders as high dimensional objects. For example, it is often the case that treatments are text
embeddings of recommended procedures, outcomes are images such as X-ray and MRI screenings,
and confounders are high dimensional genetic and environmental factors. High dimensional backdoor
adjustment suffers from two major challenges: intractability in integrating out high-dimensional
confounders and expressivity in learning non-linear dependencies from the observational distributions.

Prior work in this space can partly address these challenges. Inverse propensity weighting meth-
ods (Austin, 2011) can be used for high dimensional confounders, but do not generalize well to
high dimensional treatments. Another common approach is using variational autoencoders (VAEs)
(Kingma & Welling, 2013) as models of proxy confounding, where CEVAE is a notable example
(Louizos et al., 2017). These models are overly expressive, in a sense, because they model unobserved
confounders that are unidentifiable (Rissanen & Marttinen, 2021).

We propose Variational Backdoor Adjustment (VBA), a novel variational approach for backdoor
adjustment under direct confounding. Our method uses variational inference to optimize a lower
bound of the interventional likelihood and compute backdoor adjustment in high dimensions. We
encounter and overcome the following key challenges:
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Figure 1: A visualization of the various discussed DAGs. Figure (a) and (c) show different approaches
to modeling confounding. In this work, we opt for (a) due to identifiability. Figure (b) shows the do
operation graphically.

1. For high dimensional confounders and treatments, backdoor adjustment is either intractable
to compute exactly or impractical to estimate with sampling due to high variance. We apply
variational inference to efficiently obtain a more accurate approximate estimate.

2. Variational inference is typically applied in a latent variable setting in which the confounder
in question is unobserved. Because the latent variable is unidentifiable, applying backdoor
adjustment leads to an inconsistent estimate. We apply variational inference such that the
latent space is restricted to the observed confounder.

3. However, in the new regime we cannot jointly optimize over all parameters, as is typical
in VAEs. We introduce an optimization method that respects a latent space constrained by
observation.

In our framework, we define three distributional components: encoder, decoder, and prior. Note
that although we utilize standard VAE terminology to invoke similar components, our method is not
to be confused with VAE due to different assumptions. These components must first be optimized
separately to ensure identifiability, such that backdoor adjustment is correctly computed over the
observed distributions. Once the components are optimized separately, the encoder can be further
optimized to obtain better interventional density estimates.

This framework proves empirically effective at computing backdoor adjustment in a variety of
synthetic and semi-synthetic settings. We construct a high dimensional linear Gaussian training set
to empirically verify interventional density estimation with VBA. In this setting, we show that our
optimization technique provides significant improvement over more naive estimation strategies. We
then construct image datasets to test backdoor adjustment in more nonlinear settings. As a proof of
concept, we demonstrate a potential application of VBA on X-ray medical data. We once again show
in this setting the importance of the optimization technique used in VBA.

2 RELATED WORK

The existing body of literature pertaining to treatment effects is extensive (Shalit et al., 2017; Shi et al.,
2019; Chen et al., 2019; Tesei et al., 2023). While these methods relate to individual treatment effects,
backdoor adjustment is applied at the population level. Recent work uses neural mean embeddings
(Xu & Gretton, 2022) for backdoor adjustment. While related, it is not applied to high dimensional
outcomes. We shall also address related works that primarily fall into two approaches.

Propensity Score Methods In the literature, a common way to handle high dimensional confound-
ing is by using propensity score methods (Austin, 2011). The key idea is that if a high dimensional
confounder z is sufficient for backdoor adjustment, then a single dimensional propensity score
g(z) = p(X = 1 | z) will suffice for backdoor adjustment (Rosenbaum & Rubin, 1983). Note that
X in this case is assumed to be a binary treatment. To our knowledge, there is no work applying
propensity score methods to high dimensional treatments. While there may be no reason in principle
that propensity score methods cannot be applied to such scenarios, they do not address the funda-
mental inference problem posed when X is high dimensional; namely, that the conditional density
p(y | x, g(z)) will have high variance due to a small effective sample size for each treatment. Shifting
the burden of adjustment onto g will not solve this issue for high dimensional treatments. Hence, we
argue for the use of variational inference.

2



Under review as a conference paper at ICLR 2024

Proxy Model VAE and Identifiability Past work applies variational autoencoders to causal in-
ference, but with different modeling assumptions. Methods such as CEVAE (Louizos et al., 2017),
VSR (Zou et al., 2020), and TEDVAE (Zhang et al., 2021) operate under the assumption that the
true confounder is unobserved and only a proxy of the latent variable is observed, as depicted in
Figure 1c. Recent work by Rissanen & Marttinen (2021) demonstrates that these techniques do
not yield consistent estimates of causal effect because in general they cannot, in practice or even
in theory, model unobserved latent variables correctly. Vanilla VAEs are unidentifiable (Locatello
et al., 2019), which means that there exists infinite number of transformations on the latent variable
that would emit the same marginal distribution. For this reason, performing backdoor adjustment
over an unidentifiable latent variable can lead to completely inaccurate results. Recent works such as
iVAE (Khemakhem et al., 2020) show that a factorized prior conditioned on additional observations
give identifiability up to a class of transformations, and Intact-VAE (Wu & Fukumizu, 2021) exploits
these results. In practice, the assumptions needed for identifiability cannot be verified for unobserved
variables in real-world data. Rather than modeling a proxy of an unobserved confounder, we perform
causal inference over observed variables only, as seen in Figure 1a. While the proxy model approach
must argue that unobserved variables are identifiable, our approach is identifiable by definition
because all variables are observed.

3 APPROACH

3.1 PRELIMINARIES

We are given variables X,Y, Z as depicted in Figure 1a. We shall refer to X,Y, Z respectively as
treatment, outcome, and confounder. Suppose we are given probability density functions p(z) =
p(Z = z) and p(y | x, z) = p(Y = y | X = x, Z = z). We can apply Pearl’s backdoor adjustment
(Pearl, 2009b) to obtain the interventional density

p(y | do(x)) =
X

z

p(z)p(y | x, z). (1)

In practice, we will not know the prior p(z) and outcome likelihood p(y | x, z) but will assume access
to an observational dataset D = (xi, yi, zi)ni=1 consisting of n triplets for (x, y, z). The do operator
represents an intervention on the value of X , which severs the influence of Z on X . The result is the
distribution induced by modifying the DAG as seen in Figure 1b. Observe that the right-hand-side of
the equation does not contain the do operator, thus allowing interventional quantities to be obtained
from observational data alone. Note that backdoor adjustment applies more broadly than to the DAG
in Figure 1. In general, backdoor adjustment can be applied if the variables in question satisfy the
backdoor criterion (Pearl, 2009a), which slightly broadens the scope of this work, as many DAGs
can be equivalent to Figure 1a with respect to backdoor adjustment.

This formula alone is satisfactory in low dimensional settings when the number of confounders is
limited. In high dimensional settings however, it is known that exact inference is intractable and
the sum will be exponential in the dimension of Z (Wang & Kwiatkowska, 2022). Naturally, for
higher dimensions one may learn a conditional distribution p(y | x, z) and generative model of the
confounder p(z). The interventional density p(y | do(x)) would then be approximated by drawing
samples from the confounder z ⇠ p(z) and computing an expectation over p(y | x, z). However, it is
well-known that a naive Monte Carlo estimate will have high variance in large dimensions because a
sampled high dimensional Z will almost never give high probability to p(y | x, z) for a chosen Y and
X . Thus, even with a perfectly learned p(z) and p(y | x, z), inference of p(y | do(x)) using naive
sampling is impractical.

3.2 VARIATIONAL BACKDOOR ADJUSTMENT

Variational inference is a commonly used technique for generative modeling tasks (Kingma & Welling,
2013; Rezende & Mohamed, 2015). In variational inference, the key idea is to approximate the
posterior p(z | x) with a simpler distribution, thus allowing marginal likelihood to be approximated
with an evidence lower bound (ELBO). With variational inference, we can estimate a lower bound on
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the interventional density given in Equation 1. Given some auxiliary “simple” distribution q, we have

log p(y | do(x)) = log
X

z

p(z)p(y | x, z) (2)

= logEq(z|x,y)

✓
p(z)p(y | x, z)
q(z | x, y)

◆
(3)

� Eq(z|x,y) (log p(z) + log p(y | x, z)� log q(z | x, y)) . (4)

The inequality in Equation 4 is given by Jensen’s inequality. In theory it is possible to condition
q on exclusively x or y, but q will be learned so it is best to parameterize it in the most expressive
way. Intuitively, the purpose of q(z | x, y) is as an encoder, giving high probability samples of
Z, which will help decrease variance in high dimensions. Contrast this with the aforementioned
Monte Carlo estimate in which we sampled from p(z), leading to high variance. The penalty incurred
by the encoder will be its KL divergence with the true prior distribution p(z). It is well known in
probabilistic inference that sampling is unbiased but has high variance, while variational inference
will have some bias in exchange for much lower variance (Lange et al., 2022). Note that while our
method utilizes variational inference, it is not a standard VAE because in Equation 4 the interpretation
of z is not as a latent variable. Instead, we have observed data on Z.

3.3 OPTIMIZATION METHOD

Because z is not a latent variable, we cannot optimize the lower bound in the same manner as a VAE.
To illustrate this, we shall first introduce our two step optimization method to perform Variational
Backdoor Adjustment (VBA). After introducing our method and giving notation, it will become more
clear why we cannot apply standard VAE “joint” optimization in our setting.

Separate Training Phase Let p(z) and p(y | x, z) be parameterized with a model of the prior p✓(z)
and decoder model p�(y | x, z). We optimize these models with maximum likelihood objectives.
Recall that the observational data is given by D = (xi, yi, zi)ni=1. Each loss respectively will be
computed over the dataset as ED(L(⇤)).

LMLE
✓ (z) = � log p✓(z) (5)

LMLE
� (x, y, z) = � log p�(y | x, z) (6)

Let q�(z | x, y) be an encoder model. It can also be optimized with maximum likelihood training,
although it need not be limited in this way.

LMLE
� (x, y, z) = � log q�(z | x, y) (7)

We can optimize these components separately using a gradient-based optimizer and obtain a lower
bound on the interventional likelihood by plugging in the components as suggested by Equation 4.
The model optimized by such loss functions is

f�,✓,�(x, y) = Eq�(z|x,y) (log p✓(z) + log p�(y | x, z)� log q�(z | x, y)) (8)

This step of VBA will be referred to as separate training.

Finetuning Phase Separate optimization will not lead to the tightest lower bound on interventional
likelihood. We can further optimize the encoder to obtain more accurate interventional density
estimation. Let ✓̂ and �̂ be parameters optimizing their own respective MLE objectives in separate
training. We give the following finetuning objective, which can be optimized with respect to x, y ⇠ D

LELBO
� (x, y) = �

X
z0
1,...,z

0
n⇠q�(z|x,y)

⇣
LMLE
✓̂

(z0j) + LMLE
�̂ (x, y, z0j)� LMLE

� (x, y, z0j)
⌘

(9)

Following separate training, we now optimize LELBO with gradient descent. We refer to this step as
finetuning the encoder. This loss will optimize the expectation seen in Equation 4. Observe that the
loss function differs from the typical ELBO objective seen in VAEs because the parameters ✓, � of the
“decoder” p�(y | x, z) and “prior” p✓(z) are held fixed. We show experimentally that the additional
finetuning phase improves finite sample performance compared to MLE separate training alone. The
mechanism for this improvement is that the encoder is able to increase likelihood of the decoder
p(y | x, z) or prior p(z) by generating less or more likely z0, as determined by the ELBO loss.
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Pitfall of Joint Optimization Instead of fixing ✓ and � to their maximum likelihood estimates as
shown in Equation 9, it may seem tempting to optimize all of the parameters “jointly” as follows

LELBO
�,✓,�(x, y) = �

X
z0
1,...,z

0
n⇠q�(z|x,y)

�
LMLE
✓ (z0j) + LMLE

� (x, y, z0j)� LMLE
� (x, y, z0j)

�
(10)

As previously explained, for VAEs the interpretation of z in Equation 4 is as a latent variable.
However, in our case, z represents observed data, therefore backdoor adjustment necessitates that
those quantities must be maximum likelihood estimates. Equation 10 is not guaranteed to converge to
log p(y | do(x)).

Proposition 1 There exists a Structural Causal Model (SCM) over X,Y, Z such that for the optimal
parameters �⇤, ✓⇤, �⇤ = argminLELBO

�,✓,� , we have f�⇤,✓⇤,�⇤(x, y) = log p(y | x).

Proof of this proposition is in Appendix B. Intuitively, “joint” optimization does not work because the
distribution over Z will become untethered from the data, which means we are no longer performing
backdoor adjustment. In the loss of Equation 10, because ✓ and � are not fixed, we can minimize the
loss by making the KL divergence between q�(z | x, y) and p✓(z) arbitrarily small while p�(y | x, z)
loses dependence on Z. This is very similar to a problem in VAEs called posterior collapse (Lucas
et al., 2019), but in our situation it makes estimating backdoor adjustment impossible.

Implementation Details In this framework, each distribution can be parameterized as needed
depending on the setting. In general, p✓(z) will be a generative model to estimate the density of a
high dimensional confounder. Depending on the circumstance, p�(y | x, z) and q�(z | x, y) can be
conditional generative models or vanilla neural networks. In most cases vanilla neural networks are
sufficient, but in some cases Z or Y may contain significant exogenous stochasticity that will be
better captured with conditional generative models.

4 EXPERIMENTS

Evaluation is one of the most challenging aspects to causal inference because the real-world does not
grant access to ground truth causal effect. This is because we do not have a complete understanding
of the data generating process, so if some outcome is observed, we do not have access to the
counterfactual outcome given different circumstances. Some refer to this issue as the fundamental
problem of causal inference (Holland, 1986).

To gain access to ground truth, one must make assumptions about the data generating process at
the expense of realism. In this work, we attempt a balanced approach by evaluating at different
points along this tradeoff. First, we evaluate our method on high dimensional linear Gaussian
data. In this setting, ground truth causal effect can be solved for analytically. For a more realistic
high dimensional setting that incorporates image data, we design a toy example involving MNIST
images. Unfortunately, this setting does not have ground truth causal effect, but we can demonstrate
qualitative improvements when using backdoor adjustment over naively modelling the observational
distribution p(y | x). Finally, we apply variational backdoor adjustment to a synthetic dataset
containing real X-ray images and show the benefit of finetuning over separate training. In our
empirical image experiments, we can only make qualitative observations about whether we estimate
the true interventional density. Our main claim to the accuracy of VBA relies on experiments using
linear Gaussian data. The purpose of these experiments can be summarized as follows:

• Linear Gaussian: shows that VBA is more accurate than sampling, and it consistently
converges to the correct estimate.

• MNIST: gives a high dimensional image setting and compares VBA, which estimates the
interventional distribution, to naively modelling the observational distribution.

• X-ray: presents a medical scenario and demonstrates the benefit of the “finetuning” mecha-
nism over “separate training” alone.

4.1 LINEAR GAUSSIAN

To evaluate the VBA density estimation against ground truth, we consider the following setting.
Suppose the relationships between variables are linear and the base distributions are Gaussian. The
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(a) Sampling vs Variational Inference
Log Error Comparison

(b) Finetuning vs Separate Training
Log Error Comparison

Figure 2: Figures (a) and (b) contrast variational inference with naive sampling at inference time.
Variational inference proves beneficial, especially as dimensionality increases. Finetuning yields
a better interventional density estimate than separate training. We average results over 10 random
generations of data.

structural equations for X,Y, Z will take the following form

Z := N (0, 1) X := c1Z +N (0,�1) Y := c2X + c3Z +N (0,�2) (11)

The linear Gaussian setting allows for fully analytic solutions to ground truth interventional density.
The ground truth for interventional distribution is given by

y | do(x) ⇠ N
✓
c2x,

q
c23 + �2

2

◆
(12)

and we can compare it with the observational distribution

y | x ⇠ N
 ✓

c1c3
(c1 + �2

1)
+ c2

◆
x,

s
c23�

2
1

c21 + �2
1

+ �2
2

!
(13)

Constants c1, c2, c3 can be thought of as determining the strength of the causal relationships. It
therefore follows that the mean of Equation 12 is only dependent on c2 because c2 determines the
causal relationship between X and Y . The mean of Equation 13 also contains c1 and c3, which are
responsible for confounding. We give a concrete example of the difference between observational
and interventional distribution in Figure 7 of Appendix A. So as not to draw conclusions based on
cherry-picked parameters, for each experiment we randomly sample and fix c1, c2, c3. We sample

Table 1: Linear Gaussian Results. We report values in nats and report the mean and standard error over
5 random seeds. The top row is mean absolute error from the ground truth for Ex,y⇠D log p(y|do(x)).
Rows 2-4 below are decomposed from the ELBO. Row 5 gives the likelihood of the encoder.
Finetuning the encoder q gives better results as opposed to generating maximum likelihood z. Lower
likelihood samples of z results in a tighter ELBO.

In Distribution Out of Distribution

Separate Training Finetuned Separate Training Finetuned

Ground Truth MAE (#) 5.58 (0.003) 1.89 (0.001) 11.74 (0.005) 7.51 (0.001)

Ex,y⇠DEq(z|x,y) log p(z) -21.17 (0.003) -20.83 (0.000) -129.41 (0.001) -110.82 (0.000)

Ex,y⇠DEq(z|x,y) log p(y | x, z) -21.80 (0.001) -22.14 (0.002) -26.17 (0.003) -34.13 (0.006)

Ex,y⇠DEq(z|x,y) log q(z | x, y) 17.20 (0.002) 6.27 (0.001) 17.20 (0.002) 6.28 (0.001)

ED[log q(z | x, y)] 14.97 4.17 3.28 -25.02
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Figure 3: Data generating process for MNIST dataset. On the left is the observational distribution in
which Y can only have successive numbers. On the right, interventions on X can produce images Y
with two numbers not seen on the left.

these constants in a manner that emphasizes the difference between interventional and observational
distribution. Linear Gaussian hyperparameters are sampled as

c1 ⇠ U(0, 5) c2 ⇠ U(0, 3) c3 ⇠ U(�5,�10) �1 ⇠ U(0, 1) �2 ⇠ U(0, 3). (14)

We obtain a high dimensional linear Gaussian dataset by repeatedly sampling a set of parameters
for each dimension and treating each dimension independently. To perform backdoor adjustment
on linear Gaussian data, we model the confounder with a VAE and both encoder and decoder with
Gaussians parameterized by MLPs.

Figure 2a shows the difference between sampling and variational inference. For 10 unique generations
of linear Gaussian data, we train the respective components using their own MLE objective (also
known as separate training). At inference time, we compare two approaches for obtaining log p(y |
do(x)): sampling from the prior z ⇠ p(z) and computing an average over log p(y | x, z), or sampling
from the encoder z ⇠ q(z | x, y) and utilizing variational inference given by Equation 4. Variational
inference outperforms naive sampling as the dimensionality increases.

We use the same analysis to compare optimization methods. Figures 8b and 2b show a substantive
increase in performance when finetuning the encoder, and the performance is robust in higher
dimensions. To better understand why finetuning gives better estimates, we focus on a single run
at a fixed dimension. We examine 15 dimensional linear Gaussian data generated with the process
previously described, and Table 1 demonstrates that utilizing the finetuning objective for the encoder
achieves log-likelihood estimates closer to the ground truth. We generate data out-of-distribution by
intervening on Z and setting it to a U(�7, 7) variable. This in turn generates out-of-distribution X
and Y by construction. These results analyze the components given by the formula for variational
backdoor adjustment (Equation 4) and show the reason for increased performance: optimizing the
encoder gives it the flexibility to give lower likelihood to samples without dramatically sacrificing
likelihood of the decoder and prior. This optimization results in a tighter bound on Equation 4, and
therefore a more accurate interventional likelihood.

4.2 MNIST

To demonstrate that our method can work on images, we construct a synthetic dataset of binary
MNIST images that simulate confounding. The setup is as follows: sample a random image Z,
sample an image X such that X is the consecutive number after Z, and concatenate them together to
form image Y . The causal structure is depicted in Figure 3. In the training data, Y will only contain
concatenated images with successive numbers due to the confounding of image Z. However, by
training with backdoor adjustment, the model can learn that Y can consist of any two numbers given
an intervention on X . For observational density p(y | x), we train a conditional VAE with 50 latents
and 2 hidden layers, each with 200 hidden units. For the interventional density p(y | do(x)), we
apply VBA, parameterizing the encoder as a vanilla neural net, and the decoder and prior as VAEs
with 50 latents and 2 layers of 200 hidden units. Because the data is binary, we sample in training
using the Gumbel-Softmax trick (Jang et al., 2016), which allows gradient descent through discrete
samples. The difference between observational and interventional density is born out in Figure 4. It
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(a) Observational p(y | x) (b) Interventional p(y | do(x)) (c) Difference ((a) - (b))

Figure 4: We generate interventional data for MNIST as seen on the right of Figure 3. Figures (a) and
(b) show the respective log-likelihood, where the axes delineate how Y is generated. For example,
Z = 3 and do(X = 9) will produce an image Y reassembling a “39”. The key result is (c), where
we see that in general, interventional likelihood will give higher likelihoods. The blue diagonal in (c)
shows that images with consecutive numbers have higher likelihood in the observational distribution.

Figure 5: Data generating process for Causal X-ray dataset. The small circle in patient Z is the
tumor. On the right, intervening on the treatment will make recovery rate independent of whether the
annotation is correctly placed, i.e. the accuracy of the doctor.

shows that using variational backdoor adjustment, images with non-consecutive numbers in Y will
be more likely under the interventional density than under a naively estimated observational density.

4.3 CAUSAL X-RAY

Setup We introduce a new high dimensional dataset containing X-ray images to emulate a potential
real-world scenario. The data models the following situation: a patient receives an initial X-ray scan
(Z), a doctor provides annotations indicating location for treatment (X), and the patient obtains a
new X-ray scan following treatment (Y ). The treatment is administered with a certain accuracy with
respect to location based on the patient X-ray (Z ! X), and when administered, the treatment has a
certain level of efficacy (X ! Y ). The goal of backdoor adjustment is to isolate the effectiveness of
the treatment and ignore the accuracy of how it is administered.

To generate the data, we utilize chest X-ray scans from MedMNIST (Yang et al., 2021), and apply
a slight augmentation to add synthetic “tumors”. A tumor is a circle composited with the image,
and it occurs on the left or right lung with equal probability. The treatments are annotations that
are synthetically created through shrinking MNIST zero digits to approximately the size of a tumor
(see Figure 5 for visual). It is placed either on the left or right (either accurately or inaccurately
depending on whether the tumor is placed on the left or right). In this setup, we assume that the doctor
administers the treatment accurately 60% of the time. The outcome will be an X-ray image where if
the treatment is effective and administered accurately, the patient will recover with 50% probability,
resulting in an X-ray image without the tumor. If the treatment is administered incorrectly, the tumor
will always remain in the patient.

Results We parameterize VBA for this task in the following manner. We model the confounder images
Z with an auto-regressive flow model called FFJORD (Grathwohl et al., 2018). We opt for this model
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(a) (b)

Figure 6: Left: Performance on Causal X-ray measured in bits/dim (lower is better). Estimates do
not vary with treatment accuracy, as expected in the interventional density. Right: Samples drawn
from separately trained encoder (top row) and finetuned encoder (bottom row). The images from
the finetuned encoder are more smoother and more realistic, as they do not contain “double” tumor
artifacts.

because it gives exact likelihood estimates in continuous settings and is amongst the state-of-the-art
models for density estimation. Because in this setting Z and Y are closely related, parameterizing
the encoder p(z | x, y) and p(y | x, z) with vanilla deep neural networks using a Gaussian predictive
distribution with diagonal covariance is sufficient. To evaluate the efficacy of backdoor adjustment,
we generate new interventional data in which we change the accuracy of the doctors treatments. In
the training data, treatment occurs at the location of the tumor 60% of the time by construction. We
can vary this rate when generating test data, and because treatment X as no dependence on patient Z
in the interventional distribution, the likelihood should not significantly change.

Figure 6a shows little dependence between treatment accuracy and reported bits per dimension of
VBA. It also shows that VBA with finetuning performs strictly better than separate training. We
investigate this difference in performance by visualizing samples from each encoder. For a given
X,Y , the finetuned encoder produces smoother, more realistic images Z. Better looking images
along with greater likelihoods are indications of a better generative model and a more accurate
estimate of p(y | do(x)). Intuitively, this is because a separately trained encoder must fit to the data,
but the finetuned encoder is optimized to better fit with the prior p(z) and decoder p(y | x, z) to
obtain a better lower bound. We confirm these intuitions in Table 2, which explicitly shows these
trade-offs. Finetuning makes encoder samples z more likely, but in turn also improves prior and
decoder likelihood. Interestingly, the opposite effect is observed in Table 1, where lower likelihood
samples z improved the ELBO. We restate the importance and power of optimizing interventional
density in this manner, since the interventional density estimate can be improved in multiple ways.

Table 2: Causal X-ray Results. We report in nats, with mean and standard error averaged over the
test Causal X-ray data for 5 runs. The rows given are decomposed from the terms in the ELBO.
Finetuning the encoder q outperforms z sampled from MLE estimates of q. In this case, higher
likelihood samples of z result in a tighter ELBO.

Separate Training Finetuned

Ex,y⇠DEq(z|x,y) log p(z) 979.67 (1.67) 2012.51 (0.10)

Ex,y⇠DEq(z|x,y) log p(y | x, z) 1705.91 (0.23) 1837.63 (0.08)

Ex,y⇠DE�q(z|x,y) log q(z | x, y) -1923.18 (0.08) -2589.35 (0.08)

5 CONCLUSION

We explore the various challenges that surface when trying to compute backdoor adjustment in
high dimensions. We show that using variational inference, it is possible to compute the backdoor
formula in the presence of high-dimensional treatments and confounders. While variational inference
is typically used in a latent variable setting, we show with a novel optimization framework that
variational inference can be used as a powerful tool to compute identifiable quantities in causal
inference.
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