
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HELIX: EVOLUTIONARY REINFORCEMENT LEARNING
FOR OPEN-ENDED SCIENTIFIC PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) with reasoning abilities have demonstrated grow-
ing promise for tackling complex scientific problems. Yet such tasks are inherently
domain-specific, unbounded and open-ended, demanding exploration across vast
and flexible solution spaces. Existing approaches, whether purely learning-based
or reliant on carefully designed workflows, often suffer from limited exploration
efficiency and poor generalization. To overcome these challenges, we present HE-
LIX—a Hierarchical Evolutionary reinforcement Learning framework with In-
context eXperiences. HELIX introduces two key novelties: (i) a diverse yet high-
quality pool of candidate solutions that broadens exploration through in-context
learning, and (ii) reinforcement learning for iterative policy refinement that pro-
gressively elevates solution quality. This synergy enables the discovery of more
advanced solutions. On the circle packing task, HELIX achieves a new state-of-
the-art with a sum of radii of 2.635983 using only a 14B model. Across standard
machine learning benchmarks, HELIX further surpasses GPT-4o with a carefully
engineered pipeline, delivering an average F1 improvement of 5.95 points on the
Adult and Bank Marketing datasets and a 40.5% reduction in RMSE on Boston
Housing.

Switch to Gradient Boosting TreesSwitch to Gradient Boosting Trees

Add GridSearchCV for tuningAdd GridSearchCV for tuning

XGBoost + KNN ImputerXGBoost + KNN Imputer

Fine-tune parameters, imputer & features

Add polynomial featuresAdd polynomial features

Add complex feature engineeringAdd complex feature engineering

Switch to Gradient Boosting TreesSwitch to Gradient Boosting Trees

Add GridSearchCV for tuningAdd GridSearchCV for tuning

XGBoost + KNN ImputerXGBoost + KNN Imputer

Fine-tune parameters, imputer & features

Add polynomial featuresAdd polynomial features

Add complex feature engineeringAdd complex feature engineering

(a) Housing Dataset
(Finding ML algorithms)

Circular coil distributionCircular coil distribution

Tighter coil distributionTighter coil distribution

Thinner coreThinner core

Closer coils and coreCloser coils and core

Larger rotation volumeLarger rotation volume

Circle beamCircle beam

Top-bottom flangesTop-bottom flanges

Side flangesSide flanges

Larger circle beamLarger circle beam

Combine large beam and flanges

Tune parametersTune parameters

(b) Beam and Inductor Design
(Finding better geometric shape)

Figure 1: The figure demonstrates how our framework progressively discovers new insights and
refines solutions over iterations. (a): Reward curve for the housing dataset optimization, where
improvements are achieved through iterative adoption of better models, parameter tuning, and fea-
ture engineering, with the final reward of 1.758 corresponding to an RMSE of 1.747. (b): Reward
curves for the beam and inductor design tasks, where the algorithm explores novel geometries and
combines favorable structural features to enhance performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Solving complex scientific problems with large language models (LLMs) is an important and in-
creasingly active research direction (Forootani, 2025). By leveraging and enhancing their reasoning
capabilities, LLMs have demonstrated promising results in tackling challenging scientific tasks,
such as symbolic regression (Shojaee et al., 2024), molecular generation (Liu et al., 2024), and diffi-
cult mathematical optimization problems (Ahmed & Choudhury, 2024). Addressing such problems
holds the potential to advance the boundaries of human knowledge and reshape scientific discovery.

While LLMs have shown promising applications, complex scientific problems remain particularly
challenging due to three intrinsic characteristics. First, they are domain-specific, with unique envi-
ronments and problem-specific constraints that differ across various tasks. Second, they are open-
ended, requiring exploration of vast and flexible solution spaces. Third, they are unbounded, often
with no known or guaranteed global optimum.

To address these challenges, we argue that a powerful LLM for solving complex scientific prob-
lems must possess three corresponding key abilities: (1) learning from experience, i.e., it should
enable task-specific policy adaptation by incorporating feedback from previous trials, addressing
the domain-specific nature of each problem. (2) Balancing quality and diversity, i.e., it should
maintain a diverse population to thoroughly explore the vast and flexible solution spaces inherent in
open-ended tasks. (3) Exploration based on the shoulder of giants, i.e., it should iteratively build
upon existing high-quality solutions to extend the known limits of unbounded problems.

However, recent works largely lack the capabilities outlined above, limiting their effectiveness on
complex scientific problems. Existing approaches fall into two categories. Post-training methods
(e.g., SFT, RLVR) fine-tune LLMs on domain-specific datasets, as in AlphaCode (Li et al., 2022) and
Deepseek-R1 (Ren et al., 2025), achieving strong results in code generation and mathematical rea-
soning. Yet such methods often suffer from entropy collapse (Cui et al., 2025) and, as shown in Yue
et al. (2025), rarely move beyond the base model’s capabilities. This makes it difficult to discover
fundamentally new solutions, especially when sparse rewards further limit exploration. Workflow-
driven approaches embed LLMs in predefined pipelines to improve task-specific performance. Ex-
amples include integrating genetic algorithms with LLMs for enzyme discovery (Nana Teukam et al.,
2025), establishing LLM-driven evolutionary loops such as LLaMEA (van Stein & Bäck, 2024), or
applying evolutionary strategies to prompts (Agrawal et al., 2025). While effective on narrow tasks,
these systems are highly sensitive to workflow design and rely on static pretrained knowledge, mak-
ing it hard to reuse past discoveries to guide iterative search. Both categories thus struggle to gen-
eralize in open-ended scientific domains where efficient exploration and continual refinement are
essential.

To this end, we propose HELIX—a Hierarchical Evolutionary reinforcement Learning framework
with In-context eXperiences. First, to learn from experience, HELIX updates the LLM policy us-
ing reward signals by reinforcement learning to progressively improve solution quality. Meanwhile
candidate solutions explored by the model forms a population for evolving algorithms. Secondly,
to balance the quality and diversity, we propose to rank and select samples using both diversity and
reward, inspired by a classic multi-objective evolutionary algorithm named NSGA-II(Deb et al.,
2002). Specifically, to better measure the novelty of a solution, we compute diversity using a pre-
trained language embedding model and estimate the diversity by kNN. Finally, we enable the model
to stand on the shoulder of giants by adding a prompt constructed by the best solutions in the popu-
lation to guide the model to generate new solutions. By using the in-context learning paradigm, we
seamlessly unify and integrate evolutionary learning with reinforcement learning to explore the vast
solution space in complex scientific problems.

In experiments, we evaluated HELIX on 20 tasks across five diverse categories. Compared with
strong task-specific baselines and advanced proprietary models such as GPT-4o, HELIX achieves
superior performance on 17 tasks, demonstrating its ability to iteratively refine solutions and update
its policy towards better results. Further analysis via ablation studies confirms that each component
of HELIX contributes critically to performance. Notably, success on these unbounded and open-
ended tasks suggests that iterative, diversity-aware exploration can provide useful insights for other
scientific and engineering problems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Reinforcement learning of LLMs. Training LLMs or LLM-based agents with reinforcement
learning (RL) has recently attracted significant attention. This includes reinforcement learning
from human feedback (RLHF) to align models with human preferences, as well as RL with veri-
fiable rewards (RLVR) to enhance reasoning, mathematical problem-solving, and coding capabil-
ities. Beyond improving reasoning, RLVR-style training can also elicit new capabilities such as
tool use (Feng et al., 2025) and information retrieval (Jin et al., 2025). A representative method is
GRPO (Shao et al., 2024), which normalizes rewards within groups of samples. Variants such as
DAPO (Yu et al., 2025) and Dr.GRPO (Liu et al., 2025) further improve GRPO through refined data
sampling strategies and advantage estimation techniques. While RL can improve generalization in
specific domains, the training process often suffers from decreasing entropy and diversity over time,
hindering effective exploration. Some approaches, such as KL-Cov (Cui et al., 2025), attempt to
address this limitation by applying KL penalty solely to tokens with high covariance to preserve
entropy. However, for complex scientific problems, these memory-less RL methods—where the
sampling context for the same problem remains fixed—struggle to leverage solutions that have al-
ready been discovered, making it difficult to build upon prior explorations.

Evolutionary algorithms. Evolutionary algorithms are a classic approach for tackling complex
optimization problems. They use ”gene” to represent a solution for the problem and use random
mutation to explore the whole solution space. Recently, AlphaEvolve (Novikov et al., 2025) treats
code as the “gene” and applies LLM-driven mutations, successfully integrating LLM agents with
evolutionary algorithms—opening the door to solving complex scientific problems. Since then,
many works have adopted similar agent-based workflows to address scientific tasks such as CUDA
code optimization (Lange et al., 2025), drug discovery (Gao et al., 2025), and complex scientific
software usage (Fan et al., 2025; Pham et al., 2025). However, such methods typically require
highly problem-specific workflow logic and prompt design, which greatly limit their effectiveness
in solving more general and complex problems.

3 PROPOSED METHOD

3.1 OVERVIEW

To tackle the challenges of applying large language models (LLMs) to complex scientific discovery
tasks, we propose HELIX, a hybrid framework that integrates reinforcement learning with evolu-
tionary search. The goal is to enable LLMs to efficiently explore large and flexible solution spaces
while maintaining diversity and exploiting previously discovered high-quality solutions. The frame-
work is composed of three complementary modules: (1) A reinforcement learning framework
that updates the policy parameters based on verifiable reward, allowing the model to learn from
experience and progressively improve its reasoning capability. (2) A multi-objective evolution-
ary mechanism that balancing solution quality and diversity, ensuring that the population retains
both high-performing and diverse candidates for further expansion. (3) An in-context learning
mechanism that incorporates multiple past trials into the prompt, enabling the model to build upon
previously discovered solutions and expand its exploration on the shoulder of giants.

We consider the task as an optimization problem that has a solution space of code. Let s ∈ S denote a
candidate solution, represented as code written in a domain-specific language (e.g., Python, YAML,
or other DSLs). We define an objective reward function R(·) which only depends on the current
solution (state). The optimization objective is to find a valid s ∈ S to maximize the reward:

max
s∈S

R(s). (1)

To explore and search for new solutions, we use an LLM policy πθ that iteratively mutates(improves)
current solutions. Given timestep t, we sample a solution st from Pt, the set of candidate solutions
at t-th step. The LLM will output an action at ∈ A, which is an edit or modification applied to st,
to obtain a new solution st+1 = T (st, a), where T is the transition function. Our goal is to improve

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Tasks & Solution Pool Language Model

…
…

…
…

…
…

…
…

…
…

…
…

Input

RL Algorithm

Lineage Tree

NSGA-II Select

Update PolicyUpdate Policy

Output

Feedback

Evaluate Pipeline

… … … …

G0

G1

G2

G3

G0

G1

G2

G3 … …

G0

G1

G2

G3

SamplesSamples

SamplesSamples

SelectedSelected

R
ew

ar
d

Diversity

R
ew

ar
d

Diversity

Pareto FrontPareto Front

Samples

Selected

R
ew

ar
d

Diversity

Pareto Front
Update

Prompt Construction

Task Description
......
Task Description
......

Current Solution
Provide improvements
to this solution.
......

Current Solution
Provide improvements
to this solution.
......

Previous Trials
Trials 1
......
Trials 2
......

Previous Trials
Trials 1
......
Trials 2
......

Circle Packing

py

py

Circle Packing

py

Physics Simulation

DSL

DSL

Physics Simulation

DSL

Symbolic Regression

Equ

Equ

Symbolic Regression

Equ

Function Minimization

py

py

Function Minimization

py

Machine Learning Tasks

py

py

Machine Learning Tasks

py

Evaluate Pipeline

Post

Process

Embed

Solution

Calculate

Diversity

Run and

Evaluate

Prompt

Solution Feedback Advantage

Ref Policy KL Penalty Target

Tasks & Solution Pool Language Model

…
…

…
…

…
…

…
…

…
…

…
…

Input

RL Algorithm

Lineage Tree

NSGA-II Select

Update PolicyUpdate Policy

Output

Feedback

Evaluate Pipeline

… … … …

G0

G1

G2

G3

G0

G1

G2

G3 … …

G0

G1

G2

G3

SamplesSamples

SamplesSamples

SelectedSelected

R
ew

ar
d

Diversity

R
ew

ar
d

Diversity

Pareto FrontPareto Front

Samples

Selected

R
ew

ar
d

Diversity

Pareto Front
Update

Prompt Construction

Task Description
......
Task Description
......

Current Solution
Provide improvements
to this solution.
......

Current Solution
Provide improvements
to this solution.
......

Previous Trials
Trials 1
......
Trials 2
......

Previous Trials
Trials 1
......
Trials 2
......

Circle Packing

py

py

Circle Packing

py

Physics Simulation

DSL

DSL

Physics Simulation

DSL

Symbolic Regression

Equ

Equ

Symbolic Regression

Equ

Function Minimization

py

py

Function Minimization

py

Machine Learning Tasks

py

py

Machine Learning Tasks

py

Evaluate Pipeline

Post

Process

Embed

Solution

Calculate

Diversity

Run and

Evaluate

Prompt

Solution Feedback Advantage

Ref Policy KL Penalty Target

Figure 2: Illustration of HELIX framework. The workflow begins with a dataset containing task
descriptions and a pool of initial solutions, which are taken by LLM as inputs. The LLM will modify
and update the original solution and generate a new one, represented as descendants in lineage tree.
After the evaluation pipeline, samples will be selected by NSGA-II algorithm to construct promising
yet diverse candidate solutions for population evolution. The resulting reward-labeled solutions will
also be used to update policy parameters via reinforcement learning.

the policy’s ability to find better solutions. The objective is defined as follows,

max
θ

Est∼Pt, at∼πθ(·|q,st) [R(st, at)] , (2)

where q is the prompt constructed in equation 5 and R(st, at) = R(st+1) is the reward of the new
solution with a slight abuse of notations. We leverage GRPO (Shao et al., 2024), a reinforcement
learning algorithm, to update LLM policy πθ. By maximize the reward in equation 2, the LLM will
learn to enhance current solution st towards higher reward, which will finally leads to improvement
in equation 1.

To address the exploration–exploitation trade-off and prevent entropy collapse in RL, we incorporate
evolutionary algorithm in selection of candidate solutions. Suppose Dt = {st} is the set of all
solutions generated in the t-th iteration and D0 = {s0} is the set of initial solution, the candidate
solution for t-th step can be constructed as

Pt = SelectTopNSGA-II(

t⋃
s=0

Ds), (3)

where NSGA-II (Deb et al., 2002) is a sample selection strategy widely adopt in evolutionary al-
gorithms, which ensures retention of high-reward and diverse candidates. This formulation allows
the model to iteratively improve its policy while exploiting previously found high-quality solutions
as starting points for further exploration. Figure 2 provides a brief summary of our method and the
formalized algorithm can be found in Appendix G.

3.2 POLICY OPTIMIZATION ALIGNED WITH EVOLUTIONARY SEARCH

As the evolutionary process unfolds, updating the model parameters becomes crucial: it enables
the policy to learn from both successful and failed trials, generate higher-quality solutions, and
dynamically adapt to the shifting input distribution induced by the evolutionary search. Reinforce-
ment learning is particularly suitable in this scientific setting, since open-ended scientific tasks lack
standard answers and typically provide only sparse reward feedback. Motivated by the design of
GRPO (Shao et al., 2024), we develop a reinforcement learning–based policy update mechanism
tailored to our framework. GRPO has proven effective in enhancing LLM reasoning on mathemat-
ical and programming tasks (Guo et al., 2025), and its multi-sample generation naturally provides
diverse reasoning-driven outputs that enrich the evolutionary dataset, making it a natural inspiration
for our method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Formally, given a prompt q, the model will generate G rollout sequences {aj}1≤j≤G with policy
πθold . The GRPO objective is then defined as:

JGRPO(θ) = Est∼Pt, {aj}G
j=1∼πθold (·|q,st)[

1

G

G∑
j=1

1

|aj |

|aj |∑
k=1

(
min

(
rj,k(θ)Âj,k, clip(rj,k(θ), 1− ϵ, 1 + ϵ)Âj,k

)
− βDKL(πθ∥πref)

)]
,

(4)

where rj,k(θ) =
πθ(aj,k|q,aj,<k)
πθold (aj,k|q,aj,<k)

is the token-level policy ratio, Âj,k=
R(st,aj)−meanj{R(st,aj)}

stdj{R(st,aj)} is
the token-level advantage, ϵ is the clipping parameter, and β controls the KL divergence penalty
against a reference policy πref.

In order to fully leverage the in-context learning ability of LLMs, enabling the model to learn from
feedback of previous trials and propose advanced solutions, we construct the prompt q in the fol-
lowing manner:

q = ConstructPrompt({p}∪{st, R(st), F (st)}∪{f (k)(st), R(f (k)(st)), F (f (k)(st))}1≤k<n), (5)

where p is the problem description, f (k)(st) is the k-th ancestor of st in lineage tree (a historical
trace of the solution st’s iterative refinement), R(·) represents the reward function and F (·) denotes
the auxiliary feedback (e.g., textual or structured evaluations) provided by the evaluator to guide
future refinements. By constructing prompts using memory of previous feedback and rewards along
a lineage tree, it ensures the model effectively explores across challenging solution spaces.

3.3 EVOLUTIONARY MECHANISM FOR BALANCING QUALITY AND DIVERSITY

In unbounded scientific research tasks, it is crucial to explore multiple promising ideas or directions.
Thus, the optimization process must balance quality, i.e., high-reward solutions that serve as strong
starting points for refinement, with diversity, which sustains broad exploration across the solution
space. We design the evolutionary search algorithm to be a multi-objective optimization that natu-
rally achieves a trade-off by maintaining a population that simultaneously improves in reward and
preserves diverse candidates. Specifically, we innovatively adopt NSGA-II Deb et al. (2002), which
is a powerful multi-objective optimization algorithm, to filter high quality and diverse samples on the
Pareto front of reward and diversity for subsequent expansion. To further encourage more diverse
exploration and enable more accurate diversity computation, we propose to computate the diversity
score based on its semantic embedding similarity using a pretrained language embedding model.

Diversity measurement. To quantify the diversity of candidate solutions, we first normalize each
solution into a canonical code format and encode it into an embedding vector using a pretrained
embedding model. Let D =

⋃
0≤s≤tDs represents the union of all solutions, E(s) ∈ Rd denote the

embedding of solution s ∈ D. For any solution si, its diversity score is computed by measuring the
average similarity to its k nearest neighbors in the embedding space:

Div(si) = 1− 1

k

∑
j∈Nk(i)

E(si) · E(sj)

∥E(si)∥∥E(sj)∥
, (6)

whereNk(i) denotes the indices of the k nearest neighbors of si inD, measured by cosine similarity.
A higher Div(si) indicates that si is more distinct from other solutions, thereby contributing to
population diversity.

NSGA-II based selection. Given both reward score R(s) and diversity score Div(s), each can-
didate solution can be mapped to a two-dimensional objective space. We then adopt the NSGA-
II (Deb et al., 2002) algorithm to select high-quality and diverse samples. NSGA-II first applies a
nondominated sorting procedure to partition solutions into multiple fronts based on Pareto domi-
nance, where a solution sa dominates sb if R(sa) ≥ R(sb) and Div(sa) ≥ Div(sb) with at least
one strict inequality. To further ensure diversity preservation within each front, NSGA-II computes

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

a crowding-distance measure and selects representative samples that are well spread in the objective
space.

By combining nondominated sorting with diversity preservation, the resulting population P retains
candidates that are both high-reward and diverse. This mechanism allows the model to continuously
exploit promising solutions while sustaining exploration across multiple distinct solution trajecto-
ries.

4 EXPERIMENT

In this section, we first introduce the experimental setup, including the tasks we selected for bench-
marking the model’s ability to solve open-ended scientific problems. Then, we present extensive
experiments demonstrating that HELIX effectively enhances model capability, integrates historical
experience, and balances reward with diversity, leading to significant improvements over existing
baselines in solving unbounded and open-ended scientific challenges. Finally, the ablation studies
reveal how different components of the framework work together in a complementary manner.

4.1 EXPERIMENT SETTING

Tasks. To comprehensively evaluate the model’s capacity for complex scientific reasoning, we
design experiments on five representative categories of tasks. These tasks are particularly suited for
our study because they are unbounded, lacking a guaranteed global optimum, open-ended, requiring
exploration over vast and flexible solution spaces and domain-specific, containing unique constraints
and complex background. Success in these tasks not only demonstrates the model’s ability to search
beyond local optima, but also provides insights that can inspire solutions in broader scientific and
engineering domains.

1. Machine Learning Tasks. We selected three representative datasets: Adult in-
come (Becker & Kohavi, 1996), Bank marketing (Moro et al., 2014) and Boston hous-
ing (Harrison Jr & Rubinfeld, 1978) dataset to evaluate the model’s ability to solve machine
learning tasks. These tasks reflects the open-ended challenge of combining ML algorithms
for novel applications, with potential implications for autonomous scientific workflows.

2. Physics Simulation Tasks. These tasks combine geometric structures design and optimiza-
tion in multi-physics environments in distinct fields. The design space of these problems
has a very high degree of freedom with few global optimal solution.

3. Circle Packing Problems. The objective of these tasks is to maximize the sum of radii of
circles packed within given shapes. It allows multiple feasible arrangements and there is
no proved global optimum solution currently.

4. Function Minimization. It requires LLM to write a code to find the global minimum point
of given functions. Agents can search freely for new mathematical optimization methods
in code space.

5. Symbolic Regression. A benchmark (Shojaee et al., 2025) evaluates the ability of LLMs
to hypothesize underlying expressions for noisy data. The model needs to search among a
vast possible expression set and utilize domain specific knowledge to find solution.

Models. We selected the DeepSeek-R1-Distill-Qwen model family for our experiment due to its
strong reasoning capabilities and manageable size, which is critical for performing complex sci-
entific tasks under computational constraints. Among the model family, the 14B version offers an
optimal balance between efficiency and performance, and was selected as the model in the main
results. For physics simulation tasks that require strong geometric reasoning ability and physical
prior knowledge, we utilize the 32B version of the model.

Baselines. We compare our approach against three key baselines:

1. Direct Prompt (Test-Time Scaling): Queries the model directly and selects the best out-
come from multiple samples to establish a performance upper bound of base model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of main experiments. All values correspond to the best outcome obtained across all
attempts. We use ↑ to indicate that larger values correspond to better performance, and ↓ represents
the opposite. We highlighted the best results in each task in bold. ”NA” denotes non-convergence
or unsuitability for given case.

Task Specific Methods Direct Prompt Open Evolve Ours

Machine Learning

Tasks LightGBM RRL Qwen GPT-4o Qwen GPT-4o -
Adult Income ↑ 80.36 80.72 73.72 76.91 76.90 72.27 82.07

Bank Marketing ↑ 75.28 76.32 0.00 76.91 75.66 78.54 80.65
Boston Housing ↓ 3.258 3.966 3.149 3.031 2.937 2.937 1.747

Transparent Conductors ↓ 0.060 NA 0.060 0.059 0.059 0.056 0.049

Physics Simulation

Tasks Parameter Scan Topology Opt Qwen GPT-4o Qwen GPT-4o -
Inductor ↑ 6.111 6.248 2.584 0.001 1.637 1.652 9.609

Beam Bending ↑ 4.771 NA 5.407 4.005 10.793 6.352 17.298
Magnetic Torque ↑ 10.273 NA 0.323 1.201 3.488 1.607 11.045

Periodic Heat ↑ 1.206 NA 1.258 1.255 1.233 1.266 1.278
Demultiplexer ↑ 18.322 23.555 3.364 4.532 12.341 8.645 14.260

Circle Packing
Tasks SLSQP Genetic Algo Qwen GPT-4o Qwen GPT-4o -

Packing in Unit Square ↑ 2.519 2.345 1.673 1.900 1.586 2.611 2.636
Packing in Unit Disk ↑ 4.522 3.896 4.608 3.290 4.604 3.984 4.664

Function Minimization

Tasks SLSQP Trust-constr Qwen GPT-4o Qwen GPT-4o -
Eggholder ↑ 0.705 0.688 1.000 0.959 1.000 1.000 1.000

Mishras Bird ↑ 0.814 0.764 1.000 0.996 1.000 1.000 1.000
Keanes Bump 10d ↑ 0.714 0.692 0.886 0.987 1.000 0.997 1.000
Keanes Bump 20d ↑ 0.603 NA 0.794 0.657 0.596 0.983 1.000
Keanes Bump 30d ↑ 0.594 NA 0.923 0.625 0.677 0.668 0.994

Symbolic Regression

Tasks LLM-SR LaSR Qwen GPT-4o Qwen GPT-4o -
Chemistry ↓ 4.12e-6 9.11e-5 2.66e-5 2.44e-6 1.59e-5 9.52e-6 7.32e-6
Biology ↓ 3.06e-6 1.53e-4 1.26e-4 7.52e-5 1.64e-4 5.31e-5 2.98e-8
Physics ↓ 7.62e-5 9.94e-4 2.71e-4 1.13e-4 2.76e-5 1.22e-4 2.76e-5

Material Science ↓ 3.21e-9 9.23e-6 7.14e-6 1.85e-6 6.99e-7 1.94e-6 4.46e-6

2. Open Evolve (Sharma, 2025): An open-source implementation of the AlphaE-
volve (Novikov et al., 2025) framework, which uses an evolutionary algorithm with multi-
ple LLM roles (e.g., proposing code mutations, evaluating fitness) to iteratively generate,
test, and evolve code or solutions across generations.

3. Task-Specific Methods: Represents results from established algorithms designed for each
specific problem. Details of these methods can be found in Appendix C.

4.2 MAIN RESULTS

Table 1 presents the results of our methods compared to various baselines. The best results in
each task are highlighted in bold. Since we selected multiple heterogeneous tasks, their evaluation
metrics are not the same. The detailed definitions and specific evaluation criteria are deferred to
Appendix B.

Across the 20 benchmark tasks, our method achieves the best performance on 17 tasks, surpassing
all competing baselines. Compared under the same model settings, our framework consistently out-
performs Direct Prompting across all benchmarks. Against OpenEvolve—the open-source version
of AlphaEvolve—it achieves superior results on 19 tasks. These results clearly highlight the strength
of our framework in solving open-ended scientific problems among various domains compared to
other approaches.

Notably, we observe that the base Qwen models perform relatively poorly on certain tasks such as
Bank Marketing and Magnetic Torque, exhibiting low rewards even in the best of 64 direct trials.
However, our framework significantly improves performance in these cases by leveraging parameter
updates and in-context learning to effectively incorporate feedback from the exploration process.
This demonstrates that our approach can partially overcome the limitations of weaker base models
by iteratively evolving toward superior solutions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40
Epoch

0
1
2
3
4
5
6
7
8

M
ea

n
R

ew
ar

d

0.00

0.25

0.50

0.75

1.00

Va
lid

ity
 R

at
e

Reward
Validity

(a) Inductor design

0 20 40
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6

M
ea

n
R

ew
ar

d

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Va
lid

ity
 R

at
e

Reward
Validity

(b) Adult income prediction

Figure 3: Convergence analysis on the Inductor and Adult tasks. The curves show the progressive
improvement of average reward and validity during training, demonstrating that our framework ef-
fectively leverages reinforcement learning feedback and evolutionary dynamics to produce increas-
ingly valid and high-quality solutions.

To further assess the competitiveness of our approach against state-of-the-art scientific discovery
systems, we compared it with GPT-4o, one of the most advanced closed-source models. Remarkably,
our method outperforms GPT-4o on 18 tasks, regardless of whether GPT-4o is equipped with multi-
role collaborative reasoning frameworks. These results highlight that our framework can fully ex-
ploit the prior knowledge of smaller models through reinforcement learning, enabling cost-efficient
and effective solutions to complex scientific problems.

In comparison with task-specific methods, which are typically crafted by human experts for par-
ticular domains, our framework still achieves superior performance on 17 tasks. Specifically, in
the circle packing task, we establish a new world record 2.635983 using only a 14B model. For
the Transparent Conductors dataset, derived from a human-participation competition (Ziletti et al.,
2017), our framework attains the second-highest score on the participants’ leaderboard. This high-
lights its ability to iteratively evolve within open-ended solution spaces and to autonomously uncover
novel solutions that go beyond manually designed approaches.

To provide further evidence that our framework effectively integrates reinforcement learning and
evolutionary algorithms, we analyze its convergence behavior on two representative cases: inductor
design and adult income prediction. Figure 3 plots the average reward and validity of model outputs
during training. Both metrics exhibit a clear upward trend: the validity rate rises steadily, showing
that the model increasingly generates outputs that satisfy task constraints, while the average reward
improves, reflecting higher-quality solutions. This dual improvement demonstrates that reinforce-
ment learning progressively strengthens the model’s intrinsic reasoning ability. It also indicates that
the quality of the evolving population keeps improving, enabling the model to leverage in-context
feedback as well as intuitions from high-reward solutions to generate better outputs.

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF FRAMEWORK COMPONENTS

To better understand the contribution of each component in our framework, we conduct ablation
studies on the Boston Housing and Circle Packing tasks. We design several controlled variants by
selectively disabling or simplifying parts of the algorithm: TopScore, where only the highest-reward
candidate in the dataset is selected for further evolution; TopDiv, where selection relies solely on
diversity without considering reward; Random, where candidates are sampled randomly from the
population; EvoOnly, where the model parameters are kept fixed and only the evolutionary pipeline
is applied; and TrainOnly, which removes the evolutionary mechanism and in-context prompt-
ing, reducing the framework to pure GRPO reinforcement learning. These variants allow us to
disentangle the relative importance of reward-driven selection, diversity maintenance, evolutionary
population updates, and reinforcement learning in driving overall performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Circle Packing Boston Housing
Problems

1.5

2.0

2.5

3.0

M
ax

 R
ew

ar
d

2.305

1.569

2.523

1.544

2.628

1.546

2.524

1.542

2.612

1.546

2.636

1.713

TopScore
TopDiv
Random
EvoOnly
TrainOnly
Ours

(a) Max reward of varients

0 20 40
Epoch

1

2

R
ew

ar
d

TopScore
TopDiv
Random
Ours

(b) Circle Packing

0 20 40
Epoch

1.3

1.4

1.5

1.6

1.7

R
ew

ar
d

EvoOnly
TrainOnly
Ours

(c) Boston Housing

Figure 4: Ablation analysis of framework components. (a): Maximum reward achieved by dif-
ferent ablation variants. (b): Curve of epoch-wise maximum reward on the Circle Packing task,
highlighting the critical role of balancing diversity and quality for stable optimization. (c): Curve
of epoch-wise maximum reward on the Boston Housing task, showing the necessity of combining
reinforcement learning with evolutionary guidance.

Figure 4a reports the maximum reward achieved under different ablation settings. Across both tasks,
all variants perform worse than our full framework, confirming the necessity of each component. We
next analyze the results task by task.

For the Circle Packing problem, high-quality solutions rely on diverse initial starting points for
optimization algorithms. As shown in Figure 4b, eliminating diversity (TopScore) significantly re-
duces reward, since the search quickly collapses into narrow solution modes. In contrast, Random
and TopDiv maintain higher diversity, enabling the model to extend from a richer set of initial states.
However, focusing solely on diversity also leads to instability—visible in the large variance of Top-
Div and Random—whereas TopScore and our full method (Ours) remain relatively stable. This
instability disrupts training and prevents the model from finding strong solutions in later epochs.
Moreover, we conducted a detailed analysis on the performance gap between OpenEvolve and HE-
LIX in Appendix E, which demonstrate the effectiveness of explicitly combining diversity with
embedding model in our framework. These results highlight that balancing diversity and solution
quality is critical for solving such problems.

For the Boston Housing task, strong performance requires careful parameter tuning and complex
feature engineering, which typically emerge from iteratively learning from past experience. As
shown in Figure 4c, disabling either reinforcement learning or evolution severely limits performance.
With EvoOnly, the model remains bounded by its initial capacity and fails to break through training
bottlenecks. Conversely, with TrainOnly, the model cannot effectively accumulate knowledge in
context and collapses during training. These results demonstrate that both parameter updates and
in-context evolutionary guidance are indispensable for helping the model accumulate expertise and
progressively refine its solutions.

4.3.2 SCALING EXPERIMENTS

Here, we discuss the impact of base model size on task performance. We evaluate our framework on
two representative tasks, Magnetic Torque Maximization and Inductor Design, using the DeepSeek-
R1-Distill-Qwen model family with 1.5B, 7B, 14B, and 32B parameters. As shown in Figure 5,
for the magnetic torque task, the reward steadily increases with model size, indicating stronger
reasoning ability and more effective exploration. For the inductor design task, we observe a reward
plateau around 9.6. However, the mean reward continues to grow as model size increases, suggesting
that larger models generate more valid and higher-quality candidates. These results demonstrate that
our framework exhibits scaling property: as the underlying LLM grows, the system can push the
boundaries of scientific discovery by enabling more efficient and higher-quality exploration.

5 CONCLUSION

In this work, we proposed HELIX, a hierarchical evolutionary reinforcement learning framework
with in-context experiences. By integrating reinforcement learning, evolutionary selection, and in-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1.5 7 14 32
Model Size (GB)

0

5

10
R

ew
ar

d

Max Reward
Mean Reward

(a) Magnetic torque maximization

1.5 7 14 32
Model Size (GB)

0

5

10

R
ew

ar
d

Max Reward
Mean Reward

(b) Inductor design

Figure 5: Scaling analysis of model parameter scale on (a): magnetic torque maximization and (b):
inductor design tasks.

context trial incorporation, HELIX effectively balances exploration and exploitation, enables task-
specific adaptation, and iteratively refines solutions. Extensive experiments across 20 tasks in five
diverse categories demonstrate that HELIX consistently outperforms strong task-specific baselines
and advanced proprietary models. Overall, HELIX shows strong potential for advancing open-
ended scientific discovery by enabling iterative, diversity-aware exploration. Looking ahead, it could
provide a foundation for broader applications in engineering, optimization, and autonomous research
systems.

ETHICS STATEMENT

This work focuses on developing a hybrid reinforcement learning and evolutionary framework for
solving complex scientific problems. It does not involve human subjects, sensitive personal data,
or proprietary datasets, and thus raises no direct ethical or privacy concerns. All datasets used are
publicly available and widely adopted in prior research. All authors have reviewed and agree to
abide by the ICLR Code of Ethics as linked above, and affirm that this submission complies with
the principles of honesty, transparency, fairness, and responsible conduct.

REPRODUCIBILITY STATEMENT

Detailed descriptions of the experimental setup, task definitions, and evaluation metrics are provided
in Appendix A and Appendix B.

Source code will be available at https://anonymous.4open.science/r/
HELIX-1829/.

REFERENCES

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Tasnim Ahmed and Salimur Choudhury. Lm4opt: Unveiling the potential of large language models
in formulating mathematical optimization problems. INFOR: Information Systems and Opera-
tional Research, 62(4):559–572, 2024.

Oliver A Bauchau and James I Craig. Euler-bernoulli beam theory. In Structural analysis, pp.
173–221. Springer, 2009.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

COMSOL AB. Comsol multiphysics®, 2024. URL www.comsol.com.

10

https://anonymous.4open.science/r/HELIX-1829/
https://anonymous.4open.science/r/HELIX-1829/
www.comsol.com

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):
182–197, 2002.

E Fan, Weizong Wang, and Tianhan Zhang. Chatcfd: an end-to-end cfd agent with domain-specific
structured thinking. arXiv preprint arXiv:2506.02019, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Ali Forootani. A survey on mathematical reasoning and optimization with large language models.
arXiv preprint arXiv:2503.17726, 2025.

Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenxuan Xie, Wei-Ying Ma, Ya-Qin Zhang, and Yanyan
Lan. Pharmagents: Building a virtual pharma with large language model agents. arXiv preprint
arXiv:2503.22164, 2025.

Arya Grayeli, Atharva Sehgal, Omar Costilla Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
bolic regression with a learned concept library. Advances in Neural Information Processing Sys-
tems, 37:44678–44709, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand for clean air.
Journal of environmental economics and management, 5(1):81–102, 1978.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. The ai
cuda engineer: Agentic cuda kernel discovery, optimization and composition. Technical report,
Technical report, Sakana AI, 02 2025, 2025.

Charles L Lawson and Richard J Hanson. Solving least squares problems. SIAM, 1995.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Xianggen Liu, Yan Guo, Haoran Li, Jin Liu, Shudong Huang, Bowen Ke, and Jiancheng Lv.
Drugllm: Open large language model for few-shot molecule generation. arXiv preprint
arXiv:2405.06690, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C5K306.

Yves Gaetan Nana Teukam, Federico Zipoli, Teodoro Laino, Emanuele Criscuolo, Francesca
Grisoni, and Matteo Manica. Integrating genetic algorithms and language models for enhanced
enzyme design. Briefings in bioinformatics, 26(1):bbae675, 2025.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Thang D Pham, Aditya Tanikanti, and Murat Keçeli. Chemgraph: An agentic framework for com-
putational chemistry workflows. arXiv preprint arXiv:2506.06363, 2025.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolve.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv
preprint arXiv:2404.18400, 2024.

Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan, and
Chandan K Reddy. Llm-srbench: A new benchmark for scientific equation discovery with large
language models. arXiv preprint arXiv:2504.10415, 2025.

Niki van Stein and Thomas Bäck. Llamea: A large language model evolutionary algorithm for
automatically generating metaheuristics. IEEE Transactions on Evolutionary Computation, 2024.

Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-based representation learning
for interpretable classification. Advances in Neural Information Processing Systems, 34:30479–
30491, 2021.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

Angelo Ziletti, Chris, Maggie, and Will Cukierski. Nomad2018 predict-
ing transparent conductors. https://kaggle.com/competitions/
nomad2018-predict-transparent-conductors, 2017. Kaggle.

12

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://kaggle.com/competitions/nomad2018-predict-transparent-conductors
https://kaggle.com/competitions/nomad2018-predict-transparent-conductors

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING AND EVALUATION DETAILS

Training. We primarily use DeepSeek-Distill-Qwen-14B and 32B as the backbone models in our
experiments. The models are fine-tuned with the VERL framework (Sheng et al., 2024) under the
GRPO algorithm. Each model is trained for 80 epochs with a fixed learning rate of 1 × 10−6,
updating all parameters. We set the KL coefficient in GRPO to 1× 10−3 and the number of rollouts
to 16. The rollouts are generated via VLLM (Kwon et al., 2023) backend with temperature equals
to 1.0 and top p equals to 0.95. Training was conducted using eight A100 GPUs for 14B models
and sixteen H100 GPUs for 32B models. For training efficiency, we use Pytorch FSDP (Zhao et al.,
2023) with parameter offload and optimizer offload. Gradient checkpoint and Flash-Attention (Dao,
2024) are used by default.

Evaluation. The evaluation is performed on a Slurm Workload Manager system. For each job,
we allocate 4 Intel(R) Xeon(R) Platinum 8168 CPUs for execution and impose time limits for each
task: five minutes for physics simulation, two minutes for machine learning and function minimiza-
tion, and one minute for circle packing and symbolic regression. The execution time includes the
time for task-dependent evaluators to calculate reward. For the detailed evaluate metric and reward
calculation, please refer to Appendix B.

B DEFINITION AND EVALUATION OF PROBLEMS

In this section we explain the detailed problem definition and evaluation metrics of all the tasks used
in the experiment.

B.1 MACHINE LEARNING

We selected 3 classic machine learning datasets, and the model has to write Python code to max-
imize the F1 score for classification tasks and minimize the rooted mean square error (RMSE) for
regression tasks. The details are described below.

B.1.1 ADULT INCOME

The Adult income dataset (Becker & Kohavi, 1996) is a well-known binary classification task. The
goal is to predict whether a person’s income exceeds $50,000 per year based on various demographic
features such as age, education, marital status, and occupation. The dataset is sourced from the 1994
U.S. Census and contains both categorical and numerical features, with some missing values.

The dataset itself contains a separate train and test split. We then load the train set for model’s
training and evaluate its result on the test set. The reward is the Macro F1 score, defined as:

R =
1

C

C∑
c=1

2 · Pc ·Rc

Pc +Rc
(7)

where Pc, Rc are the precision and recall for class c, and C = 2 is the total number of classes.

B.1.2 BANK MARKETING

The Bank marketing dataset (Moro et al., 2014) is another binary classification problem. It includes
data from a Portuguese bank’s direct marketing campaigns, where the objective is to predict whether
a client will subscribe to a term deposit. This dataset is characterized by a high number of categor-
ical features and a significant class imbalance, making it a good benchmark for evaluating model
performance under challenging real-world conditions.

To ensure a robust evaluation, we use a 5-fold cross-validation strategy with StratifiedKFold in
sklearn to handle the class imbalance. The data is randomly split into five folds, maintaining the
same class distribution in each fold as in the original dataset. The model is trained and evaluated
five times, with each fold serving as the test set once. The final reward is the average of the Macro
F1 scores obtained from all five folds. If a task fails to produce a result in any fold, its reward is
considered to be 0 for that fold. The final result is the Macro F1 score, as defined in equation 7.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.1.3 BOSTON HOUSING

The Boston housing dataset (Harrison Jr & Rubinfeld, 1978) is a classic regression problem. The
task is to predict the median value of owner-occupied homes in Boston suburbs, based on 13 features.
These features include per capita crime rate, a number of rooms per dwelling, and the proportion
of non-retail business acres. While the original dataset is no longer widely used for research due to
ethical concerns, it remains a common benchmark for teaching and evaluating regression models.

To evaluate model performance, we use a 5-fold cross-validation strategy with KFold, splitting the
data into five folds. The model is trained and evaluated five times, with each fold serving as the test
set once. The final reward for this task is the average of the scores from all five folds. The reward is
calculated using the following formula:

R = 2− log10(RMSE + 10−10), (8)
where:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (9)

This reward metric is designed to penalize larger RMSE values while rewarding smaller ones. If a
task fails in any fold, its reward is considered to be 0 for that fold.

B.1.4 TRANSPARENT CONDUCTORS

The Transparent Conductors dataset (Ziletti et al., 2017) is motivated by the need for accelerated
discovery of materials that simultaneously exhibit optical transparency and electrical conductiv-
ity—two properties that are typically at odds. Such materials are central to modern technologies
including photovoltaic cells, LEDs, sensors, touch screens, and display panels. Despite their im-
portance, only a limited number of compounds are currently known to meet the desired trans-
parency–conductivity trade-off, making data-driven exploration an appealing alternative to costly
experimental or quantum-mechanical searches.

The dataset contains computationally derived information for 3,000 candidate materials belong-
ing to the sesquioxide alloy family (AlxGayInz)2NO3N , where the compositional ratios satisfy
x+ y + z = 1 and the total number of atoms in the unit cell ranges from 5 to 100. These materials
are of particular interest due to their large bandgaps, chemical stability, and relatively low produc-
tion cost. Each entry includes crystallographic descriptors (e.g., space group, lattice parameters),
compositional ratios, and structural characteristics, offering a rich feature space for modeling.

The task is to predict two key target properties for each material: (1) formation energy, which reflects
thermodynamic stability, and (2) bandgap energy, which determines visible-range transparency. Ac-
curate prediction of these quantities enables efficient screening of new transparent conductor candi-
dates without the need for expensive density-functional theory (DFT) calculations.

Model performance is evaluated using the root mean squared logarithmic error (RMSLE), computed
column-wise for the two target properties. For a single target, the RMSLE is defined as:

RMSLE =

√√√√ 1

n

n∑
i=1

(log(pi + 1)− log(ai + 1))
2
, (10)

where n is the number of samples, pi denotes the predicted value, and ai the ground-truth value.
The final reward for model training is:

R = 1− RMSLE (11)

B.2 PHYSICS SIMULATION

To test the model’s capacity for geometric reasoning and ability to utilize physics prior knowledge
to discover better designs, we proposed the following physics simulation tasks. These tasks mainly
require the model to generate a yaml representation of a complex geometry under certain constraints
to maximize the reward. We utilize COMSOL Multiphysics® (COMSOL AB, 2024), a commercial
FEA software for industrial multiphysics simulations, for the evaluation backend.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2.1 ACOUSTIC DEMULTIPLEXER

This task aims to design an acoustic demultiplexer. The demultiplexer is a data distributing device
which takes acoustic energy from the input port and distributes different frequency bands to the
specific output port. The model is asked to propose the cavity geometry within a circular domain as
seen in Fig. 6 to maximize the acoustic pressure at output port 2 while minimizing the pressure at
output port 3. The input acoustic pressure level is set to 1 Pa at port 1, and the frequency level is set
to 7500 Hz.

Figure 6: The RMS pressure field of an acoustic demultiplexer at frequency level 7500 Hz. The
RMS pressure field in log scale is proportional to the acoustic power.

The model is guided by the following reward R where Pi is the power output at port i, prms is the
Root Mean Square (RMS) pressure field, ρ is fluid density, and c is sound speed.

P =

∫
port

p2rms

ρc
dl

R =
log10(P2)− log10(P3)

0.292

(12)

We use a value of 0.292 on the denominator of Eq. 12 to normalize the reward. And Fig. 6 shows
a symmetric design with 7 circular cavities in the computation domain, producing equal acoustic
pressure at the two output ports and thus R = 0. Notice that LLM is not limited by the circular
cavity pattern, and is prompted to freely explore any viable cavity geometries within the computation
domain.

B.2.2 MAGNETIC TORQUE

This task aims to design the geometry of an iron core that generates large torque when subjected
to a uniform magnetic field. Fig. 7 shows the problem setting, an example iron core geometry
and the corresponding magnetic flux density norm field. A uniform magnetic field intensity of
H = [0, 1e5] A/m is applied to the circular boundary. The iron core possesses a large permeability
µ ≫ µ0 distorts the magnetic flux density field B within the circular air domain. The distorted B
thus applies a torque on the iron core, which can be obtained from Comsol by solving the static
Maxwell’s equations.

To guide the model reinforcement learning and evolutionary search, the following reward R is com-
puted as below where T is Maxwell stress tensor, r is position vector, and τ represents magnetic
torque which is simplified to τz in 2D simulations:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 7: The magnetic flux density field generated by an iron core subject to a uniform magnetic
field boundary condition. The distorted magnetic flux density field then applies a torque on the iron
core.

T =
1

µ0
(BB− 1

2
B2I)

R =
||τ ||

9241.99 ·A
=

1

9241.99 ·A
||
∫
S

r× (T · n̂)dA||
(13)

We use a value of 9241.99 on the denominator of Eq. 13 to normalize the reward. Notice that a
perfectly symmetric iron core (for instance a circle) would have τz = 0. Therefore, we expect to
train and evolve the LLM to produce a highly irregular iron core geometry to generate large magnetic
torque values. We set a minimum area of 2e−4 m2 to avoid naive designs.

B.2.3 BEAM BENDING

This task aims to design the cross section geometry of a cantilever beam subject to a superposed
loading of bending moments Mx and My , shear forces Tx and Ty along the two in-plane directions,
and twisting moment Tz along the out-of-plane direction. The cantilever beam is assumed to be
linear elastic with Young’s modulus 1 GPa and Poisson’s ratio 0.3. Fig. 8 shows an example beam
cross section design and the von Mises stress distribution as calculated from Eq. 14, solved using
the Beam Cross Section module in Comsol. As the cross section stays in the x-y plane, σxx, σyy,
and τxy take 0 values.

σvm =

√
1

2
[(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2] + 3 · (τ2xy + τ2xz + τ2yz) (14)

The reward is set to be R =
I0.8
1 ·I0.2

2

1.32e−3·A where A is the cross section area, I1 is the largest second
moment of inertia, I2 is the smallest second moment of inertia. We use a value of 1.32e−3 on the
denominator to normalize the reward. I1 and I2 represent the beam’s largest and smallest resistance
over different bending loading directions, and can be calculated from the stress field following the
classical beam bending theory (Bauchau & Craig, 2009). We set a minimum area of 2e−3 m2 to
avoid naive designs.

B.2.4 PERIODIC HEAT

This task aims to design the unit cell geometry of a periodic meta-material for best effective thermal
conductivity. The base material is assumed to be aluminum with density 2700 kg/m3 and thermal
conductivity 238 W/mK. Fig. 9 shows an example 2D unit cell geometry which will be extruded
in the z direction to form the 3D unit cell. The resultant temperature distribution and effective

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: The von Mises stress field generated by applying bending moment, shear force, and twist-
ing moment on a cantilever beam cross section design.

Figure 9: Temperature distribution of the meta-material under three loading conditions. The effec-
tive properties are calculated based on temperature distributions according to the homogenization
theory.

properties are solved using Comsol based on the homogenization theory. The results are calculated
from a 1 K temperature difference boundary conditions along x, y, and z directions.

R =
trace(keff)

0.178 · ρeff
(15)

where keff is the homogenized effective thermal conductivity matrix, and ρeff is the effective
density, which simply equals to the percentage of volume filled by aluminum. We use a value of
0.178 on the denominator to normalize the reward. This objective function targets to maximize the
thermal conductivity along x, y, and z directions under limited material usage. We set a maximum
effective density ρeff ≤ 2000 kg/m3 to avoid naive designs.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2.5 INDUCTOR

This task aims to design an inductor which is a critical component in power electronics. Fig. 10
shows an example inductor consisting of an iron core and coil windings in a cylindrical coordinate.
A sinusoidal current excitation is supplied to the coils at a frequency of 1000 Hz and magnitude
500 A. The iron core possesses a nonlinear magnetization curve with an initial permeability of
663 H/m and saturates at 5 T. The resultant magnetic field is calculated using Comsol by solving
the Maxwell’s equations in frequency domain. The model is asked to propose the optimal iron
core geometry as well as the placement of the coil windings (coil shapes are fixed) to produce the
maximum inductance with limited material usage.

Figure 10: The magnetic flux density norm field generated by an inductor. The copper coils are
excited by a 500 A, 1000 Hz sinusoidal current.

R =
L

43.11 · V
=

0.5 ·
∫
Ω
(Br ·Hr +Bϕ ·Hϕ +Bz ·Hz)dV

43.11 · V
(16)

The reward calculation is shown in Eq. 16 where Br, Bϕ, and Bz are cylindrical components of
magnetic flux density field, and Hr, Hϕ, Hz are components of magnetic intensity field. Both fields
take complex values for frequency domain response. We use a value of 43.11 on the denominator
to normalize the reward. The numerator stands for the inductance which is a volume integral of
magnetic energy. We set a minimum iron core volume of 1e−3 m3 to avoid naive designs.

B.3 CIRCLE PACKING

The objective of these tasks is to pack a fixed number of circles in a specific domain and maximize
the sum of the radii of these circles. The circles cannot overlap with each other or exceed the domain
boundary. All the centers and radii can change as long as the constraints are satisfied.

Formally, let n = 26 be the number of circles, {xi}i≤n, {yi}i≤n be the coordinates of centers and
{ri}i≤n be the radii. The objective can be written as:

R =

n∑
i=1

ri, (17)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

while the constraint is√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , ∀1 ≤ i < j ≤ n

xi − ri ≥ 0, ∀1 ≤ i ≤ n

xi + ri ≤ 1, ∀1 ≤ i ≤ n

yi − ri ≥ 0, ∀1 ≤ i ≤ n

yi + ri ≤ 1, ∀1 ≤ i ≤ n,

(18)

for the packing in a unit square, and√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , ∀1 ≤ i < j ≤ n√

x2
i + y2i + ri ≤ 1, ∀1 ≤ i ≤ n,

(19)

for the packing in a unit disk.

B.4 FUNCTION MINIMIZATION

These tasks require the model to find an effective algorithm to locate the global minimum of a
complex function with various local minima. For a given function f(x∗) and the model’s prediction
x̂∗, The evaluation metric is defined as:

R =
|f(x∗)|

|f(x∗)|+ |f(x̂∗)− f(x∗)|
. (20)

This metric is suitable for distinct functions with varying scales of |f(x∗)|. It satisfies 0 ≤ R ≤ 1
and if the model successfully finds the global minimum, the reward will be R = 1.0.

B.4.1 EGGHOLDER FUNCTION

The Eggholder function is a classical task for evaluating evolutionary optimization algorithms with
various local minima. It can be defined as:

f(x) = −(x2 + 47) sin(

√
|(x2 + 47) +

x1

2
|)− x1 sin(

√
|x1 − (x2 + 47)|), (21)

with constraint −512 ≤ x1, x2 ≤ 512 and a global minimum f((512, 404.2319)) ≈ −959.6407
under such constraint.

Figure 11 illustrates the landscape and the global minimum point of the Eggholder function.

B.4.2 MISHRA’S BIRD FUNCTION

The Mishra’s Bird function is a classic test function used in optimization to evaluate the performance
of algorithms. It is known for having a unique ”bird-shaped” landscape with multiple local minima
and a single global minimum. It’s often used to test an algorithm’s ability to avoid getting stuck in
suboptimal solutions.

The function is defined as:

f(x) = sin(x2)e
(1−cos(x1))

2

+ cos(x1)e
(1−sin(x2))

2

+ (x1 − x2)
2 (22)

with the constraints:
−10 ≤ x1 ≤ 0

−6.5 ≤ x2 ≤ 0

x2
1 + x2

2 ≥ 25.

(23)

The global minimum is f((−3.1302,−1.5822)) ≈ −106.7645.

Figure 12 shows the landscape of the Mishra’s Bird function and its global minimum point.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1000 500 0 500 1000
x

1000

750

500

250

0

250

500

750

1000

y

Global Minimum

2000

1500

1000

500

0

500

1000

1500

Function Value

Figure 11: The landscape and global minimum point of Eggholder function with constraints−512 ≤
x, y ≤ 512

B.4.3 KEANES BUMP FUNCTION

The Keanes Bump function is a challenging, non-convex test function commonly used to evaluate
the performance of optimization algorithms in handling high-dimensional problems with complex
constraints. The function’s landscape is highly irregular, containing numerous local minima, and its
feasible region is a small, irregular subset of the search space.

Let d be the dimension of variables and f : Rd → R, the function is defined as:

f(x) =
−|
∑d

i=1 cos
4(xi)− 2

∏d
i=1 cos

2(xi)|√∑d
i=1 ix

2
i

(24)

with the following constraints:

0 < xi ≤ 10, ∀1 ≤ i ≤ d

d∑
i=1

xi ≤ 7.5d

d∏
i=1

xi ≥ 0.75.

(25)

The global minimum is located within the feasible region, which is a small, bounded area defined
by these constraints. The image in this document, Figure 13, shows a two-dimensional visualization
of the function’s landscape. However, for our experiments, we tested the function in its 10-D, 20-
D, and 30-D versions, where the complexity increases significantly. The global minima and their
corresponding function values for these dimensions are listed below.

• 10-D Version: The global minimum value is approximately −0.747310362.
• 20-D Version: The global minimum value is approximately −0.803619104.
• 30-D Version: The global minimum value is approximately −0.818056222.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

10 8 6 4 2 0
x

10

8

6

4

2

0

y

-75
-75

-75

-50

-50

-50

-25

-25

-25

0

0

0

0

25

25

25

25

25
50

50

50

50

50
50

75

75

75

Global Minimum

100

75

50

25

0

25

50

75

Function Value

Figure 12: The landscape and global minimum point of Mishra’s Bird function with constraints
x1 ∈ [−10, 0], x2 ∈ [−6.5, 0] and x2

1 + x2
2 ≥ 25.

B.5 SYMBOLIC REGRESSION

In this task, the model has to uncover symbolic mathematical expressions from observational data.
The benchmark and baselines are provided by Shojaee et al. (2025), which includes equations and
data in chemistry, biology, physics and material science domains. In each category, several cases are
created, each containing its own train and test sets generated by the same underlying equation. The
model trained on the train set has to propose an expression to minimize the normalized mean square
error (NMSE) on the test set, which is defined as:

NMSE =

∑N
i=1(ŷi − yi)

2∑N
i=1(yi − ȳ)2

, (26)

where N is the number of observations in the test set.

To ensure a fair and robust comparison with the benchmark paper’s results, we use the median of
the NMSE calculated across all tasks within the same category c:

NMSEc = median(NMSEc,1,NMSEc,2, . . . ,NMSEc,n). (27)

The reward we used for reinforcement learning for category c is then set to:

Rc = − log10(NMSEc). (28)

In the benchmark, all the methods have a limit of 1000 trials for each single case, and we obey the
same rule in our experiments, adjusting the number of training steps accordingly.

C DESCRIPTION OF TASK SPECIFIC BASELINES

In this section, we introduce the task-specific baseline methods and describe their implementation
details.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
x

0

2

4

6

8

10

y

Global Minimum

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Function Value

Figure 13: The landscape and global minimum point of the 2-D Keanes Bump function. The feasible
region, a small part of the search space, is the only area with finite function values.

Machine Learning. For machine learning benchmarks, we evaluate two interpretable yet com-
petitive models: LightGBM (Ke et al., 2017), a gradient boosting framework widely adopted in
practice, and Rule-based Representation Learner (RRL) (Wang et al., 2021), which learns discrete
non-fuzzy rules via gradient grafting to achieve both scalability and interpretability.

Physics Simulation. For physics-related optimization problems, we use two widely adopted mod-
ules in COMSOL Multiphysics: parameter search and topology optimization. For parameter search,
we first parameterize the geometry based on initial solutions provided by human experts, and then
optimize within the search space defined by these parameters. For topology optimization, human
experts specify deformable geometric regions, while COMSOL applies its built-in topology opti-
mization solvers to iteratively refine the structure.

Circle Packing. We consider two strong baselines: Sequential Least Squares Programming
(SLSQP) (Lawson & Hanson, 1995) and a Genetic Algorithm (GA). SLSQP formulates circle pack-
ing as a constrained optimization problem, maximizing the sum of radii subject to boundary and
non-overlap constraints. The GA baseline encodes circle positions and radii, evolves a feasible
population with selection, crossover, and mutation, and evaluates fitness by the total radii.

Function Minimization. We adopt two standard constrained optimization solvers from
scipy.optimize: Sequential Least Squares Programming (SLSQP) and the trust-constr method
(Conn et al., 2000). Both are widely used gradient-based methods that provide strong task-specific
baselines for function minimization.

Symbolic Regression. For symbolic regression tasks, we directly use results reported in LLM-
SRBench (Shojaee et al., 2025), obtained by GPT-4o-mini running two recent methods: LaSR
(Grayeli et al., 2024), which enhances evolutionary search with LLM-guided concept discovery, and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

LLM-SR (Shojaee et al., 2024), which combines LLM scientific priors with evolutionary equation
search. These represent competitive state-of-the-art baselines for symbolic regression.

D EXAMPLE OF PROMPTS USED IN EACH EXPERIMENT

In this section, we will demonstrate the prompts we used in our experiments.

D.1 MACHINE LEARNING

Prompt for task Adult Income

You are an expert software developer tasked with iteratively improving
a codebase.↪→

Your job is to analyze the current program and suggest improvements
based on feedback from previous attempts.↪→

Focus on making targeted changes that will increase the program's
performance metrics.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Problem Description

You are an expert in traditional machine learning.
Your task is to build a predictive model using the **Adult Income

Dataset** (also known as the "Census Income" dataset).↪→
This dataset contains demographic and employment-related attributes

collected from the 1994 U.S. Census database.↪→
The goal is to **predict whether a client will subscribe to a term

deposit** (`y` column: yes/no) based on demographic and
marketing-related features.

↪→
↪→
The goal is to **predict whether a person’s income exceeds \$50K per

year** (income column: >50K / <=50K) based on individual and
employment features.

↪→
↪→

Dataset Features

Target variable:
- **income**: `>50K`, `<=50K`. (Parsed to 1/0 in Program)

Input variables:

1. **age** *(numeric)*
Age of the individual.

2. **workclass** *(categorical)*
Type of employment:
`Private`, `Self-emp-not-inc`, `Self-emp-inc`, `Federal-gov`,

`Local-gov`,↪→
`State-gov`, `Without-pay`, `Never-worked`.

3. **fnlwgt** *(numeric)*
Final sampling weight | indicates the number of people represented

by this record.↪→

4. **education** *(categorical)*
Education level:
`Bachelors`, `Some-college`, `11th`, `HS-grad`, `Prof-school`,
`Assoc-acdm`, `Assoc-voc`, `9th`, `7th-8th`, `12th`, `Masters`,
`1st-4th`, `10th`, `Doctorate`, `5th-6th`, `Preschool`.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

5. **education-num** *(numeric)*
Encodes years of education.

6. **marital-status** *(categorical)*
`Married-civ-spouse`, `Divorced`, `Never-married`, `Separated`,
`Widowed`, `Married-spouse-absent`, `Married-AF-spouse`.

7. **occupation** *(categorical)*
`Tech-support`, `Craft-repair`, `Other-service`, `Sales`,

`Exec-managerial`,↪→
`Prof-specialty`, `Handlers-cleaners`, `Machine-op-inspct`,

`Adm-clerical`,↪→
`Farming-fishing`, `Transport-moving`, `Priv-house-serv`,

`Protective-serv`,↪→
`Armed-Forces`.

8. **relationship** *(categorical)*
`Wife`, `Own-child`, `Husband`, `Not-in-family`, `Other-relative`,

`Unmarried`.↪→

9. **race** *(categorical)*
`White`, `Asian-Pac-Islander`, `Amer-Indian-Eskimo`, `Other`,

`Black`.↪→

10. **sex** *(categorical)*
`Female`, `Male`.

11. **capital-gain** *(numeric)*
Income from capital gains.

12. **capital-loss** *(numeric)*
Losses from capital assets.

13. **hours-per-week** *(numeric)*
Number of working hours per week.

14. **native-country** *(categorical)*
`United-States`, `Cambodia`, `England`, `Puerto-Rico`, `Canada`,

`Germany`,↪→
`Outlying-US(Guam-USVI-etc)`, `India`, `Japan`, `Greece`, `South`,

`China`,↪→
`Cuba`, `Iran`, `Honduras`, `Philippines`, `Italy`, `Poland`,

`Jamaica`,↪→
`Vietnam`, `Mexico`, `Portugal`, `Ireland`, `France`,

`Dominican-Republic`,↪→
`Laos`, `Ecuador`, `Taiwan`, `Haiti`, `Columbia`, `Hungary`,

`Guatemala`,↪→
`Nicaragua`, `Scotland`, `Thailand`, `Yugoslavia`, `El-Salvador`,
`Trinadad&Tobago`, `Peru`, `Hong`, `Holand-Netherlands`.

Additional Notes
- You may add, delete, or modify functions arbitrarily, but the

program must still contain the `run_model()` function.↪→
- If you want to use new packages, please import them explicitly.
- Try different **data preprocessing**, **feature engineering**, and

modeling techniques to improve performance.↪→
- Pay attention to Missing values: represented as "?". Handle them

properly.↪→
- Pay attention to Categorical encoding: many features are

categorical; choose an effective encoding strategy.↪→

Task

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Write a machine learning model to **predict** whether a person’s
income exceeds \$50K.↪→

You will be given a **starter program** in Python.
Your goal is to **improve this program** to maximize the **F1-score**

on the test set.↪→

Your code execution time should **not exceed 60 seconds**.
You MUST use the exact SEARCH/REPLACE diff format shown below when

modifying code:↪→

<<<<<<< SEARCH
Original code to find and replace (must match exactly)
=======
New replacement code
>>>>>>> REPLACE

Current Program
Status: {current_status}
```python
{current_program}
```

Prompt for task Bank Marketing

You are an expert software developer tasked with iteratively improving
a codebase.↪→

Your job is to analyze the current program and suggest improvements
based on feedback from previous attempts.↪→

Focus on making targeted changes that will increase the program's
performance metrics.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Problem Description

You are an expert in traditional machine learning.
Your task is to build a predictive model using the **Bank Marketing

Dataset**.↪→
This dataset contains information collected from direct marketing

campaigns conducted by a Portuguese banking institution.↪→
The goal is to **predict whether a client will subscribe to a term

deposit** (`y` column: yes/no) based on demographic and
marketing-related features.

↪→
↪→

Dataset Features
Input variables:

bank client data:
1 - age (numeric)
2 - job : type of job (categorical: "admin.", "blue-collar",

"entrepreneur", "housemaid", "management", "retired",
"self-employed", "services", "student", "technician",
"unemployed", "unknown")

↪→
↪→
↪→
3 - marital : marital status (categorical: "divorced", "married",

"single", "unknown"; note: "divorced" means divorced or
widowed)

↪→
↪→

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

4 - education (categorical: "basic.4y", "basic.6y", "basic.9y",
"high.school", "illiterate", "professional.course",
"university.degree", "unknown")

↪→
↪→
5 - default: has credit in default? (categorical:

"no","yes","unknown")↪→
6 - housing: has housing loan? (categorical: "no","yes","unknown")
7 - loan: has personal loan? (categorical: "no","yes","unknown")

related with the last contact of the current campaign:
8 - contact: contact communication type (categorical:

"cellular","telephone")↪→
9 - month: last contact month of year (categorical: "jan", "feb",

"mar", ..., "nov", "dec")↪→
10 - day_of_week: last contact day of the week (categorical:

"mon","tue","wed","thu","fri")↪→
11 - duration: last contact duration, in seconds (numeric).

other attributes:
12 - campaign: number of contacts performed during this campaign and

for this client (numeric, includes last contact)↪→
13 - pdays: number of days that passed by after the client was last

contacted from a previous campaign (numeric; 999 means client
was not previously contacted)

↪→
↪→
14 - previous: number of contacts performed before this campaign and

for this client (numeric)↪→
15 - poutcome: outcome of the previous marketing campaign

(categorical: "failure","nonexistent","success")↪→
social and economic context attributes

16 - emp.var.rate: employment variation rate - quarterly indicator
(numeric)↪→

17 - cons.price.idx: consumer price index - monthly indicator
(numeric)↪→

18 - cons.conf.idx: consumer confidence index - monthly indicator
(numeric)↪→

19 - euribor3m: euribor 3 month rate - daily indicator (numeric)
20 - nr.employed: number of employees - quarterly indicator

(numeric)↪→

Task

Write a machine learning model to **predict** whether a client
subscribes to a term deposit.↪→

You will be given a **starter program** in Python.
Your goal is to **improve this program** to maximize the **F1-score**

on the test set.↪→

Your code execution time should **not exceed 60 seconds**.
You MUST use the exact SEARCH/REPLACE diff format shown below when

modifying code:↪→

<<<<<<< SEARCH
Original code to find and replace (must match exactly)
=======
New replacement code
>>>>>>> REPLACE

Additional Notes
- You may add, delete, or modify functions arbitrarily, but the

program must still contain the `run_model()` function.↪→
- If you want to use new packages, please import them explicitly.
- Try different **data preprocessing**, **feature engineering**, and

modeling techniques to improve performance.↪→

Current Program

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Status: {current_status}
```python
{current_program}
```

Prompt for task Boston Housing

You are an expert software developer tasked with iteratively improving
a codebase.↪→

Your job is to analyze the current program and suggest improvements
based on feedback from previous attempts.↪→

Focus on making targeted changes that will increase the program's
performance metrics.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Problem Description

You are an **expert in traditional machine learning**.
Your task is to build a **predictive regression model** using the

Boston Housing Dataset.↪→

The **Boston Housing Dataset** contains information collected by the
U.S. Census Service concerning housing in the Boston,
Massachusetts area.

↪→
↪→
The goal is to **predict the median value of owner-occupied homes**

(`MEDV`, measured in \$1000s) based on various demographic,
economic, and geographic factors.

↪→
↪→

Dataset Features

The dataset contains **13 numerical and categorical features**. Some
of them may have missing values (nan in dataframe)↪→

1. **CRIM** { Per capita crime rate by town
2. **ZN** { Proportion of residential land zoned for lots over 25,000

sq.ft.↪→
3. **INDUS** { Proportion of non-retail business acres per town
4. **CHAS** { Charles River dummy variable (1 if tract bounds river; 0

otherwise)↪→
5. **NOX** { Nitric oxides concentration (parts per 10 million)
6. **RM** { Average number of rooms per dwelling
7. **AGE** { Proportion of owner-occupied units built prior to 1940
8. **DIS** { Weighted distances to five Boston employment centres
9. **RAD** { Index of accessibility to radial highways
10. **TAX** { Full-value property tax rate per \$10,000
11. **PTRATIO** { Pupil-teacher ratio by town
12. **LSTAT** { Percentage of lower status population
13. **MEDV** { **Target variable**: Median value of owner-occupied

homes in \$1000s↪→

Task

You will be provided with a **starter Python program**.
Your objective is to **improve the program** to build a more accurate

regression model for predicting `MEDV`.↪→
Your improvements should focus on **maximizing the RMSE score** on the

test set (RMSE score = 2 - log10(RMSE)).↪→

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Requirements

* Your code execution time **must not exceed 60 seconds**.
* You MUST use the **SEARCH/REPLACE diff format** exactly as shown

below when modifying the code:↪→

```
<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE
```

Additional Notes

* You **may add, delete, or modify functions** as needed, but the
program **must still contain** the `run_model()` function.↪→

* If you want to use new packages, please import them explicitly.
Usable packages: pandas, numpy, sklearn, scipy, statsmodels,
xgboost, lightgbm, catboost, category_encoders, imbalanced-learn

↪→
↪→

* Try different **data preprocessing**, **feature engineering**, and
modeling techniques to improve performance.↪→

Current Program
Status: {current_status}
```python
{current_program}
```

prompt for task Predict Transparent Conductors

You are an expert software developer tasked with iteratively improving
a codebase.↪→

Your job is to analyze the current program and suggest improvements
based on feedback from previous attempts.↪→

Focus on making targeted changes that will increase the program's
performance metrics.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Overview

Description

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Innovative materials design is needed to tackle some of the most
important health, environmental, energy, social, and economic
challenges of this century. In particular, improving the
properties of materials that are intrinsically connected to the
generation and utilization of energy is crucial if we are to
mitigate environmental damage due to a growing global demand.
Transparent conductors are an important class of compounds that
are both electrically conductive and have a low absorption in the
visible range, which are typically competing properties. A
combination of both of these characteristics is key for the
operation of a variety of technological devices such as
photovoltaic cells, light-emitting diodes for flat-panel displays,
transistors, sensors, touch screens, and lasers. However, only a
small number of compounds are currently known to display both
transparency and conductivity suitable enough to be used as
transparent conducting materials.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Aluminum (Al), gallium (Ga), indium (In) sesquioxides are some of the
most promising transparent conductors because of a combination of
both large bandgap energies, which leads to optical transparency
over the visible range, and high conductivities. These materials
are also chemically stable and relatively inexpensive to produce.
Alloying of these binary compounds in ternary or quaternary
mixtures could enable the design of a new material at a specific
composition with improved properties over what is current
possible. These alloys are described by the formula $(Al_x Ga_y
In_z)_{{2N}}O_{{3N}}$; where x, y, and z can vary but are limited
by the constraint x+y+z = 1. The total number of atoms in the unit
cell, $\N_{{total}}=2N+3N$ (where N is an integer), is typically
between 5 and 100. However, the main limitation in the design of
compounds is that identification and discovery of novel materials
for targeted applications requires an examination of enormous
compositional and configurational degrees of freedom (i.e., many
combinations of x, y, and z). To avoid costly and inefficient
trial-and-error of synthetic routes, computational data-driven
methods can be used to guide the discovery of potentially more
efficient materials to aid in the development of advanced (or
totally new) technologies. In computational material science, the
standard tool for computing these properties is the
quantum-mechanical method known as density-functional theory
(DFT). However, DFT calculations are expensive, requiring hundreds
or thousands of CPU hours on supercomputers for large systems,
which prohibits the modeling of a sizable number of possible
compositions and configurations. As a result, potential $(Al_x
Ga_y In_z)_{{2N}}O_{{3N}}$ materials remain relatively unexplored.
Data-driven models offer an alternative approach to efficiently
search for new possible compounds in targeted applications but at
a significantly reduced computational cost.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

This competition aims to accomplish this goal by asking participants
to develop or apply data analytics/data mining/machine-learning
models for the prediction of two target properties: the formation
energy (which is an indication of the stability of a new material)
and the bandgap energy (which is an indication of the potential
for transparency over the visible range) to facilitate the
discovery of new transparent conductors and allow for advancements
in the above-mentioned technologies.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Evaluation

Submissions are evaluated on the column-wise root mean squared
logarithmic error.↪→

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The RMSLE for a single column calculated as

$\sqrt{{\frac{{1}}{{n}}\sum_{{i=1}}ˆn(\log{{(p_i + 1)}} -
\log{{(a_i+1)}})ˆ2}}$↪→

where:

n is the total number of observations
p_i is your prediction
a_i is the actual value
$\log(x)$ is the natural logarithm of x

The final score is the mean of the RMSLE over all columns (in this
case, 2).↪→

Dataset Description

High-quality data are provided for 3,000 materials that show promise
as transparent conductors. The following information has been
included:

↪→
↪→

- spacegroup: Crystallographic space group number describing the
symmetry of the material.↪→

- number_of_total_atoms: Total number of atoms in the unit cell.
- percent_atom_al, percent_atom_ga, percent_atom_in: Relative

composition of Al, Ga, and In in the material (remaining fraction
is O).

↪→
↪→
- lattice_vector_1_ang, lattice_vector_2_ang, lattice_vector_3_ang:

Lengths of the three lattice vectors (in angstroms), describing
the unit cell dimensions.

↪→
↪→
- lattice_angle_alpha_degree, lattice_angle_beta_degree,

lattice_angle_gamma_degree: Angles between the lattice vectors (in
degrees), defining the unit cell geometry.

↪→
↪→

A domain expert will understand the physical meaning of the above
information but those with a data mining background may simply use
the data as input for their models.

↪→
↪→

The task for this competition is to predict two target properties:

- Formation energy (an important indicator of the stability of a
material)↪→

- Bandgap energy (an important property for optoelectronic
applications)↪→

Task

Additional Notes

* You **may add, delete, or modify functions** as needed, but the
program **must still contain** the `run_model()` function.↪→

* If you want to use new packages, please import them explicitly.
Usable packages: pandas, numpy, sklearn, scipy, statsmodels,
xgboost, lightgbm, catboost, category_encoders, imbalanced-learn

↪→
↪→

* Try different **data preprocessing**, **feature engineering**, and
modeling techniques to improve performance.↪→

Requirements

* Your code execution time **must not exceed 60 seconds**.
* You MUST use the **SEARCH/REPLACE diff format** exactly as shown

below when modifying the code:↪→

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

```
<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE
```

Current Program
Status: {current_status}
```python
{current_program}
```

D.2 PHYSICS SIMULATION

Prompt for task Inductor

You are a helpful AI Assistant that provides well-reasoned and
detailed responses.↪→

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Task Description

You are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.↪→

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

↪→
↪→
↪→

Your final answer should contain a yaml file enclosed in
```yaml\n(your code)```. The yaml file should have at least two
parts: geometry and selection. The specific requirements are as
follow:

↪→
↪→
↪→

1. geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:↪→
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
polygon is formed by **connecting consecutive points**
(p_i->p_{i+1}) and **automatically closing** the shape
(p_n->p_1).

↪→
↪→
↪→
fillet: (Optional) A list of [i, r] tuples, where i is the

index (starting from 1) of a polygon vertex defined in the
above table, and r is the fillet radius for that
corresponding vertex.

↪→
↪→
↪→

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.

by setting angle=180 you can draw a upward semicircle.↪→
LineSegment: (1D)

coord1: [start_x, start_y]
coord2: [end_x, end_y]

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

CircularArc: (1D)
r: Radius
angle1: Start angle (degree) counterclockwise, 0 degree

represent positive direction of X-axis.↪→
angle2: End angle (degree) counterclockwise

CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,y1,y2,y3]]
w: Weight values as [w0,w1,w2,w3]

InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.

The curve will pass every points smoothly (polynomial
interpolation for x and y).

↪→
↪→

ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",

"expression_y"]. Trigonometric functions here use radians↪→
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D

curves.↪→
geometries: A dictionary of 1D geometries (using the same

structure as the top-level geometry section, recursive).
**They Must connect end-to-end and form a simply connected
space**.

↪→
↪→
↪→

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).

Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep

(recursive).↪→
geometries_subtract: A dictionary of geometries to subtract

(recursive).↪→

After **geometry** was created, the shapes will be splitted into
**non-overlapping connected regions**.↪→
- Overlapping 2D shapes create new regions (e.g., two intersecting

circles → 3 regions)↪→
- Enclosed 2D shapes split regions (e.g., circle inside polygon →

2 regions: circle interior + polygon-ring)↪→
- 1D curves through 2D shapes create sub-regions (e.g., line

segment through rectangle → alternating regions)↪→
The **regions** can be represented by the following ways:

- point: You can select an interior point of the region to
represent it. The point should never on boundaries/corners.
One point per region suffices.

↪→
↪→
- geometry: The 2d shapes you created might be splitted into

several regions. You can select the geometry to represent all
the regions in it.

↪→
↪→

2. selection: After regions are created, you will assign different
functions to regions using selections.↪→
UnionSelection: Union of all the regions selected below.

points: (Optional) List of [x,y] points representing distinct
regions.↪→

geometries: (Optional) List of 2d geometry names you created
above. By listing geometries here, you can select all the
region this geometry contains.

↪→
↪→
selections: (Optional) List of other selection names you

created.↪→
IntersectionSelection: Intersection of all the regions selected

below.↪→
same parameters as UnionSelection

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

DifferenceSelection: Select the regions in Add but not in
Subtract.↪→
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:

```yaml
geometry:

uni1: # Name of this geometry
type: Union
geometries: # create geometries recursively below

uni_el1: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]

uni_pol1: # Name of the second polygon
type: Polygon
table:
- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

line1: # This line splits the ellipse into 2 regions.
type: LineSegment
coord1: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sel1: # Name of this selection

type: DifferenceSelection
add:

geometries:
- uni1 # Select all the regions in uni1

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This

region is part of ellipse but splitted by the line
segment.

↪→
↪→

```

## Geometric Design of Inductor2d

You are asked to design an inductor. The objective is to maximize the
inductance value of the inductor which is calculated as
$0.5*real(Br*conj(Hr)+conj(Hphi)*Bphi+conj(Hz)*Bz)/V$ with B, H to
be the magnetic induction intensity and magnetic field intensity
and V to be the volume of the core.

↪→
↪→
↪→
↪→

The geometry should be designed inside a semicircle of radius 0.35m
centered at (0,0), opening in the positive x-direction. Then we
will generate a 3D geometry by rotating the semicircle around the
axis x=0.

↪→
↪→
↪→

You are required to give the geometry of the core, and the location of
the coils. After you create the geometry, you should select the
regions of the core. **The Name of the selection must be `core`**.
Finally, you need to give the center of the coils, which are
circles with radius 0.01m. You don't need to give the geometry of
the coils.

↪→
↪→
↪→
↪→
↪→

The constraints are as follow:
1. There's no overlapping of different coils. There must be 12 coils

in total.↪→

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

2. The core and the coils should not overlap or adjacent.
3. The geometry and coils should be placed inside the semicircle of

radius 0.35m centered at (0,0), opening in the positive
x-direction.

↪→
↪→
4. The volume of the core should be more than 0.001 mˆ3. This means

cores that are **extremely thin or extremely fine** are not
allowed.

↪→
↪→

The reward is calculated as follow:
1. 0 if constraints are violated.
2. $0.5*real(Br*conj(Hr)+conj(Hphi)*Bphi+conj(Hz)*Bz)/V$, the

inductance value of the inductor, if constraints are satisfied.↪→

## Example
An example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones.

↪→
↪→

```yaml
geometry:

main:
type: Difference
geometries_add:

outer:
type: Polygon
table:
- [0, 0.2]
- [0.18, 0.2]
- [0.18, -0.2]
- [0, -0.2]

geometries_subtract:
inner:

type: Polygon
table:
- [0.03, -0.155]
- [0.03, 0.155]
- [0.12, 0.155]
- [0.12, -0.155]

selection:
core:
type: UnionSelection
geometries:
- main

coils:
- [0.08, 0.11]
- [0.08, 0.09]
- [0.08, 0.07]
- [0.08, 0.05]
- [0.08, 0.03]
- [0.08, 0.01]
- [0.08, -0.01]
- [0.08, -0.03]
- [0.08, -0.05]
- [0.08, -0.07]
- [0.08, -0.09]
- [0.08, -0.11]

```

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Prompt for task Beam Bending

You are a helpful AI Assistant that provides well-reasoned and
detailed responses.↪→

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
## Task Description

You are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.↪→

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

↪→
↪→
↪→

Your final answer should contain a yaml file enclosed in
```yaml\n(your code)```. The yaml file should have at least two
parts: geometry and selection. The specific requirements are as
follow:

↪→
↪→
↪→

1. geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:↪→
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
polygon is formed by **connecting consecutive points**
(p_i->p_{i+1}) and **automatically closing** the shape
(p_n->p_1). **NO Intersections between edges/nodes are
allowed**.

↪→
↪→
↪→
↪→
fillet: (Optional) A list of [i, r] tuples, where i is the

index (starting from 1) of a polygon vertex defined in the
above table, and r is the fillet radius for that
corresponding vertex.

↪→
↪→
↪→

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.

by setting angle=180 you can draw a upward semicircle.↪→
LineSegment: (1D)

coord1: [start_x, start_y]
coord2: [end_x, end_y]

CircularArc: (1D)
r: Radius
angle1: Start angle (degree) counterclockwise, 0 degree

represent positive direction of X-axis.↪→
angle2: End angle (degree) counterclockwise

CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,y1,y2,y3]]
w: Weight values as [w0,w1,w2,w3]

InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.

The curve will pass every points smoothly (polynomial
interpolation for x and y).

↪→
↪→

ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

coord: Expressions about the parameter like ["expression_x",
"expression_y"]. Trigonometric functions here use radians↪→

ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
curves.↪→
geometries: A dictionary of 1D geometries (using the same

structure as the top-level geometry section, recursive).
**They Must connect end-to-end and form a simply connected
space**.

↪→
↪→
↪→

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).

Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep

(recursive).↪→
geometries_subtract: A dictionary of geometries to subtract

(recursive).↪→

After **geometry** was created, the shapes will be splitted into
non-overlapping connected regions.↪→
- Overlapping 2D shapes create new regions (e.g., two intersecting

circles → 3 regions)↪→
- Enclosed 2D shapes split regions (e.g., circle inside polygon →

2 regions: circle interior + polygon-ring)↪→
- 1D curves through 2D shapes create sub-regions (e.g., line

segment through rectangle → alternating regions)↪→
The **regions** can be represented by the following ways:

- point: You can select an interior point of the region to
represent it. The point should never on boundaries/corners.
One point per region suffices.

↪→
↪→
- geometry: The 2d shapes you created might be splitted into

several regions. You can select the geometry to represent all
the regions in it.

↪→
↪→

2. selection: After regions are created, you will assign different
functions to regions using selections.↪→
UnionSelection: Union of all the regions selected below.

points: (Optional) List of [x,y] points representing distinct
regions.↪→

geometries: (Optional) List of 2d geometry names you created
above. By listing geometries here, you can select all the
region this geometry contains.

↪→
↪→
selections: (Optional) List of other selection names you

created.↪→
IntersectionSelection: Intersection of all the regions selected

below.↪→
same parameters as UnionSelection

DifferenceSelection: Select the regions in Add but not in
Subtract.↪→
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:

```yaml
geometry:

uni1: # Name of this geometry
type: Union
geometries: # create geometries recursively below

uni_el1: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

uni_pol1: # Name of the second polygon
type: Polygon
table:
- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

line1: # This line splits the ellipse into 2 regions.
type: LineSegment
coord1: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sel1: # Name of this selection

type: DifferenceSelection
add:

geometries:
- uni1 # Select all the regions in uni1

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This

region is part of ellipse but splitted by the line
segment.

↪→
↪→

```

Beam Cross Section Geometry Design

You are asked to design the cross section of a beam. The objective is
to maximize both the largest principal moment of inertia and the
torsional constant, while keeping the cross section area small.
The goal can be quantified as $(I1**0.8 * I2**0.2)/A$ with I1
being the largest principal moment of inertia, I2 being the
smallest principal moment of inertia and A being the beam cross
section area.

↪→
↪→
↪→
↪→
↪→
↪→

The beam cross-sectional dimension should not go beyond 0.15m, with
the center staying close to the origin.↪→

You are required to design the beam cross section. The shape doesn't
have to be symmetric. After you create the geometry, you should
select the regions of the beam. **The Name of the selection must
be `beam`**.

↪→
↪→
↪→

The constraints are as follow:
1. The shape center should be close to the origin.
2. The shape should stay inside the circle boundary with radius 0.2m.
3. The area should not be smaller than 2e-3 mˆ2.

The reward is calculated as follow:
1. 0 if constraints are violated.
2. $(I1**0.8 * I2**0.2)/A$, weighted geometry average of the largest

principal moment of inertia and the smallest principal moment of
inertia, normalized by the cross section area, if constraints are
satisfied.

↪→
↪→
↪→

Example
An example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones.

↪→
↪→

```yaml
geometry:

pol1:
type: Polygon

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

table:
- [0.05, 0.05]
- [-0.05, 0.05]
- [-0.05, 0.04]
- [-0.005, 0.04]
- [-0.005, -0.04]
- [-0.05, -0.04]
- [-0.05, -0.05]
- [0.05, -0.05]
- [0.05, -0.04]
- [0.005, -0.04]
- [0.005, 0.04]
- [0.05, 0.04]
fillet:
- [4, 0.003]
- [5, 0.003]
- [10, 0.003]
- [11, 0.003]

selection:
beam:
type: UnionSelection
geometries:
- pol1

```

Prompt for task Magnetic Torque

You are a helpful AI Assistant that provides well-reasoned and
detailed responses.↪→

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Task Description

You are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.↪→

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

↪→
↪→
↪→

Your final answer should contain a yaml file enclosed in
```yaml\n(your code)```. The yaml file should have at least two
parts: geometry and selection. The specific requirements are as
follow:

↪→
↪→
↪→

1. geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:↪→
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
polygon is formed by **connecting consecutive points**
(p_i->p_{i+1}) and **automatically closing** the shape
(p_n->p_1).

↪→
↪→
↪→
fillet: (Optional) A list of [i, r] tuples, where i is the

index (starting from 1) of a polygon vertex defined in the
above table, and r is the fillet radius for that
corresponding vertex.

↪→
↪→
↪→

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.

by setting angle=180 you can draw a upward semicircle.↪→
LineSegment: (1D)

coord1: [start_x, start_y]
coord2: [end_x, end_y]

CircularArc: (1D)
r: Radius
angle1: Start angle (degree) counterclockwise, 0 degree

represent positive direction of X-axis.↪→
angle2: End angle (degree) counterclockwise

CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,y1,y2,y3]]
w: Weight values as [w0,w1,w2,w3]

InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.

The curve will pass every points smoothly (polynomial
interpolation for x and y).

↪→
↪→

ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",

"expression_y"]. Trigonometric functions here use radians↪→
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D

curves.↪→
geometries: A dictionary of 1D geometries (using the same

structure as the top-level geometry section, recursive).
**They Must connect end-to-end and form a simply connected
space**.

↪→
↪→
↪→

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).

Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep

(recursive).↪→
geometries_subtract: A dictionary of geometries to subtract

(recursive).↪→

After **geometry** was created, the shapes will be splitted into
**non-overlapping connected regions**.↪→
- Overlapping 2D shapes create new regions (e.g., two intersecting

circles → 3 regions)↪→
- Enclosed 2D shapes split regions (e.g., circle inside polygon →

2 regions: circle interior + polygon-ring)↪→
- 1D curves through 2D shapes create sub-regions (e.g., line

segment through rectangle → alternating regions)↪→
The **regions** can be represented by the following ways:

- point: You can select an interior point of the region to
represent it. The point should never on boundaries/corners.
One point per region suffices.

↪→
↪→
- geometry: The 2d shapes you created might be splitted into

several regions. You can select the geometry to represent all
the regions in it.

↪→
↪→

2. selection: After regions are created, you will assign different
functions to regions using selections.↪→
UnionSelection: Union of all the regions selected below.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

points: (Optional) List of [x,y] points representing distinct
regions.↪→

geometries: (Optional) List of 2d geometry names you created
above. By listing geometries here, you can select all the
region this geometry contains.

↪→
↪→
selections: (Optional) List of other selection names you

created.↪→
IntersectionSelection: Intersection of all the regions selected

below.↪→
same parameters as UnionSelection

DifferenceSelection: Select the regions in Add but not in
Subtract.↪→
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:

```yaml
geometry:

uni1: # Name of this geometry
type: Union
geometries: # create geometries recursively below

uni_el1: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]

uni_pol1: # Name of the second polygon
type: Polygon
table:
- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

line1: # This line splits the ellipse into 2 regions.
type: LineSegment
coord1: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sel1: # Name of this selection

type: DifferenceSelection
add:

geometries:
- uni1 # Select all the regions in uni1

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This

region is part of ellipse but splitted by the line
segment.

↪→
↪→

```

## Geometric Design of 2D Iron Core

You are asked to design a 2D iron core. The iron core has large
permeability and is subject to a constant far field magnetic field
intensity which applies a magnetic torque (pointing out of the 2D
plane) on the iron core. The objective is to maximize the magnetic
torque while keeping the iron core small. The goal can be
quantified as $|Tz|/A$ where Tz is the torque in the out of plane
direction and A is the area of the core.

↪→
↪→
↪→
↪→
↪→
↪→

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

The iron core should be designed inside a circle air domain of radius
0.05m centered at the origin (0,0). The boundary of the circle
domain is subject to a constant magnetic field intensity of
[0,1e5] A/m.

↪→
↪→
↪→

You are required to give the geometry of the iron core. The shape
doesn't have to be symmetric. After you create the geometry, you
should select the regions of the core. **The Name of the selection
must be `core`**.

↪→
↪→
↪→

The constraints are as follow:
1. The core center should be close to the origin and inside the circle

air domain of radius 0.05m centered at (0,0).↪→
2. The boundary of the core should stay at least 0.02m away from the

circle air domain.↪→
3. The Area of the core should between 2e-4 and 2e-3 mˆ2.

The reward is calculated as follow:
1. 0 if constraints are violated.
2. $|Tz|/A$, the absolute value of magnetic torque generated by the

constant far field magnetic field intensity on the iron core
normalized by the iron core area, if constraints are satisfied.

↪→
↪→

## Example
An example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones.

↪→
↪→

```yaml
geometry:

pol1:
type: Polygon
table:
- [0.01, -0.003]
- [0.02, 0.001]
- [0.01, 0.01]
- [-0.01, 0.005]
- [-0.02, -0.008]
- [-0.02, -0.008]
- [-0.003, -0.01]

selection:
core:

type: UnionSelection
geometries:
- pol1

```

Prompt for task Periodic Heat

You are a helpful AI Assistant that provides well-reasoned and
detailed responses.↪→

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
## Task Description

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

You are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.↪→

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

↪→
↪→
↪→

Your final answer should contain a yaml file enclosed in
```yaml\n(your code)```. The yaml file should have a part named
geometry. The specific requirements are as follow:

↪→
↪→

1. geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:↪→
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
polygon is formed by **connecting consecutive points**
(p_i->p_{i+1}) and **automatically closing** the shape
(p_n->p_1).

↪→
↪→
↪→
fillet: (Optional) A list of [i, r] tuples, where i is the

index (starting from 1) of a polygon vertex defined in the
above table, and r is the fillet radius for that
corresponding vertex.

↪→
↪→
↪→

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.

by setting angle=180 you can draw a upward semicircle.↪→
LineSegment: (1D)

coord1: [start_x, start_y]
coord2: [end_x, end_y]

CircularArc: (1D)
r: Radius
angle1: Start angle (degree) counterclockwise, 0 degree

represent positive direction of X-axis.↪→
angle2: End angle (degree) counterclockwise

CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,y1,y2,y3]]
w: Weight values as [w0,w1,w2,w3]

InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.

The curve will pass every points smoothly (polynomial
interpolation for x and y).

↪→
↪→

ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",

"expression_y"]. Trigonometric functions here use radians↪→
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D

curves.↪→
geometries: A dictionary of 1D geometries (using the same

structure as the top-level geometry section, recursive).
**They Must connect end-to-end and form a simply connected
space**.

↪→
↪→
↪→

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).

Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep

(recursive).↪→

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

geometries_subtract: A dictionary of geometries to subtract
(recursive).↪→

Structure Design of the 3D heat transfer unit cell

You are asked to design a unit cell structure in 3D. The objective is
to maximize the effective thermal conductivity with limited
material usage, which can be quantified as
$trace(k_{eff})/\rho_{eff}$ where k_{eff} is the effective
thermal conductivity matrix of shape 3*3, and rho_eff is the
effective density.

↪→
↪→
↪→
↪→
↪→

You should first define a 2D rectangular unit cell domain by giving
the width and height of the domain.↪→

You then design the hollow part of the 2D unit cell. You must create a
geometry named `hollow`, represents the hollow part of the unit
cell. Four copies of this geometry object will be created by
translating the original object with the following vectors
[-cell_width/2, -cell_height/2], [-cell_width/2, cell_height/2],
[cell_width/2, -cell_height/2], [cell_width/2, cell_height/2].

↪→
↪→
↪→
↪→
↪→

The unit cell domain will be subtracted by the geometry object and its
copies. The subtracted areas are filled with air (thermal
conductivity ˜0.026W/(m * K), density ˜1.174kg/mˆ3) and the
remaining areas are filled with aluminum (thermal conductivity
238W/(m * K), density 2700 kg/mˆ3).

↪→
↪→
↪→
↪→
The final 3D unit cell structure is generated by extruding the 2D unit

cell.↪→

The unit cell will subject to periodic boundary condition in x, y, and
z directions. Your design should provide higher effective thermal
conductivity using a reasonable amount of aluminum and carefully
designed hollow shape.

↪→
↪→
↪→

The constraints are as follow:
1. The original geometry object(`hollow`) should not overlap with the

boundary of the domain. But its copies may overlap with the
boundary.

↪→
↪→
2. The original and copied geometry objects should not overlap or

adjacent with each other.↪→
3. The effective density should not exceed 2000 kg/mˆ3. You should

control the usage of aluminum (by create larger hollow parts).↪→
4. The unit cell domain is centered strictly at the origin. The

geometry you designed should be centered approximately at the
origin, as it may not be symmetric.

↪→
↪→

The reward is calculated as follow:
1. 0 if constraints are violated.
2. $trace(k_eff)/rho_eff$, the effective thermal conductivity of the

unit cell structure normalized by the effective density, if
constraints are satisfied.

↪→
↪→

Example
An example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones.

↪→
↪→

```yaml
cell:

sizes: [5e-3, 3e-3]
geometry:

hollow:

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

type: Polygon
table:
- [1.61e-3, 0]
- [8.04e-4, 1.45e-3]
- [-8.04e-4, 1.45e-3]
- [-1.61e-3, 0]
- [-8.04e-4, -1.45e-3]
- [8.04e-4, -1.45e-3]

```

Prompt for task Demultiplexer

You are a helpful AI Assistant that provides well-reasoned and
detailed responses.↪→

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Task Description

You are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.↪→

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

↪→
↪→
↪→

Your final answer should contain a yaml file enclosed in
```yaml\n(your code)```. The yaml file should have at least two
parts: geometry and selection. The specific requirements are as
follow:

↪→
↪→
↪→

1. geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:↪→
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
polygon is formed by **connecting consecutive points**
(p_i->p_{i+1}) and **automatically closing** the shape
(p_n->p_1).

↪→
↪→
↪→
fillet: (Optional) A list of [i, r] tuples, where i is the

index (starting from 1) of a polygon vertex defined in the
above table, and r is the fillet radius for that
corresponding vertex.

↪→
↪→
↪→

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.

by setting angle=180 you can draw a upward semicircle.↪→
LineSegment: (1D)

coord1: [start_x, start_y]
coord2: [end_x, end_y]

CircularArc: (1D)
r: Radius
angle1: Start angle (degree) counterclockwise, 0 degree

represent positive direction of X-axis.↪→
angle2: End angle (degree) counterclockwise

CubicBezier: (1D)

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

p: Control points as [[x0,x1,x2,x3], [y0,y1,y2,y3]]
w: Weight values as [w0,w1,w2,w3]

InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.

The curve will pass every points smoothly (polynomial
interpolation for x and y).

↪→
↪→

ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",

"expression_y"]. Trigonometric functions here use radians↪→
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D

curves.↪→
geometries: A dictionary of 1D geometries (using the same

structure as the top-level geometry section, recursive).
**They Must connect end-to-end and form a simply connected
space**.

↪→
↪→
↪→

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).

Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep

(recursive).↪→
geometries_subtract: A dictionary of geometries to subtract

(recursive).↪→

After **geometry** was created, the shapes will be splitted into
**non-overlapping connected regions**.↪→
- Overlapping 2D shapes create new regions (e.g., two intersecting

circles → 3 regions)↪→
- Enclosed 2D shapes split regions (e.g., circle inside polygon →

2 regions: circle interior + polygon-ring)↪→
- 1D curves through 2D shapes create sub-regions (e.g., line

segment through rectangle → alternating regions)↪→
The **regions** can be represented by the following ways:

- point: You can select an interior point of the region to
represent it. The point should never on boundaries/corners.
One point per region suffices.

↪→
↪→
- geometry: The 2d shapes you created might be splitted into

several regions. You can select the geometry to represent all
the regions in it.

↪→
↪→

2. selection: After regions are created, you will assign different
functions to regions using selections.↪→
UnionSelection: Union of all the regions selected below.

points: (Optional) List of [x,y] points representing distinct
regions.↪→

geometries: (Optional) List of 2d geometry names you created
above. By listing geometries here, you can select all the
region this geometry contains.

↪→
↪→
selections: (Optional) List of other selection names you

created.↪→
IntersectionSelection: Intersection of all the regions selected

below.↪→
same parameters as UnionSelection

DifferenceSelection: Select the regions in Add but not in
Subtract.↪→
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

```yaml
geometry:

uni1: # Name of this geometry
type: Union
geometries: # create geometries recursively below

uni_el1: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]

uni_pol1: # Name of the second polygon
type: Polygon
table:
- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

line1: # This line splits the ellipse into 2 regions.
type: LineSegment
coord1: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sel1: # Name of this selection

type: DifferenceSelection
add:

geometries:
- uni1 # Select all the regions in uni1

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This

region is part of ellipse but splitted by the line
segment.

↪→
↪→

```

## Geometric Design of a 2D sound wave demultiplexer

You are asked to design a 2D sound wave demultiplexer. The
demultiplexer takes incident sound wave from port 1, and omits
sound wave at port 2 and 3. The objective is to maximize the
difference of sound pressure (on log scale) at two outlet ports,
which is calculated as $log10(port2.P_{out})-log10(port3.P_{out})$
with $P_{out}$ being the sound pressure at the outlet ports.

↪→
↪→
↪→
↪→
↪→

The entire pressure acoustic region will be a circle of radius 0.1m
centered at (0,0). The incident wave comes from the negative
x-direction (9 o'clock). The sound waves are then ommited at 1
o'clock (port 2) and 5 o'clock (port 3) of the acoustic region.

↪→
↪→
↪→

You should design void geometry (material to be removed) so that the
sound wave will propagate through the remaining geometry and
maximize the objective function. You should create a list of basic
geometries and then select from them to form the void regions.
**The Name of the selection must be `void`**. Keep in mind that
the void geometry should stay inside the acoustic region and at
least 0.15m away from the boundary of the acoustic region.

↪→
↪→
↪→
↪→
↪→
↪→

The constraints are as follow:
1. After removing the void geometry, the remaining part should still

be connected.↪→
2. The void geometry should stay inside the acoustic region, and at

least 0.02m away from the boundary of the acoustic region.↪→

The reward is calculated as follow:

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

1. 0 if constraints are violated.
2. $log10(port2.P_{out})-log10(port3.P_{out})$, the log scale pressure

difference between port 2 and port 3, if constraints are
satisfied.

↪→
↪→

## Example
An example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones. Feel free to add more basic geometries.

↪→
↪→

```yaml
geometry:

barrier:
type: ConvertToSolid
geometries:

cir_inner:
type: CircularArc
r: 0.08
angle1: -120
angle2: 0

cir_outer:
type: CircularArc
r: 0.06
angle1: -120
angle2: 0

line1:
type: LineSegment
coord1: [0.06, 0.0]
coord2: [0.08, 0.0]

line2:
type: LineSegment
coord1: [0.06*cos(-120*pi/180), 0.06*sin(-120*pi/180)]
coord2: [0.08*cos(-120*pi/180), 0.08*sin(-120*pi/180)]

selection:
void:
type: UnionSelection
geometries: [barrier]

```

D.3 CIRCLE PACKING

Prompt for task Circle Packing

You are an expert software developer tasked with iteratively improving
a codebase.↪→

Your job is to analyze the current program and suggest improvements
based on feedback from previous attempts.↪→

Focus on making targeted changes that will increase the program's
performance metrics.↪→

Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
# Problem Description

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

You are an expert mathematician specializing in circle packing
problems and computational geometry. Your task is to improve a
constructor function that directly produces a specific arrangement
of 26 circles in a unit square, maximizing the sum of their radii.
The AlphaEvolve paper achieved a sum of 2.635 for n=26.

↪→
↪→
↪→
↪→

Key geometric insights:
- In dense regions, circles often follow hexagonal packing patterns,

with the theoretical maximum density for infinite packing being
pi/(2sqrt(3))=0.9069.

↪→
↪→
- However, when confined to a finite square, **edge effects** disrupt

perfect symmetry and make pure hexagonal packing suboptimal.↪→
- Optimal arrangements often require **variable-sized circles**, as

this can improve space utilization compared to equal radii. Larger
circles can be placed toward the center, with smaller circles
strategically fitted near edges and corners.

↪→
↪→
↪→
- Effective designs may use **layered or shell-like patterns** rather

than strict hexagonal grids. Hybrid approaches|combining regular
arrangements in dense regions with adaptive adjustments near
boundaries|are common in the densest known packings.

↪→
↪→
↪→
- The **optimization method** plays a critical role: physics-inspired

simulations or algorithms with well-tuned parameters can yield
better configurations than purely geometric intuition.

↪→
↪→
- Mathematical research indicates that for certain specific values of

n, special arrangements can achieve unusually high densities.↪→

You may either designing an explicit constructor of the result or
explore search-based, optimization, or even multi-stage
optimization methods, as long as they can finish running within 1
minutes.

↪→
↪→
↪→

## Current Program
Status: {current_status}
```python
{current_program}
```

## Task
Suggest improvements to the program that will lead to better

performance on the specified metrics.↪→

You MUST use the exact SEARCH/REPLACE diff format shown below to
indicate changes:↪→

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must **exactly**
match code in the current program.↪→

Be thoughtful about your changes and explain your reasoning
thoroughly.↪→

Make sure your rewritten program still contains `construct_packing()`
function and maintains the same outputs. **You can
add/delete/modify other functions arbitrarily.**

↪→
↪→

If you want to use new packages, please import them. Usable packages:
scipy, sympy, shapely, pulp, cvxpy, nlopt, deap↪→

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

If your code's execution time exceeds 1 minute, you will receive 0
reward. Pay attention to the runtime efficiency!↪→

IMPORTANT: Do not rewrite the entire program - focus on targeted
improvements.↪→

D.4 FUNCTION MINIMIZATION

Prompt for task Minimize Function

# Problem Description

You are an expert in optimization algorithms. Your task is to improve
a function minimization algorithm that minimizes a complex
non-convex function with multiple local minima. The function is
defined in {dimension}-dimensional space with the following
expression:

↪→
↪→
↪→
↪→
```python
{formula}
```

## Current Program
Status: {current_status}
```python
{current_program}
```

## Task

Suggest improvements to the program that will lead to better
performance on the specified metrics.↪→

Your code's execution time should not exceed 10 seconds. Pay attention
to the runtime efficiency!↪→

You MUST use the exact SEARCH/REPLACE diff format shown below to
indicate changes:↪→

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)
=======
# New replacement code
>>>>>>> REPLACE

Performance is evaluated using:
1. value_score: Closeness to minimum function value: |global_min| /

(|global_min| + |found_value - global_min|)↪→
2. distance_score: Proximity to true solution point: 1/(1 +

distance_to_global_min)↪→
3. standard_deviation_score: Solution stability across runs:

(1/(1+std_x1) + 1/(1+std_x2) + ...)/dim↪→
4. speed_score: Execution efficiency: min(1/avg_runtime_in_seconds,

10)/10↪→
5. reliability_score: successful_runs/total_runs. Successful run has

no tracebacks and timeouts.↪→
6. combined_score: **This is the final reward you received.** 100%

value_score.↪→

If you want to use new packages, please import them.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Make sure your rewritten program still contains `run_search()`
function and maintains the same outputs. You can add/delete/modify
other functions arbitrarily.

↪→
↪→

IMPORTANT: Do not rewrite the entire program - focus on targeted
improvements.↪→

D.5 SYMBOLIC REGRESSION

Prompt for Chemistry tasks

You are an expert software developer. Your job is to write a Python
function based on feedback from previous attempts.↪→

Write your code in exactly the following format:
```python
your code
```
Your code's execution time is limited, so pay attention to runtime

efficiency!↪→
If you use new packages, please import them.
Ensure the program still contains the func() function and produces the

same outputs; other functions can be added, deleted, or modified
freely.

↪→
↪→
IMPORTANT: The current task is a symbolic regression problem. Write a

Python expression in func() where parameter scales are as similar
as possible (use linear scaling or translation if needed). This
helps later optimization when all parameters are initialized
randomly in [0,1].

↪→
↪→
↪→
↪→
Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Your task is to evolve a Python function `func(x, params)` that models

a scientific process, considering the physical meaning and
relationships of inputs, by predicting output variables based on
input variables.

↪→
↪→
↪→

The function signature is:

```python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:
```

- `x` is a 2D NumPy array of shape `(n_samples, 2)`
- `params` is a 1D NumPy array of up to 10 parameters
- The function should return a 1D NumPy array of predictions with

shape `(n_samples,)`↪→

**Current Problem:**
Model the dA_dt (Rate of change of concentration in chemistry reaction

kinetics) using the input features: t (Time), A (Concentration at
time t)

↪→
↪→
Thus, `x` contains 2 columns: t (Time), A (Concentration at time t).

The initial version of `func` is a simple linear model. Parameters in
`params` will be optimized externally using the BFGS algorithm
based on unseen training data.

↪→
↪→

Your objective is to evolve `func` to improve predictive performance
on unseen data. Aim for a balance between:↪→

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

- **Accuracy**: Lower mean squared error (MSE) on training data
- **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
held-out dataset. Ensure the model is free of potential numerical
errors (e.g., log0, division by 0).

↪→
↪→
## Current Program
Status: Initial Program
```python
def func(x, params):

"""
Calculates the model output using a linear combination of input

variables↪→
or a constant value if no input variables. Operates on a matrix of

samples.↪→

Args:
x (np.ndarray): A 2D numpy array of input variable values,

shape (n_samples, n_features).↪→
n_features is 2.
If n_features is 0, x should be shape

(n_samples, 0).↪→
The order of columns in x must correspond to:
(t, A).

params (np.ndarray): A 1D numpy array of parameters.
Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape

(n_samples,).↪→
"""
result = x[:, 0] * params[0] + x[:, 1] * params[1]
return result

```

Prompt for Biology tasks

You are an expert software developer. Your job is to write a Python
function based on feedback from previous attempts.↪→

Write your code in exactly the following format:
```python
your code
```
Your code's execution time is limited, so pay attention to runtime

efficiency!↪→
If you use new packages, please import them.
Ensure the program still contains the func() function and produces the

same outputs; other functions can be added, deleted, or modified
freely.

↪→
↪→
IMPORTANT: The current task is a symbolic regression problem. Write a

Python expression in func() where parameter scales are as similar
as possible (use linear scaling or translation if needed). This
helps later optimization when all parameters are initialized
randomly in [0,1].

↪→
↪→
↪→
↪→
Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Your task is to evolve a Python function `func(x, params)` that models
a scientific process, considering the physical meaning and
relationships of inputs, by predicting output variables based on
input variables.

↪→
↪→
↪→

The function signature is:

```python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:
```

- `x` is a 2D NumPy array of shape `(n_samples, 2)`
- `params` is a 1D NumPy array of up to 10 parameters
- The function should return a 1D NumPy array of predictions with

shape `(n_samples,)`↪→

**Current Problem:**
Model the dP_dt (Population growth rate) using the input features: t

(Time), P (Population at time t)↪→
Thus, `x` contains 2 columns: t (Time), P (Population at time t).

The initial version of `func` is a simple linear model. Parameters in
`params` will be optimized externally using the BFGS algorithm
based on unseen training data.

↪→
↪→

Your objective is to evolve `func` to improve predictive performance
on unseen data. Aim for a balance between:↪→

- **Accuracy**: Lower mean squared error (MSE) on training data
- **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
held-out dataset. Ensure the model is free of potential numerical
errors (e.g., log0, division by 0).

↪→
↪→
## Current Program
Status: Initial Program
```python
def func(x, params):

"""
Calculates the model output using a linear combination of input

variables↪→
or a constant value if no input variables. Operates on a matrix of

samples.↪→

Args:
x (np.ndarray): A 2D numpy array of input variable values,

shape (n_samples, n_features).↪→
n_features is 2.
If n_features is 0, x should be shape

(n_samples, 0).↪→
The order of columns in x must correspond to:
(t, P).

params (np.ndarray): A 1D numpy array of parameters.
Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape

(n_samples,).↪→
"""
result = x[:, 0] * params[0] + x[:, 1] * params[1]
return result

```

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Prompt for Physics tasks

You are an expert software developer. Your job is to write a Python
function based on feedback from previous attempts.↪→

Write your code in exactly the following format:
```python
your code
```
Your code's execution time is limited, so pay attention to runtime

efficiency!↪→
If you use new packages, please import them.
Ensure the program still contains the func() function and produces the

same outputs; other functions can be added, deleted, or modified
freely.

↪→
↪→
IMPORTANT: The current task is a symbolic regression problem. Write a

Python expression in func() where parameter scales are as similar
as possible (use linear scaling or translation if needed). This
helps later optimization when all parameters are initialized
randomly in [0,1].

↪→
↪→
↪→
↪→
Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Your task is to evolve a Python function `func(x, params)` that models

a scientific process, considering the physical meaning and
relationships of inputs, by predicting output variables based on
input variables.

↪→
↪→
↪→

The function signature is:

```python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:
```

- `x` is a 2D NumPy array of shape `(n_samples, 3)`
- `params` is a 1D NumPy array of up to 10 parameters
- The function should return a 1D NumPy array of predictions with

shape `(n_samples,)`↪→

**Current Problem:**
Model the dv_dt (Acceleration in Nonl-linear Harmonic Oscillator)

using the input features: x (Position at time t), t (Time), v
(Velocity at time t)

↪→
↪→
Thus, `x` contains 3 columns: x (Position at time t), t (Time), v

(Velocity at time t).↪→

The initial version of `func` is a simple linear model. Parameters in
`params` will be optimized externally using the BFGS algorithm
based on unseen training data.

↪→
↪→

Your objective is to evolve `func` to improve predictive performance
on unseen data. Aim for a balance between:↪→

- **Accuracy**: Lower mean squared error (MSE) on training data
- **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
held-out dataset. Ensure the model is free of potential numerical
errors (e.g., log0, division by 0).

↪→
↪→
## Current Program
Status: Initial Program
```python
def func(x, params):

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

"""
Calculates the model output using a linear combination of input

variables↪→
or a constant value if no input variables. Operates on a matrix of

samples.↪→

Args:
x (np.ndarray): A 2D numpy array of input variable values,

shape (n_samples, n_features).↪→
n_features is 3.
If n_features is 0, x should be shape

(n_samples, 0).↪→
The order of columns in x must correspond to:
(x, t, v).

params (np.ndarray): A 1D numpy array of parameters.
Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape

(n_samples,).↪→
"""
result = x[:, 0] * params[0] + x[:, 1] * params[1] + x[:, 2] *

params[2]↪→
return result

```

Prompt for Material Science tasks

You are an expert software developer. Your job is to write a Python
function based on feedback from previous attempts.↪→

Write your code in exactly the following format:
```python
your code
```
Your code's execution time is limited, so pay attention to runtime

efficiency!↪→
If you use new packages, please import them.
Ensure the program still contains the func() function and produces the

same outputs; other functions can be added, deleted, or modified
freely.

↪→
↪→
IMPORTANT: The current task is a symbolic regression problem. Write a

Python expression in func() where parameter scales are as similar
as possible (use linear scaling or translation if needed). This
helps later optimization when all parameters are initialized
randomly in [0,1].

↪→
↪→
↪→
↪→
Respond in the following format: <think>
...
</think>
<answer>
...
</answer>.
Your task is to evolve a Python function `func(x, params)` that models

a scientific process, considering the physical meaning and
relationships of inputs, by predicting output variables based on
input variables.

↪→
↪→
↪→

The function signature is:

```python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:
```

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

- `x` is a 2D NumPy array of shape `(n_samples, 2)`
- `params` is a 1D NumPy array of up to 10 parameters
- The function should return a 1D NumPy array of predictions with

shape `(n_samples,)`↪→

**Current Problem:**
Model the sigma (Stress) using the input features: epsilon (Strain), T

(Temperature)↪→
Thus, `x` contains 2 columns: epsilon (Strain), T (Temperature).

The initial version of `func` is a simple linear model. Parameters in
`params` will be optimized externally using the BFGS algorithm
based on unseen training data.

↪→
↪→

Your objective is to evolve `func` to improve predictive performance
on unseen data. Aim for a balance between:↪→

- **Accuracy**: Lower mean squared error (MSE) on training data
- **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
held-out dataset. Ensure the model is free of potential numerical
errors (e.g., log0, division by 0).

↪→
↪→
## Current Program
Status: Initial Program
```python
def func(x, params):

"""
Calculates the model output using a linear combination of input

variables↪→
or a constant value if no input variables. Operates on a matrix of

samples.↪→

Args:
x (np.ndarray): A 2D numpy array of input variable values,

shape (n_samples, n_features).↪→
n_features is 2.
If n_features is 0, x should be shape

(n_samples, 0).↪→
The order of columns in x must correspond to:
(epsilon, T).

params (np.ndarray): A 1D numpy array of parameters.
Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape

(n_samples,).↪→
"""
result = x[:, 0] * params[0] + x[:, 1] * params[1]
return result

```

E METHODOLOGICAL CHALLENGES AND COMPARATIVE ANALYSIS OF
RL-EA INTEGRATION

This appendix details the specific technical challenges associated with integrating Reinforcement
Learning (RL) and Evolutionary Algorithms (EAs). We further analyze why a naive sequential com-
bination (e.g., AlphaEvolve) fails to scale effectively compared to the proposed HELIX framework,
supported by empirical evidence from the Circle Packing problem.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

E.1 TECHNICAL CHALLENGES AND SOLUTIONS

The integration of RL and EAs presents several non-trivial challenges, primarily stemming from the
conflicting objectives and operational domains of the two paradigms. HELIX addresses these as
follows:

Goal Mismatch and Unification. A fundamental disconnect exists between RL, which learns a
policy mapping states to actions, and EAs, which act as population-based optimization methods
relying on recombination and mutation. Integrating these requires a principled bridge rather than a
naive combination.

• In-Context Learning as a Bridge: HELIX adopts an in-context learning paradigm where
previously discovered high-quality solutions are injected into the prompt as explicit mem-
ory. This transforms the Large Language Model (LLM) into a parameterized mutation
operator, conditioned on historical trajectories.

• Unified Optimization: We employ Group Relative Policy Optimization (GRPO) to train
this mutation operator. GRPO naturally generates diverse rollouts that serve as the popu-
lation for evolutionary selection. Consequently, policy optimization (RL) and evolutionary
search (EA) are coupled within a closed loop: test-time scaling via evolution provides high-
quality data for RL, while RL improves the mutation operator for subsequent evolutionary
steps.

Diversity Estimation in Giant Code Spaces. Traditional evolutionary metrics are ill-suited for
code optimization, where the action space is discrete, high-dimensional, and highly structured.
Measuring individual diversity in this domain is challenging. HELIX resolves this by utilizing an
embedding-based approach to quantify semantic distances between code individuals. We compute
population diversity via k-nearest neighbors (kNN) in this embedding space, providing a scalable
and semantically meaningful metric to guide selection.

E.2 LIMITATIONS OF NAIVE INTEGRATION: A CASE STUDY

To demonstrate why HELIX offers a necessary advancement over ”naive” integration, we compare
it against the AlphaEvolve paradigm. AlphaEvolve represents a sequential approach: post-training
an LLM on general domains followed by applying evolutionary algorithms to downstream tasks
without further policy updates.

We conducted a comparative experiment on the Circle Packing problem (maximizing the sum of
radii for 26 non-overlapping circles in a unit square). We evaluated Direct Prompting (BO64),
OpenEvolve (an open-source reproduction of AlphaEvolve), and HELIX using Qwen 14B and 32B
base models.

Table 2: Performance Comparison on Circle Packing Task

Method Score (Sum of Radii)
Direct Prompt (Qwen 14B) 1.673
OpenEvolve (Qwen 14B) 1.586
OpenEvolve (Qwen 32B) 1.956
HELIX (Qwen 14B) 2.636

As shown in Table 2, OpenEvolve with Qwen 14B performed worse than the Direct Prompt baseline,
despite utilizing significantly more computational resources. Our analysis identifies two critical
failure modes in naive integration of OpenEvolve:

1. Constraints of Initialization Bias. Naive approaches are heavily constrained by their initial
seed solutions. OpenEvolve generates a small set of seed trials (e.g., 5) and iterates upon them.
If these initial trials lack diversity or occupy a low-performance region, the evolutionary process
stagnates in local optima. In contrast, Direct Prompting (BO64) benefits from 64 i.i.d. evaluations,
offering a broader initial coverage that the naive evolutionary process failed to surpass.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

2. Rejection of Novelty and Destructive Changes. A more subtle failure mode is the re-
jection of potentially high-reward strategies that require initial ”destructive” changes. In our
Qwen 32B OpenEvolve experiment (4,147 trials), the model predominantly attempted to ad-
just coordinates directly. Only 12 trials (0.3%) attempted a radically different approach using
scipy.optimize.minimize.

• The Failure: All 12 trials initially yielded a reward of 0.0 due to minor compilation errors
or timeouts. Traditional evolutionary selection, driven by immediate reward or superficial
code features (e.g., length), discarded these candidates.

• The Consequence: The system failed to explore the scipy approach, which—once de-
bugged—is capable of yielding scores > 2.0.

E.3 THE HELIX ADVANTAGE

HELIX overcomes the aforementioned limitations through two specific mechanisms:

1. Explicit Diversity Accounting: By using an embedding model to distinguish methods
semantically, HELIX assigns a high Diversity Score to the rare scipy-based solutions,
even when their immediate reward is low. This ensures they are retained in the population
for further mutation/debugging.

2. Parameter Learning via RL: Once a diversity-preserved rollout successfully fixes the
implementation bug (generating a high-reward solution s⋆t+1), HELIX utilizes this trajec-
tory for RL updates. This update increases the probability of the policy generating similar
sophisticated methods in future steps.

This establishes a positive feedback loop: diversity metrics preserve potential innovation, and RL
consolidates successful realizations of that innovation into the model parameters, allowing HELIX
to break out of local optima where naive methods stagnate.

F THEORETICAL ANALYSIS OF THE FRAMEWORK

In this section, we employ a simplified mathematical model to provide theoretical insights into the
advantages of our algorithm in solving complex scientific problems. We demonstrate the efficiency
of HELIX in discovering optimal solutions compared to baseline methods.

F.1 MATHEMATICAL SETUP AND PRELIMINARIES

First, we establish the geometric and probabilistic foundations of the problem. For a given problem
q, we assume the existence of the following structures:

• Solution Space: A set of solutions S, which can be viewed as a simply connected open
manifold in a complex space.

• Reward Function: A continuous function R : S → R+.
• Embedding: A mapping Φ : S → Rn that maps the solution space to an Embedding Space
Rn, satisfying:

1. Continuity: For any s1, s2 ∈ S derived via similar methods, their embeddings v1 =
Φ(s1) and v2 = Φ(s2) are adjacent in Rn.

2. Injectivity: Distinct solutions have distinct embeddings.
3. Open Map: Φ maps open sets in S to open sets in Rn.

We define the reward function in the embedding space Rn as follows. For any v ∈ Rn:

r(v) =

{
R(Φ−1(v)) v ∈ Φ(S)
0 v /∈ Φ(S) , (29)

where s = Φ−1(v) is the solution corresponding to v. Restricted to the image set, Φ : S → Φ(S) is
a bijection, making its inverse well-defined. Given the continuity of Φ and R, and the open mapping
property of Φ, r(v) is continuous.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Definition F.1 (LLM Transition Process). For a solution s, an LLM parameterized by θ transforms
the solution by outputting an action a ∼ πθ(·|s), resulting in s′ = T (s, a). Based on this, we define
the LLM Transition Function on Rn as a stochastic process:

T ⋆
θ : Rn → (Ω→ Rn), T ⋆

θ (v) = Φ(T (Φ−1(v), a)), where a ∼ πθ(·|Φ−1(v)). (30)

For tractability, we approximate T ⋆
θ as an independent Normal distribution:

T ⋆
θ (v) ∼ N (v + δθ(v), σI). (31)

This implies each transition follows v → v + δθ(v) + ξ, where ξ ∼ N (0, σI). This Gaussian
approximation is justified as LLMs typically generate modest modifications to the current solution,
making local approximations valid in the embedding space.

F.2 THEORETICAL ANALYSIS OF GRPO

F.2.1 SETUP AND ASSUMPTIONS

In the GRPO method, since the prompt is fixed, the model evolves solely from an initial solution
v0. The transition samples from N (v0 + δθ(v0), σI). GRPO estimates the gradient of the reward
function near v = v0 + δθ(v0) and updates the model parameters. The effective update dynamics in
the embedding space can be described as:

δθ(v0)← δθ(v0) + η∇vr(v0 + δθ(v0)), (32)

which simplifies to the gradient ascent process v ← v + η∇vr(v), where η is the learning rate.

To analyze convergence, we introduce the following assumption regarding the reward landscape.

Assumption F.2 (Reward Landscape). We assume the reward function r(v) consists of two Gaus-
sian peaks, representing a local optimum (vloc) and a global optimum (vopt):

r(v) = Aloc exp

(
−∥v − vloc∥2

2w2

)
+Aopt exp

(
−∥v − vopt∥2

2w2

)
. (33)

Let L = ∥vopt − vloc∥ be the distance between the optima.

Theorem F.3 (Convergence to Local Optimum of GRPO). Let v0 be the initial solution for GRPO.
GRPO will converge to the local optimum near vloc if the following conditions are met:

1. Separation: L > 2w. There is sufficient separation between the global and local optima.

2. Amplitude: Aloc > Aopt · Lw · exp
(
− L2

2w2

)
. The local optimum is not significantly weaker

than the global optimum locally.

3. Initialization: Decomposing the initial solution as v0 = vloc+v⊥+γ0(vopt−vloc), where
v⊥ ⊥ (vopt − vloc), we require γ0 < γbarrier ≈ 1

2 −
w2

L2 ln
Aopt

Aloc
. This implies the initial

solution is geometrically closer to the local optimum’s basin of attraction.

Comment. These assumptions hold in many scientific problems where distinct methods (local vs.
global) have a large semantic gap (L > 2w), and initial ”naive” solutions naturally fall closer to
simpler local optima. This illustrates that GRPO, lacking memory or population mechanisms, is
prone to trapping in local optima.

F.2.2 PROOF OF THEOREM F.3

We decompose the gradient of r(v). Let v be parameterized as v = vloc + v⊥ + γ(vopt− vloc). The
gradient∇r(v) satisfies:

∇r(v) = Aloc

w2
(vloc − v) exp

(
−∥v − vloc∥2

2w2

)
+

Aopt

w2
(vopt − v) exp

(
−∥v − vopt∥2

2w2

)
. (34)

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Projecting onto the line connecting the optima (vopt − vloc):

⟨∇r(v), vopt − vloc⟩ = −
AlocL

2

w2
γ exp

(
−γ2L2 + ∥v⊥∥2

2w2

)
+

AoptL
2

w2
(1− γ) exp

(
− (1− γ)2L2 + ∥v⊥∥2

2w2

)
. (35)

Projecting onto the perpendicular component v⊥:

⟨∇r(v), v⊥⟩ = −
∥v⊥∥2

w2

(
Aloc

(
−∥v − vloc∥2

2w2

)
+Aopt

(
−∥v − vopt∥2

2w2

))
. (36)

First, analyzing the dynamics of v⊥:

d

dt
∥v⊥∥2 = 2⟨v̇⊥, v⊥⟩ ∝ −C(v)∥v⊥∥2 < 0. (37)

Regardless of initialization, v⊥ decays exponentially to 0. The system converges to the linear mani-
fold connecting vloc and vopt. Assuming v⊥ = 0, the dynamics of γ are governed by:

dγ

dt
∝ −γAloc exp

(
−γ2L2

2w2

)
+ (1− γ)Aopt exp

(
− (1− γ)2L2

2w2

)
. (38)

Solving for equilibrium points (dγdt = 0) yields a stable local equilibrium near γ ≈ 0, an unstable
saddle point γbarrier ≈ 1

2−
w2

L2 ln
Aopt

Aloc
, and a stable global equilibrium near γ ≈ 1. If γ0 < γbarrier,

the system flows to the local optimum. □

F.3 THEORETICAL ANALYSIS OF EVOLVE AND HELIX

F.3.1 SETUP: UNIFIED DRIFT-DIFFUSION AND SELECTION FRAMEWORK

We analyze the iterative processes of Evolve and HELIX by modeling them as continuous-time
stochastic processes. Both algorithms maintain a population P and update it via v′.

• Evolve (Selection-Diffusion): In the Evolve algorithm, the model parameters cannot be
adjusted. Thus, we assume the model has no inherent directional bias towards different
methods of this specific problem (δθ(v) ≡ 0). The iteration simplifies to a random walk
v′ = v + σξ. At each step, a solution v is drawn from P , and v′ = v + σξ is generated.
Critically, solutions with higher Reward are sampled with a higher probability. We can
model this selection by a weight function w(v) = exp(αr(v)), where α represents the
selection pressure. The new solution is added to the population: P ← P ∪ {v′}.

• HELIX (Drift-Diffusion): HELIX maintains a population P and dynamically adjusts the
directional bias δθ(v). Through the GRPO mechanism, this direction will gradually approx-
imate the gradient∇r(v). Upon sufficient convergence, the HELIX iteration approximates
a guided random walk: v′ = v + η∇r(v) + σξ. In HELIX, we also sample high-Reward
solutions with higher probability, but for mathematical tractability, we assume the selection
weight parameter α = 0, meaning the sampling weight is uniform (w(v) ≡ 1).

The comparison is summarized in Table 3.

Table 3: Comparison of Algorithm Dynamics

Algorithm Dynamics Equation Drift D(v) Selection w(v)

Evolve v′ = v + σξ 0 exp(αr(v))
HELIX v′ = v + η∇r(v) + σξ η∇r(v) 1 (α = 0)

Theorem F.4 (Stationary Distribution). Assuming the solution space is bounded, as t → ∞, the
population distribution p∗(v) converges to:

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

1. Evolve: Converges to the principal eigenfunction of the associated Schrödinger operator.
Under the WKB approximation (σ → 0):

p∗Evo(v) ≍ exp

(
−
√
2α

σ

∫ v

vopt

√
r(vopt)− r(u)du

)
. (39)

2. HELIX: Converges to a Boltzmann-Gibbs Measure:

p∗Helix(v) ∝ exp

(
2η

σ2
r(v)

)
. (40)

Comment on theorem F.4.

1. Concentration and σ Scaling. The concentration power of the stationary distributions—defined
as the inverse of their variance—exhibits distinct scaling behaviors with respect to the noise pa-
rameter σ. Specifically, the concentration scales as O(1/σ) for Evolve and O(1/σ2) for HELIX.
Given that σ ≪ 1 in high-precision search contexts, it follows that 1/σ2 ≫ 1/σ. This inequality
indicates that the sampling distribution of HELIX is exponentially more concentrated around the
optimum than that of Evolve. Under identical environmental conditions, HELIX achieves a signifi-
cantly more exhaustive exploration of the highly rewarded vicinity of the optimal solution.

2. Intuitive Comparison (Quadratic Reward). To provide a concrete comparison, we analyze
the behavior under a local quadratic approximation of the reward function, r(v) = ropt − k

2∥v∥
2

(centered at vopt = 0). Deriving the exact Gaussian forms of the stationary distributions allows for
a direct comparison of their variances, as summarized in Table 4.

Table 4: Comparison of Stationary Distributions under Quadratic Reward

Algorithm Gaussian Form p∗(v) Variance Σ2 Scaling vs. σ

HELIX ∝ exp

(
−ηk

σ2
∥v∥2

)
Σ2

Helix =
σ2

2ηk
∝ σ2 (Sharper)

Evolve ∝ exp

(
−
√
αk

2σ
∥v∥2

)
Σ2

Evo =
σ√
αk

∝ σ (Broader)

The ratio of their variances is given by:

Σ2
Helix

Σ2
Evo

=
σ2/2ηk

σ/
√
αk

=

√
α

2η
√
k
· σ ∝ σ. (41)

As σ → 0, this ratio tends to zero. This rigorously confirms that HELIX’s mechanism—utilizing the
gradient for directional movement—provides a superior capacity for stabilizing and concentrating
the population compared to Evolve’s reliance on scalar selection alone.

3. Potential for Further Reinforcement. It is worth noting that the current analysis assumes a
uniform selection weight for HELIX (α = 0). If we were to incorporate a non-trivial selection
weight w(v) = exp(αr(v)) into the HELIX framework, the final stationary distribution would
theoretically become even more concentrated. Although a quantitative closed-form solution for
this combined Drift-Diffusion-Selection process is mathematically intractable, qualitative analysis
suggests that this would further reinforce HELIX’s focus and exploitation capabilities within high-
reward regions.

F.3.2 PROOF OF THEOREM F.4

Part I: HELIX (Drift-Diffusion). The dynamics follow the Langevin Equation dvt = η∇r(vt)dt+
σdWt. The probability density p(v, t) evolves via the Fokker-Planck equation:

∂p

∂t
= −∇ · (p · η∇r(v)) + σ2

2
∇2p. (42)

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

At steady state (∂p/∂t = 0), the probability flux J vanishes:

J = ηp∗∇r(v)− σ2

2
∇p∗ = 0 =⇒ ∇p∗

p∗
=

2η

σ2
∇r(v). (43)

Integrating both sides yields ln p∗(v) = 2η
σ2 r(v) + C, confirming the Boltzmann distribution.

Part II: Evolve (Selection-Diffusion). The discrete selection-mutation process converges to the
Replicator-Mutator Equation in continuous time:

∂p

∂t
=

σ2

2
∇2p+ α (r(v)− r̄) p. (44)

The stationary distribution p∗ satisfies the Schrödinger-like equation (where E = αr̄):

σ2

2
∇2p∗ + αr(v)p∗ = Ep∗. (45)

Using the WKB Ansatz p∗(v) = C(v) exp(−S(v)/σ), and substituting into the equation, the lead-
ing order terms (σ → 0) yield the Hamilton-Jacobi equation:

1

2
∥∇S∥2 + αr(v) ≈ E. (46)

Setting the ground state condition at vopt gives E = αr(vopt). Solving for∇S:

∥∇S(v)∥ =
√
2α(r(vopt)− r(v)). (47)

Integrating along the path from vopt gives the action S(v), yielding the final asymptotic form for
p∗Evo. □

G FORMALIZED ALGORITHM

In this appendix, we provide the detailed procedural description of the HELIX framework. Al-
gorithm 1 summarizes the full workflow, including sampling, prompt construction, model rollout,
reinforcement learning updates, diversity estimation, and evolutionary population selection. These
details complement the main text and offer a complete specification of the method.

H EXAMPLE OF MODEL OUTPUT

We present examples of the best solutions found by our framework across different task categories.
These visualizations highlight how HELIX generates high-quality and interpretable outputs in di-
verse scientific domains.

H.1 PHYSICS SIMULATION TASKS

Acoustic demultiplexer. Figure 14 displays the acoustic pressure field of our best-performing
demultiplexer, which achieves a reward of 14.260.

Iron core torque optimization. The best iron core design is shown in Figure 15, where the mag-
netic flux density norm reaches a reward of 11.045.

Beam design. Figure 16 illustrates the von Mises stress pattern of the best beam structure discov-
ered, which achieves a reward of 17.298.

Meta-material optimization. The temperature distributions of the optimized meta-material under
two loading conditions are presented in Figure 17, yielding a reward of 1.278.

Inductor design. The optimized inductor is visualized in Figure 18, with a magnetic flux density
norm field corresponding to a reward of 9.609.

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Algorithm 1 HELIX Framework

Require: Problem description p; initial solution(s) s0; batch size B; GRPO group size G; number of
samples in prompt n; transition function T ; reward function R; feedback function F ; embedding
model E.

1: Initialize dataset D0 = {s0}.
2: Initialize population P0 = D0.
3: Initialize policy model parameters θ.

4: for iteration t = 0, 1, 2, . . . do
5: Sample B solutions from Pt, obtaining {st,i}Bi=1. ▷ Prompt Construction
6: for i = 1 to B do
7: Retrieve n ancestral states of st,i: {f (k)(st,i)}n−1

k=1 .
8: Construct prompt:

qi = ConstructPrompt({p} ∪ {st,i, R(st,i), F (st,i)} ∪
{f (k)(st,i), R(f (k)(st,i)), F (f (k)(st,i))}n−1

k=1).

9: end for
10: for i = 1 to B do ▷ Model Rollout and Evaluation
11: for j = 1 to G do
12: Generate action ai,j ∼ πθ(· | qi).
13: Obtain new solution st+1,i,j = T (st,i, ai,j).
14: Evaluate reward rt+1,i,j = R(st+1,i,j).
15: Record feedback ft+1,i,j = F (st+1,i,j).
16: end for
17: end for
18: for i = 1 to B do ▷ Reinforcement Learning Update
19: for j = 1 to G do
20: Compute normalized advantage:

r̃t+1,i,j =
rt+1,i,j −meanj{rt+1,i,j}

stdj{rt+1,i,j}
.

21: end for
22: end for
23: Update policy: θ ← θ − γ · ∇θLGRPO.

24: for i = 1 to B do ▷ Diversity Estimation
25: for j = 1 to G do
26: Compute embedding ht+1,i,j = E(st+1,i,j).
27: Compute diversity score Div(st+1,i,j) (as in Eq. (6)).
28: end for
29: end for
30: Update dataset: Dt+1 ← Dt ∪ {st+1,i,j}. ▷ Population Update
31: Use NSGA-II to select next population:

Pt+1 = SelectTopNSGA-II

 ⋃
0≤s≤t+1

Ds

 .

32: end for

H.2 CIRCLE PACKING TASKS

Packing in square. As shown in Figure 19, our framework successfully packs 26 circles inside a
square, achieving a sum of radii of 2.6359830849 and surpassing the previous world record.

62



3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Figure 14: Acoustic pressure distribution in the optimal acoustic demultiplexer design obtained by
our framework, with reward 14.260.

Packing in disk. Figure 20 demonstrates the packing of 26 circles inside a disk, reaching a total
radius sum of 4.664465.

H.3 MACHINE LEARNING TASKS

We further demonstrate how our framework can be applied to classical machine learning problems,
using both classification and regression benchmarks. The first example focuses on the Adult dataset,
where we design a rich set of engineered features that combine polynomial transformations, ratios,
interaction terms, and domain-specific indicators. This structured feature space, coupled with a
LightGBM classifier and hyperparameter tuning, enables our model to achieve a strong performance
of 82.07 in macro F1 score (Figure 21).

For regression, we turn to the Boston Housing dataset. Here, we integrate robust preprocessing with
advanced feature transformations. Missing values in numeric features are imputed with KNN and
scaled robustly, while categorical variables undergo smoothed target encoding. Additional interac-
tion and polynomial features are then injected through a transformer pipeline. With these enhance-
ments, our model coupled with an XGBoost regressor attains a reward of 1.742, corresponding to
an RMSE of 1.813 (Figure 22).

I LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid writing and polishing the manuscript. All
research ideas, experiments, and analyses were conceived and conducted by the authors, who take
full responsibility for the content.

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Figure 15: Magnetic flux density norm field for the optimized iron core configuration identified by
our framework, achieving reward 11.045.

64



3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

Figure 16: Von Mises stress distribution of the optimized beam design obtained by our framework,
with reward 17.298.

(a) Load 1 (b) Load 2

Figure 17: Optimized temperature fields of the meta-material designed by our framework under two
different load conditions, achieving reward 1.278.

65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Figure 18: Magnetic flux density norm field of the best inductor configuration identified by our
framework, achieving reward 9.609.

66



3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Figure 19: Arrangement of 26 circles within a square obtained by our framework, achieving a
record-breaking sum of radii of 2.635983.

67



3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Figure 20: Optimized circle packing of 26 disks within a unit disk by our model, yielding a sum of
radii of 4.664465.

68



3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

1 def engineer_features(X):
2 features = X.copy()
3 num_cols = [col for col in X.columns if X[col].dtype != 'object' and

col not in ['fnlwgt', 'education-num']]
4

5 # Core interaction features
6 features['age_hpw_product'] = features['age'] * features['hours-per-

week']
7 features['capital_total'] = features['capital-gain'] + features['

capital-loss']
8 features['log_fnlwgt'] = np.log(features['fnlwgt'] + 1)
9 # Enhanced polynomial features

10 for col in ['age', 'hours-per-week', 'capital-gain', 'capital-loss']:
11 features[f'{col}_sq'] = features[col] ** 2
12 features[f'{col}_cb'] = features[col] ** 3
13 # Age-based features with log transformation
14 features['log_age'] = np.log(features['age'] + 1)
15 # Capital features with log transformations
16 features['capital_gain'] = np.log(features['capital-gain'] + 1)
17 features['capital_loss'] = np.log(features['capital-loss'] + 1)
18 # Binned features for age and hours per week
19 features['age_group'] = pd.cut(features['age'], bins=5, labels=False)
20 features['hour_group'] = pd.cut(features['hours-per-week'], bins=5,

labels=False)
21 # Economic status features combining multiple variables
22 features['economic_status'] = (features['age'] / features['hours-per-

week']) * (features['capital_total'])
23 # Additional indicators for capital gains and losses
24 features['has_capgain'] = (features['capital-gain'] > 0).astype(int)
25 features['has_caploss'] = (features['capital-loss'] > 0).astype(int)
26 # Professional education indicator
27 features['isProfessional'] = ((features['education'] == 'Prof-

specialty') | (features['education'] == 'Exec-managerial') | (
features['education'] == 'Assoc-acdm')).astype(int)

28 # Managerial education indicator
29 features['isManagerial'] = ((features['education'] == 'Exec-

managerial') | (features['education'] == 'Assoc-voc')).astype(int)
30 # Interaction between numerical features
31 interaction_cols = ['age', 'hours-per-week', 'capital_gain', '

capital_loss']
32 for i in range(len(interaction_cols)):
33 for j in range(i+1, len(interaction_cols)):
34 col1 = interaction_cols[i]
35 col2 = interaction_cols[j]
36 features[f'{col1}_x_{col2}'] = features[col1] * features[col2

]
37 # Ratio and difference features
38 features['capital_gain_ratio'] = features['capital_gain'] / features[

'capital_loss'].replace(0, 1)
39 features['capital_diff'] = features['capital_gain'] - features['

capital_loss']
40

41 return features

Figure 21: Python code of feature engineering for solving classification task on Adult dataset. To-
gether with a LGBMClassifier and parameter search, our model achieved 82.07 marco f1 score.

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

1 # Engineer more comprehensive interaction and polynomial features
2 def create_engineered_features(df):
3 # Interaction features
4 df['RM_LSTAT'] = df['RM'] * df['LSTAT']
5 df['NOX_DIS'] = df['NOX'] * df['DIS']
6 df['CRIM_DIS'] = df['CRIM'] * df['DIS']
7 df['INDUS_NOX'] = df['INDUS'] * df['NOX']
8 df['CHAS_RM'] = df['CHAS'] * df['RM']
9 df['AGE_DIS'] = df['AGE'] * df['DIS']

10 df['RAD_NOX'] = df['RAD'] * df['NOX']
11 df['PTRATIO_RM'] = df['PTRATIO'] * df['RM']
12 df['INDUS_CHAS'] = df['INDUS'] * df['CHAS']
13 df['RAD_DIS'] = df['RAD'] * df['DIS']
14 df['RAD_CHAS'] = df['RAD'] * df['CHAS'] # New interaction
15 df['CRIM_CHAS'] = df['CRIM'] * df['CHAS'] # Enhanced interaction
16 # Polynomial features
17 df['NOX_SQ'] = df['NOX'] ** 2
18 df['RM_SQ'] = df['RM'] ** 2
19 df['LSTAT_SQ'] = df['LSTAT'] ** 2
20 df['NOX_CUBED'] = df['NOX'] ** 3
21 df['RM_CUBED'] = df['RM'] ** 3
22 df['LSTAT_CUBED'] = df['LSTAT'] ** 3
23 df['NOX_FOUR'] = df['NOX'] ** 4 # Higher degree polynomial
24 return df
25

26 engineered_features_transformer = Pipeline([
27 ('engineer', FunctionTransformer(create_engineered_features))
28 ])
29

30 # Preprocess numeric features
31 numeric_transformer = Pipeline([
32 ('imputer', KNNImputer(n_neighbors=3, weights='uniform')),
33 ('scaler', RobustScaler())
34 ])
35

36 # Preprocess categorical features
37 categorical_transformer = Pipeline([
38 ('imputer', SimpleImputer(strategy='mode')),
39 ('target_encode', FunctionTransformer(lambda df: df.astype(object).

where(df.notna(), df.mode().iloc[0]))
40 )
41 ])
42

43 # Combine transformations
44 preprocessor = ColumnTransformer(
45 transformers=[
46 ('eng', engineered_features_transformer, numeric_features),
47 ('num', numeric_transformer, numeric_features),
48 ('cat', categorical_transformer, categorical_features)
49 ],
50 remainder='drop'
51 )

Figure 22: Key pre-processing steps the model implemented on Boston Housing dataset. Together
with a XGBRegressor, the model achieved reward of 1.758, which means 1.747 in RMSE.

70


	Introduction
	Related Work
	Proposed Method
	Overview
	Policy Optimization Aligned with Evolutionary Search
	Evolutionary Mechanism for Balancing Quality and Diversity

	Experiment
	Experiment Setting
	Main Results
	Ablation Study
	Effectiveness of Framework Components
	Scaling Experiments


	Conclusion
	Training and Evaluation Details
	Definition and Evaluation of Problems
	Machine Learning
	Adult income
	Bank marketing
	Boston housing
	blueTransparent Conductors

	Physics Simulation
	Acoustic Demultiplexer
	Magnetic Torque
	Beam Bending
	Periodic Heat
	Inductor

	Circle Packing
	Function Minimization
	Eggholder Function
	Mishra's Bird Function
	Keanes Bump Function

	Symbolic Regression

	Description of Task specific Baselines
	blueExample of prompts used in each experiment
	Machine Learning
	Physics Simulation
	Circle Packing
	Function Minimization
	Symbolic Regression

	blueMethodological Challenges and Comparative Analysis of RL-EA Integration
	Technical Challenges and Solutions
	Limitations of Naive Integration: A Case Study
	The HELIX Advantage

	blueTheoretical Analysis of the Framework
	Mathematical Setup and Preliminaries
	Theoretical Analysis of GRPO
	Setup and Assumptions
	Proof of Theorem F.3

	Theoretical Analysis of Evolve and HELIX
	Setup: Unified Drift-Diffusion and Selection Framework
	Proof of Theorem F.4


	blueFormalized Algorithm
	Example of model output
	Physics simulation tasks
	Circle packing tasks
	Machine learning tasks

	LLM usage statement

