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ABSTRACT

Large language models (LLMs) with reasoning abilities have demonstrated grow-
ing promise for tackling complex scientific problems. Yet such tasks are inherently
domain-specific, unbounded and open-ended, demanding exploration across vast
and flexible solution spaces. Existing approaches, whether purely learning-based
or reliant on carefully designed workflows, often suffer from limited exploration
efficiency and poor generalization. To overcome these challenges, we present HE-
LIX—a Hierarchical Evolutionary reinforcement Learning framework with In-
context eXperiences. HELIX introduces two key novelties: (i) a diverse yet high-
quality pool of candidate solutions that broadens exploration through in-context
learning, and (ii) reinforcement learning for iterative policy refinement that pro-
gressively elevates solution quality. This synergy enables the discovery of more
advanced solutions. On the circle packing task, HELIX achieves a new state-of-
the-art with a sum of radii of 2.635983 using only a 14B model. Across standard
machine learning benchmarks, HELIX further surpasses GPT-40 with a carefully
engineered pipeline, delivering an average F1 improvement of 5.95 points on the
Adult and Bank Marketing datasets and a 40.5% reduction in RMSE on Boston
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Figure 1: The figure demonstrates how our framework progressively discovers new insights and
refines solutions over iterations. (a): Reward curve for the housing dataset optimization, where
improvements are achieved through iterative adoption of better models, parameter tuning, and fea-
ture engineering, with the final reward of 1.758 corresponding to an RMSE of 1.747. (b): Reward
curves for the beam and inductor design tasks, where the algorithm explores novel geometries and
combines favorable structural features to enhance performance.



Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Solving complex scientific problems with large language models (LLMs) is an important and in-
creasingly active research direction (Forootani, 2025)). By leveraging and enhancing their reasoning
capabilities, LLMs have demonstrated promising results in tackling challenging scientific tasks,
such as symbolic regression (Shojaee et al., 2024}, molecular generation (Liu et al.||2024), and diffi-
cult mathematical optimization problems (Ahmed & Choudhury, [2024). Addressing such problems
holds the potential to advance the boundaries of human knowledge and reshape scientific discovery.

While LLMs have shown promising applications, complex scientific problems remain particularly
challenging due to three intrinsic characteristics. First, they are domain-specific, with unique envi-
ronments and problem-specific constraints that differ across various tasks. Second, they are open-
ended, requiring exploration of vast and flexible solution spaces. Third, they are unbounded, often
with no known or guaranteed global optimum.

To address these challenges, we argue that a powerful LLM for solving complex scientific prob-
lems must possess three corresponding key abilities: (1) learning from experience, i.c., it should
enable task-specific policy adaptation by incorporating feedback from previous trials, addressing
the domain-specific nature of each problem. (2) Balancing quality and diversity, i.c., it should
maintain a diverse population to thoroughly explore the vast and flexible solution spaces inherent in
open-ended tasks. (3) Exploration based on the shoulder of giants, i.e., it should iteratively build
upon existing high-quality solutions to extend the known limits of unbounded problems.

However, recent works largely lack the capabilities outlined above, limiting their effectiveness on
complex scientific problems. Existing approaches fall into two categories. Post-training methods
(e.g., SFT, RLVR) fine-tune LLMs on domain-specific datasets, as in AlphaCode (Li et al.}[2022) and
Deepseek-R1 (Ren et al., 2025)), achieving strong results in code generation and mathematical rea-
soning. Yet such methods often suffer from entropy collapse (Cui et al.| [2025)) and, as shown in|Yue
et al.| (2025), rarely move beyond the base model’s capabilities. This makes it difficult to discover
fundamentally new solutions, especially when sparse rewards further limit exploration. Workflow-
driven approaches embed LLMs in predefined pipelines to improve task-specific performance. Ex-
amples include integrating genetic algorithms with LLMs for enzyme discovery (Nana Teukam et al.,
2025)), establishing LLM-driven evolutionary loops such as LLaMEA (van Stein & Back, [2024)), or
applying evolutionary strategies to prompts (Agrawal et al.| [2025)). While effective on narrow tasks,
these systems are highly sensitive to workflow design and rely on static pretrained knowledge, mak-
ing it hard to reuse past discoveries to guide iterative search. Both categories thus struggle to gen-
eralize in open-ended scientific domains where efficient exploration and continual refinement are
essential.

To this end, we propose HELIX—a Hierarchical Evolutionary reinforcement Learning framework
with In-context eXperiences. First, to learn from experience, HELIX updates the LLM policy us-
ing reward signals by reinforcement learning to progressively improve solution quality. Meanwhile
candidate solutions explored by the model forms a population for evolving algorithms. Secondly,
to balance the quality and diversity, we propose to rank and select samples using both diversity and
reward, inspired by a classic multi-objective evolutionary algorithm named NSGA-II(Deb et al.|
2002). Specifically, to better measure the novelty of a solution, we compute diversity using a pre-
trained language embedding model and estimate the diversity by KNN. Finally, we enable the model
to stand on the shoulder of giants by adding a prompt constructed by the best solutions in the popu-
lation to guide the model to generate new solutions. By using the in-context learning paradigm, we
seamlessly unify and integrate evolutionary learning with reinforcement learning to explore the vast
solution space in complex scientific problems.

In experiments, we evaluated HELIX on 20 tasks across five diverse categories. Compared with
strong task-specific baselines and advanced proprietary models such as GPT-40, HELIX achieves
superior performance on 17 tasks, demonstrating its ability to iteratively refine solutions and update
its policy towards better results. Further analysis via ablation studies confirms that each component
of HELIX contributes critically to performance. Notably, success on these unbounded and open-
ended tasks suggests that iterative, diversity-aware exploration can provide useful insights for other
scientific and engineering problems.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Reinforcement learning of LLMs. Training LLMs or LLM-based agents with reinforcement
learning (RL) has recently attracted significant attention. This includes reinforcement learning
from human feedback (RLHF) to align models with human preferences, as well as RL with veri-
fiable rewards (RLVR) to enhance reasoning, mathematical problem-solving, and coding capabil-
ities. Beyond improving reasoning, RLVR-style training can also elicit new capabilities such as
tool use (Feng et al., 2025) and information retrieval (Jin et al., 2025). A representative method is
GRPO (Shao et al.| [2024), which normalizes rewards within groups of samples. Variants such as
DAPO (Yu et al.,[2025)) and Dr.GRPO (Liu et al.|, [2025) further improve GRPO through refined data
sampling strategies and advantage estimation techniques. While RL can improve generalization in
specific domains, the training process often suffers from decreasing entropy and diversity over time,
hindering effective exploration. Some approaches, such as KL-Cov (Cui et al.| [2025), attempt to
address this limitation by applying KL penalty solely to tokens with high covariance to preserve
entropy. However, for complex scientific problems, these memory-less RL methods—where the
sampling context for the same problem remains fixed—struggle to leverage solutions that have al-
ready been discovered, making it difficult to build upon prior explorations.

Evolutionary algorithms. Evolutionary algorithms are a classic approach for tackling complex
optimization problems. They use “gene” to represent a solution for the problem and use random
mutation to explore the whole solution space. Recently, AlphaEvolve (Novikov et al.| [2025)) treats
code as the “gene” and applies LLM-driven mutations, successfully integrating LLM agents with
evolutionary algorithms—opening the door to solving complex scientific problems. Since then,
many works have adopted similar agent-based workflows to address scientific tasks such as CUDA
code optimization (Lange et al., [2025), drug discovery (Gao et al., |2025)), and complex scientific
software usage (Fan et al., [2025; [Pham et al.| 2025). However, such methods typically require
highly problem-specific workflow logic and prompt design, which greatly limit their effectiveness
in solving more general and complex problems.

3 PROPOSED METHOD

3.1 OVERVIEW

To tackle the challenges of applying large language models (LLMs) to complex scientific discovery
tasks, we propose HELIX, a hybrid framework that integrates reinforcement learning with evolu-
tionary search. The goal is to enable LLMs to efficiently explore large and flexible solution spaces
while maintaining diversity and exploiting previously discovered high-quality solutions. The frame-
work is composed of three complementary modules: (1) A reinforcement learning framework
that updates the policy parameters based on verifiable reward, allowing the model to learn from
experience and progressively improve its reasoning capability. (2) A multi-objective evolution-
ary mechanism that balancing solution quality and diversity, ensuring that the population retains
both high-performing and diverse candidates for further expansion. (3) An in-context learning
mechanism that incorporates multiple past trials into the prompt, enabling the model to build upon
previously discovered solutions and expand its exploration on the shoulder of giants.

We consider the task as an optimization problem that has a solution space of code. Let s € S denote a
candidate solution, represented as code written in a domain-specific language (e.g., Python, YAML,
or other DSLs). We define an objective reward function R(-) which only depends on the current
solution (state). The optimization objective is to find a valid s € S to maximize the reward:

max R(s). (1

To explore and search for new solutions, we use an LLM policy 7y that iteratively mutates(improves)
current solutions. Given timestep ¢, we sample a solution s; from P, the set of candidate solutions
at t-th step. The LLM will output an action a; € A, which is an edit or modification applied to s,
to obtain a new solution s;11 = T'(s¢, a), where T is the transition function. Our goal is to improve
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Figure 2: Ilustration of HELIX framework. The workflow begins with a dataset containing task
descriptions and a pool of initial solutions, which are taken by LLM as inputs. The LLM will modify
and update the original solution and generate a new one, represented as descendants in lineage tree.
After the evaluation pipeline, samples will be selected by NSGA-II algorithm to construct promising
yet diverse candidate solutions for population evolution. The resulting reward-labeled solutions will
also be used to update policy parameters via reinforcement learning.

the policy’s ability to find better solutions. The objective is defined as follows,
meax EstNPt, ar~mo(+|q,st) [R(Sta at)] 5 (2)

where ¢ is the prompt constructed in equation |5|and R(s¢, a;) = R(sy+1) is the reward of the new
solution with a slight abuse of notations. We leverage GRPO (Shao et al.| [2024), a reinforcement
learning algorithm, to update LLM policy 7y. By maximize the reward in equation 2} the LLM will
learn to enhance current solution s; towards higher reward, which will finally leads to improvement
in equation[I]

To address the exploration—exploitation trade-off and prevent entropy collapse in RL, we incorporate
evolutionary algorithm in selection of candidate solutions. Suppose D; = {s;} is the set of all
solutions generated in the ¢-th iteration and Dy = {so} is the set of initial solution, the candidate
solution for ¢-th step can be constructed as

t

P = SelectTopyggan( U D), @)
s=0

where NSGA-II (Deb et al., 2002) is a sample selection strategy widely adopt in evolutionary al-
gorithms, which ensures retention of high-reward and diverse candidates. This formulation allows
the model to iteratively improve its policy while exploiting previously found high-quality solutions
as starting points for further exploration. Figure 2| provides a brief summary of our method and the
formalized algorithm can be found in Appendix%

3.2 PoLICY OPTIMIZATION ALIGNED WITH EVOLUTIONARY SEARCH

As the evolutionary process unfolds, updating the model parameters becomes crucial: it enables
the policy to learn from both successful and failed trials, generate higher-quality solutions, and
dynamically adapt to the shifting input distribution induced by the evolutionary search. Reinforce-
ment learning is particularly suitable in this scientific setting, since open-ended scientific tasks lack
standard answers and typically provide only sparse reward feedback. Motivated by the design of
GRPO (Shao et al., |[2024), we develop a reinforcement learning—based policy update mechanism
tailored to our framework. GRPO has proven effective in enhancing LLM reasoning on mathemat-
ical and programming tasks (Guo et al.l [2025), and its multi-sample generation naturally provides
diverse reasoning-driven outputs that enrich the evolutionary dataset, making it a natural inspiration
for our method.
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Formally, given a prompt ¢, the model will generate G rollout sequences {a;}1<;j<¢ with policy
To,,- The GRPO objective is then defined as:

jGRPO(G) = EStNPt, {aj}JG:1Nﬂ-enld(4|q’st)
la,|

G

1 1 N .

a Z Z (min (rj,k(e)Aij Clip(Tj}k(e), 1-— €, 1 + €)Aj)k) — /BDKL(F0||7Tref))‘|
7j=1 k=1

la; &2
4)

mo(ajklg,aj <) - _ : i A R(se,az)—mean;{R(ss,a;)}
oy (s[4 <) is the token-level policy ratio, A; = S TRGa)T

the token-level advantage, ¢ is the clipping parameter, and S controls the KL divergence penalty
against a reference policy 7ryet.

where 7 1 (0) = is

In order to fully leverage the in-context learning ability of LLMs, enabling the model to learn from
feedback of previous trials and propose advanced solutions, we construct the prompt ¢ in the fol-
lowing manner:

q = ConstructPrompt({p}U{s;, R(s:), F(s:) YU{f® (s1), R(f* (50)), F(f®(50)) Y1<ran), (5)

where p is the problem description, f (k)(st) is the k-th ancestor of s; in lineage tree (a historical
trace of the solution s,’s iterative refinement), R(-) represents the reward function and F'(-) denotes
the auxiliary feedback (e.g., textual or structured evaluations) provided by the evaluator to guide
future refinements. By constructing prompts using memory of previous feedback and rewards along
a lineage tree, it ensures the model effectively explores across challenging solution spaces.

3.3 EVOLUTIONARY MECHANISM FOR BALANCING QUALITY AND DIVERSITY

In unbounded scientific research tasks, it is crucial to explore multiple promising ideas or directions.
Thus, the optimization process must balance quality, i.e., high-reward solutions that serve as strong
starting points for refinement, with diversity, which sustains broad exploration across the solution
space. We design the evolutionary search algorithm to be a multi-objective optimization that natu-
rally achieves a trade-off by maintaining a population that simultaneously improves in reward and
preserves diverse candidates. Specifically, we innovatively adopt NSGA-II |Deb et al.| (2002), which
is a powerful multi-objective optimization algorithm, to filter high quality and diverse samples on the
Pareto front of reward and diversity for subsequent expansion. To further encourage more diverse
exploration and enable more accurate diversity computation, we propose to computate the diversity
score based on its semantic embedding similarity using a pretrained language embedding model.

Diversity measurement. To quantify the diversity of candidate solutions, we first normalize each
solution into a canonical code format and encode it into an embedding vector using a pretrained
embedding model. Let D = | J,,, D, represents the union of all solutions, F(s) € R¢ denote the
embedding of solution s € D. For any solution s;, its diversity score is computed by measuring the
average similarity to its k£ nearest neighbors in the embedding space:

) 1 E(s;) - E(sj)
Div(s) =1 L 3 EG-Elsy) ©®
2 TEGITEG

where N (7) denotes the indices of the k nearest neighbors of s; in D, measured by cosine similarity.
A higher Div(s;) indicates that s; is more distinct from other solutions, thereby contributing to
population diversity.

NSGA-II based selection. Given both reward score R(s) and diversity score Div(s), each can-
didate solution can be mapped to a two-dimensional objective space. We then adopt the NSGA-
IT (Deb et al., 2002) algorithm to select high-quality and diverse samples. NSGA-II first applies a
nondominated sorting procedure to partition solutions into multiple fronts based on Pareto domi-
nance, where a solution s, dominates s, if R(s,) > R(sp) and Div(s,) > Div(s,) with at least
one strict inequality. To further ensure diversity preservation within each front, NSGA-II computes
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a crowding-distance measure and selects representative samples that are well spread in the objective
space.

By combining nondominated sorting with diversity preservation, the resulting population P retains
candidates that are both high-reward and diverse. This mechanism allows the model to continuously
exploit promising solutions while sustaining exploration across multiple distinct solution trajecto-
ries.

4 EXPERIMENT

In this section, we first introduce the experimental setup, including the tasks we selected for bench-
marking the model’s ability to solve open-ended scientific problems. Then, we present extensive
experiments demonstrating that HELIX effectively enhances model capability, integrates historical
experience, and balances reward with diversity, leading to significant improvements over existing
baselines in solving unbounded and open-ended scientific challenges. Finally, the ablation studies
reveal how different components of the framework work together in a complementary manner.

4.1 EXPERIMENT SETTING

Tasks. To comprehensively evaluate the model’s capacity for complex scientific reasoning, we
design experiments on five representative categories of tasks. These tasks are particularly suited for
our study because they are unbounded, lacking a guaranteed global optimum, open-ended, requiring
exploration over vast and flexible solution spaces and domain-specific, containing unique constraints
and complex background. Success in these tasks not only demonstrates the model’s ability to search
beyond local optima, but also provides insights that can inspire solutions in broader scientific and
engineering domains.

1. Machine Learning Tasks. We selected three representative datasets: Adult in-
come (Becker & Kohavi, [1996), Bank marketing (Moro et al. |2014) and Boston hous-
ing (Harrison Jr & Rubinfeld,|1978)) dataset to evaluate the model’s ability to solve machine
learning tasks. These tasks reflects the open-ended challenge of combining ML algorithms
for novel applications, with potential implications for autonomous scientific workflows.

2. Physics Simulation Tasks. These tasks combine geometric structures design and optimiza-
tion in multi-physics environments in distinct fields. The design space of these problems
has a very high degree of freedom with few global optimal solution.

3. Circle Packing Problems. The objective of these tasks is to maximize the sum of radii of
circles packed within given shapes. It allows multiple feasible arrangements and there is
no proved global optimum solution currently.

4. Function Minimization. It requires LLM to write a code to find the global minimum point
of given functions. Agents can search freely for new mathematical optimization methods
in code space.

5. Symbolic Regression. A benchmark (Shojaee et al., |[2025) evaluates the ability of LLMs
to hypothesize underlying expressions for noisy data. The model needs to search among a
vast possible expression set and utilize domain specific knowledge to find solution.

Models. We selected the DeepSeek-R1-Distill-Qwen model family for our experiment due to its
strong reasoning capabilities and manageable size, which is critical for performing complex sci-
entific tasks under computational constraints. Among the model family, the 14B version offers an
optimal balance between efficiency and performance, and was selected as the model in the main
results. For physics simulation tasks that require strong geometric reasoning ability and physical
prior knowledge, we utilize the 32B version of the model.

Baselines. We compare our approach against three key baselines:

1. Direct Prompt (Test-Time Scaling): Queries the model directly and selects the best out-
come from multiple samples to establish a performance upper bound of base model.
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Table 1: Results of main experiments. All values correspond to the best outcome obtained across all
attempts. We use 1 to indicate that larger values correspond to better performance, and | represents
the opposite. We highlighted the best results in each task in bold. "NA” denotes non-convergence
or unsuitability for given case.

Task Specific Methods ‘ Direct Prompt ‘ Open Evolve ‘ Ours
Tasks LightGBM RRL Qwen GPT-40 Qwen GPT-4o
Adult Income 1 80.36 80.72 73.72 76.91 76.90 72.27 82.07
Machine Learning Bank Marketing 1 75.28 76.32 0.00 76.91 75.66 78.54 80.65
Boston Housing | 3.258 3.966 3.149 3.031 2.937 2.937 1.747
Transparent Conductors | 0.060 NA 0.060 0.059 0.059 0.056 0.049
Tasks Parameter Scan Topology Opt Qwen GPT-40 Qwen GPT-40 -
Inductor 1 6.111 6.248 2.584 0.001 1.637 1.652 9.609
L . Beam Bending 1 4771 NA 5.407 4.005 10.793 6.352 17.298
Physics Simulation .
Magnetic Torque 1 10.273 NA 0.323 1.201 3.488 1.607 11.045
Periodic Heat 1 1.206 NA 1.258 1.255 1.233 1.266 1.278
Demultiplexer 18.322 23.555 3.364 4.532 12.341 8.645 14.260
Tasks SLSQP Genetic Algo Qwen  GPT-40  Qwen  GPT-4o -
Circle Packing Packing in Unit Square 1 2.519 2.345 1.673 1.900 1.586 2.611 2.636
Packing in Unit Disk 1 4.522 3.896 4.608 3.290 4.604 3.984 4.664
Tasks SLSQP Trust-constr Qwen GPT-40 Qwen GPT-4o -
Eggholder 1 0.705 0.688 1.000 0.959 1.000 1.000 1.000
Function Minimization Mishras Bird 1 0.814 0.764 1.000 0.996 1.000 1.000 1.000
Keanes Bump 10d T 0.714 0.692 0.886 0.987 1.000 0.997 1.000
Keanes Bump 20d 1 0.603 NA 0.794 0.657 0.596 0.983 1.000
Keanes Bump 30d T 0.594 NA 0.923 0.625 0.677 0.668 0.994
Tasks LLM-SR LaSR Qwen GPT-40 Qwen GPT-4o -
Chemistry | 4.12e-6 9.11e-5 2.66e-5 2.44e-6 1.5%-5 9.52e-6 7.32e-6
Symbolic Regression Biology | 3.06e-6 1.53e-4 1.26e-4  7.52e-5 1.64e-4 5.3le-5 2.98e-8
Physics | 7.62e-5 9.94e-4 2.71e-4 1.13e-4 2.76e-5 1.22e-4 2.76e-5
Material Science | 3.21e9 9.23e-6 7.14e-6  1.85e-6 6.99¢e-7 1.94e-6 4.46e-6

2. Open Evolve (Sharma, [2025): An open-source implementation of the AlphaE-
volve (Novikov et al.l2025) framework, which uses an evolutionary algorithm with multi-
ple LLM roles (e.g., proposing code mutations, evaluating fitness) to iteratively generate,
test, and evolve code or solutions across generations.

3. Task-Specific Methods: Represents results from established algorithms designed for each
specific problem. Details of these methods can be found in Appendix [C]

4.2 MAIN RESULTS

Table |1| presents the results of our methods compared to various baselines. The best results in
each task are highlighted in bold. Since we selected multiple heterogeneous tasks, their evaluation
metrics are not the same. The detailed definitions and specific evaluation criteria are deferred to

Appendix

Across the 20 benchmark tasks, our method achieves the best performance on 17 tasks, surpassing
all competing baselines. Compared under the same model settings, our framework consistently out-
performs Direct Prompting across all benchmarks. Against OpenEvolve—the open-source version
of AlphaEvolve—it achieves superior results on 19 tasks. These results clearly highlight the strength
of our framework in solving open-ended scientific problems among various domains compared to
other approaches.

Notably, we observe that the base Qwen models perform relatively poorly on certain tasks such as
Bank Marketing and Magnetic Torque, exhibiting low rewards even in the best of 64 direct trials.
However, our framework significantly improves performance in these cases by leveraging parameter
updates and in-context learning to effectively incorporate feedback from the exploration process.
This demonstrates that our approach can partially overcome the limitations of weaker base models
by iteratively evolving toward superior solutions.
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Figure 3: Convergence analysis on the Inductor and Adult tasks. The curves show the progressive
improvement of average reward and validity during training, demonstrating that our framework ef-
fectively leverages reinforcement learning feedback and evolutionary dynamics to produce increas-
ingly valid and high-quality solutions.

To further assess the competitiveness of our approach against state-of-the-art scientific discovery
systems, we compared it with GPT-40, one of the most advanced closed-source models. Remarkably,
our method outperforms GPT-40 on 18 tasks, regardless of whether GPT-40 is equipped with multi-
role collaborative reasoning frameworks. These results highlight that our framework can fully ex-
ploit the prior knowledge of smaller models through reinforcement learning, enabling cost-efficient
and effective solutions to complex scientific problems.

In comparison with task-specific methods, which are typically crafted by human experts for par-
ticular domains, our framework still achieves superior performance on 17 tasks. Specifically, in
the circle packing task, we establish a new world record 2.635983 using only a 14B model. For
the Transparent Conductors dataset, derived from a human-participation competition (Ziletti et al.,
2017), our framework attains the second-highest score on the participants’ leaderboard. This high-
lights its ability to iteratively evolve within open-ended solution spaces and to autonomously uncover
novel solutions that go beyond manually designed approaches.

To provide further evidence that our framework effectively integrates reinforcement learning and
evolutionary algorithms, we analyze its convergence behavior on two representative cases: inductor
design and adult income prediction. Figure[3plots the average reward and validity of model outputs
during training. Both metrics exhibit a clear upward trend: the validity rate rises steadily, showing
that the model increasingly generates outputs that satisfy task constraints, while the average reward
improves, reflecting higher-quality solutions. This dual improvement demonstrates that reinforce-
ment learning progressively strengthens the model’s intrinsic reasoning ability. It also indicates that
the quality of the evolving population keeps improving, enabling the model to leverage in-context
feedback as well as intuitions from high-reward solutions to generate better outputs.

4.3 ABLATION STUDY
4.3.1 EFFECTIVENESS OF FRAMEWORK COMPONENTS

To better understand the contribution of each component in our framework, we conduct ablation
studies on the Boston Housing and Circle Packing tasks. We design several controlled variants by
selectively disabling or simplifying parts of the algorithm: TopScore, where only the highest-reward
candidate in the dataset is selected for further evolution; TopDiv, where selection relies solely on
diversity without considering reward; Random, where candidates are sampled randomly from the
population; EvoOnly, where the model parameters are kept fixed and only the evolutionary pipeline
is applied; and TrainOnly, which removes the evolutionary mechanism and in-context prompt-
ing, reducing the framework to pure GRPO reinforcement learning. These variants allow us to
disentangle the relative importance of reward-driven selection, diversity maintenance, evolutionary
population updates, and reinforcement learning in driving overall performance.
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Figure 4: Ablation analysis of framework components. (a): Maximum reward achieved by dif-
ferent ablation variants. (b): Curve of epoch-wise maximum reward on the Circle Packing task,
highlighting the critical role of balancing diversity and quality for stable optimization. (c): Curve
of epoch-wise maximum reward on the Boston Housing task, showing the necessity of combining
reinforcement learning with evolutionary guidance.

Figureffareports the maximum reward achieved under different ablation settings. Across both tasks,
all variants perform worse than our full framework, confirming the necessity of each component. We
next analyze the results task by task.

For the Circle Packing problem, high-quality solutions rely on diverse initial starting points for
optimization algorithms. As shown in Figure [4b] eliminating diversity (TopScore) significantly re-
duces reward, since the search quickly collapses into narrow solution modes. In contrast, Random
and TopDiv maintain higher diversity, enabling the model to extend from a richer set of initial states.
However, focusing solely on diversity also leads to instability—visible in the large variance of Top-
Div and Random—whereas TopScore and our full method (Ours) remain relatively stable. This
instability disrupts training and prevents the model from finding strong solutions in later epochs.
Moreover, we conducted a detailed analysis on the performance gap between OpenEvolve and HE-
LIX in Appendix [E] which demonstrate the effectiveness of explicitly combining diversity with
embedding model in our framework. These results highlight that balancing diversity and solution
quality is critical for solving such problems.

For the Boston Housing task, strong performance requires careful parameter tuning and complex
feature engineering, which typically emerge from iteratively learning from past experience. As
shown in Figure[dc| disabling either reinforcement learning or evolution severely limits performance.
With EvoOnly, the model remains bounded by its initial capacity and fails to break through training
bottlenecks. Conversely, with TrainOnly, the model cannot effectively accumulate knowledge in
context and collapses during training. These results demonstrate that both parameter updates and
in-context evolutionary guidance are indispensable for helping the model accumulate expertise and
progressively refine its solutions.

4.3.2 SCALING EXPERIMENTS

Here, we discuss the impact of base model size on task performance. We evaluate our framework on
two representative tasks, Magnetic Torque Maximization and Inductor Design, using the DeepSeek-
R1-Distill-Qwen model family with 1.5B, 7B, 14B, and 32B parameters. As shown in Figure |§[,
for the magnetic torque task, the reward steadily increases with model size, indicating stronger
reasoning ability and more effective exploration. For the inductor design task, we observe a reward
plateau around 9.6. However, the mean reward continues to grow as model size increases, suggesting
that larger models generate more valid and higher-quality candidates. These results demonstrate that
our framework exhibits scaling property: as the underlying LLM grows, the system can push the
boundaries of scientific discovery by enabling more efficient and higher-quality exploration.

5 CONCLUSION

In this work, we proposed HELIX, a hierarchical evolutionary reinforcement learning framework
with in-context experiences. By integrating reinforcement learning, evolutionary selection, and in-
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Figure 5: Scaling analysis of model parameter scale on (a): magnetic torque maximization and (b):
inductor design tasks.

context trial incorporation, HELIX effectively balances exploration and exploitation, enables task-
specific adaptation, and iteratively refines solutions. Extensive experiments across 20 tasks in five
diverse categories demonstrate that HELIX consistently outperforms strong task-specific baselines
and advanced proprietary models. Overall, HELIX shows strong potential for advancing open-
ended scientific discovery by enabling iterative, diversity-aware exploration. Looking ahead, it could
provide a foundation for broader applications in engineering, optimization, and autonomous research
systems.
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A TRAINING AND EVALUATION DETAILS

Training. We primarily use DeepSeek-Distill-Qwen-14B and 32B as the backbone models in our
experiments. The models are fine-tuned with the VERL framework (Sheng et al.| [2024) under the
GRPO algorithm. Each model is trained for 80 epochs with a fixed learning rate of 1 x 1076,
updating all parameters. We set the KL coefficient in GRPO to 1 x 10~3 and the number of rollouts
to 16. The rollouts are generated via VLLM (Kwon et al.l [2023)) backend with temperature equals
to 1.0 and top_p equals to 0.95. Training was conducted using eight A100 GPUs for 14B models
and sixteen H100 GPUs for 32B models. For training efficiency, we use Pytorch FSDP (Zhao et al.,
2023)) with parameter offload and optimizer offload. Gradient checkpoint and Flash-Attention (Dao,
2024) are used by default.

Evaluation. The evaluation is performed on a Slurm Workload Manager system. For each job,
we allocate 4 Intel(R) Xeon(R) Platinum 8168 CPUs for execution and impose time limits for each
task: five minutes for physics simulation, two minutes for machine learning and function minimiza-
tion, and one minute for circle packing and symbolic regression. The execution time includes the
time for task-dependent evaluators to calculate reward. For the detailed evaluate metric and reward
calculation, please refer to Appendix

B DEFINITION AND EVALUATION OF PROBLEMS

In this section we explain the detailed problem definition and evaluation metrics of all the tasks used
in the experiment.

B.1 MACHINE LEARNING

We selected 3 classic machine learning datasets, and the model has to write Python code to max-
imize the F1 score for classification tasks and minimize the rooted mean square error (RMSE) for
regression tasks. The details are described below.

B.1.1 ADULT INCOME

The Adult income dataset (Becker & Kohavi, [1996) is a well-known binary classification task. The
goal is to predict whether a person’s income exceeds $50,000 per year based on various demographic
features such as age, education, marital status, and occupation. The dataset is sourced from the 1994
U.S. Census and contains both categorical and numerical features, with some missing values.

The dataset itself contains a separate train and test split. We then load the train set for model’s
training and evaluate its result on the test set. The reward is the Macro F1 score, defined as:

2-P. R,
7
=c Z PR, g
where P, R, are the precision and recall for class ¢, and C' = 2 is the total number of classes.

B.1.2 BANK MARKETING

The Bank marketing dataset (Moro et al., 2014])) is another binary classification problem. It includes
data from a Portuguese bank’s direct marketing campaigns, where the objective is to predict whether
a client will subscribe to a term deposit. This dataset is characterized by a high number of categor-
ical features and a significant class imbalance, making it a good benchmark for evaluating model
performance under challenging real-world conditions.

To ensure a robust evaluation, we use a 5-fold cross-validation strategy with StratifiedKFold in
sklearn to handle the class imbalance. The data is randomly split into five folds, maintaining the
same class distribution in each fold as in the original dataset. The model is trained and evaluated
five times, with each fold serving as the test set once. The final reward is the average of the Macro
F1 scores obtained from all five folds. If a task fails to produce a result in any fold, its reward is
considered to be 0 for that fold. The final result is the Macro F1 score, as defined in equation 7}
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B.1.3 BOSTON HOUSING

The Boston housing dataset (Harrison Jr & Rubinfeld, |1978) is a classic regression problem. The
task is to predict the median value of owner-occupied homes in Boston suburbs, based on 13 features.
These features include per capita crime rate, a number of rooms per dwelling, and the proportion
of non-retail business acres. While the original dataset is no longer widely used for research due to
ethical concerns, it remains a common benchmark for teaching and evaluating regression models.

To evaluate model performance, we use a 5-fold cross-validation strategy with KFold, splitting the
data into five folds. The model is trained and evaluated five times, with each fold serving as the test
set once. The final reward for this task is the average of the scores from all five folds. The reward is
calculated using the following formula:

R =2 —log;,(RMSE + 10~'0), 8)
where:
1 N
RMSE = , | - ;(y — i) ©)

This reward metric is designed to penalize larger RMSE values while rewarding smaller ones. If a
task fails in any fold, its reward is considered to be O for that fold.

B.1.4 TRANSPARENT CONDUCTORS

The Transparent Conductors dataset (Ziletti et al.l [2017) is motivated by the need for accelerated
discovery of materials that simultaneously exhibit optical transparency and electrical conductiv-
ity—two properties that are typically at odds. Such materials are central to modern technologies
including photovoltaic cells, LEDs, sensors, touch screens, and display panels. Despite their im-
portance, only a limited number of compounds are currently known to meet the desired trans-
parency—conductivity trade-off, making data-driven exploration an appealing alternative to costly
experimental or quantum-mechanical searches.

The dataset contains computationally derived information for 3,000 candidate materials belong-
ing to the sesquioxide alloy family (Al,GayIn.)snOsn, Where the compositional ratios satisfy
z + y + z = 1 and the total number of atoms in the unit cell ranges from 5 to 100. These materials
are of particular interest due to their large bandgaps, chemical stability, and relatively low produc-
tion cost. Each entry includes crystallographic descriptors (e.g., space group, lattice parameters),
compositional ratios, and structural characteristics, offering a rich feature space for modeling.

The task is to predict two key target properties for each material: (1) formation energy, which reflects
thermodynamic stability, and (2) bandgap energy, which determines visible-range transparency. Ac-
curate prediction of these quantities enables efficient screening of new transparent conductor candi-
dates without the need for expensive density-functional theory (DFT) calculations.

Model performance is evaluated using the root mean squared logarithmic error (RMSLE), computed
column-wise for the two target properties. For a single target, the RMSLE is defined as:

1 & 2
RMSLE =, | — 1 i+ 1) —1 i+1))7, 10
n;(og(p+ ) —log(ai + 1)) (10)
where n is the number of samples, p; denotes the predicted value, and a; the ground-truth value.
The final reward for model training is:

R=1-RMSLE (11)

B.2 PHYSICS SIMULATION

To test the model’s capacity for geometric reasoning and ability to utilize physics prior knowledge
to discover better designs, we proposed the following physics simulation tasks. These tasks mainly
require the model to generate a yaml representation of a complex geometry under certain constraints
to maximize the reward. We utilize COMSOL Multiphysics® (COMSOL AB|2024), a commercial
FEA software for industrial multiphysics simulations, for the evaluation backend.
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B.2.1 AcousTiC DEMULTIPLEXER

This task aims to design an acoustic demultiplexer. The demultiplexer is a data distributing device
which takes acoustic energy from the input port and distributes different frequency bands to the
specific output port. The model is asked to propose the cavity geometry within a circular domain as
seen in Fig. [f] to maximize the acoustic pressure at output port 2 while minimizing the pressure at
output port 3. The input acoustic pressure level is set to 1 Pa at port 1, and the frequency level is set
to 7500 Hz.

Port 2: Output Pa

Port 1: Input

Port 3: Output

Figure 6: The RMS pressure field of an acoustic demultiplexer at frequency level 7500 Hz. The
RMS pressure field in log scale is proportional to the acoustic power.

The model is guided by the following reward R where P; is the power output at port ¢, p,.,,,s is the
Root Mean Square (RMS) pressure field, p is fluid density, and c is sound speed.

2
P — / meS dl
port pC (12)
n— log10(Pz) — logio(Ps)
0.292

We use a value of 0.292 on the denominator of Eq.[T2]to normalize the reward. And Fig. [6] shows
a symmetric design with 7 circular cavities in the computation domain, producing equal acoustic
pressure at the two output ports and thus R = 0. Notice that LLM is not limited by the circular
cavity pattern, and is prompted to freely explore any viable cavity geometries within the computation
domain.

B.2.2 MAGNETIC TORQUE

This task aims to design the geometry of an iron core that generates large torque when subjected
to a uniform magnetic field. Fig. [7] shows the problem setting, an example iron core geometry
and the corresponding magnetic flux density norm field. A uniform magnetic field intensity of
H = [0, 1e5] A/m is applied to the circular boundary. The iron core possesses a large permeability
> po distorts the magnetic flux density field B within the circular air domain. The distorted B
thus applies a torque on the iron core, which can be obtained from Comsol by solving the static
Maxwell’s equations.

To guide the model reinforcement learning and evolutionary search, the following reward R is com-
puted as below where T is Maxwell stress tensor, r is position vector, and T represents magnetic
torque which is simplified to 7, in 2D simulations:
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Magnetic flux

H,=0A/m density norm (T)
H, =1e5A/m H 05
0

Figure 7: The magnetic flux density field generated by an iron core subject to a uniform magnetic
field boundary condition. The distorted magnetic flux density field then applies a torque on the iron
core.

1 1
T=—(BB - ;B
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R | 1 A
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We use a value of 9241.99 on the denominator of Eq. [13]to normalize the reward. Notice that a
perfectly symmetric iron core (for instance a circle) would have 7, = 0. Therefore, we expect to
train and evolve the LLM to produce a highly irregular iron core geometry to generate large magnetic
torque values. We set a minimum area of 2e~* m? to avoid naive designs.

(13)

B.2.3 BEAM BENDING

This task aims to design the cross section geometry of a cantilever beam subject to a superposed
loading of bending moments M, and M,, shear forces T}, and T}, along the two in-plane directions,
and twisting moment 7, along the out-of-plane direction. The cantilever beam is assumed to be
linear elastic with Young’s modulus 1 GPa and Poisson’s ratio 0.3. Fig. [§] shows an example beam
cross section design and the von Mises stress distribution as calculated from Eq. [T4} solved using
the Beam Cross Section module in Comsol. As the cross section stays in the x-y plane, 04z, 0yy,
and 7, take O values.

1
Tom = \/2[(Ux:c —0yy)? + (Oaz — 022)* + (0yy — 022)%] + 3 (Tach +72. + Tz?z) (14)
0.8 70.2
The reward is set to be R = 111132971%,14 where A is the cross section area, I; is the largest second

moment of inertia, I, is the smallest second moment of inertia. We use a value of 1.32¢ 3 on the
denominator to normalize the reward. I; and I5 represent the beam’s largest and smallest resistance
over different bending loading directions, and can be calculated from the stress field following the
classical beam bending theory (Bauchau & Craig, [2009). We set a minimum area of 2¢73 m? to
avoid naive designs.

B.2.4 PERIODIC HEAT

This task aims to design the unit cell geometry of a periodic meta-material for best effective thermal
conductivity. The base material is assumed to be aluminum with density 2700 kg/m® and thermal
conductivity 238 W/mK. Fig. 0] shows an example 2D unit cell geometry which will be extruded
in the z direction to form the 3D unit cell. The resultant temperature distribution and effective
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Figure 8: The von Mises stress field generated by applying bending moment, shear force, and twist-
ing moment on a cantilever beam cross section design.

Temp (K)
294

293

Load 2 Load 3

Figure 9: Temperature distribution of the meta-material under three loading conditions. The effec-
tive properties are calculated based on temperature distributions according to the homogenization
theory.

properties are solved using Comsol based on the homogenization theory. The results are calculated
from a 1 K temperature difference boundary conditions along x, y, and z directions.

. trace(keff)

= 15
0.178 - peyy (1

where k. is the homogenized effective thermal conductivity matrix, and p.ss is the effective
density, which simply equals to the percentage of volume filled by aluminum. We use a value of
0.178 on the denominator to normalize the reward. This objective function targets to maximize the
thermal conductivity along X, y, and z directions under limited material usage. We set a maximum
effective density p.rr < 2000 kg/m? to avoid naive designs.
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B.2.5 INDUCTOR

This task aims to design an inductor which is a critical component in power electronics. Fig. [I0]
shows an example inductor consisting of an iron core and coil windings in a cylindrical coordinate.
A sinusoidal current excitation is supplied to the coils at a frequency of 1000 Hz and magnitude
500 A. The iron core possesses a nonlinear magnetization curve with an initial permeability of
663 H/m and saturates at 5 T. The resultant magnetic field is calculated using Comsol by solving
the Maxwell’s equations in frequency domain. The model is asked to propose the optimal iron
core geometry as well as the placement of the coil windings (coil shapes are fixed) to produce the
maximum inductance with limited material usage.
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Figure 10: The magnetic flux density norm field generated by an inductor. The copper coils are
excited by a 500 A, 1000 Hz sinusoidal current.

L  05-[y(B.-H.+ By Hy+ B, - H.)dV

R=piiv-™ 4311V

(16)

The reward calculation is shown in Eq. @ where B,., By, and B, are cylindrical components of
magnetic flux density field, and H,., Hy, H, are components of magnetic intensity field. Both fields
take complex values for frequency domain response. We use a value of 43.11 on the denominator
to normalize the reward. The numerator stands for the inductance which is a volume integral of
magnetic energy. We set a minimum iron core volume of 1e~3 m? to avoid naive designs.

B.3 CIRCLE PACKING

The objective of these tasks is to pack a fixed number of circles in a specific domain and maximize
the sum of the radii of these circles. The circles cannot overlap with each other or exceed the domain
boundary. All the centers and radii can change as long as the constraints are satisfied.

Formally, let n = 26 be the number of circles, {x; }i<n, {¥: }i<n be the coordinates of centers and
{ri}i<n be the radii. The objective can be written as:

R=3m a7
i=1
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while the constraint is

\/(mi—xj)2+(yz-—yj)22m+rj, Vi<i<j<n

x; —r; >0, Vi<i<n
x4 <1, Vi<i<n (18)
yi —1; 20, Vi<i<n
yi+ 1 <1, Vi<i<n

for the packing in a unit square, and

\/(wi—fj)Q-l-(yi—yj)gZH-H“]‘, Vi<i<ji<n

Vai+yi+r <1, V1<i<n,

19)

for the packing in a unit disk.

B.4 FUNCTION MINIMIZATION

These tasks require the model to find an effective algorithm to locate the global minimum of a
complex function with various local minima. For a given function f(x*) and the model’s prediction
x*, The evaluation metric is defined as:

_ [fx9)]
[FG) =+ 1F (&) = Fx)|

This metric is suitable for distinct functions with varying scales of | f(x*)|. It satisfies 0 < R < 1
and if the model successfully finds the global minimum, the reward will be R = 1.0.

(20)

B.4.1 EGGHOLDER FUNCTION

The Eggholder function is a classical task for evaluating evolutionary optimization algorithms with
various local minima. It can be defined as:

F(x) = —(29 +47) sin(y [ |(z2 + 47) + %I) — aysin(y/Ja1 — (22 + 47))), @1

with constraint —512 < x1,25 < 512 and a global minimum f((512,404.2319)) ~ —959.6407
under such constraint.

Figure|l 1|illustrates the landscape and the global minimum point of the Eggholder function.

B.4.2 MISHRA’S BIRD FUNCTION

The Mishra’s Bird function is a classic test function used in optimization to evaluate the performance
of algorithms. It is known for having a unique “’bird-shaped” landscape with multiple local minima
and a single global minimum. It’s often used to test an algorithm’s ability to avoid getting stuck in
suboptimal solutions.

The function is defined as:

£(x) = sin(@2)e(1=05@)? 4 cog(z)ed 5@ 4 (41 — 25)2 (22)
with the constraints:
-10< 21 <0
—6.5<19<0 (23)

x3 + 23 > 25.

The global minimum is f((—3.1302, —1.5822)) ~ —106.7645.

Figure 12| shows the landscape of the Mishra’s Bird function and its global minimum point.
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Figure 11: The landscape and global minimum point of Eggholder function with constraints —512 <
z,y < 512

B.4.3 KEANES BUuMP FUNCTION

The Keanes Bump function is a challenging, non-convex test function commonly used to evaluate
the performance of optimization algorithms in handling high-dimensional problems with complex
constraints. The function’s landscape is highly irregular, containing numerous local minima, and its
feasible region is a small, irregular subset of the search space.

Let d be the dimension of variables and f : R? — R, the function is defined as:
_ I cost @) — 21T, cos® (@) o

d .
D et sz

fx)

with the following constraints:
0<a2;, <10, V1I<i<d

d
> @ <75d
i=1

d
H:ci > 0.75.
i=1

The global minimum is located within the feasible region, which is a small, bounded area defined
by these constraints. The image in this document, Figure[I3] shows a two-dimensional visualization
of the function’s landscape. However, for our experiments, we tested the function in its 10-D, 20-
D, and 30-D versions, where the complexity increases significantly. The global minima and their
corresponding function values for these dimensions are listed below.

(25)

* 10-D Version: The global minimum value is approximately —0.747310362.
* 20-D Version: The global minimum value is approximately —0.803619104.
* 30-D Version: The global minimum value is approximately —0.818056222.
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Figure 12: The landscape and global minimum point of Mishra’s Bird function with constraints
z1 € [10,0], z2 € [-6.5,0] and 2% + 23 > 25.

B.5 SYMBOLIC REGRESSION

In this task, the model has to uncover symbolic mathematical expressions from observational data.
The benchmark and baselines are provided by [Shojaee et al.| (2025)), which includes equations and
data in chemistry, biology, physics and material science domains. In each category, several cases are
created, each containing its own train and test sets generated by the same underlying equation. The
model trained on the train set has to propose an expression to minimize the normalized mean square
error (NMSE) on the test set, which is defined as:

N
Zizl(yi - yi)2

N Y
Yoim1 (Wi — 9)?
where N is the number of observations in the test set.

NMSE = , (26)

To ensure a fair and robust comparison with the benchmark paper’s results, we use the median of
the NMSE calculated across all tasks within the same category c:

NMSE, = median(NMSE. 1, NMSE_ o, ...,NMSE_. ,,). (27)
The reward we used for reinforcement learning for category c is then set to:

RC = — 10g10 (NMSEC> . (28)

In the benchmark, all the methods have a limit of 1000 trials for each single case, and we obey the
same rule in our experiments, adjusting the number of training steps accordingly.

C DESCRIPTION OF TASK SPECIFIC BASELINES

In this section, we introduce the task-specific baseline methods and describe their implementation
details.
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Figure 13: The landscape and global minimum point of the 2-D Keanes Bump function. The feasible
region, a small part of the search space, is the only area with finite function values.

Machine Learning. For machine learning benchmarks, we evaluate two interpretable yet com-
petitive models: LightGBM 2017), a gradient boosting framework widely adopted in
practice, and Rule-based Representation Learner (RRL) (Wang et al.} 2021)), which learns discrete
non-fuzzy rules via gradient grafting to achieve both scalability and interpretability.

Physics Simulation. For physics-related optimization problems, we use two widely adopted mod-
ules in COMSOL Multiphysics: parameter search and topology optimization. For parameter search,
we first parameterize the geometry based on initial solutions provided by human experts, and then
optimize within the search space defined by these parameters. For topology optimization, human
experts specify deformable geometric regions, while COMSOL applies its built-in topology opti-
mization solvers to iteratively refine the structure.

Circle Packing. We consider two strong baselines: Sequential Least Squares Programming
(SLSQP) (Lawson & Hanson, [1995)) and a Genetic Algorithm (GA). SLSQP formulates circle pack-
ing as a constrained optimization problem, maximizing the sum of radii subject to boundary and
non-overlap constraints. The GA baseline encodes circle positions and radii, evolves a feasible
population with selection, crossover, and mutation, and evaluates fitness by the total radii.

Function Minimization. We adopt two standard constrained optimization solvers from
scipy.optimize: Sequential Least Squares Programming (SLSQP) and the trust-constr method
2000). Both are widely used gradient-based methods that provide strong task-specific
baselines for function minimization.

Symbolic Regression. For symbolic regression tasks, we directly use results reported in LLM-
SRBench (Shojaee et all, [2023), obtained by GPT-40-mini running two recent methods: LaSR
(Grayeli et al.,|2024)), which enhances evolutionary search with LLM-guided concept discovery, and
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LLM-

SR (Shojaee et al., 2024)), which combines LLM scientific priors with evolutionary equation

search. These represent competitive state-of-the-art baselines for symbolic regression.

D EXAMPLE OF PROMPTS USED IN EACH EXPERIMENT

In this

D.1

section, we will demonstrate the prompts we used in our experiments.

MACHINE LEARNING

Prompt for task Adult Income

You
—
You
—
Foc
—
Res
</t
<an
</a
$#pP
You
You
e
Thi

—

The

#4
#H4

- %
#H##

il o

are an expert software developer tasked with iteratively improving
a codebase.
r job is to analyze the current program and suggest improvements
based on feedback from previous attempts.
us on making targeted changes that will increase the program's
performance metrics.

pond in the following format: <think>
hink>

swer>

nswer>.

roblem Description

are an expert in traditional machine learning.

r task is to build a predictive model using the **Adult Income
Dataset**x (also known as the "Census Income" dataset).

s dataset contains demographic and employment-related attributes
collected from the 1994 U.S. Census database.

goal is to *xpredict whether a client will subscribe to a term
depositx* ("y~ column: yes/no) based on demographic and
marketing-related features.

goal is to *xpredict whether a person’s income exceeds \$50K per
year*x (income column: >50K / <=50K) based on individual and
employment features.

Dataset Features

Target variable:
*income**: ~>50K°, “<=50K. (Parsed to 1/0 in Program)

Input variables:

**xagexx x(numeric) *
Age of the individual.

**workclass** x(categorical) x
Type of employment:

"Private®, “Self-emp-not-inc®, “Self-emp-inc”, “Federal-gov~,
— ~“Local-gov’,
“State-gov”, “Without-pay , “Never-worked-.

*xfnlwgtx* * (numeric)
Final sampling weight | indicates the number of people represented
— by this record.

**xeducation*x * (categorical) *
Education level:

"Bachelors™, ~Some-college®, “11th°, "HS-grad®, "Prof-school”,
"Assoc—acdm”, “Assoc-voc’, ~9th’, “7th-8th°, “12th°, “Masters’,
“1lst-4th”, “10th°, “Doctorate™, “5th-6th”, “Preschool™.
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5. xxeducation—-numxx * (numeric) *
Encodes years of education.

6. xxmarital-status**x x(categorical) *
"Married-civ-spouse”, "Divorced”, “Never-married”, ~Separated’,
"Widowed™, “Married-spouse-absent”, “Married-AF-spouse’.

7. xxoccupationx* *(categorical) *
“Tech-support™, “Craft-repair®, “Other-service”, ~Sales”,
— ~Exec-managerial”,
"Prof-specialty”, “Handlers-cleaners”™, "Machine-op-inspct”,
« ~“Adm-clerical”,
"Farming-fishing®, “Transport-moving”, “Priv-house-serv’,
< “Protective-serv’,
"Armed-Forces™.

8. xxrelationship** x (categorical) *
"Wife®, “Own-child®, “Husband®, "Not-in-family~, “Other-relative~,
— “Unmarried".

9. *%racexx x(categorical) *
"White®, "Asian-Pac-Islander”, “Amer-Indian-Eskimo”, ~Other~,
— "Black™.

10. x*xsex** x (categorical) *
“Female™, "Male~.

11. *xcapital-gain*x x(numeric) *
Income from capital gains.

12. xxcapital-loss** x* (numeric) *
Losses from capital assets.

13. xxhours—per—-week** x (numeric)
Number of working hours per week.

14. xxnative—country*x x (categorical) *
“United-States”™, “Cambodia”, “England®, “Puerto-Rico”, “Canada’,

— ~Germany’,

“Outlying-US (Guam-USVI-etc) ™, “India”, ~Japan”, ~Greece”, ~South-,
< “China“,

“Cuba®, “Iran”, “Honduras~, "Philippines®, “Italy”, “Poland’,

— “Jamaica“,

“Vietnam®, “Mexico®, “Portugal®, “Ireland”, “France~,

— “Dominican-Republic”,

“Laos”, “Ecuador®, "Taiwan~, “Haiti®, “Columbia®, “Hungary~,

— ~Guatemala“,

“Nicaragua®, ~Scotland”, "Thailand®, ~Yugoslavia®, “El-Salvador~,
“Trinadad&Tobago™, “Peru”, “Hong , “Holand-Netherlands~™.

## Additional Notes

— You may add, delete, or modify functions arbitrarily, but the

— program must still contain the “run_model ()~ function.

— If you want to use new packages, please import them explicitly.

- Try different xxdata preprocessingx*, xxfeature engineeringx*, and
— **modeling techniques** to improve performance.

— Pay attention to Missing values: represented as "?". Handle them
— properly.

— Pay attention to Categorical encoding: many features are

— categorical; choose an effective encoding strategy.

## Task
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Write a machine learning model to **predictx* whether a person’s
— 1ncome exceeds \$50K.

You will be given a xxstarter programxx in Python.
Your goal is to *ximprove this programxx to maximize the **Fl-scorexx
— on the test set.

Your code execution time should **not exceed 60 seconds*x*.
You MUST use the exact SEARCH/REPLACE diff format shown below when
— modifying code:

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

## Current Program
Status: {current_status}
T "python
{current_program}

Prompt for task Bank Marketing

You are an expert software developer tasked with iteratively improving
— a codebase.

Your job is to analyze the current program and suggest improvements
— based on feedback from previous attempts.

Focus on making targeted changes that will increase the program's
— performance metrics.

Respond in the following format: <think>

</think>

<answer>

</answer>.

# Problem Description

You are an expert in traditional machine learning.

Your task is to build a predictive model using the **Bank Marketing
— Datasetx*x.

This dataset contains information collected from direct marketing
— campaigns conducted by a Portuguese banking institution.

The goal is to **predict whether a client will subscribe to a term
— deposit**x (y~ column: yes/no) based on demographic and

— marketing-related features.

## Dataset Features
Input variables:
### bank client data:

1 - age (numeric)

2 — job : type of job (categorical: "admin.", "blue-collar",

— "entrepreneur", "housemaid", "management", "retired",
"self-employed", "services", "student", "technician",

— "unemployed", "unknown")

3 - marital : marital status (categorical: "divorced", "married",

— "single", "unknown"; note: "divorced" means divorced or

— widowed)
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4 - education (categorical: "basic.4y", "basic.6y", "basic.9y",
— "high.school", "illiterate", "professional.course",
— "university.degree", "unknown")
5 - default: has credit in default? (categorical:
[N 'an", 'lyeS", "unknown")
6 — housing: has housing loan? (categorical: "no","yes", "unknown")
7 - loan: has personal loan? (categorical: "no","yes","unknown")
### related with the last contact of the current campaign:
8 contact: contact communication type (categorical:
— "cellular", "telephone")
9 - month: last contact month of year (categorical: "jan", "feb",
— "mar", ..., "nov", "dec")
10 - day_of_week: last contact day of the week (categorical:
s "mon", "tue", "wed", "thu", "fri")
11 - duration: last contact duration, in seconds (numeric).
### other attributes:
12 - campaign: number of contacts performed during this campaign and

— for this client (numeric, includes last contact)

13 - pdays: number of days that passed by after the client was last
— contacted from a previous campaign (numeric; 999 means client

— was not previously contacted)

14 - previous: number of contacts performed before this campaign and
— for this client (numeric)

15 - poutcome: outcome of the previous marketing campaign

[ (categorical: "failure", "nonexistent", "success")
### social and economic context attributes
16 - emp.var.rate: employment variation rate - quarterly indicator
[ (numeric)
17 - cons.price.idx: consumer price index - monthly indicator
[ (numeric)
18 - cons.conf.idx: consumer confidence index - monthly indicator
[ (numeric)
19 - euribor3m: euribor 3 month rate - daily indicator (numeric)
20 - nr.employed: number of employees - quarterly indicator
— (numeric)
## Task

Write a machine learning model to **predictx* whether a client
— subscribes to a term deposit.

You will be given a xxstarter programxx in Python.
Your goal is to **ximprove this programx* to maximize the **Fl-scorexx*
— on the test set.

Your code execution time should **not exceed 60 seconds*x*.
You MUST use the exact SEARCH/REPLACE diff format shown below when
— modifying code:

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

## Additional Notes

— You may add, delete, or modify functions arbitrarily, but the

— program must still contain the “run_model ()~ function.

— If you want to use new packages, please import them explicitly.

- Try different xxdata preprocessingx*, xxfeature engineeringx*, and
— **modeling techniques** to improve performance.

## Current Program
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Status: {current_status}
" python
{current_program}

Prompt for task Boston Housing

You are an expert software developer tasked with iteratively improving
— a codebase.

Your job is to analyze the current program and suggest improvements
— based on feedback from previous attempts.

Focus on making targeted changes that will increase the program's
— performance metrics.

Respond in the following format: <think>

</think>

<answer>

</answer>.

# Problem Description

You are an *xexpert in traditional machine learning*x*.
Your task is to build a *xpredictive regression model*x using the
— *xBoston Housing Datasetxx.

The *xBoston Housing Dataset** contains information collected by the
— U.S. Census Service concerning housing in the Boston,

<~ Massachusetts area.

The goal is to *xxpredict the median value of owner-occupied homesxx*
[ ("MEDV~, measured in \$1000s) based on various demographic,

— economic, and geographic factors.

## Dataset Features

The dataset contains **13 numerical and categorical featuresx*x. Some
— of them may have missing values (nan in dataframe)

1. *xCRIMx* { Per capita crime rate by town

2. *xxZN*x* { Proportion of residential land zoned for lots over 25,000
— sq.ft.

3. **xINDUS** { Proportion of non-retail business acres per town

4. xxCHAS** { Charles River dummy variable (1 if tract bounds river; 0
< otherwise)

5. xx*NOX** { Nitric oxides concentration (parts per 10 million)

6. **RMxx { Average number of rooms per dwelling

7. xxAGE** { Proportion of owner-occupied units built prior to 1940
8. *xDISxx { Weighted distances to five Boston employment centres

9. **RAD** { Index of accessibility to radial highways

10. **xTAX** { Full-value property tax rate per \$10,000

11. *xPTRATIO** { Pupil-teacher ratio by town

12. *xLSTATxx { Percentage of lower status population

13. **MEDV** { *xTarget variablexx: Median value of owner-occupied

« homes in \$1000s

## Task

You will be provided with a *xstarter Python program*x.

Your objective is to **improve the program** to build a more accurate
— **regression model*x for predicting “MEDV.

Your improvements should focus on **maximizing the RMSE score** on the
— *xtest setxx (RMSE score = 2 - 1loglO(RMSE)) .

27



Under review as a conference paper at ICLR 2026

## Requirements

* Your code execution time **must not exceed 60 secondsx*x*.
* You MUST use the **SEARCH/REPLACE diff format** exactly as shown
— below when modifying the code:

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

## Additional Notes

* You **may add, delete, or modify functionsxx as needed, but the

— program **must still containxx the “run_model ()~ function.

* If you want to use new packages, please import them explicitly.

— Usable packages: pandas, numpy, sklearn, scipy, statsmodels,

— xgboost, lightgbm, catboost, category_encoders, imbalanced-learn
* Try different x*data preprocessing*x, *xfeature engineering*x*, and
— **modeling techniques** to improve performance.

## Current Program
Status: {current_status}
" “python
{current_program}

prompt for task Predict Transparent Conductors

You are an expert software developer tasked with iteratively improving
— a codebase.

Your job is to analyze the current program and suggest improvements
— based on feedback from previous attempts.

Focus on making targeted changes that will increase the program's
— performance metrics.

Respond in the following format: <think>

</think>

<answer>

</answer>.

# Overview

## Description
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Innovative materials design is needed to tackle some of the most
important health, environmental, energy, social, and economic
challenges of this century. In particular, improving the
properties of materials that are intrinsically connected to the
generation and utilization of energy is crucial if we are to
mitigate environmental damage due to a growing global demand.
Transparent conductors are an important class of compounds that
are both electrically conductive and have a low absorption in the
visible range, which are typically competing properties. A
combination of both of these characteristics is key for the
operation of a variety of technological devices such as
photovoltaic cells, light-emitting diodes for flat-panel displays,
transistors, sensors, touch screens, and lasers. However, only a
small number of compounds are currently known to display both
transparency and conductivity suitable enough to be used as
transparent conducting materials.

ELELELEELEL LR DL

Aluminum (Al), gallium (Ga), indium (In) sesquioxides are some of the
most promising transparent conductors because of a combination of
both large bandgap energies, which leads to optical transparency
over the visible range, and high conductivities. These materials
are also chemically stable and relatively inexpensive to produce.
Alloying of these binary compounds in ternary or quaternary
mixtures could enable the design of a new material at a specific
composition with improved properties over what is current
possible. These alloys are described by the formula $(Al_x Ga_y
In_z)_{{2N}}O_{{3N}}$ ; where x, y, and z can vary but are limited
by the constraint x+y+z = 1. The total number of atoms in the unit
cell, S\N_{{total}}=2N+3NS$S (where N is an integer), 1s typically
between 5 and 100. However, the main limitation in the design of
compounds 1s that identification and discovery of novel materials
for targeted applications requires an examination of enormous
compositional and configurational degrees of freedom (i.e., many
combinations of x, y, and z). To avoid costly and inefficient
trial-and-error of synthetic routes, computational data-driven
methods can be used to guide the discovery of potentially more
efficient materials to aid in the development of advanced (or
totally new) technologies. In computational material science, the
standard tool for computing these properties is the
quantum-mechanical method known as density-functional theory
(DFT) . However, DFT calculations are expensive, requiring hundreds
or thousands of CPU hours on supercomputers for large systems,
which prohibits the modeling of a sizable number of possible
compositions and configurations. As a result, potential $(Al_x
Ga_y In_z)_{{2N}}O_{{3N}}$ materials remain relatively unexplored.
Data-driven models offer an alternative approach to efficiently
search for new possible compounds in targeted applications but at
a significantly reduced computational cost.

FELELELEE S LRSS LLNE

This competition aims to accomplish this goal by asking participants
to develop or apply data analytics/data mining/machine-learning
models for the prediction of two target properties: the formation
energy (which is an indication of the stability of a new material)
and the bandgap energy (which is an indication of the potential
for transparency over the visible range) to facilitate the
discovery of new transparent conductors and allow for advancements
in the above-mentioned technologies.

ELLELLELD S

## Evaluation

Submissions are evaluated on the column-wise root mean squared
— logarithmic error.
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The RMSLE for a single column calculated as

$\sgrt{{\frac{{1l}}{{n}}\sum_{{i=1}}"n(\log{{ (p_i + 1)}} -
—  \log{{(a_i+1)}})"2}}$

where:

$n$ is the total number of observations
Sp_i$ is your prediction

Sa_i$ is the actual value

$\log(x)$ is the natural logarithm of $x$

The final score 1is the mean of the RMSLE over all columns (in this
— case, 2).

# Dataset Description

High-quality data are provided for 3,000 materials that show promise
< as transparent conductors. The following information has been
— included:

— spacegroup: Crystallographic space group number describing the

— symmetry of the material.

— number_of_total_atoms: Total number of atoms in the unit cell.

— percent_atom_al, percent_atom_ga, percent_atom_in: Relative

— composition of Al, Ga, and In in the material (remaining fraction
— 1is 0).

— lattice_vector_1_ang, lattice_vector_2_ang, lattice_vector_3_ang:
— Lengths of the three lattice vectors (in angstroms), describing
— the unit cell dimensions.

— lattice_angle_alpha_degree, lattice_angle_beta_degree,

— lattice_angle_gamma_degree: Angles between the lattice vectors (in
— degrees), defining the unit cell geometry.

A domain expert will understand the physical meaning of the above
— information but those with a data mining background may simply use
— the data as input for their models.

The task for this competition is to predict two target properties:

— Formation energy (an important indicator of the stability of a
< material)

— Bandgap energy (an important property for optoelectronic

— applications)

# Task
## Additional Notes

* You x*may add, delete, or modify functions*x as needed, but the

— program **must still containxx the “run_model ()~ function.

* If you want to use new packages, please import them explicitly.

— Usable packages: pandas, numpy, sklearn, scipy, statsmodels,

— xgboost, lightgbm, catboost, category_encoders, imbalanced-learn
* Try different **data preprocessing**, xxfeature engineeringxx, and
— **modeling techniques** to improve performance.

## Requirements
* Your code execution time x*must not exceed 60 seconds*x*.

* You MUST use the x*SEARCH/REPLACE diff format*x exactly as shown
— below when modifying the code:
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<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

## Current Program
Status: {current_status}
T "python
{current_program}

D.2 PHYSICS SIMULATION

Prompt for task Inductor

You are a helpful AI Assistant that provides well-reasoned and

— detailed responses.

You first think about the reasoning process as an internal monologue
— and then provide the user with the answer.

Respond in the following format: <think>

</think>

<answer>

</answer>.

## Task Description

You are a helpful AI Assistant and scientist with strong physical
— background and wonderful geometric designing ideas.

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

L&

Your final answer should contain a yaml file enclosed in
< “77yaml\n (your code) The yaml file should have at least two
— parts: geometry and selection. The specific requirements are as

— follow:

1. geometry: A list of objects with type and type-specific parameters.
— The types and parameters are as follows:
Polygon: (2D) You can use it to create rectangles, triangles, etc.
table: Ordered list of n vertices as [x, y] points. The
— polygon is formed by **xconnecting consecutive pointsxx
— (p_i->p_{i+1l}) and **automatically closingxx the shape
[ (p_n—>p_1).
fillet: (Optional) A 1list of [i, r] tuples, where i is the
— index (starting from 1) of a polygon vertex defined in the
< above table, and r is the fillet radius for that
— corresponding vertex.

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise

angle: (Optional) Angular span (degree) counterclockwise. e.g.

— by setting angle=180 you can draw a upward semicircle.
LineSegment: (1D)

coordl: [start_x, start_y]

coord2: [end_x, end_y]
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CircularArc: (1D)
r: Radius
anglel: Start angle (degree) counterclockwise, 0 degree
— represent positive direction of X-axis.
angle2: End angle (degree) counterclockwise
CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,vyl,v2,y3]]
w: Weight values as [w0,wl,w2,w3]
InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.
— The curve will pass every points smoothly (polynomial
— interpolation for x and y).
ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",
— "expression_y"]. Trigonometric functions here use radians
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
— curves.
geometries: A dictionary of 1D geometries (using the same
— structure as the top-level geometry section, recursive).
— **xThey Must connect end-to-end and form a simply connected
— spacexx.
Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).
Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).

Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep
— (recursive).

geometries_subtract: A dictionary of geometries to subtract
— (recursive).

After **geometry** was created, the shapes will be splitted into

— **non—-overlapping connected regions*x*.
— Overlapping 2D shapes create new regions (e.g., two intersecting
— circles =+ 3 regions)
— Enclosed 2D shapes split regions (e.g., circle inside polygon -
< 2 regions: circle interior + polygon-ring)
— 1D curves through 2D shapes create sub-regions (e.g., line
— segment through rectangle =+ alternating regions)

The **regions** can be represented by the following ways:
— point: You can select an interior point of the region to
— represent it. The point should never on boundaries/corners.
— One point per region suffices.
— geometry: The 2d shapes you created might be splitted into
— several regions. You can select the geometry to represent all
— the regions in it.

2. selection: After regions are created, you will assign different
— functions to regions using selections.
UnionSelection: Union of all the regions selected below.

points: (Optional) List of [x,y] points representing distinct
— regions.
geometries: (Optional) List of 2d geometry names you created

— above. By listing geometries here, you can select all the
— region this geometry contains.
selections: (Optional) List of other selection names you
< created.
IntersectionSelection: Intersection of all the regions selected
— Dbelow.
same parameters as UnionSelection
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DifferenceSelection: Select the regions in Add but not in
— Subtract.

add: same parameters as UnionSelection.

subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:

“Tyaml
geometry:
unil: # Name of this geometry
type: Union
geometries: # create geometries recursively below
uni_ell: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]
uni_poll: # Name of the second polygon
type: Polygon

table:

- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

linel: # This line splits the ellipse into 2 regions.
type: LineSegment
coordl: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sell: # Name of this selection

type: DifferenceSelection

add:
geometries:
- unil # Select all the regions in unil

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This
— region is part of ellipse but splitted by the line
— segment.

## Geometric Design of Inductor2d

You are asked to design an inductor. The objective is to maximize the
inductance value of the inductor which is calculated as

$0.5+real (Brxconj (Hr) +conj (Hphi) *Bphi+conj (Hz) *Bz) /VS$S with B, H to
be the magnetic induction intensity and magnetic field intensity
and V to be the volume of the core.

ELLL

e geometry should be designed inside a semicircle of radius 0.35m
centered at (0,0), opening in the positive x-direction. Then we
will generate a 3D geometry by rotating the semicircle around the
axis x=0.

=

u are required to give the geometry of the core, and the location of
the coils. After you create the geometry, you should select the
regions of the core. **The Name of the selection must be “core *x.
Finally, you need to give the center of the coils, which are
circles with radius 0.0lm. You don't need to give the geometry of
the coils.

1500108

The constraints are as follow:
1. There's no overlapping of different coils. There must be 12 coils
— in total.
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2. The core and the coils should not overlap or adjacent.

3. The geometry and coils should be placed inside the semicircle of
— radius 0.35m centered at (0,0), opening in the positive

— x—direction.

4. The volume of the core should be more than 0.001 m”"3. This means
— cores that are *xextremely thin or extremely finexx are not

— allowed.

The reward is calculated as follow:

1. 0 if constraints are violated.

2. $0.5xreal (Br*xconj (Hr)+conj (Hphi) *Bphi+conj (Hz) *Bz) /V$, the

— inductance value of the inductor, if constraints are satisfied.

## Example

An example solution is shown below. You should not copy the example

— solution, but you can refer to it to understand the task and

— create better ones.

ST Tyaml

geometry:

main:

type: Difference
geometries_add:

outer:
type: Polygon
table:
- [0, 0.2]
- [0.18, 0.2]
= [0.18, =0.2]
- [0, -0.2]
geometries_subtract:
inner:
type: Polygon
table:

- [0.03, -0.155]
0.03, 0.155]

[
- [0.12, 0.155]
= [0.12, =0,1585]
selection:
core:
type: UnionSelection
geometries:
- main
coils:
- [0.08, 0.11]
- [0.08, 0.09]
- [0.08, 0.07]
- [0.08, 0.05]
- [0.08, 0.03]
- [0.08, 0.01]
- [0.08, -0.01]
- [0.08, -0.03]
= [0,08, =0,09]
- [0.08, -0.07]
= [0,08, =0,09]
- [0.08, -0.11]
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Prompt for task Beam Bending

You are a helpful AI Assistant that provides well-reasoned and

— detailed responses.

You first think about the reasoning process as an internal monologue
— and then provide the user with the answer.

Respond in the following format: <think>

</think>

<answer>

</answer>.

## Task Description

You are a helpful AI Assistant and scientist with strong physical
— background and wonderful geometric designing ideas.

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

EE&

Your final answer should contain a yaml file enclosed in
< ““Tyaml\n (your code) The yaml file should have at least two
— parts: geometry and selection. The specific requirements are as

— follow:

1. geometry: A list of objects with type and type-specific parameters.
— The types and parameters are as follows:
Polygon: (2D) You can use it to create rectangles, triangles, etc.
table: Ordered list of n vertices as [x, y] points. The
— polygon is formed by **connecting consecutive pointsxx
— (p_i->p_{i+1l}) and **automatically closingxx the shape
< (p_n—->p_1). **NO Intersections between edges/nodes are
— allowedx*x*.
fillet: (Optional) A list of [i, r] tuples, where i is the
— index (starting from 1) of a polygon vertex defined in the
— above table, and r is the fillet radius for that
— corresponding vertex.

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise

angle: (Optional) Angular span (degree) counterclockwise. e.g.
— by setting angle=180 you can draw a upward semicircle.
LineSegment: (1D)

coordl: [start_x, start_y]
coord2: [end_x, end_y]
CircularArc: (1D)

r: Radius
anglel: Start angle (degree) counterclockwise, 0 degree
— represent positive direction of X-axis.
angle2: End angle (degree) counterclockwise
CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,vl,v2,y3]1]
w: Weight values as [wO,wl,w2,w3]
InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.
— The curve will pass every points smoothly (polynomial
— interpolation for x and y).
ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
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coord: Expressions about the parameter like ["expression_x",

— "expression_y"]. Trigonometric functions here use radians
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
< curves.

geometries: A dictionary of 1D geometries (using the same

— structure as the top-level geometry section, recursive).

— *%xThey Must connect end-to-end and form a simply connected

— spacexx.

Union: (2D) Union of 2D geometries.

geometries: A dictionary of geometries (recursive).
Intersection: (2D) Intersection of 2D geometries.

geometries: A dictionary of geometries (recursive).
Difference: (2D) Difference of the 2D geometries.

geometries_add: A dictionary of geometries to keep

< (recursive) .

geometries_subtract: A dictionary of geometries to subtract

< (recursive) .

After *xgeometryx* was created, the shapes will be splitted into

— **non-—-overlapping connected regionsxx.
— Overlapping 2D shapes create new regions (e.g., two intersecting
— circles =+ 3 regions)
— Enclosed 2D shapes split regions (e.g., circle inside polygon -
— 2 regions: circle interior + polygon-ring)
— 1D curves through 2D shapes create sub-regions (e.g., line
— segment through rectangle =+ alternating regions)

The **regions** can be represented by the following ways:
— point: You can select an interior point of the region to
< represent it. The point should never on boundaries/corners.
— One point per region suffices.
— geometry: The 2d shapes you created might be splitted into
— several regions. You can select the geometry to represent all
— the regions in it.

2. selection: After regions are created, you will assign different
— functions to regions using selections.
UnionSelection: Union of all the regions selected below.
points: (Optional) List of [x,y] points representing distinct
— regions.
geometries: (Optional) List of 2d geometry names you created
— above. By listing geometries here, you can select all the
— region this geometry contains.
selections: (Optional) List of other selection names you
— created.
IntersectionSelection: Intersection of all the regions selected
— below.
same parameters as UnionSelection
DifferenceSelection: Select the regions in Add but not in
— Subtract.
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:
T Tyaml
geometry:
unil: # Name of this geometry
type: Union
geometries: # create geometries recursively below
uni_ell: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]
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uni_poll: # Name of the second polygon
type: Polygon

table:

= [=1:.0, =0,3]
- [2.0, -1.0]
- [1.0, 1.0]

linel: # This line splits the ellipse into 2 regions.
type: LineSegment
coordl: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sell: # Name of this selection

type: DifferenceSelection

add:
geometries:
- unil # Select all the regions in unil

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This
— region is part of ellipse but splitted by the line
— segment.

## Beam Cross Section Geometry Design

You are asked to design the cross section of a beam. The objective is
to maximize both the largest principal moment of inertia and the
torsional constant, while keeping the cross section area small.
The goal can be quantified as $(I1*x0.8 * I2%x0.2)/AS$ with Il
being the largest principal moment of inertia, I2 being the
smallest principal moment of inertia and A being the beam cross
section area.

ELLELELL

e beam cross-sectional dimension should not go beyond 0.15m, with
the center staying close to the origin.

=

[

ou are required to design the beam cross section. The shape doesn't
have to be symmetric. After you create the geometry, you should
select the regions of the beam. **The Name of the selection must
be "beam” *x.

F L&

The constraints are as follow:

1. The shape center should be close to the origin.

2. The shape should stay inside the circle boundary with radius 0.2m.
3. The area should not be smaller than 2e-3 m"2.

The reward is calculated as follow:

1. 0 if constraints are violated.

2. $(I1lx*x0.8 % I2x%x0.2)/A$, weighted geometry average of the largest

— principal moment of inertia and the smallest principal moment of

— inertia, normalized by the cross section area, if constraints are
— satisfied.

## Example
An example solution is shown below. You should not copy the example
— solution, but you can refer to it to understand the task and
— create better ones.
T Tyaml
geometry:

poll:

type: Polygon
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table:

- [0.05, 0.05]

- [-0.05, 0.05]

- [-0.05, 0.04]

- [-0.005, 0.04)]
- [-0.005, -0.04]
- [-0.05, -0.04)]
- [-0.05, -0.05]
- [0.05, -0.05]

- [0.05, -0.04]
- [0.005, -0.04]
- [0.005, 0.04]
- [0.05, 0.04]

fillet:
- [4, 0.003]
- [5, 0.003]
- [10, 0.003]
- [11, 0.003]
selection:
beam:
type: UnionSelection
geometries:
- poll

Prompt for task Magnetic Torque

You
—
You
—
Res
</t
<an
</a
##
You

(S
You

(A

You
—
—
—

1k o

—

are a helpful AI Assistant that provides well-reasoned and
detailed responses.
first think about the reasoning process as an internal monologue
and then provide the user with the answer.

pond in the following format: <think>

hink>
swer>

nswer>.
Task Description

are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.

are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

r final answer should contain a yaml file enclosed in
T Tyaml\n (your code) The yaml file should have at least two
parts: geometry and selection. The specific requirements are as
follow:

geometry: A list of objects with type and type-specific parameters.
The types and parameters are as follows:
Polygon: (2D) You can use it to create rectangles, triangles, etc.
table: Ordered list of n vertices as [x, y] points. The
— polygon 1is formed by **connecting consecutive pointsxx
< (p_i->p_{i+1l}) and *xautomatically closing** the shape
s (p_n->p_1).
fillet: (Optional) A list of [i, r] tuples, where i is the
— index (starting from 1) of a polygon vertex defined in the
<« above table, and r is the fillet radius for that
< corresponding vertex.
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Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise
angle: (Optional) Angular span (degree) counterclockwise. e.g.
— by setting angle=180 you can draw a upward semicircle.
LineSegment: (1D)
coordl: [start_x, start_y]
coord2: [end_x, end_y]
CircularArc: (1D)
r: Radius
anglel: Start angle (degree) counterclockwise, 0 degree
— represent positive direction of X-axis.
angle2: End angle (degree) counterclockwise
CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,vl,v2,y3]1]
w: Weight values as [wO,wl,w2,w3]
InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.
— The curve will pass every points smoothly (polynomial
— interpolation for x and y).
ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",
— "expression_y"]. Trigonometric functions here use radians
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
< curves.
geometries: A dictionary of 1D geometries (using the same
— structure as the top-level geometry section, recursive).
— **xThey Must connect end-to-end and form a simply connected
< sSpacexx.
Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).
Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).
Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep
< (recursive) .
geometries_subtract: A dictionary of geometries to subtract
< (recursive) .

After xxgeometry** was created, the shapes will be splitted into

— **non-—-overlapping connected regionsxx.
— Overlapping 2D shapes create new regions (e.g., two intersecting
— circles =+ 3 regions)
— Enclosed 2D shapes split regions (e.g., circle inside polygon =
— 2 regions: circle interior + polygon-ring)
— 1D curves through 2D shapes create sub-regions (e.g., line
— segment through rectangle =+ alternating regions)

The *x*xregions**x can be represented by the following ways:
— point: You can select an interior point of the region to
— represent it. The point should never on boundaries/corners.
— One point per region suffices.
- geometry: The 2d shapes you created might be splitted into
— several regions. You can select the geometry to represent all
< the regions in it.

2. selection: After regions are created, you will assign different

— functions to regions using selections.
UnionSelection: Union of all the regions selected below.
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points: (Optional) List of [x,y] points representing distinct
— regions.
geometries: (Optional) List of 2d geometry names you created
— above. By listing geometries here, you can select all the
— region this geometry contains.
selections: (Optional) List of other selection names you
— created.
IntersectionSelection: Intersection of all the regions selected
— below.
same parameters as UnionSelection
DifferenceSelection: Select the regions in Add but not in
— Subtract.
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:
T Tyaml
geometry:
unil: # Name of this geometry
type: Union
geometries: # create geometries recursively below
uni_ell: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]
uni_poll: # Name of the second polygon
type: Polygon

table:

- [-1.0, -0.3]
- [2.0, -1.0]
- [1.0, 1.0]

linel: # This line splits the ellipse into 2 regions.
type: LineSegment
coordl: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sell: # Name of this selection

type: DifferenceSelection

add:
geometries:
- unil # Select all the regions in unil

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This
— region is part of ellipse but splitted by the line
— segment.

## Geometric Design of 2D Iron Core

You are asked to design a 2D iron core. The iron core has large
permeability and is subject to a constant far field magnetic field
intensity which applies a magnetic torque (pointing out of the 2D
plane) on the iron core. The objective is to maximize the magnetic
torque while keeping the iron core small. The goal can be
quantified as $|Tz|/A$ where Tz is the torque in the out of plane
direction and A is the area of the core.

ELLeLlLd
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The iron core should be designed inside a circle air domain of radius

— 0.05m centered at the origin (0,0). The boundary of the circle

— domain is subject to a constant magnetic field intensity of

— [0,1e5] A/m.

You are required to give the geometry of the iron core. The shape

— doesn't have to be symmetric. After you create the geometry, you
— should select the regions of the core. xxThe Name of the selection
— must be “core xx.

The constraints are as follow:

1. The core center should be close to the origin and inside the circle
<« air domain of radius 0.05m centered at (0,0).

2. The boundary of the core should stay at least 0.02m away from the
<« circle air domain.

3. The Area of the core should between 2e-4 and 2e-3 m"2.

The reward is calculated as follow:

1. 0 if constraints are violated.

2. $|Tz|/AS, the absolute value of magnetic torque generated by the
— constant far field magnetic field intensity on the iron core

— normalized by the iron core area, if constraints are satisfied.

## Example

An example solution is shown below. You should not copy the example

— solution, but you can refer to it to understand the task and

— create better ones.

ST tyaml

geometry:

poll:

type: Polygon
table:
- [0.01, -0.003]
- [0.02, 0.001]
- [0.01, 0.01]

- [-0.01, 0.005]

= [=0.,02, =0.008]

- [-0.02, -0.008]

= [=0,0038, =0,01]

selection:

core:
type: UnionSelection
geometries:
- poll

Prompt for task Periodic Heat

You are a helpful AI Assistant that provides well-reasoned and

— detailed responses.

You first think about the reasoning process as an internal monologue
— and then provide the user with the answer.

Respond in the following format: <think>

</think>

<answer>

</answer>.

## Task Description
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You

You

L&

are a helpful AI Assistant and scientist with strong physical
background and wonderful geometric designing ideas.

are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

Your final answer should contain a yaml file enclosed in

—

—

1k o

—

“yaml\n (your code) The yaml file should have a part named
geometry. The specific requirements are as follow:

geometry: A list of objects with type and type-specific parameters.

The types and parameters are as follows:
Polygon: (2D) You can use it to create rectangles, triangles, etc.

table: Ordered list of n vertices as [x, y] points. The
— polygon is formed by **connecting consecutive pointsxx
< (p_i->p_{i+1l}) and x*automatically closing** the shape

s (p_n—>p_1).

fillet: (Optional) A list of [i, r] tuples, where i is the

— index (starting from 1) of a polygon vertex defined in the
< above table, and r is the fillet radius for that

— corresponding vertex.

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise

angle: (Optional) Angular span (degree) counterclockwise. e.g.
— by setting angle=180 you can draw a upward semicircle.
LineSegment: (1D)

coordl: [start_x, start_y]
coord2: [end_x, end_y]
CircularArc: (1D)

r: Radius
anglel: Start angle (degree) counterclockwise, 0 degree
— represent positive direction of X-axis.
angle2: End angle (degree) counterclockwise
CubicBezier: (1D)
p: Control points as [[x0,x1,x2,x3], [y0,vyl,v2,y3]1]
w: Weight values as [w0,wl,w2,w3]
InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.
— The curve will pass every points smoothly (polynomial
— interpolation for x and y).
ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",
— "expression_y"]. Trigonometric functions here use radians
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
< curves.
geometries: A dictionary of 1D geometries (using the same
— structure as the top-level geometry section, recursive).
— **xThey Must connect end-to-end and form a simply connected
— spacexx.

Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).
Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).
Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep
< (recursive) .
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geometries_subtract: A dictionary of geometries to subtract
— (recursive).

Structure Design of the 3D heat transfer unit cell

u are asked to design a unit cell structure in 3D. The objective is
to maximize the effective thermal conductivity with limited
material usage, which can be quantified as
Strace (k_{eff})/\rho_{eff}$ where $k_{eff}$ is the effective
thermal conductivity matrix of shape 3%x3, and rho_eff is the
effective density.

u should first define a 2D rectangular unit cell domain by giving
the width and height of the domain.

u then design the hollow part of the 2D unit cell. You must create a
geometry named “hollow™, represents the hollow part of the unit
cell. Four copies of this geometry object will be created by
translating the original object with the following vectors
[-cell_width/2, -cell_height/2], [-cell_width/2, cell_height/2],
[cell _width/2, -cell_height/2], [cell_width/2, cell_height/2].

e unit cell domain will be subtracted by the geometry object and its
copies. The subtracted areas are filled with air (thermal
conductivity “0.026W/(m x* K), density ~1.174kg/m"3) and the
remaining areas are filled with aluminum (thermal conductivity
238W/ (m * K), density 2700 kg/m”~3).

e final 3D unit cell structure is generated by extruding the 2D unit
cell.

e unit cell will subject to periodic boundary condition in x, y, and
z directions. Your design should provide higher effective thermal
conductivity using a reasonable amount of aluminum and carefully
designed hollow shape.

e constraints are as follow:

The original geometry object (*hollow™) should not overlap with the
boundary of the domain. But its copies may overlap with the
boundary.

The original and copied geometry objects should not overlap or
adjacent with each other.

The effective density should not exceed 2000 kg/m”3. You should
control the usage of aluminum (by create larger hollow parts).

The unit cell domain is centered strictly at the origin. The
geometry you designed should be centered approximately at the
origin, as it may not be symmetric.

e reward is calculated as follow:
0 if constraints are violated.
Strace (k_eff)/rho_eff$, the effective thermal conductivity of the
unit cell structure normalized by the effective density, if
constraints are satisfied.

Example
example solution is shown below. You should not copy the example

solution, but you can refer to it to understand the task and
create better ones.
T Tyaml
11:
sizes: [5e-3, 3e-3]
ometry:
hollow:
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type: Polygon

table:

- [1.61e-3, 0]

- [8.04e-4, 1.45e-3]

- [-8.04e-4, 1.45e-3]
- [-1.61le-3, 0]

- [-8.04e-4, -1.45e-3]
- [8.04e-4, -1.45e-3]

Prompt for task Demultiplexer

You are a helpful AI Assistant that provides well-reasoned and

— detailed responses.

You first think about the reasoning process as an internal monologue
— and then provide the user with the answer.

Respond in the following format: <think>

</think>

<answer>

</answer>.

## Task Description

You are a helpful AI Assistant and scientist with strong physical
— background and wonderful geometric designing ideas.

You are asked to generate the geometry design of a component using
yaml files under certain constraints. You will first create
geometries of your design, and then assign functions to the
geometries according to the specific requirements.

(R (A

Your final answer should contain a yaml file enclosed in
< “T7yaml\n (your code) The yaml file should have at least two
— parts: geometry and selection. The specific requirements are as

— follow:

1. geometry: A list of objects with type and type-specific parameters.
— The types and parameters are as follows:
Polygon: (2D) You can use it to create rectangles, triangles, etc.
table: Ordered list of n vertices as [x, y] points. The
— polygon is formed by **connecting consecutive pointsxx
— (p_i->p_{i+1l}) and **automatically closingxx the shape
— (p_n—>p_1).
fillet: (Optional) A 1list of [i, r] tuples, where i is the
— index (starting from 1) of a polygon vertex defined in the
< above table, and r is the fillet radius for that
— corresponding vertex.

Ellipse: (2D) You can use it to create circles.
semiaxes: [horizontal, vertical] axis lengths
pos: [center_x, center_y] center position
rot: (Optional) Rotation angle (degree) counterclockwise

angle: (Optional) Angular span (degree) counterclockwise. e.g.
— by setting angle=180 you can draw a upward semicircle.
LineSegment: (1D)
coordl: [start_x, start_y]
coord2: [end_x, end_y]
CircularArc: (1D)
r: Radius
anglel: Start angle (degree) counterclockwise, 0 degree
— represent positive direction of X-axis.
angle2: End angle (degree) counterclockwise
CubicBezier: (1D)
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p: Control points as [[x0,x1,x2,x3], [y0,vyl,v2,y3]]
w: Weight values as [w0,wl,w2,w3]
InterpolationCurve: (1D)
table: Ordered list of [x,y] points to interpolate through.
— The curve will pass every points smoothly (polynomial
— interpolation for x and y).
ParametricCurve: (1D)
parname: Name of parameter
parmin: Minimum value of parameter
parmax: Maximum value of parameter
coord: Expressions about the parameter like ["expression_x",
— "expression_y"]. Trigonometric functions here use radians
ConvertToSolid: (2D) Geometry formed by end-to-end connected 1D
< curves.
geometries: A dictionary of 1D geometries (using the same
— structure as the top-level geometry section, recursive).
< **They Must connect end-to-end and form a simply connected
— Spacexx.
Union: (2D) Union of 2D geometries.
geometries: A dictionary of geometries (recursive).
Intersection: (2D) Intersection of 2D geometries.
geometries: A dictionary of geometries (recursive).
Difference: (2D) Difference of the 2D geometries.
geometries_add: A dictionary of geometries to keep
[ (recursive) .
geometries_subtract: A dictionary of geometries to subtract
[ (recursive) .

After **geometry** was created, the shapes will be splitted into

— **non—-overlapping connected regions*x*.
— Overlapping 2D shapes create new regions (e.g., two intersecting
— circles =+ 3 regions)
— Enclosed 2D shapes split regions (e.g., circle inside polygon -
— 2 regions: circle interior + polygon-ring)
— 1D curves through 2D shapes create sub-regions (e.g., line
— segment through rectangle =+ alternating regions)

The **regions** can be represented by the following ways:
— point: You can select an interior point of the region to
< represent it. The point should never on boundaries/corners.
— One point per region suffices.
— geometry: The 2d shapes you created might be splitted into
— several regions. You can select the geometry to represent all
— the regions in it.

2. selection: After regions are created, you will assign different
— functions to regions using selections.
UnionSelection: Union of all the regions selected below.

points: (Optional) List of [x,y] points representing distinct
— regions.
geometries: (Optional) List of 2d geometry names you created

— above. By listing geometries here, you can select all the
— region this geometry contains.
selections: (Optional) List of other selection names you
— created.
IntersectionSelection: Intersection of all the regions selected
— below.
same parameters as UnionSelection
DifferenceSelection: Select the regions in Add but not in
— Subtract.
add: same parameters as UnionSelection.
subtract: same parameters as UnionSelection.

Finally a yaml file will be like the following sample:
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“Tyaml
geometry:
unil: # Name of this geometry
type: Union
geometries: # create geometries recursively below
uni_ell: # Name of the first ellipse to union
type: Ellipse # Type of this geometry
semiaxes: [2.0, 1.0] # Specific parameters
pos: [1.0, 1.0]
uni_poll: # Name of the second polygon
type: Polygon

table:

= [=l1.,0, =0,3]
- [2.0, -1.0]
- [1.0, 1.0]

linel: # This line splits the ellipse into 2 regions.
type: LineSegment
coordl: [1.0, 2.0]
coord2: [3.0, 1.0]

selection:
sell: # Name of this selection

type: DifferenceSelection

add:
geometries:
- unil # Select all the regions in unil

subtract:
points:
- [2.5, 1.5] # Remove the region where (2.5, 1.5) in. This
— region is part of ellipse but splitted by the line
— segment.

## Geometric Design of a 2D sound wave demultiplexer

u are asked to design a 2D sound wave demultiplexer. The
demultiplexer takes incident sound wave from port 1, and omits
sound wave at port 2 and 3. The objective is to maximize the
difference of sound pressure (on log scale) at two outlet ports,
which is calculated as $1ogl0 (port2.P_{out})-1ogl0 (port3.P_{out})s
with $P_{out}$ being the sound pressure at the outlet ports.

(1001808

e entire pressure acoustic region will be a circle of radius 0.1lm
centered at (0,0). The incident wave comes from the negative
x—direction (9 o'clock). The sound waves are then ommited at 1
o'clock (port 2) and 5 o'clock (port 3) of the acoustic region.

D=

u should design void geometry (material to be removed) so that the
sound wave will propagate through the remaining geometry and
maximize the objective function. You should create a list of basic
geometries and then select from them to form the void regions.
**The Name of the selection must be “void x%x. Keep in mind that
the void geometry should stay inside the acoustic region and at
least 0.15m away from the boundary of the acoustic region.

1000000

The constraints are as follow:

1. After removing the void geometry, the remaining part should still
— be connected.

2. The void geometry should stay inside the acoustic region, and at
— least 0.02m away from the boundary of the acoustic region.

The reward is calculated as follow:
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1. 0 if constraints are violated.

2. $10gl0(port2.P_{out})-1loglO(port3.P_{out})$, the log scale pressure
— difference between port 2 and port 3, if constraints are

— satisfied.

## Example
An example solution is shown below. You should not copy the example
— solution, but you can refer to it to understand the task and
< create better ones. Feel free to add more basic geometries.
T Tyaml
geometry:
barrier:
type: ConvertToSolid
geometries:
cir_ inner:
type: CircularArc
r: 0.08
anglel: -120
angle2: 0
cir_outer:
type: CircularArc
r: 0.06
anglel: -120
angle2: 0
linel:
type: LineSegment
coordl: [0.06, 0.0]
coord2: [0.08, 0.0]
line2:
type: LineSegment
coordl: [0.06%cos (-120xpi/180), 0.06xsin(-120%pi/180) ]
coord2: [0.08%cos (-120xpi/180), 0.08xsin(-120%pi/180) ]
selection:
void:
type: UnionSelection
geometries: [barrier]

D.3 CIRCLE PACKING

Prompt for task Circle Packing

You are an expert software developer tasked with iteratively improving
— a codebase.

Your job is to analyze the current program and suggest improvements
— based on feedback from previous attempts.

Focus on making targeted changes that will increase the program's
— performance metrics.

Respond in the following format: <think>

</think>

<answer>

</answer>.

# Problem Description
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You are an expert mathematician specializing in circle packing
problems and computational geometry. Your task is to improve a
constructor function that directly produces a specific arrangement
of 26 circles in a unit square, maximizing the sum of their radii.
The AlphaEvolve paper achieved a sum of 2.635 for n=26.

EELEE

Key geometric insights:

— In dense regions, circles often follow hexagonal packing patterns,
— with the theoretical maximum density for infinite packing being
— pi/(2sqgrt(3))=0.9069.

- However, when confined to a finite square, **edge effects** disrupt
— perfect symmetry and make pure hexagonal packing suboptimal.

— Optimal arrangements often require xxvariable-sized circles*x*, as
— this can improve space utilization compared to equal radii. Larger
— circles can be placed toward the center, with smaller circles

— strategically fitted near edges and corners.

- Effective designs may use *xlayered or shell-like patterns*x rather
— than strict hexagonal grids. Hybrid approaches|combining regular
< arrangements in dense regions with adaptive adjustments near

— boundaries|are common in the densest known packings.

— The **optimization method*x plays a critical role: physics—inspired
— simulations or algorithms with well-tuned parameters can yield

— better configurations than purely geometric intuition.

— Mathematical research indicates that for certain specific values of
— n, special arrangements can achieve unusually high densities.

You may either designing an explicit constructor of the result or
explore search-based, optimization, or even multi-stage
optimization methods, as long as they can finish running within 1
minutes.

(A

## Current Program
Status: {current_status}
T "python
{current_program}

## Task
Suggest improvements to the program that will lead to better
— performance on the specified metrics.

You MUST use the exact SEARCH/REPLACE diff format shown below to
— indicate changes:

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

You can suggest multiple changes. Each SEARCH section must **exactlyx*x*
— match code in the current program.

Be thoughtful about your changes and explain your reasoning

— thoroughly.

Make sure your rewritten program still contains “construct_packing() "
— function and maintains the same outputs. **You can

— add/delete/modify other functions arbitrarily.xx

If you want to use new packages, please import them. Usable packages:
— scipy, sympy, shapely, pulp, cvxpy, nlopt, deap
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If your code's execution time exceeds 1 minute, you will receive 0
— reward. Pay attention to the runtime efficiency!

IMPORTANT: Do not rewrite the entire program - focus on targeted
— improvements.

D.4 FUNCTION MINIMIZATION

Prompt for task Minimize Function

# Problem Description

You are an expert in optimization algorithms. Your task is to improve
a function minimization algorithm that minimizes a complex

N
— non-convex function with multiple local minima. The function is
— defined in {dimension}-dimensional space with the following

— expression:

T "python

{formula}

## Current Program
Status: {current_status}
T "python
{current_program}

## Task

Suggest improvements to the program that will lead to better
— performance on the specified metrics.

Your code's execution time should not exceed 10 seconds. Pay attention
— to the runtime efficiency!

You MUST use the exact SEARCH/REPLACE diff format shown below to
— indicate changes:

<<<<<<< SEARCH
# Original code to find and replace (must match exactly)

# New replacement code
>>>>>>> REPLACE

Performance is evaluated using:

1. value_score: Closeness to minimum function value: |global_min| /
< (lglobal_min| + |found_value - global_min])

2. distance_score: Proximity to true solution point: 1/(1 +

— distance_to_global_min)

3. standard_deviation_score: Solution stability across runs:

— (1/(l+std_x1) + 1/ (l+std_x2) + ...)/dim

4. speed_score: Execution efficiency: min(l/avg_runtime_in_seconds,
— 10)/10

5. reliability_score: successful_runs/total_runs. Successful run has
— no tracebacks and timeouts.

6. combined_score: x*This is the final reward you received.x* 100%
<« value_score.

If you want to use new packages, please import them.
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Make sure your rewritten program still contains “run_search ()"
— function and maintains the same outputs. You can add/delete/modify
— other functions arbitrarily.

IMPORTANT: Do not rewrite the entire program - focus on targeted
— improvements.

D.5 SYMBOLIC REGRESSION

Prompt for Chemistry tasks

You are an expert software developer. Your job is to write a Python
— function based on feedback from previous attempts.

Write your code in exactly the following format:

" python

# your code

Your code's execution time is limited, so pay attention to runtime

— efficiency!

If you use new packages, please import them.

Ensure the program still contains the func () function and produces the
— same outputs; other functions can be added, deleted, or modified
— freely.

IMPORTANT: The current task is a symbolic regression problem. Write a
— Python expression in func() where parameter scales are as similar
< as possible (use linear scaling or translation if needed). This
— helps later optimization when all parameters are initialized

— randomly in [0,1].

Respond in the following format: <think>

</think>

<answer>

</answer>.

Your task is to evolve a Python function "“func(x, params)”~ that models
— a scientific process, considering the physical meaning and

— relationships of inputs, by predicting output variables based on
< 1nput variables.

The function signature is:

““python
def func(x: np.ndarray, params: np.ndarray) -—> np.ndarray:

- "x° 1s a 2D NumPy array of shape ° (n_samples, 2)°

— "params” is a 1D NumPy array of up to 10 parameters

— The function should return a 1D NumPy array of predictions with
— shape " (n_samples, )"

**Current Problem: xx

Model the dA_dt (Rate of change of concentration in chemistry reaction
— kinetics) using the input features: t (Time), A (Concentration at
— time t)

Thus, “x° contains 2 columns: t (Time), A (Concentration at time t).

The initial version of “func®™ is a simple linear model. Parameters in
— “params® will be optimized externally using the BFGS algorithm

— based on unseen training data.

Your objective is to evolve “func® to improve predictive performance
— on unseen data. Aim for a balance between:
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— x%Accuracy*x: Lower mean squared error (MSE) on training data
— **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
— held-out dataset. Ensure the model is free of potential numerical
— errors (e.g., log0, division by 0).
## Current Program
Status: Initial Program
T "python
def func(x, params):
mmn
Calculates the model output using a linear combination of input
— variables
or a constant value if no input variables. Operates on a matrix of
— samples.

Args:

x (np.ndarray): A 2D numpy array of input variable values,

— shape (n_samples, n_features).
n_features is 2.
If n_features is 0, x should be shape
[ (n_samples, 0).
The order of columns in x must correspond to:
(t, A).

params (np.ndarray): A 1D numpy array of parameters.

Expected length: 10.

Returns:

np.ndarray: A 1D numpy array of predicted output values, shape
< (n_samples, ).

mmn

result = x[:, 0] % params[0] + x[:, 1] *» params[1l]

return result

Prompt for Biology tasks

You are an expert software developer. Your job is to write a Python
— function based on feedback from previous attempts.

Write your code in exactly the following format:

T "python

# your code

Your code's execution time is limited, so pay attention to runtime

— efficiency!

If you use new packages, please import them.

Ensure the program still contains the func() function and produces the
— same outputs; other functions can be added, deleted, or modified
— freely.

IMPORTANT: The current task is a symbolic regression problem. Write a
— Python expression in func() where parameter scales are as similar
— as possible (use linear scaling or translation if needed). This
— helps later optimization when all parameters are initialized

— randomly in [0,1].

Respond in the following format: <think>

</think>

<answer>

</answer>.
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Your task is to evolve a Python function “func(x, params)” that models
— a scientific process, considering the physical meaning and

— relationships of inputs, by predicting output variables based on
— input variables.

The function signature is:

““python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:

— "x° is a 2D NumPy array of shape ~ (n_samples, 2)°

- "params® 1is a 1D NumPy array of up to 10 parameters

— The function should return a 1D NumPy array of predictions with
— shape " (n_samples,)”

**Current Problem: xx

Model the dP_dt (Population growth rate) using the input features: t
— (Time), P (Population at time t)

Thus, “x° contains 2 columns: t (Time), P (Population at time t).

The initial version of “func® is a simple linear model. Parameters in
< “params® will be optimized externally using the BFGS algorithm
— based on unseen training data.

Your objective is to evolve “func® to improve predictive performance
< on unseen data. Aim for a balance between:

— *x%xAccuracy**: Lower mean squared error (MSE) on training data

— **Simplicity*x: Prefer concise, interpretable expressions

Model performance (score = -log_1l0(mse)) will be evaluated on a
— held-out dataset. Ensure the model is free of potential numerical
— errors (e.g., log0, division by 0).
## Current Program
Status: Initial Program
T “python
def func(x, params):
mimn
Calculates the model output using a linear combination of input
— variables
or a constant value if no input variables. Operates on a matrix of
— samples.

Args:

X (np.ndarray): A 2D numpy array of input variable values,

— shape (n_samples, n_features).
n_features is 2.
If n_features is 0, x should be shape
[ (n_samples, 0).
The order of columns in x must correspond to:
(t, P).

params (np.ndarray): A 1D numpy array of parameters.

Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape
s (n_samples, ) .

mmn

result = x[:, 0] % params[0] + x[:, 1] *x params[1l]

return result
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Prompt for Physics tasks

You are an expert software developer. Your job is to write a Python
— function based on feedback from previous attempts.

Write your code in exactly the following format:

T “python

# your code

Your code's execution time is limited, so pay attention to runtime

— efficiency!

If you use new packages, please import them.

Ensure the program still contains the func() function and produces the
— same outputs; other functions can be added, deleted, or modified
— freely.

IMPORTANT: The current task is a symbolic regression problem. Write a
— Python expression in func() where parameter scales are as similar
— as possible (use linear scaling or translation if needed). This
— helps later optimization when all parameters are initialized

— randomly in [0,1].

Respond in the following format: <think>

</think>

<answer>

</answer>.

Your task is to evolve a Python function “func(x, params)” that models
— a scientific process, considering the physical meaning and

— relationships of inputs, by predicting output variables based on
— input variables.

The function signature is:

““python
def func(x: np.ndarray, params: np.ndarray) -—> np.ndarray:

— "x° is a 2D NumPy array of shape ~ (n_samples, 3)°

— "params” 1is a 1D NumPy array of up to 10 parameters

— The function should return a 1D NumPy array of predictions with
— shape "~ (n_samples,)"

**Current Problem: xx
Model the dv_dt (Acceleration in Nonl-linear Harmonic Oscillator)

— using the input features: x (Position at time t), t (Time), v
[ (Velocity at time t)
Thus, “x° contains 3 columns: x (Position at time t), t (Time), v

[ (Velocity at time t).

The initial version of “func®™ is a simple linear model. Parameters in
— “params® will be optimized externally using the BFGS algorithm
— based on unseen training data.

Your objective is to evolve “func® to improve predictive performance
— on unseen data. Aim for a balance between:

— *xAccuracy**: Lower mean squared error (MSE) on training data

— *xSimplicityx*: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a

— held-out dataset. Ensure the model is free of potential numerical
— errors (e.g., log0, division by 0).

## Current Program

Status: Initial Program

T "python

def func(x, params):
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mmwn

Calculates the model output using a linear combination of input

— variables

or a constant value if no input variables. Operates on a matrix of
— samples.

Args:

X (np.ndarray): A 2D numpy array of input variable values,

— shape (n_samples, n_features).
n_features is 3.
If n_features is 0, x should be shape
[ (n_samples, 0).
The order of columns in x must correspond to:
(x, t, v).

params (np.ndarray): A 1D numpy array of parameters.

Expected length: 10.

Returns:

np.ndarray: A 1D numpy array of predicted output values, shape
[ (n_samples, ).

mmn

result = x[:, 0] » params[0] + x[:, 1] * params[l] + x[:, 2] =

— params[2]

return result

Prompt for Material Science tasks

You are an expert software developer. Your job is to write a Python
— function based on feedback from previous attempts.

Write your code in exactly the following format:

T “python

# your code

Your code's execution time is limited, so pay attention to runtime

« efficiency!

If you use new packages, please import them.

Ensure the program still contains the func() function and produces the
— same outputs; other functions can be added, deleted, or modified
— freely.

IMPORTANT: The current task is a symbolic regression problem. Write a
< Python expression in func() where parameter scales are as similar
— as possible (use linear scaling or translation if needed). This

— helps later optimization when all parameters are initialized

— randomly in [0,1].

Respond in the following format: <think>

</think>

<answer>

</answer>.

Your task is to evolve a Python function “func(x, params)  that models
— a scientific process, considering the physical meaning and

— relationships of inputs, by predicting output variables based on

— input variables.

The function signature is:

““python
def func(x: np.ndarray, params: np.ndarray) -> np.ndarray:
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- "x° is a 2D NumPy array of shape ~ (n_samples, 2)°

— "params” is a 1D NumPy array of up to 10 parameters

— The function should return a 1D NumPy array of predictions with
— shape " (n_samples,)”

**Current Problem: xx

Model the sigma (Stress) using the input features: epsilon (Strain), T
— (Temperature)

Thus, “x° contains 2 columns: epsilon (Strain), T (Temperature).

The initial version of “func®™ is a simple linear model. Parameters in
— “params® will be optimized externally using the BFGS algorithm
— based on unseen training data.

Your objective is to evolve “func® to improve predictive performance
— on unseen data. Aim for a balance between:

- x%Accuracy*x: Lower mean squared error (MSE) on training data

— **Simplicity**: Prefer concise, interpretable expressions

Model performance (score = -log_10(mse)) will be evaluated on a
— held-out dataset. Ensure the model is free of potential numerical
— errors (e.g., log0, division by 0).
## Current Program
Status: Initial Program
T python
def func(x, params):
mmn
Calculates the model output using a linear combination of input
— variables
or a constant value if no input variables. Operates on a matrix of
— samples.

Args:

x (np.ndarray): A 2D numpy array of input variable values,

— shape (n_samples, n_features).
n_features is 2.
If n _features is 0, x should be shape
[N (n_samples, 0).
The order of columns in x must correspond to:
(epsilon, T).

params (np.ndarray): A 1D numpy array of parameters.

Expected length: 10.

Returns:
np.ndarray: A 1D numpy array of predicted output values, shape
s (n_samples, ) .

mmwn

result = x[:, 0] % params[0] + x[:, 1] * params[1l]
return result

E METHODOLOGICAL CHALLENGES AND COMPARATIVE ANALYSIS OF
RL-EA INTEGRATION

This appendix details the specific technical challenges associated with integrating Reinforcement
Learning (RL) and Evolutionary Algorithms (EAs). We further analyze why a naive sequential com-
bination (e.g., AlphaEvolve) fails to scale effectively compared to the proposed HELIX framework,
supported by empirical evidence from the Circle Packing problem.
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E.1 TECHNICAL CHALLENGES AND SOLUTIONS

The integration of RL and EAs presents several non-trivial challenges, primarily stemming from the
conflicting objectives and operational domains of the two paradigms. HELIX addresses these as
follows:

Goal Mismatch and Unification. A fundamental disconnect exists between RL, which learns a
policy mapping states to actions, and EAs, which act as population-based optimization methods
relying on recombination and mutation. Integrating these requires a principled bridge rather than a
naive combination.

* In-Context Learning as a Bridge: HELIX adopts an in-context learning paradigm where
previously discovered high-quality solutions are injected into the prompt as explicit mem-
ory. This transforms the Large Language Model (LLM) into a parameterized mutation
operator, conditioned on historical trajectories.

* Unified Optimization: We employ Group Relative Policy Optimization (GRPO) to train
this mutation operator. GRPO naturally generates diverse rollouts that serve as the popu-
lation for evolutionary selection. Consequently, policy optimization (RL) and evolutionary
search (EA) are coupled within a closed loop: test-time scaling via evolution provides high-
quality data for RL, while RL improves the mutation operator for subsequent evolutionary
steps.

Diversity Estimation in Giant Code Spaces. Traditional evolutionary metrics are ill-suited for
code optimization, where the action space is discrete, high-dimensional, and highly structured.
Measuring individual diversity in this domain is challenging. HELIX resolves this by utilizing an
embedding-based approach to quantify semantic distances between code individuals. We compute
population diversity via k-nearest neighbors (kNN) in this embedding space, providing a scalable
and semantically meaningful metric to guide selection.

E.2 LIMITATIONS OF NAIVE INTEGRATION: A CASE STUDY

To demonstrate why HELIX offers a necessary advancement over “’naive” integration, we compare
it against the AlphaEvolve paradigm. AlphaEvolve represents a sequential approach: post-training
an LLM on general domains followed by applying evolutionary algorithms to downstream tasks
without further policy updates.

We conducted a comparative experiment on the Circle Packing problem (maximizing the sum of
radii for 26 non-overlapping circles in a unit square). We evaluated Direct Prompting (BO64),
OpenEvolve (an open-source reproduction of AlphaEvolve), and HELIX using Qwen 14B and 32B
base models.

Table 2: Performance Comparison on Circle Packing Task

Method Score (Sum of Radii)
Direct Prompt (Qwen 14B) 1.673
OpenEvolve (Qwen 14B) 1.586
OpenEvolve (Qwen 32B) 1.956
HELIX (Qwen 14B) 2.636

As shown in Table[2] OpenEvolve with Qwen 14B performed worse than the Direct Prompt baseline,
despite utilizing significantly more computational resources. Our analysis identifies two critical
failure modes in naive integration of OpenEvolve:

1. Constraints of Initialization Bias. Naive approaches are heavily constrained by their initial
seed solutions. OpenEvolve generates a small set of seed trials (e.g., 5) and iterates upon them.
If these initial trials lack diversity or occupy a low-performance region, the evolutionary process
stagnates in local optima. In contrast, Direct Prompting (BO64) benefits from 64 i.i.d. evaluations,
offering a broader initial coverage that the naive evolutionary process failed to surpass.
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2. Rejection of Novelty and Destructive Changes. A more subtle failure mode is the re-
jection of potentially high-reward strategies that require initial “destructive” changes. In our
Qwen 32B OpenEvolve experiment (4,147 trials), the model predominantly attempted to ad-
just coordinates directly. Only 12 trials (0.3%) attempted a radically different approach using
scipy.optimize.minimize.

* The Failure: All 12 trials initially yielded a reward of 0.0 due to minor compilation errors
or timeouts. Traditional evolutionary selection, driven by immediate reward or superficial
code features (e.g., length), discarded these candidates.

* The Consequence: The system failed to explore the scipy approach, which—once de-
bugged—is capable of yielding scores > 2.0.

E.3 THE HELIX ADVANTAGE
HELIX overcomes the aforementioned limitations through two specific mechanisms:

1. Explicit Diversity Accounting: By using an embedding model to distinguish methods
semantically, HELIX assigns a high Diversity Score to the rare scipy-based solutions,
even when their immediate reward is low. This ensures they are retained in the population
for further mutation/debugging.

2. Parameter Learning via RL: Once a diversity-preserved rollout successfully fixes the
implementation bug (generating a high-reward solution s}, ;), HELIX utilizes this trajec-
tory for RL updates. This update increases the probability of the policy generating similar
sophisticated methods in future steps.

This establishes a positive feedback loop: diversity metrics preserve potential innovation, and RL
consolidates successful realizations of that innovation into the model parameters, allowing HELIX
to break out of local optima where naive methods stagnate.

F THEORETICAL ANALYSIS OF THE FRAMEWORK

In this section, we employ a simplified mathematical model to provide theoretical insights into the
advantages of our algorithm in solving complex scientific problems. We demonstrate the efficiency
of HELIX in discovering optimal solutions compared to baseline methods.

F.1 MATHEMATICAL SETUP AND PRELIMINARIES

First, we establish the geometric and probabilistic foundations of the problem. For a given problem
q, we assume the existence of the following structures:

* Solution Space: A set of solutions S, which can be viewed as a simply connected open
manifold in a complex space.

* Reward Function: A continuous function R : § — R™.
* Embedding: A mapping ® : S — R" that maps the solution space to an Embedding Space
R™, satisfying:
1. Continuity: For any s1, s2 € S derived via similar methods, their embeddings v; =
®(s1) and vy = P(s2) are adjacent in R™.
2. Injectivity: Distinct solutions have distinct embeddings.
3. Open Map: ® maps open sets in S to open sets in R".

We define the reward function in the embedding space R™ as follows. For any v € R™:
R(®t(v)) vedS)

where s = ®~1(v) is the solution corresponding to v. Restricted to the image set, ® : S — &(S) is
a bijection, making its inverse well-defined. Given the continuity of ® and R, and the open mapping
property of @, r(v) is continuous.
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Definition F.1 (LLM Transition Process). For a solution s, an LLM parameterized by 6 transforms
the solution by outputting an action a ~ my(-|s), resulting in s’ = T'(s, a). Based on this, we define
the LLM Transition Function on R™ as a stochastic process:

Ty :R" = (Q—=R"), T;(v)=®T(® *(v),a)), wherea~ m(:|® *(v)). (30)
For tractability, we approximate Ty as an independent Normal distribution:

Ty (v) ~ N(v+ dg(v), o). (31)

This implies each transition follows v — v + dp(v) + &, where £ ~ AN(0,0I). This Gaussian
approximation is justified as LLMs typically generate modest modifications to the current solution,
making local approximations valid in the embedding space.

F.2 THEORETICAL ANALYSIS OF GRPO

F.2.1 SETUP AND ASSUMPTIONS

In the GRPO method, since the prompt is fixed, the model evolves solely from an initial solution
vo. The transition samples from N (vg + dp(vg), oI). GRPO estimates the gradient of the reward
function near v = vy + Jp(vg) and updates the model parameters. The effective update dynamics in
the embedding space can be described as:

d6(vo) = dg(vo) +nVur(vo + dg(vo)), (32)
which simplifies to the gradient ascent process v <— v + 7V, r(v), where 7 is the learning rate.

To analyze convergence, we introduce the following assumption regarding the reward landscape.

Assumption F.2 (Reward Landscape). We assume the reward function 7(v) consists of two Gaus-
sian peaks, representing a local optimum (v;,.) and a global optimum (v ):

_ 2 _ 2
P(0) = Aye exp (_vazii> Ay exp <_||vvtl) _ (33)

2uw? 2uw?

Let L = ||vopt — Vioc|| be the distance between the optima.

Theorem F.3 (Convergence to Local Optimum of GRPO). Let vg be the initial solution for GRPO.
GRPO will converge to the local optimum near vy, if the following conditions are met:

1. Separation: L > 2w. There is sufficient separation between the global and local optima.

. 2 . . . .
2. Amplitude: Ajoc > Aopt - 5 - exp (—f?) The local optimum is not significantly weaker
than the global optimum locally.
3. Initialization: Decomposing the initial solution as vy = Vjoc + V.1 + Y0 (Vopt — Vioc), Wwhere
2
v L (Vopt — Vioe), we require o < Yoarrier & % — % In ’2‘,””. This implies the initial
solution is geometrically closer to the local optimum’s basin of attraction.

Comment. These assumptions hold in many scientific problems where distinct methods (local vs.
global) have a large semantic gap (L > 2w), and initial “naive” solutions naturally fall closer to
simpler local optima. This illustrates that GRPO, lacking memory or population mechanisms, is
prone to trapping in local optima.

F.2.2 PROOF OF THEOREM

We decompose the gradient of (v). Let v be parameterized as v = vjoc + v 1 + Y(Vopt — Vioe). The
gradient Vr(v) satisfies:

Aoc v_voc2 Ao UV — Vo 2
Vr(v) = ﬁ(vloc —v)exp <— ” 2wl2 ” > + wgt (Vopt — v) exp <_||2prt||> . (34
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Projecting onto the line connecting the optima (Vopt — Vioc):

AuocL? VL2 + o]
(Vr(v), Vopt — vloc> = _7’)’ exp <—2w2
Aope L? 1—9)2L2 + |lvy|?
+ =2 (1—w)eXp<_( ) “ o]l ) 35)

Projecting onto the perpendicular component v :
v lv — vioe|® [[v = vopt |1
(Vr(v),v.) = — 7 Ao | — 02 + Aopt | — 52 . (36)
First, analyzing the dynamics of v :

d .
S lvall? =2(01,01) o« —C)lur|* <0. (37)

Regardless of initialization, v decays exponentially to 0. The system converges to the linear mani-
fold connecting v;,. and vy;. Assuming v | = 0, the dynamics of + are governed by:

(1- 7)2L2> _

2?2

d 2L2
l X _’yAloc exp <_;w2 ) + (1 - W)Aopt eXp (_

dt (38)

Solving for equilibrium points (‘jl—'z = 0) yields a stable local equilibrium near v = 0, an unstable

saddle point Ypgrrier & % — 2”—2 In ’:j"t , and a stable global equilibrium near v = 1. If v < Vparrier»
the system flows to the local optimum. ]

F.3 THEORETICAL ANALYSIS OF EVOLVE AND HELIX
F.3.1 SETUP: UNIFIED DRIFT-DIFFUSION AND SELECTION FRAMEWORK

We analyze the iterative processes of Evolve and HELIX by modeling them as continuous-time
stochastic processes. Both algorithms maintain a population P and update it via v’.

* Evolve (Selection-Diffusion): In the Evolve algorithm, the model parameters cannot be
adjusted. Thus, we assume the model has no inherent directional bias towards different
methods of this specific problem (dg(v) = 0). The iteration simplifies to a random walk
v/ = v + g€. At each step, a solution v is drawn from P, and v’ = v + o€ is generated.
Critically, solutions with higher Reward are sampled with a higher probability. We can
model this selection by a weight function w(v) = exp(ar(v)), where « represents the
selection pressure. The new solution is added to the population: P < P U {v'}.

¢ HELIX (Drift-Diffusion): HELIX maintains a population P and dynamically adjusts the
directional bias dy (v). Through the GRPO mechanism, this direction will gradually approx-
imate the gradient Vr(v). Upon sufficient convergence, the HELIX iteration approximates
a guided random walk: v/ = v + nVr(v) + ¢€. In HELIX, we also sample high-Reward
solutions with higher probability, but for mathematical tractability, we assume the selection
weight parameter o = 0, meaning the sampling weight is uniform (w(v) = 1).

The comparison is summarized in Table

Table 3: Comparison of Algorithm Dynamics

Algorithm  Dynamics Equation  Drift D(v) Selection w(v)

Evolve vV =v+0¢ 0 exp(ar(v))
HELIX vV =v+nVr@)+o& nVr(v) 1(a=0)

Theorem F.4 (Stationary Distribution). Assuming the solution space is bounded, as t — oo, the
population distribution p*(v) converges to:
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1. Evolve: Converges to the principal eigenfunction of the associated Schrodinger operator.
Under the WKB approximation (¢ — 0):

Do) = exp (“? | o) - r<u>du> . (9

Vopt

2. HELIX: Converges to a Boltzmann-Gibbs Measure:
. 21
PHeliz(V) O €xp ;r(v) : (40)

Comment on theorem [E4.

1. Concentration and o Scaling. The concentration power of the stationary distributions—defined
as the inverse of their variance—exhibits distinct scaling behaviors with respect to the noise pa-
rameter 0. Specifically, the concentration scales as O(1/0) for Evolve and O(1/0?) for HELIX.
Given that ¢ < 1 in high-precision search contexts, it follows that 1/0% > 1/c. This inequality
indicates that the sampling distribution of HELIX is exponentially more concentrated around the
optimum than that of Evolve. Under identical environmental conditions, HELIX achieves a signifi-
cantly more exhaustive exploration of the highly rewarded vicinity of the optimal solution.

2. Intuitive Comparison (Quadratic Reward). To provide a concrete comparison, we analyze
the behavior under a local quadratic approximation of the reward function, 7(v) = rop — &|jv[|?
(centered at v,,; = 0). Deriving the exact Gaussian forms of the stationary distributions allows for
a direct comparison of their variances, as summarized in Table ]

Table 4: Comparison of Stationary Distributions under Quadratic Reward

Algorithm  Gaussian Form p*(v)  Variance X2 Scaling vs. o
k 2
HELIX X exp <—Z2|’U||2> Y e = ;7{ o o2 (Sharper)
vak o
Evolve x exp | ———||v||? ¥ o= —— o o (Broader
p ( 2% || H FEvo /70[]6 ( )

The ratio of their variances is given by:

E%{elix _ 02/277k _ \/a R~
Ejifvo CT/ \% ak 277\/?5
As o — 0, this ratio tends to zero. This rigorously confirms that HELIX’s mechanism—utilizing the

gradient for directional movement—provides a superior capacity for stabilizing and concentrating
the population compared to Evolve’s reliance on scalar selection alone.

(41)

3. Potential for Further Reinforcement. It is worth noting that the current analysis assumes a
uniform selection weight for HELIX (o« = 0). If we were to incorporate a non-trivial selection
weight w(v) = exp(ar(v)) into the HELIX framework, the final stationary distribution would
theoretically become even more concentrated. Although a quantitative closed-form solution for
this combined Drift-Diffusion-Selection process is mathematically intractable, qualitative analysis
suggests that this would further reinforce HELIX’s focus and exploitation capabilities within high-
reward regions.

F.3.2 PROOF OF THEOREM [E4]

Part I: HELIX (Drift-Diffusion). The dynamics follow the Langevin Equation dv; = nVr(vy)dt+
odW . The probability density p(v,t) evolves via the Fokker-Planck equation:

9p _

2
V. (p- I o2
Frie V-(p-nVr(v))+ 5 Vp. (42)
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At steady state (Op/90t = 0), the probability flux J vanishes:

Vp* 2n
e = Vrv). (43)

2
J=np*Vr(v) — %Vp* =0 =

Integrating both sides yields In p*(v) = %r(v) + C, confirming the Boltzmann distribution.

Part II: Evolve (Selection-Diffusion). The discrete selection-mutation process converges to the
Replicator-Mutator Equation in continuous time:

o 2
8—1? = %V2p +a(r(v) —7)p. (44)
The stationary distribution p* satisfies the Schrodinger-like equation (where ¥ = ar):

2
%V2p* + ar(v)p* = Ep*. (45)

Using the WKB Ansatz p*(v) = C'(v) exp(—S(v)/0), and substituting into the equation, the lead-
ing order terms (o — 0) yield the Hamilton-Jacobi equation:

1
SIVSIP +ar(v) = B. (46)
Setting the ground state condition at v, gives E = ar(vep). Solving for V.S:
IVS(@)]| = /20(r(vopr) — (). 7)
Integrating along the path from v, gives the action S(v), yielding the final asymptotic form for
PEuo: O

G FORMALIZED ALGORITHM

In this appendix, we provide the detailed procedural description of the HELIX framework. Al-
gorithm [I] summarizes the full workflow, including sampling, prompt construction, model rollout,
reinforcement learning updates, diversity estimation, and evolutionary population selection. These
details complement the main text and offer a complete specification of the method.

H EXAMPLE OF MODEL OUTPUT
We present examples of the best solutions found by our framework across different task categories.

These visualizations highlight how HELIX generates high-quality and interpretable outputs in di-
verse scientific domains.

H.1 PHYSICS SIMULATION TASKS

Acoustic demultiplexer. Figure [14] displays the acoustic pressure field of our best-performing
demultiplexer, which achieves a reward of 14.260.

Iron core torque optimization. The best iron core design is shown in Figure[I5] where the mag-
netic flux density norm reaches a reward of 11.045.

Beam design. Figure[I6|illustrates the von Mises stress pattern of the best beam structure discov-
ered, which achieves a reward of 17.298.

Meta-material optimization. The temperature distributions of the optimized meta-material under
two loading conditions are presented in Figure 17/} yielding a reward of 1.278.

Inductor design. The optimized inductor is visualized in Figure[I8] with a magnetic flux density
norm field corresponding to a reward of 9.609.
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Algorithm 1 HELIX Framework

Require: Problem description p; initial solution(s) s; batch size B; GRPO group size GG; number of

samples in prompt n; transition function 7'; reward function R; feedback function F'; embedding
model E.

1: Initialize dataset Dy = {s0}.

2: Initialize population Py = Dy.

3: Initialize policy model parameters 6.

4: for iterationt = 0,1,2,... do

5: Sample B solutions from P, obtaining {s; ;}2 ;. > Prompt Construction

6: fori =1to B do

7: Retrieve n ancestral states of s; ;: {f®) (st,i)}z;ll.

8: Construct prompt:

¢; = ConstructPrompt({p} U {s¢,;, R(st,:), F(s1,4)} U
{70 (500, RUFM (500)), F(F P (s00) 3020

9: end for
10: fori =1to B do > Model Rollout and Evaluation
11: for j =1to Gdo
12: Generate action a; ; ~ mg(- | ;).
13: Obtain new solution sy11,;,; = T(8¢,4, a5 5).
14: Evaluate reward 7441 ; j = R(S¢41,i,)-
15: Record feedback fii1,i; = F(St41,i,5)-
16: end for
17: end for
18: fori=1to B do > Reinforcement Learning Update
19: for j =1to Gdo
20: Compute normalized advantage:

By Tt~ mean; {r41,,;}
1 = )
g stdj{rt+17i,j}
21: end for
22: end for
23: Update policy: 0 < 0 — v - Vg LGRrPO-
24: fori = 1to B do > Diversity Estimation
25: for j = 1to G do
26: Compute embedding hy1; = E(St41,i,5)-
27: Compute diversity score Div(s;41,;,;) (as in Eq. (6)).
28: end for
29: end for
30: Update dataset: Dy41 < Dy U {S¢41,i5}- > Population Update
31: Use NSGA-II to select next population:
Piy1 = SelectTopngga.ir U D,
0<s<t+1

32: end for

H.2 CIRCLE PACKING TASKS

Packing in square. As shown in Figure[T9] our framework successfully packs 26 circles inside a
square, achieving a sum of radii of 2.6359830849 and surpassing the previous world record.
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Figure 14: Acoustic pressure distribution in the optimal acoustic demultiplexer design obtained by
our framework, with reward 14.260.

Packing in disk. Figure 20| demonstrates the packing of 26 circles inside a disk, reaching a total
radius sum of 4.664465.

H.3 MACHINE LEARNING TASKS

We further demonstrate how our framework can be applied to classical machine learning problems,
using both classification and regression benchmarks. The first example focuses on the Adult dataset,
where we design a rich set of engineered features that combine polynomial transformations, ratios,
interaction terms, and domain-specific indicators. This structured feature space, coupled with a
LightGBM classifier and hyperparameter tuning, enables our model to achieve a strong performance
of 82.07 in macro F1 score (Figure ).

For regression, we turn to the Boston Housing dataset. Here, we integrate robust preprocessing with
advanced feature transformations. Missing values in numeric features are imputed with KNN and
scaled robustly, while categorical variables undergo smoothed target encoding. Additional interac-
tion and polynomial features are then injected through a transformer pipeline. With these enhance-
ments, our model coupled with an XGBoost regressor attains a reward of 1.742, corresponding to
an RMSE of 1.813 (Figure 22).

I LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid writing and polishing the manuscript. All
research ideas, experiments, and analyses were conceived and conducted by the authors, who take
full responsibility for the content.
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Figure 15: Magnetic flux density norm field for the optimized iron core configuration identified by
our framework, achieving reward 11.045.
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Figure 16: Von Mises stress distribution of the optimized beam design obtained by our framework,
with reward 17.298.

(a) Load 1 (b) Load 2

Figure 17: Optimized temperature fields of the meta-material designed by our framework under two
different load conditions, achieving reward 1.278.
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Figure 18: Magnetic flux density norm field of the best inductor configuration identified by our

framework,

achieving reward 9.609.
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I def engineer_features (X):

5

3

20

39

41

features = X.copy ()
num_cols = [col for col in X.columns if X[col].dtype != 'object' and
col not in ['fnlwgt', 'education-num']]

# Core interaction features

features|['age_hpw_product'] = features['age'] * features['hours-per-
week ']
features|['capital_total'] = features|['capital-gain'] + features('

capital-loss']
features['log_fnlwgt'] = np.log(features['fnlwgt'] + 1)
# Enhanced polynomial features

for col in ['age', 'hours-per-week', 'capital-gain', 'capital-loss']:
features[f'{col}_sqg'] = features[col] #*x* 2
features[f'{col}_ cb'] = features[col] xx* 3
# Age-based features with log transformation
features['log_age']l = np.log(features['age'] + 1)
# Capital features with log transformations
features|['capital_gain'] = np.log(features['capital-gain'] + 1)
features|['capital loss'] = np.log(features['capital-loss'] + 1)
# Binned features for age and hours per week
features|['age_group'] = pd.cut (features(['age'], bins=5, labels=False)
features|['hour_group'] = pd.cut (features|['hours-per-week'], bins=5,

labels=False)
# Economic status features combining multiple variables

features['economic_status'] = (features['age'] / features]['hours-per-—
week']) x (features|['capital_total'])

# Additional indicators for capital gains and losses
features|['has_capgain'] = (features|['capital-gain'] > 0) .astype (int)
features|['has_caploss'] = (features['capital-loss'] > 0) .astype (int)
# Professional education indicator

features|['isProfessional'] = ((features['education'] == 'Prof-
specialty') | (features['education'] == 'Exec-managerial') | (
features|['education'] == 'Assoc-acdm')) .astype (int)

# Managerial education indicator

features|['isManagerial'] = ((features['education'] == 'Exec-—
managerial') | (features|['education'] == 'Assoc-voc')) .astype (int)

# Interaction between numerical features

interaction_cols = ['age', 'hours-per-week',6 'capital gain', '

capital_loss']
for 1 in range(len(interaction_cols)) :
for j in range(i+l, len(interaction_cols)):

coll = interaction_cols[i]
col2 = interaction_cols[j]
features[f'{coll}_x_ {col2}'] = features[coll] * features[col2

]

# Ratio and difference features

features|['capital_gain_ratio'] = features['capital_gain'] / features]|
'capital_loss'].replace (0, 1)
features|['capital_diff'] = features|['capital_gain'] - features]|['

capital_loss']

return features

Figure 21: Python code of feature engineering for solving classification task on Adult dataset. To-
gether with a LGBMClassifier and parameter search, our model achieved 82.07 marco f1 score.
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# Engineer more comprehensive interaction and polynomial features
def create_engineered_features (df) :
# Interaction features

[ S T

df ['RM_LSTAT'] = df['RM']  df['LSTAT']

df ['NOX_DIS'] = df['NOX'"'] = df['DIS']
6 df['CRIM DIS'] = df['CRIM'] = df['DIS']
7 df ['INDUS_NOX'] = df['"INDUS'] = df['NOX']
8 df['"CHAS_RM'] = df['CHAS'] % df['RM']
9 df ['AGE_DIS'] = df['AGE'] * df['DIS']
10 df['"RAD_NOX'] = df['RAD'] % df['NOX']
11 df ['PTRATIO_RM'] = df['PTRATIO'] » df['RM']
12 df ['INDUS_CHAS'] = df['INDUS'] * df['CHAS']
13 df ['RAD_DIS'] = df['RAD'] * df['DIS']
14 df ['RAD_CHAS'] = df['RAD'] = df['CHAS'] # New interaction
15 df ['CRIM_CHAS'"] = df['CRIM'] x df['CHAS'] # Enhanced interaction
16 # Polynomial features
17 df ['"NOX_SQ'] = df['NOX'] #** 2
18 df ['RM_SQ'] = df['RM'] *x*x 2
19 df ['"LSTAT_SQ'] = df['LSTAT'] *x* 2
20 df ['NOX_CUBED'] = df['NOX'] ** 3
21 df ['RM_CUBED'] = df['RM'] *x 3
22 df ['LSTAT_CUBED'] = df['LSTAT'] *x 3
23 df ['NOX_FOUR'] = df['NOX'] *x 4 # Higher degree polynomial
24 return df

25

26 engineered_features_transformer = Pipeline ([

27 ('engineer', FunctionTransformer (create_engineered_features))

28 1)

29

30 # Preprocess numeric features

31 numeric_transformer = Pipeline ([

32 ("imputer', KNNImputer (n_neighbors=3, weights='uniform')),

33 ("scaler', RobustScaler())

34 1)

35

36 # Preprocess categorical features

37 categorical_transformer = Pipeline ([

38 ("imputer', SimpleImputer (strategy='mode')),

39 ('target_encode', FunctionTransformer (lambda df: df.astype (object).
where (df .notna (), df.mode () .iloc[0]))

43 # Combine transformations

44 preprocessor = ColumnTransformer (

45 transformers=[

46 ('eng', engineered_features_transformer, numeric_features),
47 ("num', numeric_transformer, numeric_features),

48 ('cat', categorical_transformer, categorical_features)

49 1,

50 remainder="drop'

Figure 22: Key pre-processing steps the model implemented on Boston Housing dataset. Together
with a XGBRegressor, the model achieved reward of 1.758, which means 1.747 in RMSE.
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