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ABSTRACT

Large language models (LLMs) with reasoning abilities have demonstrated grow-
ing promise for tackling complex scientific problems. Yet such tasks are inherently
domain-specific, unbounded and open-ended, demanding exploration across vast
and flexible solution spaces. Existing approaches, whether purely learning-based
or reliant on carefully designed workflows, often suffer from limited exploration
efficiency and poor generalization. To overcome these challenges, we present HE-
LIX—a Hierarchical Evolutionary reinforcement Learning framework with In-
context eXperiences. HELIX introduces two key novelties: (i) a diverse yet high-
quality pool of candidate solutions that broadens exploration through in-context
learning, and (ii) reinforcement learning for iterative policy refinement that pro-
gressively elevates solution quality. This synergy enables the discovery of more
advanced solutions. On the circle packing task, HELIX achieves a new state-of-
the-art with a sum of radii of 2.635983 using only a 14B model. Across standard
machine learning benchmarks, HELIX further surpasses GPT-4o with a carefully
engineered pipeline, delivering an average F1 improvement of 5.95 points on the
Adult and Bank Marketing datasets and a 40.5% reduction in RMSE on Boston
Housing.
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Figure 1: The figure demonstrates how our framework progressively discovers new insights and
refines solutions over iterations. (a): Reward curve for the housing dataset optimization, where
improvements are achieved through iterative adoption of better models, parameter tuning, and fea-
ture engineering, with the final reward of 1.758 corresponding to an RMSE of 1.747. (b): Reward
curves for the beam and inductor design tasks, where the algorithm explores novel geometries and
combines favorable structural features to enhance performance.
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1 INTRODUCTION

Solving complex scientific problems with large language models (LLMs) is an important and in-
creasingly active research direction (Forootani, 2025). By leveraging and enhancing their reasoning
capabilities, LLMs have demonstrated promising results in tackling challenging scientific tasks,
such as symbolic regression (Shojaee et al., 2024), molecular generation (Liu et al., 2024), and diffi-
cult mathematical optimization problems (Ahmed & Choudhury, 2024). Addressing such problems
holds the potential to advance the boundaries of human knowledge and reshape scientific discovery.

While LLMs have shown promising applications, complex scientific problems remain particularly
challenging due to three intrinsic characteristics. First, they are domain-specific, with unique envi-
ronments and problem-specific constraints that differ across various tasks. Second, they are open-
ended, requiring exploration of vast and flexible solution spaces. Third, they are unbounded, often
with no known or guaranteed global optimum.

To address these challenges, we argue that a powerful LLM for solving complex scientific prob-
lems must possess three corresponding key abilities: (1) learning from experience, i.e., it should
enable task-specific policy adaptation by incorporating feedback from previous trials, addressing
the domain-specific nature of each problem. (2) Balancing quality and diversity, i.e., it should
maintain a diverse population to thoroughly explore the vast and flexible solution spaces inherent in
open-ended tasks. (3) Exploration based on the shoulder of giants, i.e., it should iteratively build
upon existing high-quality solutions to extend the known limits of unbounded problems.

However, recent works largely lack the capabilities outlined above, limiting their effectiveness on
complex scientific problems. Existing approaches fall into two categories. Post-training methods
(e.g., SFT, RLVR) fine-tune LLMs on domain-specific datasets, as in AlphaCode (Li et al., 2022) and
Deepseek-R1 (Ren et al., 2025), achieving strong results in code generation and mathematical rea-
soning. Yet such methods often suffer from entropy collapse (Cui et al., 2025) and, as shown in Yue
et al. (2025), rarely move beyond the base model’s capabilities. This makes it difficult to discover
fundamentally new solutions, especially when sparse rewards further limit exploration. Workflow-
driven approaches embed LLMs in predefined pipelines to improve task-specific performance. Ex-
amples include integrating genetic algorithms with LLMs for enzyme discovery (Nana Teukam et al.,
2025), establishing LLM-driven evolutionary loops such as LLaMEA (van Stein & Bäck, 2024), or
applying evolutionary strategies to prompts (Agrawal et al., 2025). While effective on narrow tasks,
these systems are highly sensitive to workflow design and rely on static pretrained knowledge, mak-
ing it hard to reuse past discoveries to guide iterative search. Both categories thus struggle to gen-
eralize in open-ended scientific domains where efficient exploration and continual refinement are
essential.

To this end, we propose HELIX—a Hierarchical Evolutionary reinforcement Learning framework
with In-context eXperiences. Inspired by GRPO, HELIX updates the LLM policy using reward sig-
nals to progressively improve solution quality. Candidate solutions are embedded using a pretrained
model, and their diversity is estimated via KNN similarity. NSGA-II is then applied to maintain a
population that balances high reward and diversity. Finally, HELIX leverages the model’s in-context
learning ability by incorporating information and feedback from previous trials into the prompt,
enabling iterative improvement of current solutions.

In experiments, we evaluated HELIX on 19 tasks across five diverse categories. Compared with
strong task-specific baselines and advanced proprietary models such as GPT-4o, HELIX achieves
superior performance on 16 tasks, demonstrating its ability to iteratively refine solutions and update
its policy towards better results. Further analysis via ablation studies confirms that each component
of HELIX contributes critically to performance. Notably, success on these unbounded and open-
ended tasks suggests that iterative, diversity-aware exploration can provide useful insights for other
scientific and engineering problems.

2 RELATED WORK

Reinforcement learning of LLMs. Training LLMs or LLM-based agents with reinforcement
learning (RL) has recently attracted significant attention. This includes reinforcement learning
from human feedback (RLHF) to align models with human preferences, as well as RL with veri-
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fiable rewards (RLVR) to enhance reasoning, mathematical problem-solving, and coding capabil-
ities. Beyond improving reasoning, RLVR-style training can also elicit new capabilities such as
tool use (Feng et al., 2025) and information retrieval (Jin et al., 2025). A representative method is
GRPO (Shao et al., 2024), which normalizes rewards within groups of samples. Variants such as
DAPO (Yu et al., 2025) and Dr.GRPO (Liu et al., 2025) further improve GRPO through refined data
sampling strategies and advantage estimation techniques. While RL can improve generalization in
specific domains, the training process often suffers from decreasing entropy and diversity over time,
hindering effective exploration. Some approaches, such as KL-Conv (Cui et al., 2025), attempt to
address this limitation. However, for complex scientific problems, memory-less RL methods strug-
gle to leverage solutions that have already been discovered, making it difficult to build upon prior
explorations.

Evolutionary algorithms. Evolutionary algorithms are a classic approach for tackling complex
optimization problems. They use ”gene” to represent a solution for the problem and use random
mutation to explore the whole solution space. AlphaEvolve (Novikov et al., 2025) treats code as
the “gene” and applies LLM-driven mutations, successfully integrating LLM agents with evolu-
tionary algorithms—opening the door to solving complex scientific problems. Since then, many
works have adopted similar agent-based workflows to address scientific tasks such as CUDA code
optimization (Lange et al., 2025), drug discovery (Gao et al., 2025), and complex scientific software
usage (Fan et al., 2025; Pham et al., 2025). However, such methods typically require highly problem-
specific workflow logic and prompt design, which greatly limit their effectiveness in solving more
general and complex problems.

3 PROPOSED METHOD

3.1 OVERVIEW

To tackle the challenges of applying large language models (LLMs) to complex scientific discovery
tasks, we propose HELIX, a hybrid framework that integrates reinforcement learning with evolu-
tionary search. The goal is to enable LLMs to efficiently explore large and flexible solution spaces
while maintaining diversity and exploiting previously discovered high-quality solutions. The frame-
work is composed of three complementary modules: (1) A reinforcement learning framework
that updates the policy parameters based on verifiable reward, allowing the model to learn from
experience and progressively improve its reasoning capability. (2) A multi-objective evolution-
ary mechanism that balancing solution quality and diversity, ensuring that the population retains
both high-performing and diverse candidates for further expansion. (3) An in-context learning
mechanism that incorporates multiple past trials into the prompt, enabling the model to build upon
previously discovered solutions and expand its exploration on the shoulder of giants.

We consider the task as an optimization problem that has a solution space of code. Let s ∈ S denote a
candidate solution, represented as code written in a domain-specific language (e.g., Python, YAML,
or other DSLs). We define an objective reward function R(·) which only depends on the current
solution (state). The optimization objective is to find a valid s ∈ S to maximize the reward:

max
s∈S

R(s). (1)

Assume the initial solution (state) is s0. To explore and search new solutions, we use an LLM
policy πθ that takes the problem description, current solution st and previous solutions {sk}k<t as
input and outputs an action a ∈ A, an edit or modification applied to st, to obtain a new solution
st+1 = T (st, a), where T is the transition function. We collect states that are explored to a dataset
D and selectively construct the population P which is used in evolutionary algorithms. Our goal is
to improve the policy’s ability to find better solutions. The objective is defined as follows,

max
θ

Est∼P, at∼πθ
[R(st, at)] , (2)

where R(st, at) = R(st+1) is the reward of the new solution. We leverage GRPO, a reinforcement
learning algorithm, to update LLM policy πθ. To address the exploration–exploitation trade-off
and prevent entropy collapse in RL, we maintain a dataset D ⊂ S of solutions discovered so far

3
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Figure 2: Illustration of HELIX framework. The workflow begins with a dataset containing task
descriptions and a pool of initial solutions, which are taken by LLM as inputs. The LLM will modify
and update the original solution and generate a new one, represented as descendants in lineage tree.
After the evaluation pipeline, samples will be selected by NSGA-II algorithm to construct promising
yet diverse candidate solutions for population evolution. The resulting reward-labeled solutions will
also be used to update policy parameters via reinforcement learning.

and population P ⊂ S as candidates for evolution. At each iteration, let {st+1,i} be all solutions
generated in the t-th iteration.

D ← D ∪ {st+1,i}
P ← SelectTopNSGA-II(D),

(3)

where NSGA-II–style non-dominated sorting ensures retention of high-reward and diverse candi-
dates. This formulation allows the model to iteratively improve its policy while exploiting previ-
ously found high-quality solutions as starting points for further exploration. Figure 2 provides a
brief summary of our method.

3.2 POLICY OPTIMIZATION ALIGNED WITH EVOLUTIONARY SEARCH

As the evolutionary process unfolds, updating the model parameters becomes crucial: it enables
the policy to learn from both successful and failed trials, generate higher-quality solutions, and
dynamically adapt to the shifting input distribution induced by the evolutionary search. Reinforce-
ment learning is particularly suitable in this scientific setting, since open-ended scientific tasks lack
standard answers and typically provide only sparse reward feedback. Motivated by the design of
GRPO (Shao et al., 2024), we develop a reinforcement learning–based policy update mechanism
tailored to our framework. GRPO has proven effective in enhancing LLM reasoning on mathemat-
ical and programming tasks (Guo et al., 2025), and its multi-sample generation naturally provides
diverse reasoning-driven outputs that enrich the evolutionary dataset, making it a natural inspiration
for our method.

Formally, given a query q and the model-generated output sequence oi = oi,1, . . . , oi,|oi| sampled
from the old policy πθold , the GRPO objective is defined as:

JGRPO(θ) = E(q,a)∼D, {oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
j=1

(
min

(
ri,j(θ)Âi,j , clip(ri,j(θ), 1− ϵ, 1 + ϵ)Âi,j

)
− βDKL(πθ∥πref)

)]
.

(4)
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where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the token-level policy ratio, Âi,t is the token-level advantage, ϵ
is the clipping parameter, and β controls the KL divergence penalty against a reference policy πref.

In our framework, each query q is constructed from the task description together with the current
expanded state st, its ancestral states, and the corresponding rewards. Given a query q, the LLM
generates G output sequences oi, where each output corresponds to an action ai that transforms
the current state into a new state st+1,i. The reward signal R(st, a) introduced in equation 2 is
then assigned to the entire generated sequence and further decomposed into token-level advantages.
This integration allows the policy not only to exploit feedback from rewards but also to dynamically
adapt to the evolving population distribution, ensuring that the model remains effective as the search
progresses across increasingly challenging solution spaces.

3.3 EVOLUTIONARY MECHANISM FOR BALANCING QUALITY AND DIVERSITY

In unbounded scientific research tasks, it is crucial to explore multiple promising ideas or directions.
Thus, the optimization process must balance quality, i.e., high-reward solutions that serve as strong
starting points for refinement, with diversity, which sustains broad exploration across the solution
space. We design the evolutionary search algorithm to be a multi-objective optimization that natu-
rally achieves a trade-off by maintaining a population that simultaneously improves in reward and
preserves diverse candidates. Specifically, we innovatively adopt NSGA-II Deb et al. (2002), which
is a powerful genetic algorithm, to filter high quality and diverse samples on the Pareto front of
reward and diversity for subsequent expansion. To further encourage more diverse exploration and
enable more accurate diversity computation, we propose to computate the diversity score based on
its semantic embedding similarity using a pretrained language embedding model.

Diversity measurement. To quantify the diversity of candidate solutions, we first normalize each
solution into a canonical code format and encode it into an embedding vector using a pretrained
embedding model. Let E(s) ∈ Rd denote the embedding of solution s ∈ D. For any solution si,
its diversity score is computed by measuring the average similarity to its k nearest neighbors in the
embedding space:

Div(si) = 1− 1

k

∑
j∈Nk(i)

E(si) · E(sj)

∥E(si)∥∥E(sj)∥
, (5)

whereNk(i) denotes the indices of the k nearest neighbors of si inD, measured by cosine similarity.
A higher Div(si) indicates that si is more distinct from other solutions, thereby contributing to
population diversity.

NSGA-II based selection. Given both reward score R(s) and diversity score Div(s), each can-
didate solution can be mapped to a two-dimensional objective space. We then adopt the NSGA-
II (Deb et al., 2002) algorithm to select high-quality and diverse samples. NSGA-II first applies a
nondominated sorting procedure to partition solutions into multiple fronts based on Pareto domi-
nance, where a solution sa dominates sb if R(sa) ≥ R(sb) and Div(sa) ≥ Div(sb) with at least
one strict inequality. To further ensure diversity preservation within each front, NSGA-II computes
a crowding-distance measure and selects representative samples that are well spread in the objective
space.

By combining nondominated sorting with diversity preservation, the resulting population P retains
candidates that are both high-reward and diverse. This mechanism allows the model to continuously
exploit promising solutions while sustaining exploration across multiple distinct solution trajecto-
ries.

4 EXPERIMENT

In this section, we first introduce the experimental setup, including the tasks we selected for bench-
marking the model’s ability to solve open-ended scientific problems. Then, we present extensive
experiments demonstrating that HELIX effectively enhances model capability, integrates historical
experience, and balances reward with diversity, leading to significant improvements over existing
baselines in solving unbounded and open-ended scientific challenges. Finally, the ablation studies
reveal how different components of the framework work together in a complementary manner.
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4.1 EXPERIMENT SETTING

Tasks. To comprehensively evaluate the model’s capacity for complex scientific reasoning, we
design experiments on five representative categories of tasks. These tasks are particularly suited for
our study because they are unbounded, lacking a guaranteed global optimum, open-ended, requiring
exploration over vast and flexible solution spaces and domain-specific, containing unique constraints
and complex background. Success in these tasks not only demonstrates the model’s ability to search
beyond local optima, but also provides insights that can inspire solutions in broader scientific and
engineering domains.

1. Machine Learning Tasks. We selected three representative datasets: Adult in-
come (Becker & Kohavi, 1996), Bank marketing (Moro et al., 2014) and Boston hous-
ing (Harrison Jr & Rubinfeld, 1978) dataset to evaluate the model’s ability to solve machine
learning tasks. These tasks reflects the open-ended challenge of combining ML algorithms
for novel applications, with potential implications for autonomous scientific workflows.

2. Physics Simulation Tasks. These tasks combine geometric structures design and optimiza-
tion in multi-physics environments in distinct fields. The design space of these problems
has a very high degree of freedom with few global optimal solution.

3. Circle Packing Problems. The objective of these tasks is to maximize the sum of radii of
circles packed within given shapes. It allows multiple feasible arrangements and there is
no proved global optimum solution currently.

4. Function Minimization. It requires LLM to write a code to find the global minimum point
of given functions. Agents can search freely for new mathematical optimization methods
in code space.

5. Symbolic Regression. A benchmark (Shojaee et al., 2025) evaluates the ability of LLMs
to hypothesize underlying expressions for noisy data. The model needs to search among a
vast possible expression set and utilize domain specific knowledge to find solution.

Models. We selected the DeepSeek-R1-Distill-Qwen model family for our experiment due to its
strong reasoning capabilities and manageable size, which is critical for performing complex sci-
entific tasks under computational constraints. Among the model family, the 14B version offers an
optimal balance between efficiency and performance, and was selected as the model in the main
results. For physics simulation tasks that require strong geometric reasoning ability and physical
prior knowledge, we utilize the 32B version of the model.

Baselines. We compare our approach against three key baselines:

1. Direct Prompt: Queries the model directly and selects the best outcome from 64 samples
to establish a performance upper bound of base model.

2. Open Evolve (Sharma, 2025): An open-source implementation of the AlphaE-
volve (Novikov et al., 2025) framework, which uses an evolutionary algorithm with multi-
ple LLM roles (e.g., proposing code mutations, evaluating fitness) to iteratively generate,
test, and evolve code or solutions across generations.

3. Task-Specific Methods: Represents results from established algorithms designed for each
specific problem. Details of these methods can be found in Appendix C.

4.2 MAIN RESULTS

Table 1 presents the results of our methods compared to various baselines. The best results in
each task are highlighted in bold. Since we selected multiple heterogeneous tasks, their evaluation
metrics are not the same. The detailed definitions and specific evaluation criteria are deferred to
Appendix B.

Across the 19 benchmark tasks, our method achieves the best performance on 16 tasks, surpassing
all competing baselines. Compared under the same model settings, our framework consistently out-
performs Direct Prompting across all benchmarks. Against OpenEvolve—the open-source version
of AlphaEvolve—it achieves superior results on 18 tasks. These results clearly highlight the strength

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of main experiments. All values correspond to the best outcome obtained across all
attempts. We use ↑ to indicate that larger values correspond to better performance, and ↓ represents
the opposite. We highlighted the best results in each task in bold. ”NA” denotes non-convergence
or unsuitability for given case.

Task Specific Methods Direct Prompt Open Evolve Ours

Machine Learning

Tasks LightGBM RRL Qwen GPT-4o Qwen GPT-4o -
Adult Income ↑ 80.36 80.72 73.72 76.91 76.90 72.27 82.07

Bank Marketing ↑ 75.28 76.32 0.00 76.91 75.66 78.54 80.65
Boston Housing ↓ 3.258 3.966 3.149 3.031 2.937 2.937 1.747

Physics Simulation

Tasks Parameter Scan Topology Opt Qwen GPT-4o Qwen GPT-4o -
Inductor ↑ 6.111 6.248 2.584 0.001 1.637 1.652 9.609

Beam Bending ↑ 4.771 NA 5.407 4.005 10.793 6.352 17.298
Magnetic Torque ↑ 10.273 NA 0.323 1.201 3.488 1.607 11.045

Periodic Heat ↑ 1.206 NA 1.258 1.255 1.233 1.266 1.278
Demultiplexer ↑ 18.322 23.555 3.364 4.532 12.341 8.645 14.260

Circle Packing
Tasks SLSQP Genetic Algo Qwen GPT-4o Qwen GPT-4o -

Packing in Unit Square ↑ 2.519 2.345 1.673 1.900 1.586 2.611 2.636
Packing in Unit Disk ↑ 4.522 3.896 4.608 3.290 4.604 3.984 4.664

Function Minimization

Tasks SLSQP Trust-constr Qwen GPT-4o Qwen GPT-4o -
Eggholder ↑ 0.705 0.688 1.000 0.959 1.000 1.000 1.000

Mishras Bird ↑ 0.814 0.764 1.000 0.996 1.000 1.000 1.000
Keanes Bump 10d ↑ 0.714 0.692 0.886 0.987 1.000 0.997 1.000
Keanes Bump 20d ↑ 0.603 NA 0.794 0.657 0.596 0.983 1.000
Keanes Bump 30d ↑ 0.594 NA 0.923 0.625 0.677 0.668 0.994

Symbolic Regression

Tasks LLM-SR LaSR Qwen GPT-4o Qwen GPT-4o -
Chemistry ↓ 4.12e-6 9.11e-5 2.66e-5 2.44e-6 1.59e-5 9.52e-6 7.32e-6
Biology ↓ 3.06e-6 1.53e-4 1.26e-4 7.52e-5 1.64e-4 5.31e-5 2.98e-8
Physics ↓ 7.62e-5 9.94e-4 2.71e-4 1.13e-4 2.76e-5 1.22e-4 2.76e-5

Material Science ↓ 3.21e-9 9.23e-6 7.14e-6 1.85e-6 6.99e-7 1.94e-6 4.46e-6

of our framework in solving open-ended scientific problems among various domains compared to
other approaches.

Notably, we observe that the base Qwen models perform relatively poorly on certain tasks such as
Bank Marketing and Magnetic Torque, exhibiting low rewards even in the best of 64 direct trials.
However, our framework significantly improves performance in these cases by leveraging parameter
updates and in-context learning to effectively incorporate feedback from the exploration process.
This demonstrates that our approach can partially overcome the limitations of weaker base models
by iteratively evolving toward superior solutions.

To further assess the competitiveness of our approach against state-of-the-art scientific discovery
systems, we compared it with GPT-4o, one of the most advanced closed-source models. Remarkably,
our method outperforms GPT-4o on 17 tasks, regardless of whether GPT-4o is equipped with multi-
role collaborative reasoning frameworks. These results highlight that our framework can fully ex-
ploit the prior knowledge of smaller models through reinforcement learning, enabling cost-efficient
and effective solutions to complex scientific problems.

In comparison with task-specific methods, which are typically crafted by human experts for par-
ticular domains, our framework still achieves superior performance on 16 tasks. Specifically, in
the circle packing task, we establish a new world record 2.635983 using only a 14B model. This
highlights its ability to iteratively evolve within open-ended solution spaces and to autonomously
uncover novel solutions that go beyond manually designed approaches.

To provide further evidence that our framework effectively integrates reinforcement learning and
evolutionary algorithms, we analyze its convergence behavior on two representative cases: inductor
design and adult income prediction. Figure 3 plots the average reward and validity of model outputs
during training. Both metrics exhibit a clear upward trend: the validity rate rises steadily, showing
that the model increasingly generates outputs that satisfy task constraints, while the average reward
improves, reflecting higher-quality solutions. This dual improvement demonstrates that reinforce-
ment learning progressively strengthens the model’s intrinsic reasoning ability. It also indicates that
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(b) Adult income prediction

Figure 3: Convergence analysis on the Inductor and Adult tasks. The curves show the progressive
improvement of average reward and validity during training, demonstrating that our framework ef-
fectively leverages reinforcement learning feedback and evolutionary dynamics to produce increas-
ingly valid and high-quality solutions.
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Figure 4: Ablation analysis of framework components. (a): Maximum reward achieved by dif-
ferent ablation variants. (b): Curve of epoch-wise maximum reward on the Circle Packing task,
highlighting the critical role of balancing diversity and quality for stable optimization. (c): Curve
of epoch-wise maximum reward on the Boston Housing task, showing the necessity of combining
reinforcement learning with evolutionary guidance.

the quality of the evolving population keeps improving, enabling the model to leverage in-context
feedback as well as intuitions from high-reward solutions to generate better outputs.

4.3 ABLATION STUDY

4.3.1 EFFECTIVENESS OF FRAMEWORK COMPONENTS

To better understand the contribution of each component in our framework, we conduct ablation
studies on the Boston Housing and Circle Packing tasks. We design several controlled variants by
selectively disabling or simplifying parts of the algorithm: TopScore, where only the highest-reward
candidate in the dataset is selected for further evolution; TopDiv, where selection relies solely on
diversity without considering reward; Random, where candidates are sampled randomly from the
population; EvoOnly, where the model parameters are kept fixed and only the evolutionary pipeline
is applied; and TrainOnly, which removes the evolutionary mechanism and in-context prompt-
ing, reducing the framework to pure GRPO reinforcement learning. These variants allow us to
disentangle the relative importance of reward-driven selection, diversity maintenance, evolutionary
population updates, and reinforcement learning in driving overall performance.

Figure 4a reports the maximum reward achieved under different ablation settings. Across both tasks,
all variants perform worse than our full framework, confirming the necessity of each component. We
next analyze the results task by task.

For the Circle Packing problem, high-quality solutions rely on diverse initial starting points for
optimization algorithms. As shown in Figure 4b, eliminating diversity (TopScore) significantly re-
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Figure 5: Scaling analysis of model parameter scale on (a): magnetic torque maximization and (b):
inductor design tasks.

duces reward, since the search quickly collapses into narrow solution modes. In contrast, Random
and TopDiv maintain higher diversity, enabling the model to extend from a richer set of initial states.
However, focusing solely on diversity also leads to instability—visible in the large variance of Top-
Div and Random—whereas TopScore and our full method (Ours) remain relatively stable. This
instability disrupts training and prevents the model from finding strong solutions in later epochs.
These results highlight that balancing diversity and solution quality is critical for solving such prob-
lems.

For the Boston Housing task, strong performance requires careful parameter tuning and complex
feature engineering, which typically emerge from iteratively learning from past experience. As
shown in Figure 4c, disabling either reinforcement learning or evolution severely limits performance.
With EvoOnly, the model remains bounded by its initial capacity and fails to break through training
bottlenecks. Conversely, with TrainOnly, the model cannot effectively accumulate knowledge in
context and collapses during training. These results demonstrate that both parameter updates and
in-context evolutionary guidance are indispensable for helping the model accumulate expertise and
progressively refine its solutions.

4.3.2 SCALING EXPERIMENTS

Here, we discuss the impact of base model size on task performance. We evaluate our framework on
two representative tasks, Magnetic Torque Maximization and Inductor Design, using the DeepSeek-
R1-Distill-Qwen model family with 1.5B, 7B, 14B, and 32B parameters. As shown in Figure 5,
for the magnetic torque task, the reward steadily increases with model size, indicating stronger
reasoning ability and more effective exploration. For the inductor design task, we observe a reward
plateau around 9.6. However, the mean reward continues to grow as model size increases, suggesting
that larger models generate more valid and higher-quality candidates. These results demonstrate that
our framework exhibits scaling property: as the underlying LLM grows, the system can push the
boundaries of scientific discovery by enabling more efficient and higher-quality exploration.

5 CONCLUSION

In this work, we proposed HELIX, a hierarchical evolutionary reinforcement learning framework
with in-context experiences. By integrating reinforcement learning, evolutionary selection, and in-
context trial incorporation, HELIX effectively balances exploration and exploitation, enables task-
specific adaptation, and iteratively refines solutions. Extensive experiments across 19 tasks in five
diverse categories demonstrate that HELIX consistently outperforms strong task-specific baselines
and advanced proprietary models. Overall, HELIX shows strong potential for advancing open-
ended scientific discovery by enabling iterative, diversity-aware exploration. Looking ahead, it could
provide a foundation for broader applications in engineering, optimization, and autonomous research
systems.

9
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in Appendix A and Appendix B.
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Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Thang D Pham, Aditya Tanikanti, and Murat Keçeli. Chemgraph: An agentic framework for com-
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A TRAINING AND EVALUATION DETAILS

Training. We primarily use DeepSeek-Distill-Qwen-14B and 32B as the backbone models in our
experiments. The models are fine-tuned with the VERL framework (Sheng et al., 2024) under the
GRPO algorithm. Each model is trained for 80 epochs with a fixed learning rate of 1 × 10−6,
updating all parameters. We set the KL coefficient in GRPO to 1× 10−3 and the number of rollouts
to 16. The rollouts are generated via VLLM (Kwon et al., 2023) backend with temperature equals
to 1.0 and top p equals to 0.95. Training was conducted using eight A100 GPUs for 14B models
and sixteen H100 GPUs for 32B models. For training efficiency, we use Pytorch FSDP (Zhao et al.,
2023) with parameter offload and optimizer offload. Gradient checkpoint and Flash-Attention (Dao,
2024) are used by default.

Evaluation. The evaluation is performed on a Slurm Workload Manager system. For each job,
we allocate 4 Intel(R) Xeon(R) Platinum 8168 CPUs for execution and impose time limits for each
task: five minutes for physics simulation, two minutes for machine learning and function minimiza-
tion, and one minute for circle packing and symbolic regression. The execution time includes the
time for task-dependent evaluators to calculate reward. For the detailed evaluate metric and reward
calculation, please refer to Appendix B.

B DEFINITION AND EVALUATION OF PROBLEMS

In this section we explain the detailed problem definition and evaluation metrics of all the tasks used
in the experiment.

B.1 PHYSICS SIMULATION

To test the model’s capacity for geometric reasoning and ability to utilize physics prior knowledge
to discover better designs, we proposed the following physics simulation tasks. These tasks mainly
require the model to generate a yaml representation of a complex geometry under certain constraints
to maximize the reward. We utilize COMSOL Multiphysics® (COMSOL AB, 2024), a commercial
FEA software for industrial multiphysics simulations, for the evaluation backend.

B.1.1 ACOUSTIC DEMULTIPLEXER

This task aims to design an acoustic demultiplexer. The demultiplexer is a data distributing device
which takes acoustic energy from the input port and distributes different frequency bands to the
specific output port. The model is asked to propose the cavity geometry within a circular domain as
seen in Fig. 6 to maximize the acoustic pressure at output port 2 while minimizing the pressure at
output port 3. The input acoustic pressure level is set to 1 Pa at port 1, and the frequency level is set
to 7500 Hz.

The model is guided by the following reward R where Pi is the power output at port i, prms is the
Root Mean Square (RMS) pressure field, ρ is fluid density, and c is sound speed.

P =

∫
port

p2rms

ρc
dl

R =
log10(P2)− log10(P3)

0.292

(6)

We use a value of 0.292 on the denominator of Eq. 6 to normalize the reward. And Fig. 6 shows
a symmetric design with 7 circular cavities in the computation domain, producing equal acoustic
pressure at the two output ports and thus R = 0. Notice that LLM is not limited by the circular
cavity pattern, and is prompted to freely explore any viable cavity geometries within the computation
domain.

B.1.2 MAGNETIC TORQUE

This task aims to design the geometry of an iron core that generates large torque when subjected
to a uniform magnetic field. Fig. 7 shows the problem setting, an example iron core geometry
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Figure 6: The RMS pressure field of an acoustic demultiplexer at frequency level 7500 Hz. The
RMS pressure field in log scale is proportional to the acoustic power.

and the corresponding magnetic flux density norm field. A uniform magnetic field intensity of
H = [0, 1e5] A/m is applied to the circular boundary. The iron core possesses a large permeability
µ ≫ µ0 distorts the magnetic flux density field B within the circular air domain. The distorted B
thus applies a torque on the iron core, which can be obtained from Comsol by solving the static
Maxwell’s equations.

Figure 7: The magnetic flux density field generated by an iron core subject to a uniform magnetic
field boundary condition. The distorted magnetic flux density field then applies a torque on the iron
core.

To guide the model reinforcement learning and evolutionary search, the following reward R is com-
puted as below where T is Maxwell stress tensor, r is position vector, and τ represents magnetic
torque which is simplified to τz in 2D simulations:

T =
1

µ0
(BB− 1

2
B2I)

R =
||τ ||

9241.99 ·A
=

1

9241.99 ·A
||
∫
S

r× (T · n̂)dA||
(7)
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We use a value of 9241.99 on the denominator of Eq. 7 to normalize the reward. Notice that a
perfectly symmetric iron core (for instance a circle) would have τz = 0. Therefore, we expect to
train and evolve the LLM to produce a highly irregular iron core geometry to generate large magnetic
torque values. We set a minimum area of 2e−4 m2 to avoid naive designs.

B.1.3 BEAM BENDING

This task aims to design the cross section geometry of a cantilever beam subject to a superposed
loading of bending moments Mx and My , shear forces Tx and Ty along the two in-plane directions,
and twisting moment Tz along the out-of-plane direction. The cantilever beam is assumed to be
linear elastic with Young’s modulus 1 GPa and Poisson’s ratio 0.3. Fig. 8 shows an example beam
cross section design and the von Mises stress distribution as calculated from Eq. 8, solved using the
Beam Cross Section module in Comsol. As the cross section stays in the x-y plane, σxx, σyy , and
τxy take 0 values.

σvm =

√
1

2
[(σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2] + 3 · (τ2xy + τ2xz + τ2yz) (8)

The reward is set to be R =
I0.8
1 ·I0.2

2

1.32e−3·A where A is the cross section area, I1 is the largest second
moment of inertia, I2 is the smallest second moment of inertia. We use a value of 1.32e−3 on the
denominator to normalize the reward. I1 and I2 represent the beam’s largest and smallest resistance
over different bending loading directions, and can be calculated from the stress field following the
classical beam bending theory (Bauchau & Craig, 2009). We set a minimum area of 2e−3 m2 to
avoid naive designs.

Figure 8: The von Mises stress field generated by applying bending moment, shear force, and twist-
ing moment on a cantilever beam cross section design.

B.1.4 PERIODIC HEAT

This task aims to design the unit cell geometry of a periodic meta-material for best effective thermal
conductivity. The base material is assumed to be aluminum with density 2700 kg/m3 and thermal
conductivity 238 W/mK. Fig. 9 shows an example 2D unit cell geometry which will be extruded
in the z direction to form the 3D unit cell. The resultant temperature distribution and effective
properties are solved using Comsol based on the homogenization theory. The results are calculated
from a 1 K temperature difference boundary conditions along x, y, and z directions.

R =
trace(keff )

0.178 · ρeff
(9)
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Figure 9: Temperature distribution of the meta-material under three loading conditions. The effec-
tive properties are calculated based on temperature distributions according to the homogenization
theory.

where keff is the homogenized effective thermal conductivity matrix, and ρeff is the effective
density, which simply equals to the percentage of volume filled by aluminum. We use a value of
0.178 on the denominator to normalize the reward. This objective function targets to maximize the
thermal conductivity along x, y, and z directions under limited material usage. We set a maximum
effective density ρeff ≤ 2000 kg/m3 to avoid naive designs.

B.1.5 INDUCTOR

This task aims to design an inductor which is a critical component in power electronics. Fig. 10
shows an example inductor consisting of an iron core and coil windings in a cylindrical coordinate.
A sinusoidal current excitation is supplied to the coils at a frequency of 1000 Hz and magnitude
500 A. The iron core possesses a nonlinear magnetization curve with an initial permeability of
663 H/m and saturates at 5 T. The resultant magnetic field is calculated using Comsol by solving
the Maxwell’s equations in frequency domain. The model is asked to propose the optimal iron
core geometry as well as the placement of the coil windings (coil shapes are fixed) to produce the
maximum inductance with limited material usage.

R =
L

43.11 · V
=

0.5 ·
∫
Ω
(Br ·Hr +Bϕ ·Hϕ +Bz ·Hz)dV

43.11 · V
(10)

The reward calculation is shown in Eq. 10 where Br, Bϕ, and Bz are cylindrical components of
magnetic flux density field, and Hr, Hϕ, Hz are components of magnetic intensity field. Both fields
take complex values for frequency domain response. We use a value of 43.11 on the denominator
to normalize the reward. The numerator stands for the inductance which is a volume integral of
magnetic energy. We set a minimum iron core volume of 1e−3 m3 to avoid naive designs.

B.2 CIRCLE PACKING

The objective of these tasks is to pack a fixed number of circles in a specific domain and maximize
the sum of the radii of these circles. The circles cannot overlap with each other or exceed the domain
boundary. All the centers and radii can change as long as the constraints are satisfied.
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Figure 10: The magnetic flux density norm field generated by an inductor. The copper coils are
excited by a 500 A, 1000 Hz sinusoidal current.

Formally, let n = 26 be the number of circles, {xi}i≤n, {yi}i≤n be the coordinates of centers and
{ri}i≤n be the radii. The objective can be written as:

R =

n∑
i=1

ri, (11)

while the constraint is√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , ∀1 ≤ i < j ≤ n

xi − ri ≥ 0, ∀1 ≤ i ≤ n

xi + ri ≤ 1, ∀1 ≤ i ≤ n

yi − ri ≥ 0, ∀1 ≤ i ≤ n

yi + ri ≤ 1, ∀1 ≤ i ≤ n,

(12)

for the packing in a unit square, and√
(xi − xj)2 + (yi − yj)2 ≥ ri + rj , ∀1 ≤ i < j ≤ n√

x2
i + y2i + ri ≤ 1, ∀1 ≤ i ≤ n,

(13)

for the packing in a unit disk.

B.3 FUNCTION MINIMIZATION

These tasks require the model to find an effective algorithm to locate the global minimum of a
complex function with various local minima. For a given function f(x∗) and the model’s prediction
x̂∗, The evaluation metric is defined as:

R =
|f(x∗)|

|f(x∗)|+ |f(x̂∗)− f(x∗)|
. (14)

This metric is suitable for distinct functions with varying scales of |f(x∗)|. It satisfies 0 ≤ R ≤ 1
and if the model successfully finds the global minimum, the reward will be R = 1.0.
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B.3.1 EGGHOLDER FUNCTION

The Eggholder function is a classical task for evaluating evolutionary optimization algorithms with
various local minima. It can be defined as:

f(x) = −(x2 + 47) sin(

√
|(x2 + 47) +

x1

2
|)− x1 sin(

√
|x1 − (x2 + 47)|), (15)

with constraint −512 ≤ x1, x2 ≤ 512 and a global minimum f((512, 404.2319)) ≈ −959.6407
under such constraint.

Figure 11 illustrates the landscape and the global minimum point of the Eggholder function.
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Figure 11: The landscape and global minimum point of Eggholder function with constraints−512 ≤
x, y ≤ 512

B.3.2 MISHRA’S BIRD FUNCTION

The Mishra’s Bird function is a classic test function used in optimization to evaluate the performance
of algorithms. It is known for having a unique ”bird-shaped” landscape with multiple local minima
and a single global minimum. It’s often used to test an algorithm’s ability to avoid getting stuck in
suboptimal solutions.

The function is defined as:

f(x) = sin(x2)e
(1−cos(x1))

2

+ cos(x1)e
(1−sin(x2))

2

+ (x1 − x2)
2 (16)

with the constraints:
−10 ≤ x1 ≤ 0

−6.5 ≤ x2 ≤ 0

x2
1 + x2

2 ≥ 25.

(17)

The global minimum is f((−3.1302,−1.5822)) ≈ −106.7645.

Figure 12 shows the landscape of the Mishra’s Bird function and its global minimum point.
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Figure 12: The landscape and global minimum point of Mishra’s Bird function with constraints
x1 ∈ [−10, 0], x2 ∈ [−6.5, 0] and x2

1 + x2
2 ≥ 25.

B.3.3 KEANES BUMP FUNCTION

The Keanes Bump function is a challenging, non-convex test function commonly used to evaluate
the performance of optimization algorithms in handling high-dimensional problems with complex
constraints. The function’s landscape is highly irregular, containing numerous local minima, and its
feasible region is a small, irregular subset of the search space.

Let d be the dimension of variables and f : Rd → R, the function is defined as:

f(x) =
−|

∑d
i=1 cos

4(xi)− 2
∏d

i=1 cos
2(xi)|√∑d

i=1 ix
2
i

(18)

with the following constraints:

0 < xi ≤ 10, ∀1 ≤ i ≤ d

d∑
i=1

xi ≤ 7.5d

d∏
i=1

xi ≥ 0.75.

(19)

The global minimum is located within the feasible region, which is a small, bounded area defined
by these constraints. The image in this document, Figure 13, shows a two-dimensional visualization
of the function’s landscape. However, for our experiments, we tested the function in its 10-D, 20-
D, and 30-D versions, where the complexity increases significantly. The global minima and their
corresponding function values for these dimensions are listed below.

• 10-D Version: The global minimum value is approximately −0.747310362.
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Figure 13: The landscape and global minimum point of the 2-D Keanes Bump function. The feasible
region, a small part of the search space, is the only area with finite function values.

• 20-D Version: The global minimum value is approximately −0.803619104.

• 30-D Version: The global minimum value is approximately −0.818056222.

B.4 SYMBOLIC REGRESSION

In this task, the model has to uncover symbolic mathematical expressions from observational data.
The benchmark and baselines are provided by Shojaee et al. (2025), which includes equations and
data in chemistry, biology, physics and material science domains. In each category, several cases are
created, each containing its own train and test sets generated by the same underlying equation. The
model trained on the train set has to propose an expression to minimize the normalized mean square
error (NMSE) on the test set, which is defined as:

NMSE =

∑N
i=1(ŷi − yi)

2∑N
i=1(yi − ȳ)2

, (20)

where N is the number of observations in the test set.

To ensure a fair and robust comparison with the benchmark paper’s results, we use the median of
the NMSE calculated across all tasks within the same category c:

NMSEc = median(NMSEc,1,NMSEc,2, . . . ,NMSEc,n). (21)

The reward we used for reinforcement learning for category c is then set to:

Rc = − log10(NMSEc). (22)

In the benchmark, all the methods have a limit of 1000 trials for each single case, and we obey the
same rule in our experiments, adjusting the number of training steps accordingly.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.5 MACHINE LEARNING

We selected 3 classic machine learning datasets, and the model has to write Python code to max-
imize the F1 score for classification tasks and minimize the rooted mean square error (RMSE) for
regression tasks. The details are described below.

B.5.1 ADULT INCOME

The Adult income dataset (Becker & Kohavi, 1996) is a well-known binary classification task. The
goal is to predict whether a person’s income exceeds $50,000 per year based on various demographic
features such as age, education, marital status, and occupation. The dataset is sourced from the 1994
U.S. Census and contains both categorical and numerical features, with some missing values.

The dataset itself contains a separate train and test split. We then load the train set for model’s
training and evaluate its result on the test set. The reward is the Macro F1 score, defined as:

R =
1

C

C∑
c=1

2 · Pc ·Rc

Pc +Rc
(23)

where Pc, Rc are the precision and recall for class c, and C = 2 is the total number of classes.

B.5.2 BANK MARKETING

The Bank marketing dataset (Moro et al., 2014) is another binary classification problem. It includes
data from a Portuguese bank’s direct marketing campaigns, where the objective is to predict whether
a client will subscribe to a term deposit. This dataset is characterized by a high number of categor-
ical features and a significant class imbalance, making it a good benchmark for evaluating model
performance under challenging real-world conditions.

To ensure a robust evaluation, we use a 5-fold cross-validation strategy with StratifiedKFold in
sklearn to handle the class imbalance. The data is randomly split into five folds, maintaining the
same class distribution in each fold as in the original dataset. The model is trained and evaluated
five times, with each fold serving as the test set once. The final reward is the average of the Macro
F1 scores obtained from all five folds. If a task fails to produce a result in any fold, its reward is
considered to be 0 for that fold. The final result is the Macro F1 score, as defined in equation 23.

B.5.3 BOSTON HOUSING

The Boston housing dataset (Harrison Jr & Rubinfeld, 1978) is a classic regression problem. The
task is to predict the median value of owner-occupied homes in Boston suburbs, based on 13 features.
These features include per capita crime rate, a number of rooms per dwelling, and the proportion
of non-retail business acres. While the original dataset is no longer widely used for research due to
ethical concerns, it remains a common benchmark for teaching and evaluating regression models.

To evaluate model performance, we use a 5-fold cross-validation strategy with KFold, splitting the
data into five folds. The model is trained and evaluated five times, with each fold serving as the test
set once. The final reward for this task is the average of the scores from all five folds. The reward is
calculated using the following formula:

R = 2− log10(RMSE + 10−10), (24)
where:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (25)

This reward metric is designed to penalize larger RMSE values while rewarding smaller ones. If a
task fails in any fold, its reward is considered to be 0 for that fold.

C DESCRIPTION OF TASK SPECIFIC BASELINES

In this section, we introduce the task-specific baseline methods and describe their implementation
details.
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Physics Simulation. For physics-related optimization problems, we use two widely adopted mod-
ules in COMSOL Multiphysics: parameter search and topology optimization. For parameter search,
we first parameterize the geometry based on initial solutions provided by human experts, and then
optimize within the search space defined by these parameters. For topology optimization, human
experts specify deformable geometric regions, while COMSOL applies its built-in topology opti-
mization solvers to iteratively refine the structure.

Circle Packing. We consider two strong baselines: Sequential Least Squares Programming
(SLSQP) (Lawson & Hanson, 1995) and a Genetic Algorithm (GA). SLSQP formulates circle pack-
ing as a constrained optimization problem, maximizing the sum of radii subject to boundary and
non-overlap constraints. The GA baseline encodes circle positions and radii, evolves a feasible
population with selection, crossover, and mutation, and evaluates fitness by the total radii.

Function Minimization. We adopt two standard constrained optimization solvers from
scipy.optimize: Sequential Least Squares Programming (SLSQP) and the trust-constr method
(Conn et al., 2000). Both are widely used gradient-based methods that provide strong task-specific
baselines for function minimization.

Symbolic Regression. For symbolic regression tasks, we directly use results reported in LLM-
SRBench (Shojaee et al., 2025), obtained by GPT-4o-mini running two recent methods: LaSR
(Grayeli et al., 2024), which enhances evolutionary search with LLM-guided concept discovery, and
LLM-SR (Shojaee et al., 2024), which combines LLM scientific priors with evolutionary equation
search. These represent competitive state-of-the-art baselines for symbolic regression.

Machine Learning. For machine learning benchmarks, we evaluate two interpretable yet com-
petitive models: LightGBM (Ke et al., 2017), a gradient boosting framework widely adopted in
practice, and Rule-based Representation Learner (RRL) (Wang et al., 2021), which learns discrete
non-fuzzy rules via gradient grafting to achieve both scalability and interpretability.

D EXAMPLE OF MODEL OUTPUT

We present examples of the best solutions found by our framework across different task categories.
These visualizations highlight how HELIX generates high-quality and interpretable outputs in di-
verse scientific domains.

D.1 PHYSICS SIMULATION TASKS

Acoustic demultiplexer. Figure 14 displays the acoustic pressure field of our best-performing
demultiplexer, which achieves a reward of 14.260.

Iron core torque optimization. The best iron core design is shown in Figure 15, where the mag-
netic flux density norm reaches a reward of 11.045.

Beam design. Figure 16 illustrates the von Mises stress pattern of the best beam structure discov-
ered, which achieves a reward of 17.298.

Meta-material optimization. The temperature distributions of the optimized meta-material under
two loading conditions are presented in Figure 17, yielding a reward of 1.278.

Inductor design. The optimized inductor is visualized in Figure 18, with a magnetic flux density
norm field corresponding to a reward of 9.609.

D.2 CIRCLE PACKING TASKS

Packing in square. As shown in Figure 19, our framework successfully packs 26 circles inside a
square, achieving a sum of radii of 2.635983 and surpassing the previous world record.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 14: Acoustic pressure distribution in the optimal acoustic demultiplexer design obtained by
our framework, with reward 14.260.

Packing in disk. Figure 20 demonstrates the packing of 26 circles inside a disk, reaching a total
radius sum of 4.664465.

D.3 MACHINE LEARNING TASKS

We further demonstrate how our framework can be applied to classical machine learning problems,
using both classification and regression benchmarks. The first example focuses on the Adult dataset,
where we design a rich set of engineered features that combine polynomial transformations, ratios,
interaction terms, and domain-specific indicators. This structured feature space, coupled with a
LightGBM classifier and hyperparameter tuning, enables our model to achieve a strong performance
of 82.07 in macro F1 score (Figure 21).

For regression, we turn to the Boston Housing dataset. Here, we integrate robust preprocessing with
advanced feature transformations. Missing values in numeric features are imputed with KNN and
scaled robustly, while categorical variables undergo smoothed target encoding. Additional interac-
tion and polynomial features are then injected through a transformer pipeline. With these enhance-
ments, our model coupled with an XGBoost regressor attains a reward of 1.742, corresponding to
an RMSE of 1.813 (Figure 22).

E LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely to aid writing and polishing the manuscript. All
research ideas, experiments, and analyses were conceived and conducted by the authors, who take
full responsibility for the content.
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Figure 15: Magnetic flux density norm field for the optimized iron core configuration identified by
our framework, achieving reward 11.045.
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Figure 16: Von Mises stress distribution of the optimized beam design obtained by our framework,
with reward 17.298.

(a) Load 1 (b) Load 2

Figure 17: Optimized temperature fields of the meta-material designed by our framework under two
different load conditions, achieving reward 1.278.
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Figure 18: Magnetic flux density norm field of the best inductor configuration identified by our
framework, achieving reward 9.609.
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Figure 19: Arrangement of 26 circles within a square obtained by our framework, achieving a
record-breaking sum of radii of 2.635983.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 20: Optimized circle packing of 26 disks within a unit disk by our model, yielding a sum of
radii of 4.664465.
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1 def engineer_features(X):
2 features = X.copy()
3 num_cols = [col for col in X.columns if X[col].dtype != ’object’ and

col not in [’fnlwgt’, ’education-num’]]
4

5 # Core interaction features
6 features[’age_hpw_product’] = features[’age’] * features[’hours-per-

week’]
7 features[’capital_total’] = features[’capital-gain’] + features[’

capital-loss’]
8 features[’log_fnlwgt’] = np.log(features[’fnlwgt’] + 1)
9 # Enhanced polynomial features

10 for col in [’age’, ’hours-per-week’, ’capital-gain’, ’capital-loss’]:
11 features[f’{col}_sq’] = features[col] ** 2
12 features[f’{col}_cb’] = features[col] ** 3
13 # Age-based features with log transformation
14 features[’log_age’] = np.log(features[’age’] + 1)
15 # Capital features with log transformations
16 features[’capital_gain’] = np.log(features[’capital-gain’] + 1)
17 features[’capital_loss’] = np.log(features[’capital-loss’] + 1)
18 # Binned features for age and hours per week
19 features[’age_group’] = pd.cut(features[’age’], bins=5, labels=False)
20 features[’hour_group’] = pd.cut(features[’hours-per-week’], bins=5,

labels=False)
21 # Economic status features combining multiple variables
22 features[’economic_status’] = (features[’age’] / features[’hours-per-

week’]) * (features[’capital_total’])
23 # Additional indicators for capital gains and losses
24 features[’has_capgain’] = (features[’capital-gain’] > 0).astype(int)
25 features[’has_caploss’] = (features[’capital-loss’] > 0).astype(int)
26 # Professional education indicator
27 features[’isProfessional’] = ((features[’education’] == ’Prof-

specialty’) | (features[’education’] == ’Exec-managerial’) | (
features[’education’] == ’Assoc-acdm’)).astype(int)

28 # Managerial education indicator
29 features[’isManagerial’] = ((features[’education’] == ’Exec-

managerial’) | (features[’education’] == ’Assoc-voc’)).astype(int)
30 # Interaction between numerical features
31 interaction_cols = [’age’, ’hours-per-week’, ’capital_gain’, ’

capital_loss’]
32 for i in range(len(interaction_cols)):
33 for j in range(i+1, len(interaction_cols)):
34 col1 = interaction_cols[i]
35 col2 = interaction_cols[j]
36 features[f’{col1}_x_{col2}’] = features[col1] * features[col2

]
37 # Ratio and difference features
38 features[’capital_gain_ratio’] = features[’capital_gain’] / features[

’capital_loss’].replace(0, 1)
39 features[’capital_diff’] = features[’capital_gain’] - features[’

capital_loss’]
40

41 return features

Figure 21: Python code of feature engineering for solving classification task on Adult dataset. To-
gether with a LGBMClassifier and parameter search, our model achieved 82.07 marco f1 score.
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1 # Engineer more comprehensive interaction and polynomial features
2 def create_engineered_features(df):
3 # Interaction features
4 df[’RM_LSTAT’] = df[’RM’] * df[’LSTAT’]
5 df[’NOX_DIS’] = df[’NOX’] * df[’DIS’]
6 df[’CRIM_DIS’] = df[’CRIM’] * df[’DIS’]
7 df[’INDUS_NOX’] = df[’INDUS’] * df[’NOX’]
8 df[’CHAS_RM’] = df[’CHAS’] * df[’RM’]
9 df[’AGE_DIS’] = df[’AGE’] * df[’DIS’]

10 df[’RAD_NOX’] = df[’RAD’] * df[’NOX’]
11 df[’PTRATIO_RM’] = df[’PTRATIO’] * df[’RM’]
12 df[’INDUS_CHAS’] = df[’INDUS’] * df[’CHAS’]
13 df[’RAD_DIS’] = df[’RAD’] * df[’DIS’]
14 df[’RAD_CHAS’] = df[’RAD’] * df[’CHAS’] # New interaction
15 df[’CRIM_CHAS’] = df[’CRIM’] * df[’CHAS’] # Enhanced interaction
16 # Polynomial features
17 df[’NOX_SQ’] = df[’NOX’] ** 2
18 df[’RM_SQ’] = df[’RM’] ** 2
19 df[’LSTAT_SQ’] = df[’LSTAT’] ** 2
20 df[’NOX_CUBED’] = df[’NOX’] ** 3
21 df[’RM_CUBED’] = df[’RM’] ** 3
22 df[’LSTAT_CUBED’] = df[’LSTAT’] ** 3
23 df[’NOX_FOUR’] = df[’NOX’] ** 4 # Higher degree polynomial
24 return df
25

26 engineered_features_transformer = Pipeline([
27 (’engineer’, FunctionTransformer(create_engineered_features))
28 ])
29

30 # Preprocess numeric features
31 numeric_transformer = Pipeline([
32 (’imputer’, KNNImputer(n_neighbors=3, weights=’uniform’)),
33 (’scaler’, RobustScaler())
34 ])
35

36 # Preprocess categorical features
37 categorical_transformer = Pipeline([
38 (’imputer’, SimpleImputer(strategy=’mode’)),
39 (’target_encode’, FunctionTransformer(lambda df: df.astype(object).

where(df.notna(), df.mode().iloc[0]))
40 )
41 ])
42

43 # Combine transformations
44 preprocessor = ColumnTransformer(
45 transformers=[
46 (’eng’, engineered_features_transformer, numeric_features),
47 (’num’, numeric_transformer, numeric_features),
48 (’cat’, categorical_transformer, categorical_features)
49 ],
50 remainder=’drop’
51 )

Figure 22: Key pre-processing steps the model implemented on Boston Housing dataset. Together
with a XGBRegressor, the model achieved reward of 1.758, which means 1.747 in RMSE.
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