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Abstract: With robots increasingly operating in human-centric environments, en-
suring soft and safe physical interactions, whether with humans, surroundings, or
other machines, is essential. While compliant hardware can facilitate such inter-
actions, this work focuses on impedance controllers that allow torque-controlled
robots to safely and passively respond to contact while accurately executing tasks.
From inverse dynamics to quadratic programming-based controllers, the effec-
tiveness of these methods relies on accurate dynamics models of the robot and
the object it manipulates. Any model mismatch results in task failures and unsafe
behaviors. Thus, we introduce Rapid Mismatch Estimation (RME), an adaptive,
controller-agnostic, probabilistic framework that estimates end-effector dynamics
mismatches online, without relying on external force-torque sensors. From the
robot’s proprioceptive feedback, a Neural Network Model Mismatch Estimator
generates a prior for a Variational Inference solver, which rapidly converges to
the unknown parameters while quantifying uncertainty. With a real 7-DoF ma-
nipulator driven by a state-of-the-art passive impedance controller, RME adapts
to sudden changes in mass and center of mass at the end-effector in ~ 400 ms,
in static and dynamic settings. We demonstrate RME in a collaborative scenario
where a human attaches an unknown basket to the robot’s end-effector and dynam-
ically adds/removes heavy items, showcasing fast and safe adaptation to changing
dynamics during physical interaction without any external sensory system.
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1 Introduction

Compliant control is fundamental to the development of adaptive and collaborative robots designed
to physically interact with uncertain environments, objects of unknown dynamics, and humans with
unpredictable intentions and capabilities. Many commercial robots advertise compliant capabilities,
typically implemented through basic impedance or admittance control laws, rarely possessing the
ability of being passive to physical perturbations while precise in task execution — an essential prop-
erty for fluid physical interaction [1, 2]. Humans naturally achieve this balance by leveraging our
redundant degrees-of-freedom [3] and mechanical compliance in the neuro-musculoskeletal system
[4]. Replicating this behavior in robots requires control strategies that enforce a passive relationship
between external forces and motion (i.e., velocity), guaranteeing stability in both free motion and
during physical contact [5]. To this end, passivity-based impedance controllers have been exten-
sively developed, guided by energy exchange techniques [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17];
demonstrating success in a range of applications including grasping, manipulation, and robotic
surgery. A major caveat of these techniques is that convergence and passivity guarantees depend
heavily on accurate dynamics models of the robot and the environment it is interacting with. This
assumption often breaks down in practice, especially when interacting with unknown environments,
such as manipulating objects with uncertain mass and inertia. In such cases, gain tuning or adding a
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PID layer is commonly used to mitigate model mismatch. However, these ad-hoc strategies compro-
mise the passivity of the closed-loop system, resulting in a loss of compliance and safety. Humans,
in contrast, exhibit a remarkable ability to interact with objects of unknown dynamics and uncertain
environments. For example, when lifting a box with unknown contents, we rely on an initial internal
estimate of its inertial properties, and upon sensing the actual load through proprioceptive feedback,
we rapidly adjust muscle activation and posture to maintain stable manipulation within our physical
capabilities [18, 19]. We perform this rapid adjustment even when we are pushed or mistakenly
bump into a wall while carrying the box. This form of rapid adaptation is key to safe and efficient
physical interaction. Hence, in this work, we seek to enable robots with the ability to estimate and
adapt to dynamic model mismatches, in real-time, which would allow them to maintain passivity
while continuing to perform their tasks — just like humans do. In particular, we envision scenarios in
which a robot lifts a box of unknown mass, whether empty or filled with heavy books or dynamically
being changed by a human, and instantaneously estimates the resulting model mismatch, enabling
stable and safe manipulation while remaining passive to external physical contacts.

Related Work The core problem we address in this work is model mismatch, an issue that plagues
model-based control. Prior works have addressed this problem, often in the context of exploration
and reinforcement learning (RL) frameworks that aim to capture system dynamics accurately. For
example, Sun et al. [20] proposed an online learning strategy to estimate the residual dynamics
model in legged locomotion based on predictive errors. The episodic learning approach proposed
by Khadivar et al. [21] allows for robust learning of Inverse Dynamics (ID), accounting for multiple
mismatch factors (internal friction, actuators’ nonlinearities, model imperfections, etc.). Similarly,
Nguyen-Tuong and Peters [22] used Gaussian Process to improve learning Inverse Dynamics. Ko-
ryakovskiy et al. [23] proposed to compensate for model mismatch via a RL policy, learning a
compensatory signal by comparing the robot’s predicted and observed state transitions. Likewise,
Gao et al. [24] proposed improving control policies via quantification of predictive error. Alterna-
tively, Srour et al. [25] proposed trajectory-optimization for manipulation under uncertain payloads.
While the aforementioned approaches demonstrate robust performance, they are often sensitive to
feedback measurement noise, requiring longer estimation times and thus compromising real-time
performance. Moreover, predictive error approaches may misattribute errors caused by infeasible
control commands, e.g., due to unmodeled actuator limits or linearization errors, and often rely on
conservative assumptions such as smooth dynamic changes starting from zero mismatch [20].

Contribution We introduce Rapid Mismatch Estimation (RME), a probabilistic, controller and
motion-planner agnostic framework for real-time quantification of dynamic model mismatch dur-
ing interaction with unknown objects. RME leverages a neural network (NN) architecture trained in
simulation to estimate an initial model mismatch, which is then refined with online variational infer-
ence to rapidly infer mismatches in mass and center-of-mass (CoM) at the manipulator’s end-effector
in ~400 ms. Thus, RME provides online compensation for unknown dynamics and allows the robot
to follow a desired motion policy while maintaining the passivity of the system — just like humans
do. To the best of our knowledge, no existing method provides a real-time estimation framework
that can adapt to abrupt changes in model dynamics arising from interaction with unknown environ-
ments. The most related works to ours are by Zhang et al. [26], presenting a system-identification
framework, allowing inertial parameters estimation of an unknown payload, however, requiring a
10s-long system identification/calibration action before trajectory execution, and by Jin et al. [27],
which introduced an effective exploration strategy for center-of-mass (CoM) estimation; however, it
does not operate in real-time or during continuous task execution and depends on force/torque (FT)
sensing, which we avoid as it decreases robot’s dexterity, reduces allowable payload, and highly
increases assembly cost [28].

2 Problem Formulation

Let the following equation define the rigid-body dynamics of an n-DoF manipulator arm [29],
M(q)i+ Cq.4)q + G(q) = Te + Tex (1)

where ¢, ¢,q € R"™, represent joint accelerations, velocities, and positions, respectively. M (q) €
R™*" (C(q,q) € R**", and G(q) € R™ represent the mass/inertia matrix, Coriolis matrix, and



Gravity vector, respectively. 7. € R™ and 7e = J (q)TFm € R" represent control and external
torques at each joint, respectively, with J(g) € R5*" being the manipulator Jacobian.

Assumption 1. For robot dynamics (1) we can assume that M(q) and C(q,q) are uniformly
bounded for all q and C(q, §) linear in §. Further, we assume C(q, q) fulfills the following:

M(q) = C(q.4) + C(a,9)" = M(q) —2C(q,d) skew-symmetric )
which yields the well-known skew-symmetry condition for revolute joint robots [29].

Assumption 2. The control torque 7. in (1) is an impedance controller that renders a passive closed-
loop behavior wrt. the environment; i.e., a passive mapping of (Teq — q) or (Foy — &) via,

S(q,4) < 4 Teu or S(z,@) < i Foy 3)

with S being the energy storage function including the kinetic energy of the robot (1) and the elastic
potential energy from the controller. &, F,; € RS is the task-space velocity and external wrench.

Problem Any passive impedance controller 7. is generally designed so that (2) appears in S such
that (3) can be guaranteed. This holds for controllers with feedforward/ pre-compensation terms,
feedback linearization, inverse dynamics, with or without inertia shaping M (q) [30, 31, 17, 13, 32].
However, any interaction attempt with a heavy unknown object will result in a dynamics model
mismatch. More specifically, (1) now includes an additional external torque due to model mismatch,

M(q)i+ C(q,9)q+ G(q) = e+ et + J(q) ' { F, } "

TCoM x Fy,

Tnom: Nominal Dynamics
Tmm: Model Mismatch

As shown, we assume that 7,,,,, is caused by changing the mass properties of the end-effector (EE),
modeled as a point mass added to its current inertia tensor with Fy, = [0, 0, mg] being the gravita-
tional force with g = —9.81m/s? due to unknown mass m and rcom = [Tz, ry, 7] being the un-
known center-of-mass (CoM) relative to the EE. This is a valid assumption as manipulators mostly
interact with the environment via the EE. Any other contact can be considered a collision or human-
robot interaction, not a dynamics mismatch. Thus, if 7, is not compensated in 7. this may lead to
instabilities, poor tracking performance and cause unsafe behaviors for the robot and the human.

Goal Thus, we aim to estimate the mismatch parameters § = {m, r,,r,, .} online, and explicitly
compensate for any model mismatch in real-time by augmenting a passive impedance controller as,

{ () — F, ]

Feom () — Tcom

F(0)
Feom(0) X Fr (0)

with 7. being a passive impedance controller designed with the nominal dynamics (1). Our choice
of controller is described in Section 3. As the true mismatch parameters F},,, 7com are unknown, we
seek a robust probabilistic estimate of § by formulating an online Bayesian inference problem, as
described in Section 4. Further, we aim to estimate § using only the robot’s proprioceptive feedback
(e.g., applied joint torque estimates), without a need for an external FT sensor at the end-effector.

2
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3 Preliminaries: Constrained Passive Interaction Controller [13, 32]

Our RME framework is designed to be control-agnostic, and can be used with any passive impedance
controller or even on RL trained control policies with passivity properties [33, 34]. In this work,
however, we choose a recent extension of the dynamical systems (DS) based passive interaction
controller [13] that can guarantee passivity without any inertia shaping, training or FT sensing. In
this control paradigm, the desired motion of the robot’s end-effector is driven by a DS [35],

i=f(z) st V()=VV(z) f(z) <0 (6)

which represents a motion policy that is trained (or defined) to be globally asymptotically stable
(g.a.s.) wrt. an attractor z* € R? x SO(3) or a task-space trajectory {x,}7_; like a limit cycle.
The asymptotic stability of f(z) : R* x SO(3) — RS is enforced from a corresponding Lyapunov
function V() : R® x SO(3) — R which can also be learned. For a comprehensive review of
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Figure 1: Rapid Mismatch Estimation (RME) Framework. The gray block denotes our novel
contribution. Note that RME is controller agnostic and can be implemented with any impedance
controller. In this work, we choose the constrained passive interaction controller [32].

imitation learning (IL) of DS motion policies, see [35, 36]. To track (6) while guaranteeing closed-
loop passivity, we use the following velocity-based passive impedance control law [13],

F.(z) = G,(q) — D(z)(& — f(x)) with D(x) >0 (7

with task-space gravity vector G,(q) € RS, damping matrix D(z) € R®*6 and de-
sired velocity from f(x). By aligning D(x) to the direction of f(x) we can generate ki-
netic energy in the desired direction of motion while dissipating energy in the tangential di-
rection. While this ensures passivity wrt. Fi via (3), it does not ensure that a feasi-
ble 7. = J (q)TFC satisfies any kinematic constraints, such as joint limits, self-collision, ex-
ternal collisions, and singularities. To address this, Zhang et al. [32] proposed to constrain
(7) with a Quadratic Programming (QP) based safety filter, that optimizes 7. to track F.(x),
subject to the robot dynamics (1) and joint kine- . _ 2

matJic constraints forleated as exponeniial control rr%n HJ(Q) - Fe(z) HZ ®)
bal(rri)er function (CBF) with relative degree-2 [37]. st M (q)i+ C(q,q)d + G(q) = Te + Text
hi(g) > 0 denote the invariant sets corresponding - . )
to different kinematic constraints and IC; = [k k2] hi(g) > =Kilhi(a), hi(g)] " Vi=1,...
feedback gain vectors that render forward invariance [32]. J(q)~ " is the pseudo-inverse of J(q) .
We use (8) as the nominal passive impedance controller generating 7. in (5).

Remark 1. Both the unconstrained (7) and constrained (8) passive interaction controllers are
proven to track f(x) and be passive wrt. input-output pair (Fe., ©) using the energy storage func-
tion S = %j:TMm:i + M V(z) where M, is the task-space inertia matrix, \1 is the first eigenvalue
of D(x) from (7) and V(x) the Lyapunov function used to shape f(x). These guarantees rely on
the satisfaction of condition (2). Thus, neglecting model mismatches not only degrades the tracking
performance of f(x) but also compromises the passivity of the closed-loop system.

4 Rapid Mismatch Estimation

In order to robustly estimate the mismatch parameters § = {m,r,,r,,r.} while minimizing mis-
match errors AF, = F,, — F,,, — 0 and Arcoy = l7com — chMH; — 0 we turn to Bayesian
inference. Rather than estimating a discrete point estimate of 6, we propose to estimate a posterior
distribution of mismatch parameters p(6 | D) given external torque measurements, ey, at particular
joint configurations ¢ while quantifying prediction uncertainty as follows,
p(D | 8)p(0)
p(D)
Mismatch Parameter Estimation as a Bayesian Inference Problem Given a dataset D of 7.y
measurements collected online over a short time-window of length IV, we seek to estimate the pos-
terior distribution p(@ | D). We define the likelihood function with the Gaussian Distribution as the
probability of observing 7.y on each joint given the mismatched parameters 6, computed using the
manipulator arm’s Inverse Dynamics (ID) model fip(+) with the likelihood noise o3 ji00q based on
the amplitude of noise observed at each joint in the dataset D.

p(D|9) = N(fID (q7 9)’diag(012ikelihood>) ) p(@) =N (fNN(D)’diag(Ugrior)) (10)

p(0| D)= D={rexi €ER"|i=1,...,N}. 9)
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Figure 2: RME Neural Network Architecture. In the network, we input a sequence of pseudo-
wrenches of dimension R *64 apply a convolution layer, positional embedding, and multi-head
attention. Further, we mean pool over the attention scores and apply a sequential Multilayer Percep-
tron, which performs a final regression to mismatch parameters 6.

This inference problem does not have a unique solution in the short time window, as multiple mis-
match parameters will result in similar 7y, observations, making CoM estimation particularly sen-
sitive to the choice of the prior p(6). Therefore, we propose to model p(6) using the prediction of
a NN fan(+) as the mean for the Gaussian Distribution, as described in Section 4.1. Notice that,
even though we have (10) the true posterior distribution p(6 | D) is still intractable, as the manip-
ulator’s dynamics exhibit non-linear dependencies on mismatch parameters §. We address this by
employing a Variational Inference (VI) framework, under which we aim to construct a mean-field
approximation to the true posterior [38, 39], guided by the NN fyn(-) initial solutions.

RME Framework As shown in Figure 1, our framework begins with mismatch detection algo-
rithm that constantly monitors ||Text||§, distinguishing dynamics mismatch from human-generated
perturbations by checking for rapid increases followed by short-term stabilization at a high value,
characteristic for rapidly added loads, allowing the RME to run when only the dynamics mismatch is
detected. Implementation details of our mismatch detector are provided in Appendix A. Once a mis-
match is detected, we record the dataset D of 7., measurements over a 200 ms time window while
the robot is being controlled by 7.. D is then fed into the initial NN mismatch estimator, fnn(:),
which will predict the mean value for the prior as defined in (10). We then run the VI framework to
approximate the posterior p(6 | D) and rapidly converge to the parameter estimate 6.

4.1 Neural Network Model Mismatch Estimator Architecture

In this work, we chose to construct and train a NN to guide VI by using it as a meaningful mean
prior p(6). The NN architecture, depicted in Figure 2, was designed to analyze the M -dimensional
sequence of tokens, representing time-series of external pseudo-wrenches, Wex € RS, applied to the
EE, computed using the external torque measurements at given joint configurations, with damped
pseudo-inverse of the Jacobian matrix, where A is a damping coefficient, as below.

W = (J(@) (@) T + ML) J(q) exts Winpu = {Wext,i ERC|i=1,... ,M} (11)

The sequence of inputs to the NN is then Wiy € RM*5, where M inputs are uniformly sam-
pled from N collected data points. To solve the regression problem of the mismatch parameters,
maintaining translation-invariance relative to the input sequence,

{¢i €ER™, Texi €ER™ |i=1,..., M} — Winpus —5 {m,r4,7y,72} (12)

we design an architecture that keeps the forward pass computationally efficient. First, we apply a
1D convolution [40] with kernel size 5 and output dimension 64, to capture local patterns in the data,
enhancing translation-invariance. Then, we apply position embedding and multi-head attention [41]
with 8 attention heads, to capture global dependencies between all tokens and situate them in the
sequence. Further, we apply the mean polling of attention outputs over the sequence length to obtain
a vector of dimension R* that we pass to a sequence of three MLP blocks, each consisting of a linear
layer (64 — 256), ReLU activation function, and a linear layer (256 — 64). Then, we apply a final
linear layer (64 — 4) to estimate the mean mismatch parameters 6 for p(6).

We train this NN mismatch estimator in simulation, on a dataset generated by 350 simulations of
a manipulator’s dynamics experiencing different mismatch parameters. During training, we use
Mean-Squared Error loss objective, and apply dropout, with dropout rate d = 0.1 after each of the
MLP blocks, to prevent network overfitting [42]. We also employ data augmentation to train the
NN to be robust to noise and can transfer sim-to-real. Details on the architecture and training are in
Appendix G. We provide ablations results on NN impact on the inference in Section 5.



4.2 Variational Inference for Mismatch Estimation Convergence

During runtime, the fyn(+) trained in the previous sections is used to construct p(#) as in (10) to start
the VI framework. Since the true posterior distribution p(6 | D) is intractable, we construct a mean-
field approximation to the true posterior p(6 | D) =~ ¢4(6 | D), parameterized by the following
variational parameters ¢ [38, 39],

¢ = (/Jm» Moy oy, Hz, an, 09257 053 05) (13)

Ho ai

We formulate an optimization objective for computing the variational parameters ¢ that yield an
effective approximation of the true posterior by minimizing the Kullback-Leibler divergence.

450 | D) = argminKL{gs (6| D) || p(6 | D)] (14)

Under the mean-field approximation, (14) can lead to a tractable optimization objective, by the
maximization of the Evidence Lower Bound (ELBO), which is equivalent to the minimization of
KL-divergence, that we optimize via stochastic gradient descent [39, 43],

ELBO(¢) = #[q(0|D)] + Egrq, 60) log p(D; )] (15)

with 7 [g4(0|D)] being the entropy of gg4(-).
L(¢) = —ELBO(¢) = —Eg~q,9/p) log p(D|0) +log p(0) — log ¢4 (6|D)] (16)
¢ = arg m(;n L(®) (17)

The expectation of the ELBO loss can be effectively computed with Monte Carlo estimation via the
reparameterization trick [39],

0; “ qo(0| D), 0;=py+os0e, c~N(O L) (18)
which allows us to evaluate gradients of (17) with automatic differentiation [43]. To estimate ¢,
we use the Adam optimizer [44] with learning rate 7 = 0.025 and gradient clipping to prevent
gradient explosion in early optimization stages. We run the optimizer until variational parameters
stabilize at a given threshold, allowing us to return the optimization result as soon as it converges
without performing unnecessary training iterations, accelerating the estimation process. Note that
inaccurate NN prediction will not impact convergence, as it only affects the prior p(6).

4.3 Preservation of Passivity and Stability of the Closed-Loop System

One of the main motivating factors for developing RME was to achieve a fast enough estimation of
0 such that we could preserve the task convergence and passivity of the closed-loop system provided
by the passive interactive controllers introduced in Section 3. Note that, when our estimated mis-
match parameters are near perfect, AF),, ~ 0 and Arcom = 0, and we control the robot dynamics
(4) with our proposed augmented controller 7, as defined in (5) then the mismatch and compensation
terms cancel out and we recover the original dynamics (1) whose closed-loop behavior is stable and
passive under a control input 7. defined by (7) or (8) as proven in [13, 35] and [32], respectively.

Proposition 4.1. Let a robotic manipulator with dynamics (4) be controlled by an augmented pas-
sive impedance control law defined in (5) with 1. computed by (8). Given an imperfect mismatch
parameter estimation AF,, # 0 and Arcoy # 0 the system will be locally asymptotically stable
as unwanted equilibria may arise when |AF,,, — F¢(x)|| = 0, with AF,,,, denoting the remaining
unknown model mismatch in the EE expressed as a task-space wrench. Yet, the closed-loop system
behavior remains passive wrt. input-output port (Foy + AFy,, ©).

Proof: Provided in Appendix H. |

5 Evaluation

We evaluate our model with physical robot experiments using a 7-DoF Franka Emika torque-
controlled manipulator arm with embedded torque sensors. We empirically tuned the standard de-
viation for the VI prior as opior = [0.5 0.02 0.02 0.05]. The QP optimization for (8) was
implemented using CVXGEN [45]; the controller and RME were evaluated on a workstation with
11" Gen Intel® Core™ i7-11700K @ 3.60 GHz CPU. No GPU acceleration is required.
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5.1 Ablations on NN Effect and Hyper-Parameters for VI

We analyze the effect of NN on VI prediction accuracy by comparing inference results achieved with
p(0) constructed using fiprior = fan(-) and fiprior = 0. We ran the RME algorithm on 100 simulation-
generated datasets, representing the manipulator’s dynamic behavior under different mismatch pa-
rameters 6. As shown in Table 1, NN guidance significantly reduces the Mean Squared Error in CoM
estimation. Detailed predictions comparison is shown in Appendix C. We further analyze the impact
of the estimation interval length on inference accuracy in Appendix F, showing that 200 ms is an
optimal length for fast and robust estimation, making the solver more robust to measurement noise
while allowing not smooth but abrupt changes, causing noticeable and instantaneous disruption in
the trajectory. Since we can solve the estimation problem in ~ 400 ms, we can run this frame-
work sequentially, ensuring that if the estimation was biased by the external factors, like undetected
perturbation, it can be corrected by the subsequent prediction.

tprior | MSEm (kg?) | MSE r,, (m?) | MSE ry, (m?) | MSE 7, (m?)
0 0.319 x1073 | 0.594 x1073 | 0.880x107% | 6.513x1073
An() | 0229 x1073 | 0.366 x10~2 | 0.629x10~% | 2.560x10~°

Table 1: Mean Squared Errors for RME estimation of mismatch parameters 6 with Gaussian Prior
p(0) constructed by fiprior = fan(+) and feprior = 0.

5.2 Estimation Results from Static Experiments

To evaluate RME, we extensively tested the model with multiple static experiments, where the phys-
ical manipulator, subject to sudden changes in the dynamics model resulting from adding unknown
mass to the end-effector, aimed to maintain the target equilibrium position and orientation using the
constrained passive impedance controller (CPIC) (8). RME provided rapid and accurate estimation
of mismatch parameters 6, as shown in Figure 3, and further in Appendix E, with an average estima-
tion time of 226 ms. As shown in Figure 4, adaptation allowed the robot to quickly converge to the
equilibrium position from before applying the mismatch - note that even if the tracking error does not
reduce to zero, due to disturbance or under-prediction, RME always provides valid compensation,
resulting in trajectory correction.
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Figure 4: Franka manipulator arm tracking per-
formance subject to mismatch in the dynamics
model applied att ~ 1.75 s.

Figure 3: Parity plot for mass predictions over
60 independent experiments. Results show con-
sistent and stable mass estimation using RME.

Under this setup, we observed that when the CoM of applied mismatch is close to the z-axis of the
end-effector, as in experiments with 1.1 kg and 1.29 kg, the CoM offset causes negligible twist of
the end-effector, reducing its observability due to non-linear dependencies of Inverse Dynamics on
mismatch parameters 6, shown in results in Appendix E. However, the robot still safely converges
to the target state, and CoM can be corrected in subsequent predictions if the twist increases due to
a change in orientation.



5.3 Performance on Dynamic Experiments

Tracking a Stable Limit Cycle To test the model in the dy-  os — m =500 I\jlsmatch pomis
namic scenario, we designed a Dynamical System with a sta- | cpic with rme

ble limit cycle in the y-z plane, where the manipulator aims to

achieve target velocities from the motion planner. As shown 061
in Figure 5, RME rapidly estimates mismatch parameters, al- £ ;|
lowing the robot to converge to the desired trajectory. With- ™
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this experiment, we evaluate the model’s capability to per-

form continuous adaptation while maintaining passivity with
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two unknown objects, and finally, remove the basket, perturb- ™ /E // {
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rate estimation of mismatch parameters 6, allowing the robot 031 // \
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Figure 6: Manipulator adaptation to sequential changes in the dynamics model, while subject to
human-generated perturbations. Each step represents modifying the dynamics model of the end ef-
fector; RME prediction between two steps denotes immediate correction of the previous 6 estimate.

6 Conclusion

We propose a novel adaptation framework capable of estimating mismatch in the dynamics model
of the impedance-controlled manipulator in ~ 400 ms. We evaluated our work in a series of experi-
ments, where we abruptly changed the dynamics model of the robot, and showed that our model can
provide accurate estimation and compensation, allowing the robot to safely complete the task and
stay passive wrt. to human-generated perturbations. In our future work, we plan to utilize uncer-
tainty quantification to develop a robust motion policy that will allow precise estimation of the CoM,
addressing the observability issue under certain configurations. We also plan to utilize uncertainty
quantification and Neural Network formulation shown in Section 4.1 to develop a more complex
mismatch detection condition, allowing more robust mismatch detection. Further, we plan to extend
the RME to model more complex dynamic interactions with unknown objects and explicitly account
for unmodeled actuator dynamics, improving the framework’s applicability and accuracy.



7 Limitations

To enable safe human-robot interactions, it is crucial to disambiguate between human-robot inter-
action and mismatch in the manipulators’ dynamic model, ensuring that the framework will not
compensate for human-generated perturbations. We notice that in selected scenarios, our simple
activation condition might be unable to distinguish these two factors in such a short time window.
Therefore, in our future work, we plan to develop and implement more complex mismatch detection
condition, allowing more robust and safe human-robot interaction.

During the evaluation, we observed that when the CoM of applied mismatch is close to the z-axis
of the end-effector, its observability is reduced due to non-linear dependencies of Inverse Dynamics
on mismatch parameters 6. Although the robot could converge to the desired trajectory in all ex-
periments, and CoM prediction can be corrected in the subsequent prediction, in our future work,
we plan to develop an exploration strategy that utilizes prediction uncertainty to allow efficient and
accurate CoM estimation. In addition, we observed that when the end-effector is experiencing rapid
accelerations along the global z-axis, such as in the stable limit cycle experiment, the mismatch
prediction might be biased. Further, unmodeled actuator dynamics, such as joint friction, can be
reflected in the 7.y, measurements, also biasing the RME predictions. Although in both cases, pre-
dictions can be corrected in subsequent estimations, we plan to address these limitations in our future
work, further improving the framework’s accuracy.

Finally, our model assumes that the detected object is a point mass added to the current inertia tensor
of the end-effector. This assumption holds when the manipulator is not rapidly accelerating, which
is valid for Human-Robot interaction scenarios; however, inertia estimation can be incorporated into
the framework to achieve a more accurate system representation.
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Appendix

A Mismatch Detection Algorithm

To ensure that our framework runs only when mismatch is detected, we designed a simple mismatch
detection algorithm that constantly monitors ||TCX[||§, checking for rapid increases or decrease ex-
ceeding activation threshold, which, depending on the experiment, we set between 0.7 and 1.1 Nm,
followed by stabilization within 0.2 Nm threshold over 230 ms period, characteristic for applying
mismatch to the end effector. Algorithm 1 shows the implementation of the mismatch detection
condition. The algorithm analyzes HTex[Hg time-history over 500 ms of the most recent feedback,
monitoring for rapid change of ||Text||§. Further, it evaluates stabilization condition by computing
the mean ||7'ext||§ over short time windows within the stabilization interval and compares it with the
mean HTeleg at the end of the interval, allowing detection of both adding and removing objects from
the end effector. To improve the algorithm’s robustness in pHRI, we also analyze measured pseudo-
wrenches applied to the end-effector, verifying that the principal applied force acts in the global
z-direction, and that forces in x and y directions do not exceed 2.5 N, ensuring that mismatch is
caused only by the applied load, not human perturbation. Detection threshold, stabilization thresh-
old, and stabilization interval were found empirically through ||Text||§ profiles analysis and can be
tuned based on the task objective. This simple condition allowed us to detect a mismatch applied to
the end-effector and run RME only when all detection conditions were met simultaneously. Further,
the algorithm can detect when dynamics mismatch and human perturbations occur simultaneously,
as these events exhibit different torque profiles, allowing the detection algorithm to distinguish the
two. Hence, RME will be activated once perturbations are no longer present, preserving the con-
troller’s passivity. Figure 7 shows an example of algorithm execution. After detecting a mismatch,
we proceed to data collection, which is followed by the RME framework estimation.

Algorithm 1 Mismatch Detection Algorithm

function ACTIVATIONCONDITION({ Hrex[H;, FudN ) > N=500 steps

rapid change <+ .||7'ext||§(500) - HTeleg(l) > activation threshold

stabilization 450 5 . 370 5. 290 .
checks — |:21O Z ||T3XtH2(Z)’ 2710 Z ”TCXIHQ(Z)a % Z HTBXIHQ(Z)
1=43 =351 =271

500 )
end stabilization <— 75 > [|7ex|5(4)

=491
o 1 500 1 500 1 500
Fext<_ 50 Z Fext,)u 50 Z Fext,y; 50 Z Fext,z
=451 1=451 =451

principal force check < (|Fext 7| > [Fexx|) A ([Fext.z| > [Fextyl)
side forces check < (|Fexy x| < 2.5) A (|Fexy y| < 2.5)

force check < principal force check A side forces check
stabilization <— True

for all checks € stabilization checks do
if |checks — end stabilization| > stabilization threshold then
stabilization <— False
end if
end for

mismatch detection < rapid change A stabilization A force check
return mismatch detection
end function
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RME Detection Condition

| —— Mismatch Detected

2
2

[ Texell

0 1 2 3 4 5
t(s)
Figure 7: Example of mismatch detection algorithm execution. The algorithm monitors HTmHg and

detects a mismatch in dynamics after observing a || 7ex ||§ increase followed by stabilization within a
given threshold.

B Compensatory Action Formulation

To compensate for the estimated mismatch, we define 7, (5) as control torque 7. from the Con-
strained Passive Interaction Controller with additional mismatch gravity compensation term. In our
formulation, we solve the CPIC (8) subject to equality constraints from the Nominal Dynamics
model, not corrected by predicted model mismatch. We found that this strategy mitigates potential
instabilities due to RME overcompensation, while succeeding in trajectory tracking. This approach
also maintains RME controller-agnostic, as the compensation is provided without influencing the
nominal controller. However, any impedance controller used with RME can be corrected using the
estimation result to improve tracking accuracy further.

C Effect of Neural Network on Inference Accuracy

To examine the importance of the Neural Network in our framework, we conducted an ablation
study, comparing inference results achieved with p(6) constructed by fiprior = fn(+) and feprior = 0.
By running the RME algorithm on 100 simulation-generated datasets, representing the manipula-
tor’s dynamic behavior under different mismatch parameters 6, we compare RME estimation results
under different prior constructions, as shown in Figure 8. Since Inverse Dynamics is non-linearly
dependent on mismatch parameters 6, Neural Network allows us to guide the Inference toward the
true center of mass estimation, allowing for more accurate mismatch parameters 6 estimation.

Predictions without NN Prior
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Figure 8: Comparison of parity plots for RME estimation of mismatch parameters 6 under different
prior constructions; as shown, Neural Network guidance allows for more robust center of mass
estimation.
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D Pick and Place with Human-Robot Interactions

In this experiment, we evaluate model performance in more complex continuous adaptation scenar-
ios by performing a pick and place task with a passive velocity-based inverse kinematics (PVIK)
controller [46], utilizing the gb SoftHand2 Research end effector and the OptiTrack motion capture
system to track the basket. In the first test, Figure 9, the robot aims to pick up an unknown object
(700 grams) and place it on top of the box, maintaining passivity with respect to human-generated
perturbations. During the process, we add 500 grams to the basket. RME allows the robot to track
the desired trajectory by rapidly adapting to unknown dynamics, while a controller without RME
fails to pick up a heavy object. In the second test, Figure 10, the robot aims to track and intercept
the basket (1200 grams) from a human and place it on top of the box, which is only possible with
the use of RME. In both experiments, the controller with RME augmentation preserves stability and
passivity of the closed-loop system.

1 ==~ True Mass
X RME Estimation

0.0 0.5 1.0 1.5 2.0 25 3.0 35
Step

Figure 9: Manipulator adaptation to sequential changes in the dynamics model while interacting with
unknown, heavy objects. Each step represents modifying the dynamics model of the end effector; at
Step 1, the manipulator picks up an unknown 700-gram basket, at Step 2, the user adds 500 grams
to the basket, and at Step 3, the robot places the basket on top of the box. RME prediction between
two steps denotes immediate correction of the previous 6 estimate.

1 --- True Mass
X  RME Estimation X %

0.0 0.5 1.0 1.5 2.0 2.5
Step

Figure 10: Manipulator intercepting basket of unknown mass (1200 grams) from a user and placing it
on top of the box. Using RME, the robot can safely adapt and finish the given task, while maintaining
passivity wrt. human-generated perturbations, ensuring safe pHRI. RME prediction between two
steps denotes immediate correction of the previous 6 estimate.
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E RME Estimation Results from Static Experiments

To perform the evaluation presented in Section 5, we designed two end effectors as baskets attached
to the manipulator, as shown in Figure 11. The white end-effector was 3D printed and served as the
base for static experiments and limit cycle tracking. Its construction allowed us to place heavy ob-
jects at precise positions, providing reliable ground truth information for RME evaluation. Further,
we designed a 3D printed connector to a commercially available basket to test Sequential Adaptation
with Human-Robot Interactions. This setup allowed us to verify RME adaptation capabilities with
everyday objects, ensuring our model is generalizable to various tasks.

Table 2 shows RME estimation results over 60 independent experiments, where the physical ma-
nipulator, subject to sudden changes in the dynamics model resulting from adding unknown mass
to the end-effector, aimed to maintain target equilibrium position and orientation, as described in
Section 5.2. Estimation results are mean predictions and standard deviations from 10 experiments
per Applied Mismatch. The average RME estimation time over 60 experiments was 226 ms.

Figure 11: End-effectors and unknown objects used in the RME evaluation. The left image shows
the 3D-printed basket used for static experiments and limit cycle tracking. The right image depicts
a commercially available basket with a 3D printed connector, used in a Sequential Adaptation with
Human-Robot interactions experiment.

Applied Mismatch Mean Prediction
m (kg) | 7, (m) | 7y (m) | 7, (M) m (kg) Ty (M) Ty (M) ., (m)
0.300 | 0.03 0.00 0.13 | 0.380 +0.018 | -0.044-0.03 | 0.024+0.01 | 0.13+0.04
0.500 | 0.06 0.00 0.13 | 0.51140.031 | 0.044+0.04 | 0.01+0.01 | 0.15£0.02
0.700 | 0.06 0.00 0.13 | 0.681+£0.019 | 0.07+0.03 | 0.00+0.01 | 0.14+0.02
0.900 | 0.05 | -0.03 | 0.13 | 0.861£0.024 | 0.07+0.01 | -0.024+0.01 | 0.11+£0.03
1.100 | 0.05 0.02 0.13 | 1.053+0.018 | 0.07+0.01 | 0.004+0.01 | 0.00+0.04
1.290 | 0.05 0.01 0.13 | 1.269+0.008 | 0.05+0.00 | 0.0040.01 | 0.00+0.06

Table 2: Framework mean estimation results and standard deviations over 60 independent exper-
iments. At each trial, we recorded the robot’s proprioceptive feedback over a 200-ms-long time
window, followed by the model estimation, which took 226 ms on average. In each experiment,
RME prediction allowed the robot to converge back to the desired trajectory.

As mentioned in Section 5.2, the manipulator’s goal is to maintain target equilibrium position and
orientation when interacting wth unknown objects from the environment. Examples of such adap-
tations are depicted in Figure 12. As shown, the robot controlled with CPIC without the estimation
framework deviates from the target position and orientation as it is pulled by the additional mass
attached to the end-effector. RME allows the manipulator to correct its position and converge to the
equilibrium point from before applying the mismatch.
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CPIC CPIC with RME

Figure 12: Comparison of manipulators’ behavior subject to unknown mismatch in dynamics model
ranging from 700 g to 1290 g, when controlled with Constrained Passive Interaction Controller
(CPIC), and CPIC with RME adaptation. Red lines indicate the manipulator’s equilibrium position
before experiencing the mismatch. As shown, for all weights used in the experiment, RME allows
the robot to correct its position and orientation, resulting in convergence to the equilibrium position;
CPIC-controlled manipulators deviate from the equilibrium state and fail to converge to the goal.
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F Effect of Data Collection Interval Length on Inference Accuracy

To choose the data collection interval for the Neural Network and Variational Inference, we con-
ducted a comparative analysis to examine model performance under different collection intervals.
We evaluated the study with 11 datasets from real robot experiments to ensure the model can ac-
count for measurement noise and external factors not present in the simulation environment. As
shown in Table 3, the RME model achieves lower MSE values with increased collection intervals.
Although we noticed that a longer collection interval might allow us to capture more information-
rich feedback, based on this study, we decided to set the collection interval to 200 ms, as it allows us
to achieve high estimation accuracy while shortening RME execution time. The collection interval
length can be tuned based on the particular manipulator and task specifications.

Collection Interval | MSE m (kg?) | MSE r,, (m?) | MSE r, (m?) | MSE r, (m?)
50 ms 2.480 x1073 | 1.607 x1073 | 0.574 x10~3 | 8.935x1073
100 ms 2.436x1073 0.909 x10~3 | 0.468x1073 4.827x1073
200 ms 2.467x1073 0.86 x1073 0.396x1073 3.88x1073
300 ms 2.081 x1073 | 0.979 x10~2 | 0.477 x1073 1.25x1073

Table 3: Comparison of RME Mean Squared Errors for § parameters for estimation with different
data collection intervals.

G Neural Network Architecture

The summary of the Neural network architecture described in Section 4.1 is shown in Table 4. As
input, we choose a sequence of M = 20 pseudo-wrenches Wy calculated using the manipulator’s
proprioceptive feedback, uniformly sampled from N collected data points over a 200 ms time win-
dow. Decreasing input dimensionality (N = 200 — M = 20) reduces model complexity without
negatively impacting model performance.

m =500 g m = 1100 g
- ¢ . A
3 49 3 @

Figure 13: Computer simulations of the manipulator’s dynamics subject to an unknown mass at-
tached to the end effector. The figure compares the manipulator’s equilibrium position before ap-
plying the mismatch (red line) to its position shortly after applying unknown masses of 500 grams
and 1100 grams (red spheres), shown in the left and right figures, respectively.

To train the Neural Network, we used a dataset generated from 350 computer simulations of a
manipulator’s dynamics experiencing different mismatch parameters 6, as shown in Figure 13. This
allowed us to train the NN without performing multiple experiments on the physical robot, making
the framework easily generalizable to other manipulator arms. We further augmented the dataset by
extracting input time series beginning at different time steps. This provided us with 1050 training
inputs, which we split into 80 - 20 training-validation datasets. We tested the network performance
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with a separate dataset representing time-translated data relative to the training dataset; the NN made
accurate predictions of mismatch parameters, which is essential, assuming we cannot guarantee the
exact positioning of the extracted time series of data. Figure 14 shows the training and validation
loss history over the training iterations. As shown in the plot, both loss curves converge, suggesting
that the applied dropout prevented the model from overfitting.

Parameter Value
Input Sequence Length (M) 20
Input Dimension M x6
Convolution Kernel Size 5
Convolution Output Dimension M x 64
Number of Attention Heads 8
MLP Hidden Dimension 256
MLP Activation Function ReLU
MLP Sequential Blocks 3
Dropout Rate 0.1
Output Dimension 4
Total Number of Parameters 53,252
Train-Validation Split 80-20
Training Dataset Size M x 6 x 840
Validation Dataset Size M x 6 x 210
Learning Rate 0.0001
Training Iterations 50,000
Training Time 1h Om 26s

Table 4: Summary of the Neural Network architecture.

Training Loss History

----- Train Loss

10714 0 Validation Loss

Loss

10—2 4

0 10000 20000 30000 40000 50000

Figure 14: Neural Network train and validation loss history.
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H Proof of Proposition 4.1

Let us re-state the proposition that must be proven in this section:

Proposition 4.1 Let a robotic manipulator with dynamics (4) be controlled by an augmented pas-
sive impedance control law defined in (5) with 7, computed by (8). Given an imperfect mismatch
parameter estimation AF,, # 0 and Arcoy # 0 the system will be locally asymptotically stable
as unwanted equilibria may arise when ||AFy — Fo(z)|| = 0, with AFy,, denoting the remaining
unknown model mismatch in the EE expressed as a task-space wrench. Yet, the closed-loop system
behavior remains passive wrt. input-output port (Fex, + AFpm, Z). |

Proof. Without loss of generality, assuming a single constraint exists, we can convert the CPIC
optimization problem (8) enacting the E-CBF kinematic constraint to [32]:

M(Q)q + O(Q7 Q)q + G(Q) = Tc + Text
Vah(a)"d > b(g,q)

given K = [ky ko] and b(q,q) = —kih(q) — kaVgh(q) "¢ — ¢"V2h(g). In [32], the authors
mention that if an optimal 7 for (19) can be found in the feasible set, i.e., when J(¢)~ " 7. = F.(z)

or F. ¢ N(J(q)~") then the closed-loop behavior of the robot is passive when feasible. Next, we
prove this statement in a more rigorous fashion. Let us rewrite the equality constraint in (19) as:

C.]. = M(q)fl(Tc + p(q7 q)) with p(q, Q) ‘= Text — C(Q7 Q)q - G(Q) (20)
Via (20) the CPIC controller (19) can be expressed as:

min ||J(g) T — Fu(@)|s st Veh(e)T (M(q) " (7 +p(a:4) > bl@) (1)

Te

min [ J(q)" T~ Ful@)]; st { (19)

which can be re-written in terms of 7, as follows:

1
min 57';'—@7'0 + TCTp +c st Ar.>v (22)

where ¢ = ||F.(z)||3 and we define the following variables:
Q:=2J(q) " J(@)~"  A:=V4h(g) M(g)~!
pi=-2J(q) ' Fe(z)  v:=blq) — Ap(g,d)

This shows that the CPIC controller (19) is reduced to a standard constrained QP, which is always
feasible. Hence, we can express the optimal solution 7. as an analytic closed-form expression via
KKT conditions. The KKT system for the active inequality constraints becomes:

Q AT] |7 _[-»

FlSEE e
with A* being the optimal solution of Lagrange multipliers corresponding to the inequality con-
straints A7, > v in the Lagrangian of (22) which is £(7,\) = 7] Q7. +7./p — AT (A7, — v).

(23)

We will next derive the closed-form expression in the following two scenarios.

When the robot is far from violating the kinematic constraints, this means that the E-CBF in-
equality V,h(q)Td — b(q,¢) > 0 is satisfied, in such cases the inequality constraint is inactive and
thus the optimal solution to (22) (via (24)) becomes:

o =-Q'p
= (20(0) " (0)T) " 20(0) Fele) 03)
= J(q)"J(q)J(q) ' Fu(x) (assuming J(q) is full rank)
= J(q)" Fe(x).

which reduces to the solution of the original passive interaction controller
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When the robot is close to violating (or in violation) of the kinematic constraints, this means
that the E-CBF inequality V,h(q) "¢ — b(g,¢) > 0 is not satisfied, in such cases an optimal QP

solution, 7 and A\* can be expressed by the analytical solution of the KKT system (24) as below:
TC* = Q71 (—p — AT)\*) (26)
= J(@) Folw) = QT ATN

assuming .J(g) is full rank and with:
A= (AQTAT) T (AQ ' +v) 27)

shows that the constrained solution is a correction to the unconstrained torque estimate .J(q) " Fi.(x)
from (25). During execution, the solution of the CPIC (19) will either be (25) or (26).

Thus, we can now analyze the closed-loop stability and passivity of these two solutions when
plugged into the robot dynamics (4) via our augmented controller with RME compensation (5) as,

M(q)i+C(q,q)q + G(q) =77 — J(@) " (Feut + AF ), (28)

with AF,,,,, representing the estimation error of the true unknown model mismatch:

_ () [ Fw
e o B o] >

As our control and RME compensation is defined in task-space we convert (28) to,
M (q)i + Calq, Q)i + Gul(q) = J (@) "7 + (Feat + AFpum), (30)

with the gravity vector being mapped to task-space by G.(q) = J(¢)~"G(q), and M,(q) =

J(@)""M(a)J (@), Cala,d) = J(@)~"Clg,9) T~ = J(a)~ " M(q)J(a) " J(q) ()" Sim-
ilarly, the joint-space velocities are mapped to task-space as & = .J(g)g with & € R and joint-space
accelerations ¢ mapped to task-space as follows & = J(q)d + J(q)q.

Closed-loop behavior when 7 solved as (25) Let us now analyze the closed-loop behavior of (30)
when the robot is not close to a kinematic constraint; i.e., 7.7 is expressed as (25), which reduces to:
Mo ()i + Co(q, )3 + Go(q) = J(a)” " J(q) " Fe(®) +(Fewt + AFm)

——
Q) (31
M»L(Q)x + Cx(Qa Q)x = —D(l‘) (Z‘ - f(.’l?)) + (Fewt + Ame)

The damping function D(x) can be designed to dissipate energy in orthogonal directions to f(x)
formulated as D(x) = V(z)A(x)V (x)T with (for a 2D example):

RECI
“Ter @

V(z) =ler(x) e2x)], e1(w) Teg(x) =0, Alz)= Pl(x) 0 }

(32)
with the eigenvalues \;(z) > 0 setting the impedance in orthogonal directions of @Q(x) basis, as
originally presented [13]. These D(x) design choices for the controller simplify it to:

M, (q)E + (Calq,q) + D(@)) & = M f(2) = (Feat + AFpum) (33)

The stability and passivity of the robot’s closed-loop dynamics with RME (33) can be proven by
following (3) with the following energy storage function:

1
Sz, @) = 5@ My + M V(x) (34)
that includes the kinetic energy of the robot and the potential energy injected by the controller

term. The latter depends solely on the eigenvalue Ay and the Lyapunov function V() used to ensure
asymptotic stability of f(z), which for this analysis we assume to be conservative f(z) = —VV(z).
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The time-derivative of the energy storage function is,

1 .
S(z,2) = 2T My + 53;«TM@,55 + MWV
1 .
= &7 (Fogt + AFm) — (Co + D(2)d + M\ f(2)) + §stMzi; + M VV(2)

= T (Fugt + AFym) — 87 D(2)i + a7 (M, — 2C2) & + A (f(z) + VV(2)) 39
2 N

=0 ()
= iT(Fopt + AFpm) — 27 D(z)i
<& (Fegt + AFm)
Thus, the following conditions are guaranteed,
S<0 AFm =0 & F.;p =0 (stable)
S<AF! i AF,, #0 & F.,;, =0 (passive) (36)

S’ < (Fe;vt + Ame)Tl‘ AF’nwn 7é 0 & Fewt 7é 0 (paSSive)

Which means that, when there is no external force F.,; = 0 then, if RME provides perfect estimates
then we can guarantee that the robot will track the DS f () and converge to its target 2* or trajectory
x(t)*. Nevertheless, if the estimate is incorrect, the system will remain passive wrt. the estimation
error AF,,,, # 0, which effectively reshapes the desired f(x), potentially creating a spurious
attractor when, @7 (AF,,,,) = @7 D(z)4. Finally, when an external force exists then the system is
passive wrt. the input-output port (Fezt + AFm, ).

Closed-loop behavior when 7 solved as (26). Following the same procedure, we can write the
closed-loop dynamics of the robot when the constraints are active, while also considering the RME
compensation error as follows,

M (q)& + Ca(q,4)E + Go(q) = Fuo(z) = (J(@) " TQ 7 ATN) +(Fegt + AFpm)
N——"
(7) Fecbf

_D(x) ('1j - f(l‘)) + (Fecbf + Feggt + Ame)
(_Fecbf + Femt + Ame)

My (q)3 + Cx(q,4)E
M.(q)i + (Cu(q,4) + D(x)) & — A f(x)

(37)
Note that F..pr € RS is the pseudo-wrench the robot experiences when a kinematic constraint in
joint-space is being activated; i.e., the robot will stiffen up near a constraint boundary. Following

(34) and (35), the time-derivative of the energy storage function for the closed-loop system (37) is,

. 1 .
S(z, i) = &7 Myi + ia'sTMxJ'c + VYT

— iT(Fuge + AFp) — ¢ D()i — 37 (J(q)TQ TATAY). (38)

Fecbt

Now we have an indefinite term in our power equation corresponding to the effect of enforcing a
kinematic constraints at the joint-level by the E-CBF. Nevertheless, we can easily understand the
behavior of this term. When the task-space motion of the robot # is feasible, either driven by f(x)
via F,.(z) or an external force Fey; or estimation error AF,,,, the E-CBF inequality V,h(q) "G —
b(q,q) > 0 is satisfied, then @ " F,c,¢ > 0 preserving stability and passivity as in (36).

Conversely, if the E-CBF inequality V,h(q) "§ — b(q,¢) > 0 is not satisfied the QP will enforce it,
stiffening up in the opposite direction of i and generating an opposite force rendering @ ' F.cp¢ < 0.
This is the only case when passivity is lost, yet it is a desired behavior, as we seek to enforce the
constraints. This property is referred to in [32] as passive when feasible. O
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