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ABSTRACT

Protein Language Models (PLMs) have achieved significant breakthroughs in
computational protein science through pre-training on large-scale sequence
databases and leveraging scalable network architectures. Concurrently, Rein-
forcement Learning (RL) has demonstrated substantial progress across multiple
protein design tasks by enabling expanded exploration capabilities and precise
multi-objective optimization. While RL has shown transformative potential in
natural language processing by enabling models to discover emergent capabilities
beyond their training distributions, its capacity to unlock latent functional patterns
within protein sequence space remains underexplored. In this study, we investi-
gate whether RL-enhanced PLMs can transcend their pre-training limitations and
identify implicit sequence-structure-function relationships not explicitly encoded
in foundational datasets. Through systematic evaluation across four critical pro-
tein design domains—antimicrobial peptide (AMP) design, kinase optimization,
antibody engineering, and inverse folding—we employ diverse RL algorithms
and model architectures to address this fundamental question. Our comprehen-
sive analysis demonstrates that RL reliably improves sampling efficiency across
domains and, more importantly, that its effectiveness is governed by a three-factor
interaction: task difficulty, reward model accuracy, and policy capacity. Gains
scale when rewards are accurate and informative, policies have sufficient capac-
ity to realize the signal, and tasks present headroom beyond supervised learn-
ing; conversely, noisy rewards or capacity bottlenecks cap improvements despite
exploration. This principled view offers practical guidance for RL in protein de-
sign: prioritize reward refinement before scaling policy size, match RL algorithms
and regularization strength to task difficulty, and allocate capacity where marginal
gains are largest.

Hard Task % . )
Protein Design
1 INTRODUCTION I

1
1 Equivalent
1

R Hill Climbing

Strong Policy

Policy Model Capacity

Protein Language Models (PLMs) have
emerged as the cornerstone of computational
protein design, leveraging vast training datasets
and scalable network architectures to achieve

Determine Easy Task

Protein Design Valid

Model
remarkable success across feature represen- Inaccurate R
tation (Lin et al) 2023} [Hayes et al) 2024 Wesk Polls) Rewarg Aécurate
[Brandes et al. [2022)), sequence generation Model e
(Nijkamp et all 2023} [Ferruz et al) [2022] ﬁ
Bhatnagar et al.| 2025; [Truong Jr & Bepler

2023), and functional prediction (Su et al, Figure 1: Reinforcement learning for protein de-
2023} [Hayes et all, 2024 [Xu et al, [2023a). sign is akin to hill climbing. Task difficulty
These advances have successfully propelled the €quates to mountain height, policy model capac-
development of sequence-function relationship ity to the starting altitude, and reward accuracy to
studies and protein design applications direction correctness. These three factors jointly
et al| 2024} [Zhang et al), 2025; [Ruffolo et al, determine the RL efficacy in protein design.
2025).




Under review as a conference paper at ICLR 2026

p
“2, Antimicrobial Peptide

[ Predicted residues
M Residues being predicted

Minimum Inhibitory
Concentration

| Input State I  } Design ] Residues to be predicted - — .
2 De Novo Generation P—— e Coron e EEEEEEee—
PPO DPO GRPO Antimicrobial Peptide Sequence
S, @ Predicted residues q
G RTNP i e \
PO"CY ,@ { Protein |.nver5e I Residues being predicted \@_.;‘:E:x 7
Folding [ Residues to be predicted b \}
Model i
bro Inverse Folding Sequence
Target Structure -
° é‘?é’ Kinase [ Fixed residues O Fixed residl{es ey Det "
Acti ® q ’1&;Xj M . B Mutagenesis targets B Mutagenesis targets o
ction 'g h“g,f utation EEEE  m EE| [J Mutated residues eavece
) DpPO L . Fitness  Ruael
WT Kinase
[ Non-CDR
2L y [ Non-CDR a6
y (%:g) Antlbody W cor O T O e
A Mutati M cDR 8AG= -
Reward hp uation WT Antibody O Mutated 46 O
PPO GRPO 1
WT Antigen Mutated Antibody
RL Framework Protein System Input State Policy Model Action Reward

Figure 2: Overview of the four biological systems based on PLM and RL. AR and MLM denote
Auto-regressive and Masked Language Modeling, respectively.

However, functional protein design reveals fundamental limitations of supervised learning ap-
proaches. Traditional methods face three critical obstacles: first, the inability to optimize for com-
plex, non-differentiable biological objectives such as TM-Score (Zhang & Skolnick, 2005)) that often
require iterative refinement (Yang et al., 2019); second, being constrained to interpolate within ex-
isting sequence-function mappings, thereby struggling to explore novel functional regions (Johnston
et al., [2023; [Notin et al., [2023); third, the inability to integrate multi-objective criteria or real-time
experimental feedback (Jiang et al., 2024; [Yang et al., [2025). These limitations restrict the discov-
ery of innovative protein sequences, creating a critical gap between computational capabilities and
practical engineering requirements.

Reinforcement Learning directly addresses these challenges by enabling exploration beyond ob-
served data, supporting multi-objective optimization, and integrating expert or experimental feed-
back at scale. Recent studies, which are summarized in Table 4] have demonstrated the transforma-
tive potential of RL across multiple protein design tasks (Lutz et al., 2023; | Xu et al., 2025; Wang
et al.). When coupled with PLMs, RL gains additional power. Numerous current studies have
substantiated this advantage. For instance, EvoPlay (Wang et al., [2023) discovered fluorescent pro-
teins with several-fold higher activity than wild-type through Monte Carlo tree search exploration.
ProteinZero (Wang et al., 2025b) developed proteins with enhanced designability, thermostabil-
ity, and greater diversity through diversity-based Generalized Reward-based Policy Optimization
(GRPO) (Shao et al.l [2024). ApexAmphion (Cao et al., 2025b) successfully explored broader and
more potent AMP candidates through Proximal Policy Optimization (PPO) (Schulman et al.,[2017).
These methods transcend the limitations of supervised training through reward-based exploration.

Simultaneously, developments in natural language processing have revealed RL’s potential for en-
hancing task performance and developing novel reasoning strategies (Liu et al.,|2025c), though some
research suggests that RL primarily amplifies existing outputs (Yue et al., 2025, Wu et al.l [2025).
This raises a fundamental question:

Do new emergent capabilities arise during the RL fine-tuning process of PLMs?

To the best of our knowledge, this study is the first to systematically evaluate this question in the
context of protein design. We conduct experiments across four biological systems—antimicrobial
peptide design, kinase optimization, antibody mutation, and protein inverse folding—to probe how
RL interacts with PLMs. Our results show that RL consistently improves sampling efficiency for
beneficial sequences. More importantly, we find that RL’s effectiveness is determined by the inter-
action of three key factors: rask difficulty, defined by the ruggedness and observability of the under-
lying fitness landscape; reward model accuracy, reflecting how well the reward signal is calibrated
and how much signal-to-noise it conveys; and policy model capacity, which depends on model size,
representational power, and initialization quality. As shown in Fig.[T} RL training for protein design
can be likened to hill-climbing: task difficulty sets the height of the summit to be scaled, reward
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accuracy determines the climbing direction, and policy-model capacity fixes the starting altitude.
These factors jointly shape whether RL can climb towards subspaces with stronger task alignment
or stall in suboptimal plateaus. Different combinations of task complexity, reward fidelity, and policy
strength yield qualitatively distinct trajectories of improvement. We believe this framework provides
a principled way to measure current RL—PLM systems and serves as a practical blueprint for guiding
future RL applications in protein design.

2 METHOD

Notations. We define a unified framework for protein sequence optimization tasks. Let A =
{A,C,D,E,F,G,H,I, K, L, M,N,P,Q,R,S,T,V,W,Y} denote the set of 20 natural amino
acids, which compose the vocabulary of protein design, and S = A* represent the space of all
finite protein sequences.

2.1 PROTEIN INVERSE FOLDING

For protein inverse folding, we address structure-to-sequence mapping where the policy model
mo(s|z) generates sequences conditioned on target 3D structure z € Z (Xu et al., 2025). The
optimization objective combines sequence likelihood with designability constraints:

s* = arg IgleachSNM(.‘z) [log p(s|z) + AE(s, z)], (D

where p(s|z) represents the structure-conditioned sequence probability and =(s,z) captures des-
ignability constraints that ensure the generated sequence can fold into the target structure.

We employ InstructPLM-7B (Qiu et al.,[2024) as our policy model, initially trained on the CATH 4.2
dataset (Sillitoe et al., [2021) to establish inverse folding capabilities. The action space corresponds
to autoregressive sequence generation, where at each step ¢, the policy selects amino acid token
a; € A according to:

a ~ mo(at|z, ar.i—1), (2)
where z represents the target structure and a1.;—1 denotes previously generated tokens. The complete
sequence is constructed through iterative token selection until reaching the end-of-sequence token.

We applied TM-Score as the reward function for structural fidelity evaluation. By employing ESM-
Fold (Lin et al., [2023) to predict the structure z,,.q for each generated sequence, we calculate the
TM-Score as TM-Align(z, z,,.q) (Zhang & Skolnick, 2005).

We then implement Direct Preference Optimization (DPO) (Ferruz et al., [2024) enhanced with reg-
ularization. For each target structure, we sample sequences using the current policy model, evaluate
the TM-Scores, and rank them to create preference pairs with high-scoring sequences as positive
examples .S, and low-scoring sequences as negative examples S;. The loss function combines stan-
dard DPO with supervised regularization (Xue et al.,|2025)):
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where L,., maintains sequence fidelity by encouraging the model to assign high probability to
structurally superior sequences. We employ multi-round iterative refinement, where each round
generates updated preference data and refreshes reference weights for progressive improvement.

2.2  ANTIMICROBIAL PEPTIDE DESIGN

For AMP design, we generate peptides with enhanced antimicrobial activity by targeting lower MIC
(minimum inhibitory concentration) values, indicating stronger bacterial inhibition. We employ
Amphion-SFT (Cao et al., [2025b)), an autoregressive PLM trained on AMPs, as our policy model
mo(s) to generate sequences optimized for antimicrobial potency. The optimization objective is:

s* = arg max Egor,[fvc(s)], @
SESamp
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where fyc @ Samp — R denotes ApexMIC (Cao et al., 2025b)), a binary classifier for predicting
antimicrobial potential. The reward function transforms the predicted score through normalization:

R(s) =2 (fmic(s) — A), &)
where A = 0.4 denotes the threshold for binary classification, providing balanced reward estimation.

We implement DPO (Ferruz et al., 2024), PPO (Schulman et al., [2017), and GRPO (Shao et al.,
2024) for fine-tuning. An additional KL regularization term is added in the loss of PPO and GRPO
to keep the naturalness of generated AMPs. Detailed formulations are shown in Appendix [C.4}

2.3  KINASE MUTATION

The kinase mutation task requires the model to perform multi-step mutations at specified positions
of the initial sequence, where each step involves selecting both the mutation site and the amino
acid substitution to progressively enhance the final mutant’s fitness. Consider a wild-type protein
sequence So = (0,1, 50,2 - - -, So,n) € S wWhere sg; € A. The fitness optimization objective is:

S = aIg max @ S 6
s’'eS ( )’ ( )
Whel‘e @ . S — R quantiﬁes pl‘Otein ﬁtneSS.

We adopt the ESM-2 architecture as our base model and follow the training framework described in
Wang et al.|(2024). The annotated fitness value serves as the reward, and the policy model performs
multi-step mutations on the wild-type sequence sg to maximize fitness of the final sequence s;. The
action space consists of position selection and amino-acid selection defined as a; = (p;, &+) where
%+ # s¢—1[pt]. The policy model uses ESM2 embeddings and MLP to predict mutation position,
then replaces the corresponding residue with [MASK] token and employs ESM-2 to select the
new amino acid. During DPO training, we did not employ either the KL penalty or the entropy
regularization term (See details in Section [C.4).

2.4 ANTIBODY OPTIMIZATION

For antibody optimization, we consider the complex space C = S, X Sug Where Sy and Sgq
represent antibody and antigen sequence spaces. Given a fixed antigen sequence s,g4, the policy
model pg(Sqp|Sag) aims to generate optimized antibody sequences that minimize binding affinity
change:

Shp = arg rgnin Es ., ~po(1sag) [AAG (Sabs Sag)]; (7

where AAG (Sap, Sag) = ¥ (Sabs Sag) — Y(SY}, 844) denotes the binding affinity change from wild-
type, which is predicted by a re-implemented version of ProtAttBA (Liu et all |2025a). The new
architecture is designed to better model the action of the policy model through logits (See details in
AlglT). Instead of training by regression on AAG (Liu et all 2025a), we re-designed its training
loss with combined objectives:

Etotal = Ereg + )\EAILM7 (8)
where L., represents the original AAG regression loss and L1 denotes masked language
modeling (MLM) loss. We achieved higher performance on the test set (Tab. [D.T).

The wild-type antibody sequence is mutated through policy logits z € Rl where L denotes
sequence length, combined with a position head that selects mutation sites within CDR. Mutated
sequences are generated through multinomial sampling from the policy logits of antibody at selected
CDRs, with detailed procedures described in Algorithm We employ rollout mechanisms and
compute Generalized Advantage Estimation (GAE), with a value model initialized using an MLP
architecture.

We applied both PPO and GRPO for model training. The comprehensive loss function is as follows:

['total = ‘Cpolicy + OOC'KL + Bﬁvalue + ’Y‘Centropya (9)
where L5y denotes the standard policy loss for PPO and GRPO (See details in Appendix @,
L1, denotes the clamped KL divergence loss between current and reference policies, Lq74 de-
notes the regression loss for value function, and Leptropy represents position entropy computed

over mutation position logits to encourage exploration. The coefficients «, /3, and  balance the
contribution of each component.
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Figure 3: Pass @k results for four biological systems.

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION METRICS

Datasets The kinase mutation experiments utilize PhoQ (Podgornaia & Laub, [2015) containing
140,517 annotated variants from 160,000 (20%) possible mutations at four sites (A284, V285, S288,
T289), with unlabeled variants assigned fitness values of -1. The antibody mutation task employs
the AB1101 dataset (Wang et al.,|2020) comprising 32 antigen-antibody complexes with 645 single-
point mutations for training and 456 multi-point mutations for testing, where complexes IMLC
and 1VFB serve as designated test structures. RL design leverages sequences from DBAASP,
DRAMP, and APD3 databases [Pirtskhalava et al.| (2021); [Shi et al.| (2022); Wang et al.| (2016),
yielding 7,888 samples (peptides 6-50 amino acids, active threshold <32 pM/mL MIC) split via
MMseqs2 (Steinegger & Soding), 2017) clustering into 6,153 training, 789 validation, and 946 test
samples. Protein inverse folding experiments use CATH4.2 (Sillitoe et al.,[2021)) with 18,024 train-
ing structures for base model and DPO training, evaluated on the CATH4.2 test set (1,120 structures)
combined with TS50 (50 structures) and TS500 (470 structures) benchmarks.

Evaluation Metric Pass@k metric is applied to evaluate model’s sampling efficiency for
objective-satisfying feasible sequences, which is calculated by the probability of succeeding at least
once by taking the complement of the probability of failing in all k£ consecutive trials. It is formally
defined as:

Pass@k(p) = 1 — (Pryop(yla) [R(z,y) = O])k , (10)

where p(y|x) is the output probability distribution of the model for a given prompt . R(z,y)
is a reward function that returns 1 if the completion y is correct, and O otherwise. The term
Pryp(y|z)[R(z,y) = 0] denotes the probability of an incorrect answer in a single sample.

To analyze the deviation of pre- and post-RL models, we follow (Wu et al., 2025)’s definition of
Support as a more detailed metric for pass@k. We leverage three key concepts under pass@k
setting. Shrinkage(k) represents the set of problems that the base model could solve but the fine-
tuned model cannot solve at pass@k. Expansion(k) denotes the set of problems that the base model
could not solve but the fine-tuned model can now solve at pass@k. Preservation(k) refers to the set
of problems that both models can solve at pass@k. To quantify the trade-off between discovering
new correct solutions and forgetting previously known ones, we propose the Expansion-Shrinkage
Ratio (ESR), a simple yet effective metric that captures the balance between knowledge gain and
loss during fine-tuning:

ESR(k) = |Expansion(k)|/|Shrinkage(k)|. (11)

An ESR greater than 1.0 indicates net knowledge gain, while an ESR less than 1.0 signals net
knowledge loss, and an ESR equal to 1.0 represents balanced learning dynamics.

Biological Metrics. We applied multiple metrics to evaluate the biological reasonability. (i)
Positional entropy is applied to evaluate sequence diversity at individual positions within the
complementarity-determining regions of both kinase and antibody mutation tasks, measuring the
uncertainty across mutational sites. (ii) Perplexity is applied to evaluate the likelihood quality of
generated protein sequences across all tasks, computed as the exponential of the average negative
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Table 1: Results for Support metric for four biological systems.

| Preservation  Expansion  Shrinkage  Out-of-support | ESR 1

AMP design 290 7 49 4 0.14
Kinase mutation 260 8 100 32 0.08
Antibody mutation 8 2 4 2 0.50
Inverse folding 891 9 21 199 2.33

log-likelihood under the respective models. (iii) Diversity and Novelty are applied to evaluate se-
quence variation and distinctiveness within generated outputs for both RL design and protein inverse
folding tasks, calculated as average sequence similarity between generated sequences and the aver-
age of one minus maximum sequence similarity scores, respectively. (iv) Recovery rate and TM-
score are applied to evaluate sequence similarity and structure similarity in protein inverse folding
tasks.

3.2 INVERSE FOLDING

In the inverse folding task, RL fine-tuned the base model, resulting in higher TM-scores, as demon-
strated by the improved pass@k performance and TM-score distribution (Figure [[C). Across all
values of k and both thresholds (0.5 and 0.8), the RL model consistently outperformed the base
model, indicating more effective exploration toward higher-quality structural predictions. This sug-
gests that RL learned to focus on sequence—structure relationships that maximize TM-scores.

The RL model showed lower perplexity in the DPO variant (Figure B), indicating that it sampled
more efficiently compared to the base model. However, as shown in Figure @A, the RL model
exhibited slightly reduced novelty and diversity but higher recovery, suggesting that RL exploration
prioritized regions with high TM-scores, at the cost of reduced exploration in diverse regions.

When stricter evaluation criteria were applied (TM-score > 0.8 and sequence similarity < 0.7), ex-
pansion cases outnumbered shrinkage cases across all k-values, demonstrating that RL exploration
expanded the design space (Figure[7). Smaller k-values, however, resulted in decreased ESR, sug-
gesting that RL’s sampling efficiency is more pronounced at larger k-values.

UMAP visualization (Figure @D) further supports this conclusion, showing that the RL model’s
sampling distribution aligns with a subset of the base model’s, with distinct expansion and shrinkage
regions. This indicates that RL’s exploration is focused on high-quality structural solutions while
maintaining a core subset of diverse sequences.

In the inverse folding task, RL fine-tuned the base model, effectively navigating the task’s moder-
ate complexity and rugged landscape. This allowed the model to prioritize high-quality structural
solutions, as indicated by the improved TM-scores and pass @k performance (Figure f[C). The RL
model’s reduced perplexity (Figure dB) suggests more efficient sampling, with exploration directed
toward high-reward regions characterized by better structural similarity. However, this focus on
high-reward regions came at the cost of diversity and novelty, as seen in the slightly reduced values
for these metrics (Figure dA).

3.3 ANTIMICROBIAL PEPTIDE DESIGN

In the AMP design task, RL fine-tuned the base model to generate AMPs with lower MIC values.
As shown in Figure dF, the RL model outperformed the base model, with approximately 95% of the
generated samples achieving lower perplexity, indicating more efficient sampling. This suggests that
RL effectively directed exploration toward high-reward regions associated with lower MIC values.

In the pass @k evaluation (Figure E[), all RL models (DPO, PPO, and GRPO) outperformed the base
model, particularly under the challenging 0.8 threshold for binary classification. While DPO and
PPO performed similarly to the base model, GRPO showed continuous improvement, reflecting
its superior exploration ability. This performance boost can be attributed to GRPO’s group loss
mechanism, which emphasizes high-reward samples and encourages more focused exploration.
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Figure 4: Experimental results for inverse folding (A-D) and AMP design (E-H).

Next, we assessed sampling efficiency by constructing support sets with a cross-entropy threshold
< 3.0 (Figure dG). RL methods discarded more positive samples (ESR = 0.14) but achieved higher
sampling efficiency, demonstrating a more targeted exploration approach. UMAP visualization of
latent distributions further confirmed these findings: RL models, especially GRPO, concentrated
within a high-reward subset of the AMP space. GRPO’s distribution showed a clear shift within the
base model’s convex hull, indicating that it learned to focus on promising regions while maintain-
ing coverage across the original design space. In contrast, DPO and PPO models showed reduced
diversity and novelty, emphasizing GRPO’s superior exploration capability.

The AMP design task involves navigating a rugged and complex search space, where low MIC
values are rare (Figure [3B). RL successfully focused exploration on regions associated with lower
MIC values, demonstrating its ability to tackle challenging tasks with a well-structured reward sig-
nal. The reward model’s accuracy, as reflected in Table shows that RL effectively exploited the
reward signal. GRPO, in particular, highlighted the significance of policy model capacity, outper-
forming DPO and PPO by achieving stronger exploration and prioritizing high-reward regions while
maintaining coverage within the original search space.

3.4 KINASE MUTATION

In the kinase mutation task, RL fine-tuned the base model by prioritizing high-fitness sequences,
at the cost of overall sequence diversity. This shift reflects the optimization objective’s focus on
maximizing fitness within a rugged, discontinuous protein landscape. Sampling 50,000 sequences
revealed minimal overlap (76 sequences, 4%) between the base and RL models. Notably, entropy
at mutable positions shifted: the RL model showed a decrease at position 1 and marked increases at
positions 2 and 3, indicating a fundamental distributional shift (Figure [5]A-B).

The RL model achieved a significantly higher mean fitness, with peak scores reaching 133, compared
to 70 for the base model. However, the base model maintained superiority in low-fitness regions
(<1), as shown in Figure Ep Pass@k evaluation (Figure E]) confirmed this trend: RL excelled at
k=1-2 but was overtaken by k=4, with the base model leading at saturation (k=128). When we
assessed support sets at k=32, starting with 400 wild-type sequences from the test set, the results
revealed that RL led to a contraction of the sequence space, with an ESR of only 0.08. This indicates
that RL training in the kinase mutation task sacrifices some exploration capacity to focus on high-
fitness regions, leading to better performance within these areas.

UMAP visualization (Figure 5D) further corroborates this finding. The RL model’s sampling dis-
tribution was more concentrated compared to the base model, indicating a shift in probability mass
toward high-fitness regions. While most RL sequences formed a subset of the base model’s distribu-
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Figure 5: Experimental results for kinase mutation (A-D) and antibody optimization (E-H).

tion, a few escaped the original convex hull, suggesting some degree of novel exploration. However,
the overall RL distribution largely resembled a subset of the base model, with limited exploration
outside of the original distribution.

Overall, RL effectively optimized for high-fitness regions but faced challenges in balancing explo-
ration and exploitation due to the task’s complex and discontinuous fitness landscape. The verified
reward model enabled RL to focus on high-reward regions, as reflected in higher mean fitness and
lower perplexity, directing sampling towards high-fitness areas. However, due to a weaker policy
model (as seen in pass@k), RL’s exploration efficiency was limited (ESR = 0.08). While the RL
model outperformed in high-fitness regions, its limited diversity indicates that the task requires a
stronger policy model to further enhance exploration.

3.5 ANTIBODY MUTATION

In the antibody mutation task, RL models fine-tuned on different CDRs (L1, L3, H1, H3) generally
achieved higher pass@k values, with GRPO outperforming PPO (Figure [3). Pass@k reached 1.0
for H3 and L1 sites, while HI and L3 tasks proved more challenging, with convergence to 0.67.
These results suggest that RL effectively optimized the sampling in more accessible regions but
faced difficulties in challenging tasks. Support evaluation on the test set, based on the average
cross-entropy of L3 CDR sites, confirmed that RL. models demonstrated higher sampling efficiency
(Figure BG). However, in some cases, shrinkage exceeded expansion (ESR = 0.5), indicating net
knowledge loss during RL training. This suggests that while RL can improve efficiency, it may also
limit diversity when the exploration is overly concentrated on specific regions (Table [3.1).

Further analysis of mutated sites revealed that RL models, particularly PPO and GRPO, generated
mutations with lower entropy values, while maintaining BLOSUM substitution score distributions
similar to the base model (Figure [SE-F). This suggests that RL models learned to prefer more con-
servative mutation strategies, adhering to physicochemical constraints while optimizing for specific
amino acid substitutions.

In terms of the reward function, RL models shifted towards lower ddG values, indicating a pref-
erence for more favorable energy states. The distribution of ddG values showed that RL explored
regions with significantly lower ddG (Figure [6). To validate these findings and exclude potential
reward-hacking artifacts, we compared the results with Protenix-Mini (Gong et al., [2025)) for struc-
tural prediction of 1VFB H3 variants and FoldX (Schymkowitz et al.l [2005)) for affinity prediction
(Figure[5jG). RL models showed consistent improvements on this independent affinity function, with
more concentrated distributions, despite a reduced proportion of low-energy samples.
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Furthermore, analysis of reward function ddG distributions showed that RL models shifted toward
lower ddG values and explored regions with substantially lower ddG (Figure [6). To exclude reward-
hacking artifacts from the imperfect reward model (Spearman correlation = 0.47), we validated
results using Protenix-Mini (Gong et al., 2025)) for structural prediction of 1VFB H3 variants and
FoldX (Schymkowitz et al.l [2005) for affinity prediction (Figure Ep). RL models demonstrated
consistent improvements on this independent affinity function, with more concentrated distributions
despite reduced low-energy sample proportions. Visualization of two test set PDB variants showed
no significant convex hull boundary shifts after RL (Figure [SH).

The antibody-antigen mutation task presents a more complex landscape, with certain CDR regions
being more easily optimized than others. RL effectively optimized these more accessible regions,
but the limited success in H1 and L3 tasks highlights challenges in exploring more difficult areas.
These challenges stem from the relatively low accuracy of the reward model (Spearman = 0.47)
and suboptimal policy model initialization (as evidenced by pass @k results). While RL prioritized
exploration of energetically favorable regions, this also led to a trade-off in diversity and shrinkage
(ESR =0.5). Compared to other tasks, the antibody domain presents significantly greater challenges,
requiring more valuable work to enhance the model’s exploration capability and generalizability.

4 RELATED WORKS

Current RL approaches for protein design focus on five major tasks. For structural design tasks,
MCTS-based approaches dominate due to their ability to handle complex architectural constraints.
Lutz et al. (Lutz et al} 2023) and GAPN (Gao et al. [2024) designed multimer protein com-
plex assembly with MCTS and PPO, respectively. Sequence optimization represents the most
diverse application area, employing various algorithms depending on multiple optimization ob-
jectives. MCTS-based methods include EvoPlay (Wang et al., [2023) for enzyme design and
RelaVDEP (Mi et al.| [2025) for multi-objective protein engineering. PPO-based approaches encom-
pass RLXF (Blalock et al.,|2025) for experimental feedback integration, pProtein (Sun et al., [2025)
for landscape model-guided design, and ApexAmphion (Cao et al.,2025b) for antimicrobial peptide
optimization. For inverse folding, recent work has gravitated toward DPO and its variants, including
multi-round DPO (Xu et al.2025)), EnerBridge-DPO (Rong et al.l 2025)), and ResiDPO (Xue et al.,
2025). Alternative approaches include ProteinZero using PPO/GRPO (Wang et al.,2025b) and Prot-
InvTree employing MCTS (Liu et al.| 2025b). Antibody engineering applications utilize diverse RL
paradigms: AB-Gen (Xu et al.| 2023b) with REINVENT for CDRH3 libraries, BetterBodies (Vogt
et al., 2024) and structured Q-learning (Cowen-Rivers et al., [2022) for Q-learning-based optimiza-
tion, and stability-focused approaches using reward fine-tuning (Wang et al.) and PPO (Cao et al.,
2025a)). Finally, peptide binder design employs specialized algorithms: TCRPPO (Chen et al.,
2023) for T-cell receptor sequences, and MCTS-based methods like HighPlay (Lin et al.,|2025)) and
CYC_BUILDER (Wang et al.,|2025a) for cyclic peptide optimization.

5 CONCLUSION

This study is the first to directly explore what reinforcement learning (RL) can teach protein lan-
guage models (PLMs) in protein design tasks. Through an analysis of two leading PLM architec-
tures, three RL algorithms, and four prominent experimental systems, we conclude that RL enables
more efficient sampling of high-reward regions. However, RL’s ability to learn new patterns and
optimize high-reward distributions comes with trade-offs, including reduced diversity, increased
shrinkage (ESR < 1), and other costs. These effects are influenced by factors such as the initializa-
tion capacity of the policy model (base model), reward accuracy, and task complexity. We believe
this insight offers a meaningful explanation for the current landscape of RL-based protein design.
Building on this, researchers can adopt a fresh perspective on how to make RL fine-tuning more
effective. While this work primarily focuses on PLMs for protein sequence design, future research
will extend to Diffusion/Flow Matching architectures, protein structure and sequence-structure co-
design, and additional RL algorithms (e.g., MCTS). We anticipate that the findings from this study,
coupled with future validation, will provide valuable insights that drive innovation in the field.
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A IMPLEMENTATION DETAILS

A.1 PROTEIN INVERSE FOLDING

Training Details Following (Xu et al., 2025)), the DPO framework used S = 0.5 to balance
reference model retention with preference adaptation, and regularization weight A = 1 for optimal
learning from chosen and rejected sequence pairs. Training employed AdamW optimizer with learn-
ingrate 1 x 107, 8, = 0.9, B3 = 0.999, € = 1 x 108, and batch size 128 across 8 NVIDIA A100
GPUs. LoRA adaptation used rank = 16 and o = 16, training only 0.1% of total parameters.

Single-round training used 4,000 steps with 20 sequences per structure, while multi-round training
employed 200 steps per round across 20 rounds using 200 sequences per structure. The reference
model 7.y was reinitialized with previous iteration weights during multi-round training to maintain
preference alignment and prevent catastrophic forgetting.
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Sampling Details Sequence generation employed distinct sampling parameters for training and
evaluation phases. For Training, single-round training used temperature 7' = 1.0 and top-p =
0.9 to generate 20 sequences per structure, while multi-round training utilized more exploratory
parameters (I = 1.1, top-p = 1.0) with 200 sequences per structure to encourage broader search
space exploration. For evaluation, temperature was reduced to 7' = 0.15 with 128 sequences per
structure to ensure reproducible comparisons across benchmarks.

A.2 ANTIMICROBIAL PEPTIDE DESIGN

Training Details Following (Cao et al.,2025b), the PPO framework applied learning rate 1 x 1075,
increased batch size to 256, and reduced training to 10 epochs over 3000 steps. The MIC predictor
employed ESM2 embeddings processed through multi-layer perceptron architecture, trained using
Focal Loss with focusing parameter v and class weighting «; to address dataset imbalance. The base
ProGen2-xlarge model (6.4B parameters) underwent supervised fine-tuning using LoRA adaptation
with rank 32, alpha 16, dropout 0.1, learning rate 1 x 104, and batch size 16 over 30 epochs.

Sampling Details Sequence generation employed temperature 1.0, top-p 0.95, beam number 4,
length penalty 1.2, and repetition penalty 1.2 with maximum sequence length 50. It also excluded
invalid amino acids (B, O, U, X, Z) and maintained consistent sequence length constraints. The sam-
pling strategy ensured diverse peptide generation while preserving antimicrobial sequence patterns
learned during fine-tuning. During evaluation, 131,072 (4096*32) and 160,000 AMP sequences are
generated for pass @k-related metric and latent visualization, respectively.

A.3 KINASE MUTATION

Training details Following (Wang et al.,[2024), we applied learning rate 1e — 5, batch 16. We set
the maximum total steps to 10,000 and created 50 parallel environments for training. The entropy-
loss coefficient is set to 0. To prevent the policy from being trapped in local optima, we set the
discount factor to O so that only the reward of the final sequence is used. The PPO clipping ratio
is 0.2 and the sampling temperature is 1.0. Reward is the experimentally measured fitness from the
dataset; sequences not present in the dataset receive -1, and invalid sequences receive -100.

Sampling details During sampling, we used temperature = 1.0 and top-p = 1.0, and created a sin-
gle environment to perform 50,000 rounds of sampling. Following the same protocol as in training,
mutation was terminated—and the result saved—either when the maximum number of mutation
steps was reached or when the sequence’s fitness exceeded the initial fitness. After each sample was
completed, the environment was re-initialized by randomly selecting a new starting sequence from
the test set for the next round of mutation.

A.4 ANTIBODY MUTATION

Training details During training, we used a fixed random seed as 42 and optimize with Adam
(Ir=4e — 5, weight decay=1e — 4), batch size 32, and global gradient clipping at 0.5 for 30 epochs.
Training is conducted on 4 A100 GPUs. In RL fine-tuning, we performed on-policy multi-step
rollouts (T" = 4) and restrict edits to CDR-masked positions. At each step, up to four sites are
mutated while disallowing the wild-type residue; sites are selected greedily from position proba-
bilities, and amino acids are chosen as the non-wild-type arg max under temperature-scaled logits.
Both amino-acid and position temperatures linearly anneal from 1.0 to 0.5 over the first 1,000 steps.
Advantages/returns are computed with GAE (y = 0.99, A = 0.95), returns are standardized, and
GRPO rank normalization is applied to advantages. We optimize a PPO objective with clipping 0.2;
the log-probability sums amino-acid and position terms with weight 0.5 on the position term:

logm = logmaa + 0.5 logmpos -
The loss weight for KL loss («), value loss (3), and entropy loss (y) are 20.0, 0.4, and 0.01, re-

spectively. KL was computed only at mutated sites; and the final KL term is clipped to < 10.0.
Sequences and masks use pad_id= 1.
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Sampling details We generate each antibody sequence we mutate up to K sites (default K = 4);
site choice and residue replacement are driven by the model’s position propensities and amino-acid
logits with temperature=1.0, position_temp=1.0, and position_threshold=0.5. A
frozen reward model predicted ddG for each mutant and can optionally score the wild type. Inference
was conducted on an single A100 GPU, default batch_size=16.

B DATASET AND EVALUATION METRICS

B.1 KINASE MUTATION

Datasets We evaluate the impact of RL training on protein mutations using the PhoQ
dataset(Podgornaia & Laub| (2015)). This dataset provides 140,517 annotated data points among
the 160,000 possible variants that differ at four mutational sites (A284,V285, S288, T289). Fitness
is reported as the corresponding phosphatase or kinase activity for each PhoQ variant. For the re-
maining unlabeled variants, we follow the convention in|Wang et al.|(2024)) and assign a fitness value
of -1. Following the fitness-split protocol of (Ouyang-Zhang et al.|(2023)), we fixed the fourth site
and partitioned the first three positions into training and test sets in an 8:2 ratio. All sequences were
then assigned to four bins according to their fitness values (=0, <1, <10, >10). From each bin we
randomly sampled 100 sequences in both the training and test splits to form the initial-seed pools.

Evaluation metrics Positional entropy is calculated as the Shannon entropy at each of the first
three mutable positions of the mutated sequence.

B.2 ANTIBODY MUTATION

Datasets we utilized AB1101, an open-source dataset comprising 32 antigen-antibody complexes
with comprehensive mutational sequence data. This dataset contains 645 single-point mutation en-
tries and 456 multi-point mutation entries. Following the data partitioning strategy established in
ProtAttBA, we employed single-point mutations as training data for both the policy model and re-
ward model, while reserving multi-point mutations for testing purposes. For reinforcement learning
training, we performed additional stratification of the multi-point mutation data based on complex
PDB identifiers. Through random selection, we designated IMLC and 1VFB as the test PDB struc-
tures to ensure robust evaluation of our approach.

Evaluation metrics Positional Entropy is calculated based on the Shannon entropy at each in-
dividual position within the CDR (Complementarity-Determining Region) of the mutated antibody
sequences. Perplexity is computed as the exponential of the average negative log-likelihood of the
generated protein sequences under a specific model.

B.3 AMP DESIGN

Datasets Following the AMPHION framework, we trained a reward model utilizing currently
available open-source MIC values sourced from three established databases: DBAASP, DRAMP,
and APD3. We selected sequences with lengths ranging from 6 to 50 amino acids and classified
them as active peptides based on MIC values below 32 pg/mL. This process yielded a total of 7,888
samples encompassing both positive and negative instances. To ensure proper data partitioning
and minimize sequence similarity bias, we employed MMseqs2 for clustering and dataset splitting,
resulting in a training, validation, and test distribution of 6153, 789, and 946 samples, respectively.

Evaluation metrics Diversity is calculated as the average sequence similarity between gener-
ated sequences, measuring the model’s ability to produce varied outputs and avoid mode collapse.
Novelty is computed based on the degree of novelty between generated sequences and natural se-
quences, specifically defined as the average of (1 - maximum sequence similarity) across all gener-
ated sequences, where the maximum similarity represents the highest identity score between each
generated sequence and any reference natural sequence. Perplexity is computed as the exponential
of the average negative log-likelihood of the generated protein sequences under a specific model.

16



Under review as a conference paper at ICLR 2026

B.4 PROTEIN INVERSE FOLDING

Datasets The dataset construction leverages CATH4.2, following to the official train-test split
scheme established by the CATH database. Both the base model training and DPO dataset construc-
tion are exclusively conducted on the training partition, which comprises 18,024 protein structures.
Model performance evaluation is carried out on the CATH4.2 test set containing 1,120 structures,
supplemented by two additional evaluation benchmarks: TS50 and TS500, which contain 50 and
470 protein structures respectively. This evaluation framework ensures comprehensive assessment
across diverse structural complexity and provides robust validation of the model’s generalization
capabilities.

Evaluation metrics Diversity is calculated as the average sequence similarity between gener-
ated sequences, measuring the model’s ability to produce varied outputs and avoid mode collapse.
Novelty is computed based on the degree of novelty between generated sequences and natural se-
quences, specifically defined as the average of (1 - maximum sequence similarity) across all gener-
ated sequences, where the maximum similarity represents the highest identity score between each
generated sequence and any reference natural sequence. Perplexity is computed as the exponential
of the average negative log-likelihood of the generated protein sequences under a specific model.
Recovery Rate is computed as the percentage of amino acid positions that are correctly predicted
compared to the native sequence. TM-Score evaluates the structural similarity between predicted
and native structures by measuring the geometric alignment quality across all residue positions.
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C METHOD DETAILS

C.1 ANTIBODY MUTATION NETWORK

Algorithm 1 ProtAttBA-improved: Antibody-antigen Binding Affinity Prediction and Featurization

Require: Wild-type antibody sequence S/, mutant antibody sequence S”}*
Require: Wild-type antigen sequence S;";, mutant antigen sequence Sg}f
Require: Attention masks M2, M7t Mot M2t
Ensure: Binding affinity prediction § and auxiliary outputs

: // Step 1: Protein Language Model Encoding
E%E « ESM(SY!, M%) € RB*LavxH {Wild-type antibody embeddings}
Emt « ESM(S™t, M) € RE*EavxH fMutant antibody embeddings}

EYt «— ESM(SEE, Mty € RP*Les*H {Wild-type antigen embeddings}
E7 «— ESM(Spt, Mt) € RE*Eas*H [Mutant antigen embeddings }
/ Sgtep 2: Attention-based Feature Enhancement

for z € {EY, ET)', EXY EN'Y do

2’ < AttnTransform(z) = softmax(Conv1D(LayerNorm(z))) ® = {Enhanced features}
end for
// Step 3: Cross-Modal Attention Mechanism

: EZ;’; < MultiHeadAttn(E!, EXF, B, M%) {Antigen attends to antibody }

: B «+ MultiHeadAtin(E2, ETit, ET, M") {Mutant antigen-antibody attention}

ag »~ab ' ~ab

: B!+ MultiHeadAttn(EY!, EXt, EX!, M) {Antibody attends to antigen}

. E™* « MultiHeadAttn(E™t, Bt Bt M) {Mutant antibody-antigen attention}
: /I Step 4: Auxiliary Classification Heads

: Ly « Linear(Ey)) € RP>*Ferx33 {Wild-type antibody logits }

: Lyt < Linear(E7}') € RP*Far>33 {Mutant antibody logits }

. Jwt 3 wt BXLqgx33 1. . .

Ly < Llnear(L?ag) € R¥xFagX N {Wild-type antigen logits}

: L™ « Linear(E™!) € RB*Lasx33 fMutant antigen logits}

// Step S: Attention-weighted Global Pooling

;! < AttnMean(E%!, M%) € RE*H {Pooled antibody representation }

ab

Mt AttnMean(ET, M73t) € RE*H {Pooled mutant antibody }

: bt AttnMean(EY), M") € RP*H {Pooled antigen representation }

D h AttnMean(E;’;t, Mty € RE*H {Pooled mutant antigen}
. // Step 6: Complex Formation and Prediction

: h"t < h! + hit {Wild-type complex representation }

: W™« R+ hY {Mutant complex representation}

: Reoncat < Concat(h®t h™t) € RB*2H [Concatenated complexes}
Rorm < BatchNorm(hconeqt) {Normalized features}

// Step 7: Multi-layer Prediction Head

. hy ¢ Tanh(Linear(hyorm)) € RE*H/2 {First hidden layer}

: hy < Dropout(hq,p = 0.1) {Apply dropout}

: hy < ReLU(Linear(h;)) € RE*H/2 {Second hidden layer}

: 9 + Linear(h2) € RP {Binding affinity prediction}

. ~ wt wt mt mt
. return Y, Lub ) Lag ) Lab ’ Lag

A AR e

L LW W IR N DN NN NN/ = = = == = = = =

W W W
W B W

C.2 ANTIBODY MUTATION STRATEGY
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Algorithm 2 Policy-Guided Antibody Mutation

Require: Policy model position probabilities P,,,s € R”
Require: Mutation model logits L,,,; € R/*V
Require: Wild-type sequence Sy,:, CDR mask M_ g4,
Require: Temperature 7, stochastic flag s
: Prasked Ppos ® Mgy {Mask to CDR}
Position Selection:
if s = True then
Select positions where Py, qskeq > 6 via multinomial sampling {Stochastic inference}
else
Select top-k positions by P,,4sked values {Deterministic training }
end if
Amino Acid Mutation:
for each selected position i do
P,o < softmax(L,.:[¢]/7) {Apply temperature }
P,o[Swt[i]] < 0 {Mask wild-type residue}
P,y < P,o/ > P., {Re-normalize}
if s = T'rue then
Smut[i] < sample(P,,) {Stochastic sampling }
else
Smut[i] 4 arg max(P,,) {Greedy selection}
end if
: end for
: return Mutated sequence S,,.¢

PRI R

U
RN R0

C.3 KINASE MUTATION STRATEGY

Algorithm 3 Kinase Mutation

Require: Initial sequence Sy € Z", Pretrained ESM Encoder frgas, Action Network faction,
Value Network fy 44, Masked Language Model fyr1as, Tokenizer 7', Mutation positions P =
{p1,p2, p3}, Amino acid vocabulary A.

Ensure: Final mutated sequence Sy .

1: // Initialization
2: Sobs < So {Initialize observation with the starting sequence}
3: Eref < fesm(Sprotein) {Get reference embedding for normalization}
4: fort =0to N — 1do
: [/ Step 1: Sequence Feature Extraction

Ey + fesm(Sops) € REXEXH [Encode current sequence }

E} + E;/(E,cs + €) {Normalize embeddings}

Ef1at + Flatten(E}) € REX(L-H) [Flatten for policy networks}

9:  // Step 2: Select Mutation Position (Actor)

100 Lyos < faction(Eiar) € REXIP {Get logits for positions}

11:  7pes < Categorical(logits = 1,,,5) {Create position distribution}

12 idx, < Tpos.sample() {Sample position index, e.g., 0, 1, or 2}

13:  py < Plidz,] {Map index to actual sequence position, e.g., 96, 97, 100}

14:  // Step 3: Predict Candidate Amino Acid (Masked LM)

15:  Smask < Sobs; Smask[pt] < MASK_TOKEN {Mask selected position}

160 log < faron (Smask)[pe] € RIA! {Get logits for amino acids at position p; }

17: Taq ¢ Softmax(l,,/7) {Create amino acid distribution with temperature 7}

18: a4 « Taq.sample() {Sample a new amino acid token}

19:  // Step 4: Update Sequence and Get Reward

20:  Spew < Sobs; Snew|pt] < ar {Apply mutation}

21:  Ry,done < PhoQEnv.step(Sye.) {Get reward from environment }

22:  Spps < Snew {Update the state for the next iteration }

23: end for

24: return S,

@ R
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C.4 REINFORCEMENT LEARNING LOSS FOR AMP DESIGN

We employ three widely used RL algorithms to fine-tune PLMs py(s) parameterized by 6, each
targeting different aspects of biological knowledge acquisition.

Direct Preference Optimization (DPO) DPO learns from preference pairs without explicit re-
ward modeling. Given preference dataset D = {(s;,s;)} where s = s;, the DPO loss is:

Pl o pals)
7€f(s+) Bl gp7'€f(s_)>:| ’

where p,.. s is the reference model, 3 > 0 controls KL divergence, and ¢ is the sigmoid function.

Z ’ 'L

[,Dpo(g) E(s+ s—)~D [1og0 (5 log

Proximal Policy Optimization (PPO) PPO optimizes the policy using clipped importance sam-
pling. For sequence s with reward

Lor0(6) = Eanp, [min (po()A(s). clip(pu(s), 1 = €1+ ) A(5) ) |48 Earpy [Dit (po(5) [poys(5))]

where py(s) = pI; 252) represents the importance ratio, which measures the change in probability of

a sequence between the current and the old policy. The term A(s) is the advantage estimate, which
quantifies how much better or worse the current action is compared to the baseline. The parameter €
is the clipping parameter, which ensures that the policy update does not change too drastically. To
prevent large policy updates, the loss includes the Kullback-Leibler (KL) divergence, denoted as
Dx1(po(s)||pa,, (s)), which measures deviation from the old policy to the current policy. Finally, 5
denotes a hyperparameter that controls the strength of the KL regularization.

Group Relative Policy Optimization (GRPO) GRPO computes relative advantages within se-

quence groups, making it suitable for comparative protein design. For group G = {s1,...,s,}, the
relative advantage is:

Arl(s,) = R(s;) = = > R(s

The GRPO loss extends PPO with group-wise normalization:

Lcrro(0) =

P me (pg( YAl (s), clip(p(s), 1 —6,1+6)Awl(s))1

+7- ESNﬂ'e [DKL(pQ(S)”onld(S))] )

where A”'el(sj) represents the relative advantage of sequence s; within the group G. The impor-

p’; 9(()) measures the change in probability of a sequence between
old

the current and old policies. The clipping parameter € ensures that the policy update remains within
a bounded range, preventing large, destabilizing changes. The KL divergence is regularized to
avoid large policy updates. Finally, v denotes the hyperparameter that controls the strength of the
KL regularization.

tance ratio, denoted as pp(s) =

D SUPPLEMENTARY EXPERIMENTAL RESULTS OF ANTIBODY MUTATION

D.1 TEST RESULTS ON THE RE-IMPLEMENTED PROTATTBA

Method | RMSE Pearson cor. Spearman cor.
ProtAttBA (Original) | 2.10 0.55 0.45
ProtAttBA (Ours) 1.50 0.58 0.47

D.2 DISTRIBUTION SHIFT OF PREDICTED DDG
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Figure 6: Predicted ddG distribution on test set PDBs.

E SUPPLEMENTARY EXPERIMENTAL RESULTS OF INVERSE FOLDING

E.1 ABLATION ON SUPPORT METRIC OF K

Table 2: Results for Support metric for four biological systems.

Preservation Expansion Shrinkage Out-Of-Support | ESR 1

k=128 891 9 21 199 2.33
k=32 886 12 23 199 1.92
k=8 865 23 27 205 1.17

=2 831 31 33 225 1.06

E.2 LATENT VISUALIZATION OF SUPPORT SUBSETS
F SUPPLEMENTARY EXPERIMENTAL RESULTS OF AMP DESIGN

F.1 BINARY CLASSIFICATION PERFORMANCE OF REWARD MODEL

Table 3: Results for ApexMIC on binary classification.

| Accuracy Precision Sensitivity Specificity F1-score AUC-ROC

ApexMIC | 0.96 0.62 0.82 0.98 0.70 0.90

21



Under review as a conference paper at ICLR 2026

_10_

Expansion
10+
5_
O_
_5.
Base
RL (DPO)
-101 ‘ ‘ ‘
-5 0 5 10
Preservation
Base
15 RL (DPO)
10+
5_
o_
_5-
_10_
0 10 20

15+

10+

15+

10

—51

Out-Of-Support

Base
RL (DPO)

0 10 20
Shrinkage

Base
RL (DPO)

-5

0 5 10 15

Figure 7: Latent visualization on inverse folding tasks for different support subsets.

G SUMMARY OF REINFORCEMENT LEARNING-GUIDED PROTEIN DESIGN

METHODS
Table 4: Taxonomy of RL approaches in protein design.
Task Method RL Reward Function Designed
Algorithm Biological
Entity
Structural Issac et al. MCTS Composite structural Symmetric
Design (Lutz et al.| score: multi-subunit
2023) architecture/topology fit,  protein
sterics, geometry assemblies

constraints

Continued on next page
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Task Method / RL Reward Function Designed Entity
Paper Algorithm
GAPN (Gao PPO Direct docking reward Multimer protein
et al.,[2024) (pose/energy), complex
adversarial reward to assembly /
improve global docking paths
assembly rules
Sequence EvoPlay MCTS Task-specific predicted Enzymes /
Optimization (Wang et al.| (AlphaZero) fitness/activity general proteins
2023) (surrogate property
predictors)
RLXF PPO Experimentally Diverse protein
(Blalock measured function (e.g.,  families (e.g.,
et al., [2025) fluorescence/fitness) CreiLOV
variants)
uProtein (Sun| PPO Predicted/experimental Enzymes (e.g.,
et al.,[2025) fitness from landscape [-lactamase)
model
RelaVDEP MCTS Fine-tuned GFP
(Mi et al., SPIRED-Fitness; (fluorescence),
2025) structure/foldability NUDT15/VKOR1
filters (ESMFold/AF2 (cellular
pLDDT, SPIRED-Stab abundance),
AAGIAT,); AmeR (fold
diversity—fitness metric repression),
PETase
(enzymatic
activity)
ApexAmphion PPO Predicted MIC, Board-spectrum
(Cao et al., physicochemical antimicrobial
2025b) properties peptides
Inverse ProteinZero PPO, GRPO ESM-Fold structural General protein
Folding (Wang et al.| fidelity, AAG stability sequences
2025b) proxy, diversity
Xuetal. (Xu| Multi-round TM-score General protein
et al.l [2025) DPO sequences
EnerBridge- DPO Energy score Protein complex
DPO (Rong sequences
et al.l [2025)
ResiDPO DPO pLDDT score, General protein
(Xue et al.} designability sequences
2025)
Park et al. DPO TM-score, diversity Peptide /
(Park et al.| metric short-protein
2024) sequences
RL-DIF DDPO Foldability, TM-score General protein
(Ektefaie sequences
et al.l [2024)
ProtInvTree MCTS TM-score, scTM-score General protein
(Liu et al.| from ESMFold sequences
2025b)

Continued on next page




Under review as a conference paper at ICLR 2026

Task Method / RL Reward Function Designed Entity
Paper Algorithm
DRAKES Reward Sequence stability General protein
(Wang etal)  Fine-tuning sequences
GLID?E (Cao| PPO Sequence stability General protein
et al.,[2025a) sequences
Antibody AB-Gen (Xu | REINVENT Developability, Antibody
Engineering et al., [2023Db) specificity CDRH3 libraries
(HER2, etc.)
BetterBodies ~ Q-learning Absolute free-energy, Antibody
(Vogt et al., affinity CDRH3 binders
2024) (SARS-CoV-2
RBD, etc.)
Structured Q-learning Docking affinity Antibody
Q-learning CDRH3 binders
(Cowen- (IGG4, etc.)
Rivers et al.,
2022)
Peptide TCRPPO PPO Valid-TCR likelihood, T-cell receptor
Binder (Chen et al.| peptide-recognition (TCR) sequences
Design 2023) probability (B-chain CDR3,
etc.)
HighPlay MCTS Structure-/pose-guided Cyclic peptide
(Lin et al.} scores, binding/energy binders
2025) proxies by HighFold
CYC_BUILDERMCTS Docking/binding- Cyclic peptide
(Wang et al.| energy, pose-quality binders
2025al) scores

H MORE RELATED WORK

H.1 PROTEIN LANGUAGE MODELS AND BEYOND

The landscape of protein language models compose distinct architectures: BERT-based encoder
models like ESM-2 (Lin et al.l [2023) excel at understanding tasks through bidirectional context,
autoregressive models such as ProGen2 (Nijkamp et al., 2023) and ProtGPT2 (Ferruz et al., 2022)
focus on generation, while recent approaches like ESM-3 (Hayes et al., [2024), SaProt (Su et al.,
2023)), and xTrimoPGLM (Chen et al., 2024) integrate multimodal information. A critical limitation
of these foundational models is their general focus, which delivers diminishing returns for spe-
cialized protein tasks despite requiring substantial computational resources. This has driven emer-
gence of protein-specific architectures including antibody models like IgLM (Shuai et al., [2023))
and AbLang (Olsen et al. [2022), enzyme systems like ZymCTRL (Munsamy et al., [2024), and
domain-targeted approaches for inverse folding (Qiu et al.,[2024), RL design (Cao et al.,[2025b) and
membrane proteins (Zhang et al.,[2024d). These specialized models outperform general approaches
through domain-specific training, but face fundamental limitations on training data.

H.2 RL FOR NATURAL LANGUAGE PROCESSING

Math reasoning is a key RL success in NLP, showing emergent self-verification and adaptive scaling
via GRPO and RL with Verifiable Rewards (DeepSeek-All 2025; Zhang et al., |2024b; |Cobbe et al.}
2021). Multimodal tasks use RL for cross-modal reasoning; MAYE and RLHF-V help vision-
language models solve math and reduce hallucinations (Wu et al.,|2024; [Liu et al.,2024)). RL is also
used for compiler feedback (Zhang et al., [2024a)), conversational optimization (Zhang et al., 2024c),
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and ranking (Paulus et al., | 2017; Ranzato et al.,[2015). The effectiveness of RLVR for reasoning is
contested: some view it as smart sampling toward high-reward outputs (Gandhi et al., [2025}; |Shah
et al., [2025)); several studies attribute reasoning to pretraining (Yue et al., 2025; Wu et al., 2025;
Wu & Choi) and argue RLVR echoes pretrained patterns (Zhao et all |2025). Others report gains
from structured RLVR (Liu et al.l [2025¢) and from unlikeliness rewards to reduce rank bias (He
et al., 2025). [Wen et al.[(2025) propose CoT-passk, showing RLVR benefits under more robust
evaluation.

I USAGE OF LANGUAGE MODELS

We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
to editorial tasks, including proofreading for typographical errors, correcting grammar, and improv-
ing the clarity and readability of the text.
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