

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM SUPERVISION TO EXPLORATION: WHAT DOES PROTEIN LANGUAGE MODEL LEARN DURING REIN- FORCEMENT LEARNING?

Anonymous authors

Paper under double-blind review

ABSTRACT

Protein Language Models (PLMs) have achieved significant breakthroughs in computational protein science through pre-training on large-scale sequence databases and leveraging scalable network architectures. Concurrently, Reinforcement Learning (RL) has demonstrated substantial progress across multiple protein design tasks by enabling expanded exploration capabilities and precise multi-objective optimization. While RL has shown transformative potential in natural language processing by enabling models to discover emergent capabilities beyond their training distributions, its capacity to unlock latent functional patterns within protein sequence space remains underexplored. In this study, we investigate whether RL-enhanced PLMs can transcend their pre-training limitations and identify implicit sequence-structure-function relationships not explicitly encoded in foundational datasets. Through systematic evaluation across four critical protein design domains—*antimicrobial peptide (AMP) design, kinase optimization, antibody engineering, and inverse folding*—we employ diverse RL algorithms and model architectures to address this fundamental question. Our comprehensive analysis demonstrates that RL reliably improves sampling efficiency across domains and, more importantly, that its effectiveness is governed by a three-factor interaction: *task difficulty, reward model accuracy, and policy capacity*. Gains scale when rewards are accurate and informative, policies have sufficient capacity to realize the signal, and tasks present headroom beyond supervised learning; conversely, noisy rewards or capacity bottlenecks cap improvements despite exploration. This principled view offers practical guidance for RL in protein design: prioritize reward refinement before scaling policy size, match RL algorithms and regularization strength to task difficulty, and allocate capacity where marginal gains are largest.

1 INTRODUCTION

Protein Language Models (PLMs) have emerged as the cornerstone of computational protein design, leveraging vast training datasets and scalable network architectures to achieve remarkable success across feature representation (Lin et al., 2023; Hayes et al., 2024; Brandes et al., 2022), sequence generation (Nijkamp et al., 2023; Ferruz et al., 2022; Bhatnagar et al., 2025; Truong Jr & Bepler, 2023), and functional prediction (Su et al., 2023; Hayes et al., 2024; Xu et al., 2023a). These advances have successfully propelled the development of sequence-function relationship studies and protein design applications (Qiu et al., 2024; Zhang et al., 2025; Ruffolo et al., 2025).

Figure 1: Reinforcement learning for protein design is akin to hill climbing. Task difficulty equates to mountain height, policy model capacity to the starting altitude, and reward accuracy to direction correctness. These three factors jointly determine the RL efficacy in protein design.

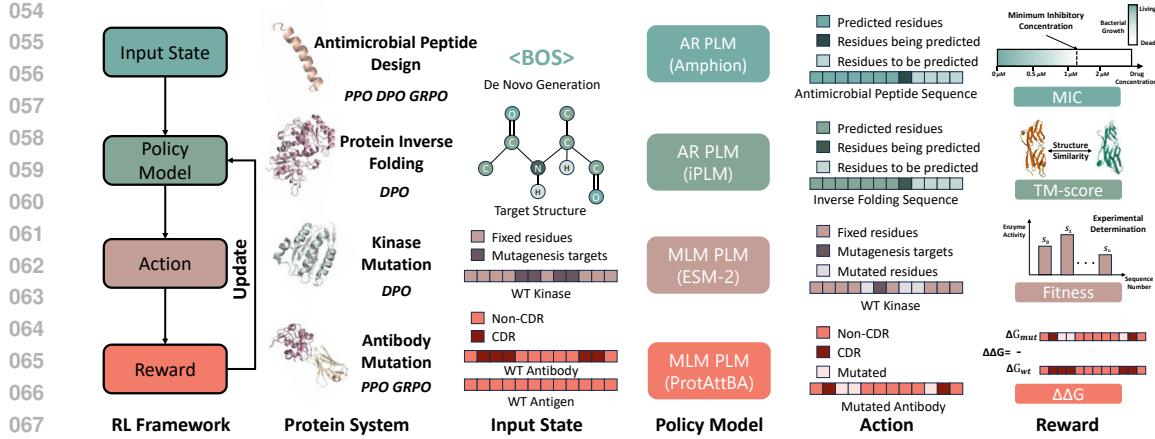


Figure 2: **Overview of the four biological systems** based on PLM and RL. **AR** and **MLM** denote Auto-regressive and Masked Language Modeling, respectively.

However, functional protein design reveals fundamental limitations of supervised learning approaches. Traditional methods face three critical obstacles: first, the inability to optimize for complex, non-differentiable biological objectives such as TM-Score (Zhang & Skolnick, 2005) that often require iterative refinement (Yang et al., 2019); second, being constrained to interpolate within existing sequence-function mappings, thereby struggling to explore novel functional regions (Johnston et al., 2023; Notin et al., 2023); third, the inability to integrate multi-objective criteria or real-time experimental feedback (Jiang et al., 2024; Yang et al., 2025). These limitations restrict the discovery of innovative protein sequences, creating a critical gap between computational capabilities and practical engineering requirements.

Reinforcement Learning directly addresses these challenges by enabling exploration beyond observed data, supporting multi-objective optimization, and integrating expert or experimental feedback at scale. Recent studies, which are summarized in Table 4, have demonstrated the transformative potential of RL across multiple protein design tasks (Lutz et al., 2023; Xu et al., 2025; Wang et al.). When coupled with PLMs, RL gains additional power. Numerous current studies have substantiated this advantage. For instance, EvoPlay (Wang et al., 2023) discovered fluorescent proteins with several-fold higher activity than wild-type through Monte Carlo tree search exploration. ProteinZero (Wang et al., 2025b) developed proteins with enhanced designability, thermostability, and greater diversity through diversity-based Generalized Reward-based Policy Optimization (GRPO) (Shao et al., 2024). ApexAmphion (Cao et al., 2025b) successfully explored broader and more potent AMP candidates through Proximal Policy Optimization (PPO) (Schulman et al., 2017). These methods transcend the limitations of supervised training through reward-based exploration.

Simultaneously, developments in natural language processing have revealed RL’s potential for enhancing task performance and developing novel reasoning strategies (Liu et al., 2025c), though some research suggests that RL primarily amplifies existing outputs (Yue et al., 2025; Wu et al., 2025). This raises a fundamental question:

Do new emergent capabilities arise during the RL fine-tuning process of PLMs?

To the best of our knowledge, this study is the first to systematically evaluate this question in the context of protein design. We conduct experiments across four biological systems—*antimicrobial peptide design*, *kinase optimization*, *antibody mutation*, and *protein inverse folding*—to probe how RL interacts with PLMs. Our results show that RL consistently improves sampling efficiency for beneficial sequences. More importantly, we find that RL’s effectiveness is determined by the interaction of three key factors: *task difficulty*, defined by the ruggedness and observability of the underlying fitness landscape; *reward model accuracy*, reflecting how well the reward signal is calibrated and how much signal-to-noise it conveys; and *policy model capacity*, which depends on model size, representational power, and initialization quality. As shown in Fig. 1, RL training for protein design can be likened to hill-climbing: task difficulty sets the height of the summit to be scaled, reward

accuracy determines the climbing direction, and policy-model capacity fixes the starting altitude. These factors jointly shape whether RL can climb towards subspaces with stronger task alignment or stall in suboptimal plateaus. Different combinations of task complexity, reward fidelity, and policy strength yield qualitatively distinct trajectories of improvement. We believe this framework provides a principled way to measure current RL–PLM systems and serves as a practical blueprint for guiding future RL applications in protein design.

114

115 2 METHOD

116

117 **Notations.** We define a unified framework for protein sequence optimization tasks. Let $\mathcal{A} =$
 118 $\{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y\}$ denote the set of 20 natural amino
 119 acids, which compose the vocabulary of protein design, and $\mathcal{S} = \mathcal{A}^*$ represent the space of all
 120 finite protein sequences.

121

122 2.1 PROTEIN INVERSE FOLDING

123

124 For protein inverse folding, we address structure-to-sequence mapping where the policy model
 125 $\pi_\theta(\mathbf{s}|\mathbf{z})$ generates sequences conditioned on target 3D structure $\mathbf{z} \in \mathcal{Z}$ (Xu et al., 2025). The
 126 optimization objective combines sequence likelihood with designability constraints:

127

$$\mathbf{s}^* = \arg \max_{\mathbf{s} \in \mathcal{S}} \mathbb{E}_{\mathbf{s} \sim \pi_\theta(\cdot|\mathbf{z})} [\log p(\mathbf{s}|\mathbf{z}) + \lambda \Xi(\mathbf{s}, \mathbf{z})], \quad (1)$$

128

129 where $p(\mathbf{s}|\mathbf{z})$ represents the structure-conditioned sequence probability and $\Xi(\mathbf{s}, \mathbf{z})$ captures de-
 130 signability constraints that ensure the generated sequence can fold into the target structure.

131

132 We employ InstructPLM-7B (Qiu et al., 2024) as our policy model, initially trained on the CATH 4.2
 133 dataset (Sillitoe et al., 2021) to establish inverse folding capabilities. The action space corresponds
 134 to autoregressive sequence generation, where at each step t , the policy selects amino acid token
 $a_t \in \mathcal{A}$ according to:

135

$$a_t \sim \pi_\theta(a_t|\mathbf{z}, a_{1:t-1}), \quad (2)$$

136

137 where \mathbf{z} represents the target structure and $a_{1:t-1}$ denotes previously generated tokens. The complete
 138 sequence is constructed through iterative token selection until reaching the end-of-sequence token.

139

140 We applied TM-Score as the reward function for structural fidelity evaluation. By employing ESM-
 141 Fold (Lin et al., 2023) to predict the structure \mathbf{z}_{pred} for each generated sequence, we calculate the
 142 TM-Score as $TM\text{-Align}(\mathbf{z}, \mathbf{z}_{pred})$ (Zhang & Skolnick, 2005).

143

144 We then implement Direct Preference Optimization (DPO) (Ferruz et al., 2024) enhanced with reg-
 145 ularization. For each target structure, we sample sequences using the current policy model, evaluate
 146 the TM-Scores, and rank them to create preference pairs with high-scoring sequences as positive
 147 examples S_w and low-scoring sequences as negative examples S_l . The loss function combines stan-
 148 dard DPO with supervised regularization (Xue et al., 2025):

149

$$\mathcal{L}(\pi_\theta, \pi_{ref}) = -\mathbb{E}_{(\mathbf{z}, S_w, S_l) \sim D_{pair}} \left[\underbrace{\log \sigma \left(\beta \log \frac{\pi_\theta(S_w|\mathbf{z})}{\pi_{ref}(S_w|\mathbf{z})} - \beta \log \frac{\pi_\theta(S_l|\mathbf{z})}{\pi_{ref}(S_l|\mathbf{z})} \right)}_{\mathcal{L}_{DPO}} - \underbrace{\lambda \log(\pi_\theta(S_w|\mathbf{z}))}_{\mathcal{L}_{reg}} \right], \quad (3)$$

150

151

152 where \mathcal{L}_{reg} maintains sequence fidelity by encouraging the model to assign high probability to
 153 structurally superior sequences. We employ multi-round iterative refinement, where each round
 154 generates updated preference data and refreshes reference weights for progressive improvement.

155

156 2.2 ANTIMICROBIAL PEPTIDE DESIGN

157

158 For AMP design, we generate peptides with enhanced antimicrobial activity by targeting lower MIC
 159 (minimum inhibitory concentration) values, indicating stronger bacterial inhibition. We employ
 160 Amphion-SFT (Cao et al., 2025b), an autoregressive PLM trained on AMPs, as our policy model
 $\pi_\theta(\mathbf{s})$ to generate sequences optimized for antimicrobial potency. The optimization objective is:

161

$$\mathbf{s}^* = \arg \max_{\mathbf{s} \in \mathcal{S}_{AMP}} \mathbb{E}_{\mathbf{s} \sim \pi_\theta} [f_{MIC}(\mathbf{s})], \quad (4)$$

162 where $f_{\text{MIC}} : \mathcal{S}_{\text{AMP}} \rightarrow \mathbb{R}$ denotes ApexMIC (Cao et al., 2025b), a binary classifier for predicting
 163 antimicrobial potential. The reward function transforms the predicted score through normalization:

$$164 \quad R(\mathbf{s}) = 2 \cdot (f_{\text{MIC}}(\mathbf{s}) - \lambda), \quad (5)$$

165 where $\lambda = 0.4$ denotes the threshold for binary classification, providing balanced reward estimation.

166 We implement DPO (Ferruz et al., 2024), PPO (Schulman et al., 2017), and GRPO (Shao et al.,
 167 2024) for fine-tuning. An additional KL regularization term is added in the loss of PPO and GRPO
 168 to keep the naturalness of generated AMPs. Detailed formulations are shown in Appendix C.4.

171 2.3 KINASE MUTATION

172 The kinase mutation task requires the model to perform multi-step mutations at specified positions
 173 of the initial sequence, where each step involves selecting both the mutation site and the amino
 174 acid substitution to progressively enhance the final mutant’s fitness. Consider a wild-type protein
 175 sequence $\mathbf{s}_0 = (s_{0,1}, s_{0,2}, \dots, s_{0,n}) \in \mathcal{S}$ where $s_{0,i} \in \mathcal{A}$. The fitness optimization objective is:

$$177 \quad \mathbf{s}^* = \arg \max_{\mathbf{s}' \in \mathcal{S}} \Phi(\mathbf{s}'), \quad (6)$$

178 where $\Phi : \mathcal{S} \rightarrow \mathbb{R}$ quantifies protein fitness.

179 We adopt the ESM-2 architecture as our base model and follow the training framework described in
 180 Wang et al. (2024). The annotated fitness value serves as the reward, and the policy model performs
 181 multi-step mutations on the wild-type sequence s_0 to maximize fitness of the final sequence s_t . The
 182 action space consists of position selection and amino-acid selection defined as $a_t = (\hat{p}_t, \hat{x}_t)$ where
 183 $\hat{x}_t \neq s_{t-1}[\hat{p}_t]$. The policy model uses ESM2 embeddings and MLP to predict mutation position,
 184 then replaces the corresponding residue with [MASK] token and employs ESM-2 to select the
 185 new amino acid. During DPO training, we did not employ either the KL penalty or the entropy
 186 regularization term (See details in Section C.4).

188 2.4 ANTIBODY OPTIMIZATION

190 For antibody optimization, we consider the complex space $\mathcal{C} = \mathcal{S}_{ab} \times \mathcal{S}_{ag}$ where \mathcal{S}_{ab} and \mathcal{S}_{ag}
 191 represent antibody and antigen sequence spaces. Given a fixed antigen sequence \mathbf{s}_{ag} , the policy
 192 model $p_{\theta}(\mathbf{s}_{ab}|\mathbf{s}_{ag})$ aims to generate optimized antibody sequences that minimize binding affinity
 193 change:

$$194 \quad \mathbf{s}_{ab}^* = \arg \min_{\mathbf{s}_{ab}} \mathbb{E}_{\mathbf{s}_{ab} \sim p_{\theta}(\cdot|\mathbf{s}_{ag})} [\Delta\Delta G(\mathbf{s}_{ab}, \mathbf{s}_{ag})], \quad (7)$$

195 where $\Delta\Delta G(\mathbf{s}_{ab}, \mathbf{s}_{ag}) = \Psi(\mathbf{s}_{ab}, \mathbf{s}_{ag}) - \Psi(\mathbf{s}_{ab}^{wt}, \mathbf{s}_{ag})$ denotes the binding affinity change from wild-
 196 type, which is predicted by a re-implemented version of ProtAttBA (Liu et al., 2025a). The new
 197 architecture is designed to better model the action of the policy model through logits (See details in
 198 Alg.1). Instead of training by regression on $\Delta\Delta G$ (Liu et al., 2025a), we re-designed its training
 199 loss with combined objectives:

$$200 \quad \mathcal{L}_{total} = \mathcal{L}_{reg} + \lambda \mathcal{L}_{MLM}, \quad (8)$$

201 where \mathcal{L}_{reg} represents the original $\Delta\Delta G$ regression loss and \mathcal{L}_{MLM} denotes masked language
 202 modeling (MLM) loss. We achieved higher performance on the test set (Tab. D.1).

203 The wild-type antibody sequence is mutated through policy logits $\mathbf{z} \in \mathbb{R}^{L \times |\mathcal{A}|}$ where L denotes
 204 sequence length, combined with a position head that selects mutation sites within CDR. Mutated
 205 sequences are generated through multinomial sampling from the policy logits of antibody at selected
 206 CDRs, with detailed procedures described in Algorithm 2. We employ rollout mechanisms and
 207 compute Generalized Advantage Estimation (GAE), with a value model initialized using an MLP
 208 architecture.

209 We applied both PPO and GRPO for model training. The comprehensive loss function is as follows:

$$211 \quad \mathcal{L}_{total} = \mathcal{L}_{policy} + \alpha \mathcal{L}_{KL} + \beta \mathcal{L}_{value} + \gamma \mathcal{L}_{entropy}, \quad (9)$$

212 where \mathcal{L}_{policy} denotes the standard policy loss for PPO and GRPO (See details in Appendix C.4),
 213 \mathcal{L}_{KL} denotes the clamped KL divergence loss between current and reference policies, \mathcal{L}_{value} de-
 214 notes the regression loss for value function, and $\mathcal{L}_{entropy}$ represents position entropy computed
 215 over mutation position logits to encourage exploration. The coefficients α , β , and γ balance the
 contribution of each component.

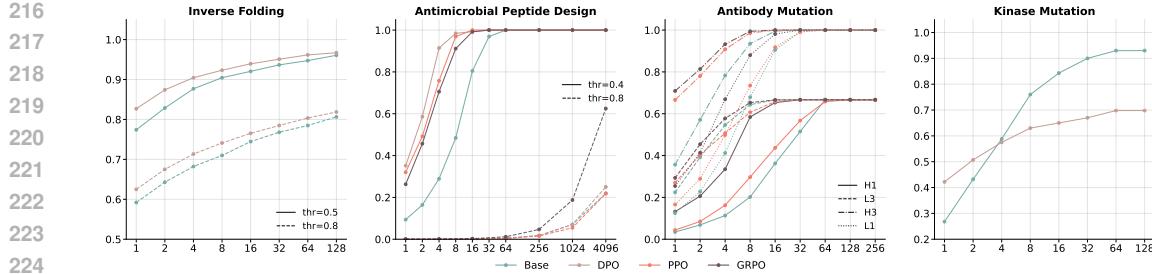


Figure 3: Pass@k results for four biological systems.

3 EXPERIMENTS

3.1 DATASETS AND EVALUATION METRICS

Datasets The kinase mutation experiments utilize PhoQ (Podgornaia & Laub, 2015) containing 140,517 annotated variants from 160,000 (20^4) possible mutations at four sites (A284, V285, S288, T289), with unlabeled variants assigned fitness values of -1. The antibody mutation task employs the AB1101 dataset (Wang et al., 2020) comprising 32 antigen-antibody complexes with 645 single-point mutations for training and 456 multi-point mutations for testing, where complexes 1MLC and 1VFB serve as designated test structures. RL design leverages sequences from DBAASP, DRAMP, and APD3 databases Pirtskhalava et al. (2021); Shi et al. (2022); Wang et al. (2016), yielding 7,888 samples (peptides 6-50 amino acids, active threshold $<32 \mu\text{M}/\text{mL}$ MIC) split via MMseqs2 (Steinegger & Söding, 2017) clustering into 6,153 training, 789 validation, and 946 test samples. Protein inverse folding experiments use CATH4.2 (Sillitoe et al., 2021) with 18,024 training structures for base model and DPO training, evaluated on the CATH4.2 test set (1,120 structures) combined with TS50 (50 structures) and TS500 (470 structures) benchmarks.

Evaluation Metric Pass@k metric is applied to evaluate model’s sampling efficiency for objective-satisfying feasible sequences, which is calculated by the probability of succeeding at least once by taking the complement of the probability of failing in all k consecutive trials. It is formally defined as:

$$\text{Pass}@k(p) = 1 - (\Pr_{y \sim p(y|x)}[R(x, y) = 0])^k, \quad (10)$$

where $p(y|x)$ is the output probability distribution of the model for a given prompt x . $R(x, y)$ is a reward function that returns 1 if the completion y is correct, and 0 otherwise. The term $\Pr_{y \sim p(y|x)}[R(x, y) = 0]$ denotes the probability of an incorrect answer in a single sample.

To analyze the deviation of pre- and post-RL models, we follow (Wu et al., 2025)’s definition of **Support** as a more detailed metric for pass@k. We leverage three key concepts under pass@k setting. *Shrinkage(k)* represents the set of problems that the base model could solve but the fine-tuned model cannot solve at pass@k. *Expansion(k)* denotes the set of problems that the base model could not solve but the fine-tuned model can now solve at pass@k. *Preservation(k)* refers to the set of problems that both models can solve at pass@k. To quantify the trade-off between discovering new correct solutions and forgetting previously known ones, we propose the *Expansion-Shrinkage Ratio (ESR)*, a simple yet effective metric that captures the balance between knowledge gain and loss during fine-tuning:

$$\text{ESR}(k) = |\text{Expansion}(k)| / |\text{Shrinkage}(k)|. \quad (11)$$

An ESR greater than 1.0 indicates net knowledge gain, while an ESR less than 1.0 signals net knowledge loss, and an ESR equal to 1.0 represents balanced learning dynamics.

Biological Metrics. We applied multiple metrics to evaluate the biological reasonability. (i) *Positional entropy* is applied to evaluate sequence diversity at individual positions within the complementarity-determining regions of both kinase and antibody mutation tasks, measuring the uncertainty across mutational sites. (ii) *Perplexity* is applied to evaluate the likelihood quality of generated protein sequences across all tasks, computed as the exponential of the average negative

270

271

Table 1: Results for *Support* metric for four biological systems.

272

273

	Preservation	Expansion	Shrinkage	Out-of-support	ESR \uparrow
AMP design	290	7	49	4	0.14
Kinase mutation	260	8	100	32	0.08
Antibody mutation	8	2	4	2	0.50
Inverse folding	891	9	21	199	2.33

274

275

276

277

278

279

log-likelihood under the respective models. (iii) *Diversity and Novelty* are applied to evaluate sequence variation and distinctiveness within generated outputs for both RL design and protein inverse folding tasks, calculated as average sequence similarity between generated sequences and the average of one minus maximum sequence similarity scores, respectively. (iv) *Recovery rate* and *TM-score* are applied to evaluate sequence similarity and structure similarity in protein inverse folding tasks.

280

281

282

283

284

285

286

287

3.2 INVERSE FOLDING

288

289

290

291

292

In the inverse folding task, RL fine-tuned the base model, resulting in higher TM-scores, as demonstrated by the improved pass@k performance and TM-score distribution (Figure 4C). Across all values of k and both thresholds (0.5 and 0.8), the RL model consistently outperformed the base model, indicating more effective exploration toward higher-quality structural predictions. This suggests that RL learned to focus on sequence–structure relationships that maximize TM-scores.

293

294

295

296

297

The RL model showed lower perplexity in the DPO variant (Figure 4B), indicating that it sampled more efficiently compared to the base model. However, as shown in Figure 4A, the RL model exhibited slightly reduced novelty and diversity but higher recovery, suggesting that RL exploration prioritized regions with high TM-scores, at the cost of reduced exploration in diverse regions.

298

299

300

301

When stricter evaluation criteria were applied (TM-score > 0.8 and sequence similarity < 0.7), expansion cases outnumbered shrinkage cases across all k-values, demonstrating that RL exploration expanded the design space (Figure 7). Smaller k-values, however, resulted in decreased ESR, suggesting that RL’s sampling efficiency is more pronounced at larger k-values.

302

303

304

305

UMAP visualization (Figure 4D) further supports this conclusion, showing that the RL model’s sampling distribution aligns with a subset of the base model’s, with distinct expansion and shrinkage regions. This indicates that RL’s exploration is focused on high-quality structural solutions while maintaining a core subset of diverse sequences.

306

307

308

309

310

311

312

In the inverse folding task, RL fine-tuned the base model, effectively navigating the task’s moderate complexity and rugged landscape. This allowed the model to prioritize high-quality structural solutions, as indicated by the improved TM-scores and pass@k performance (Figure 4C). The RL model’s reduced perplexity (Figure 4B) suggests more efficient sampling, with exploration directed toward high-reward regions characterized by better structural similarity. However, this focus on high-reward regions came at the cost of diversity and novelty, as seen in the slightly reduced values for these metrics (Figure 4A).

313

314

3.3 ANTIMICROBIAL PEPTIDE DESIGN

315

316

317

318

319

In the AMP design task, RL fine-tuned the base model to generate AMPs with lower MIC values. As shown in Figure 4F, the RL model outperformed the base model, with approximately 95% of the generated samples achieving lower perplexity, indicating more efficient sampling. This suggests that RL effectively directed exploration toward high-reward regions associated with lower MIC values.

320

321

322

323

In the pass@k evaluation (Figure 3), all RL models (DPO, PPO, and GRPO) outperformed the base model, particularly under the challenging 0.8 threshold for binary classification. While DPO and PPO performed similarly to the base model, GRPO showed continuous improvement, reflecting its superior exploration ability. This performance boost can be attributed to GRPO’s group loss mechanism, which emphasizes high-reward samples and encourages more focused exploration.

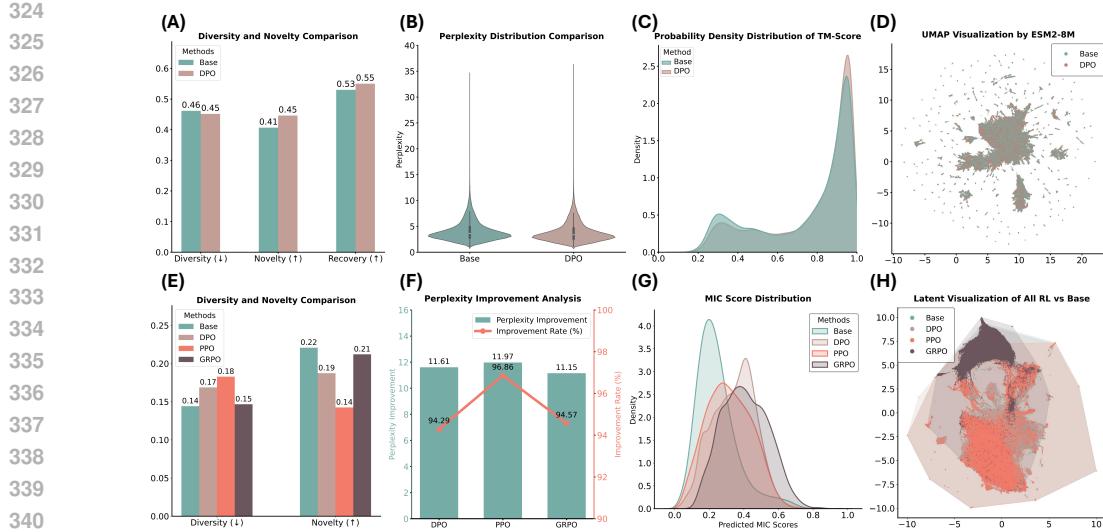


Figure 4: Experimental results for inverse folding (A-D) and AMP design (E-H).

Next, we assessed sampling efficiency by constructing support sets with a cross-entropy threshold < 3.0 (Figure 4G). RL methods discarded more positive samples (ESR = 0.14) but achieved higher sampling efficiency, demonstrating a more targeted exploration approach. UMAP visualization of latent distributions further confirmed these findings: RL models, especially GRPO, concentrated within a high-reward subset of the AMP space. GRPO’s distribution showed a clear shift within the base model’s convex hull, indicating that it learned to focus on promising regions while maintaining coverage across the original design space. In contrast, DPO and PPO models showed reduced diversity and novelty, emphasizing GRPO’s superior exploration capability.

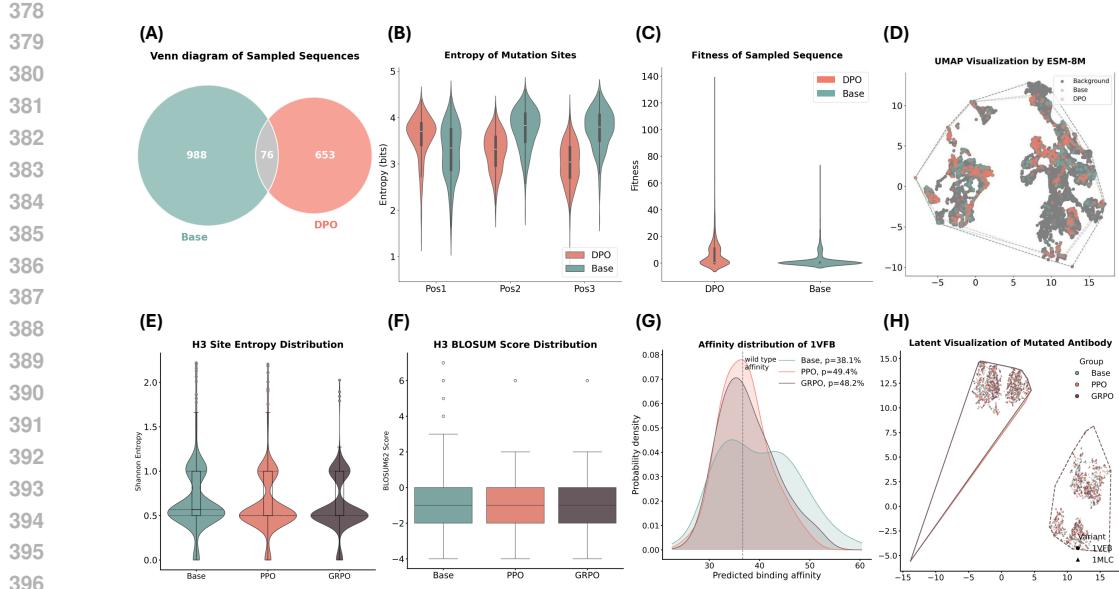
The AMP design task involves navigating a rugged and complex search space, where low MIC values are rare (Figure 3B). RL successfully focused exploration on regions associated with lower MIC values, demonstrating its ability to tackle challenging tasks with a well-structured reward signal. The reward model’s accuracy, as reflected in Table F.1, shows that RL effectively exploited the reward signal. GRPO, in particular, highlighted the significance of policy model capacity, outperforming DPO and PPO by achieving stronger exploration and prioritizing high-reward regions while maintaining coverage within the original search space.

3.4 KINASE MUTATION

In the kinase mutation task, RL fine-tuned the base model by prioritizing high-fitness sequences, at the cost of overall sequence diversity. This shift reflects the optimization objective’s focus on maximizing fitness within a rugged, discontinuous protein landscape. Sampling 50,000 sequences revealed minimal overlap (76 sequences, 4%) between the base and RL models. Notably, entropy at mutable positions shifted: the RL model showed a decrease at position 1 and marked increases at positions 2 and 3, indicating a fundamental distributional shift (Figure 5A-B).

The RL model achieved a significantly higher mean fitness, with peak scores reaching 133, compared to 70 for the base model. However, the base model maintained superiority in low-fitness regions (< 1), as shown in Figure 5C. Pass@k evaluation (Figure 3) confirmed this trend: RL excelled at $k=1-2$ but was overtaken by $k=4$, with the base model leading at saturation ($k=128$). When we assessed support sets at $k=32$, starting with 400 wild-type sequences from the test set, the results revealed that RL led to a contraction of the sequence space, with an ESR of only 0.08. This indicates that RL training in the kinase mutation task sacrifices some exploration capacity to focus on high-fitness regions, leading to better performance within these areas.

UMAP visualization (Figure 5D) further corroborates this finding. The RL model’s sampling distribution was more concentrated compared to the base model, indicating a shift in probability mass toward high-fitness regions. While most RL sequences formed a subset of the base model’s distribu-

397 Figure 5: Experimental results for kinase mutation (A-D) and antibody optimization (E-H).
398

399
400 a few escaped the original convex hull, suggesting some degree of novel exploration. However,
401 the overall RL distribution largely resembled a subset of the base model, with limited exploration
402 outside of the original distribution.

403 Overall, RL effectively optimized for high-fitness regions but faced challenges in balancing explo-
404 ration and exploitation due to the task’s complex and discontinuous fitness landscape. The verified
405 reward model enabled RL to focus on high-reward regions, as reflected in higher mean fitness and
406 lower perplexity, directing sampling towards high-fitness areas. However, due to a weaker policy
407 model (as seen in pass@k), RL’s exploration efficiency was limited (ESR = 0.08). While the RL
408 model outperformed in high-fitness regions, its limited diversity indicates that the task requires a
409 stronger policy model to further enhance exploration.

410 3.5 ANTIBODY MUTATION

411 In the antibody mutation task, RL models fine-tuned on different CDRs (L1, L3, H1, H3) generally
412 achieved higher pass@k values, with GRPO outperforming PPO (Figure 3). Pass@k reached 1.0
413 for H3 and L1 sites, while H1 and L3 tasks proved more challenging, with convergence to 0.67.
414 These results suggest that RL effectively optimized the sampling in more accessible regions but
415 faced difficulties in challenging tasks. Support evaluation on the test set, based on the average
416 cross-entropy of L3 CDR sites, confirmed that RL models demonstrated higher sampling efficiency
417 (Figure 5G). However, in some cases, shrinkage exceeded expansion (ESR = 0.5), indicating net
418 knowledge loss during RL training. This suggests that while RL can improve efficiency, it may also
419 limit diversity when the exploration is overly concentrated on specific regions (Table 3.1).

420 Further analysis of mutated sites revealed that RL models, particularly PPO and GRPO, generated
421 mutations with lower entropy values, while maintaining BLOSUM substitution score distributions
422 similar to the base model (Figure 5E-F). This suggests that RL models learned to prefer more con-
423 servative mutation strategies, adhering to physicochemical constraints while optimizing for specific
424 amino acid substitutions.

425 In terms of the reward function, RL models shifted towards lower ddG values, indicating a pref-
426 erence for more favorable energy states. The distribution of ddG values showed that RL explored
427 regions with significantly lower ddG (Figure 6). To validate these findings and exclude potential
428 reward-hacking artifacts, we compared the results with Protexin-Mini (Gong et al., 2025) for struc-
429 tural prediction of 1VFB H3 variants and FoldX (Schymkowitz et al., 2005) for affinity prediction
430 (Figure 5G). RL models showed consistent improvements on this independent affinity function, with
431 more concentrated distributions, despite a reduced proportion of low-energy samples.

432 Furthermore, analysis of reward function ddG distributions showed that RL models shifted toward
 433 lower ddG values and explored regions with substantially lower ddG (Figure 6). To exclude reward-
 434 hacking artifacts from the imperfect reward model (Spearman correlation = 0.47), we validated
 435 results using Protenix-Mini (Gong et al., 2025) for structural prediction of 1VFB H3 variants and
 436 FoldX (Schymkowitz et al., 2005) for affinity prediction (Figure 5G). RL models demonstrated
 437 consistent improvements on this independent affinity function, with more concentrated distributions
 438 despite reduced low-energy sample proportions. Visualization of two test set PDB variants showed
 439 no significant convex hull boundary shifts after RL (Figure 5H).

440 The antibody-antigen mutation task presents a more complex landscape, with certain CDR regions
 441 being more easily optimized than others. RL effectively optimized these more accessible regions,
 442 but the limited success in H1 and L3 tasks highlights challenges in exploring more difficult areas.
 443 These challenges stem from the relatively low accuracy of the reward model (Spearman = 0.47)
 444 and suboptimal policy model initialization (as evidenced by pass@k results). While RL prioritized
 445 exploration of energetically favorable regions, this also led to a trade-off in diversity and shrinkage
 446 (ESR = 0.5). Compared to other tasks, the antibody domain presents significantly greater challenges,
 447 requiring more valuable work to enhance the model’s exploration capability and generalizability.

450 4 RELATED WORKS

451
 452 Current RL approaches for protein design focus on five major tasks. For **structural design** tasks,
 453 MCTS-based approaches dominate due to their ability to handle complex architectural constraints.
 454 Lutz et al. (Lutz et al., 2023) and GAPN (Gao et al., 2024) designed multimer protein com-
 455 plex assembly with MCTS and PPO, respectively. **Sequence optimization** represents the most
 456 diverse application area, employing various algorithms depending on multiple optimization ob-
 457 jectives. MCTS-based methods include EvoPlay (Wang et al., 2023) for enzyme design and
 458 RelaVDEP (Mi et al., 2025) for multi-objective protein engineering. PPO-based approaches encom-
 459 pass RLXF (Blalock et al., 2025) for experimental feedback integration, μ Protein (Sun et al., 2025)
 460 for landscape model-guided design, and ApexAmphion (Cao et al., 2025b) for antimicrobial peptide
 461 optimization. For **inverse folding**, recent work has gravitated toward DPO and its variants, including
 462 multi-round DPO (Xu et al., 2025), EnerBridge-DPO (Rong et al., 2025), and ResiDPO (Xue et al.,
 463 2025). Alternative approaches include ProteinZero using PPO/GRPO (Wang et al., 2025b) and
 464 ProtInvTree employing MCTS (Liu et al., 2025b). **Antibody engineering** applications utilize diverse RL
 465 paradigms: AB-Gen (Xu et al., 2023b) with REINVENT for CDRH3 libraries, BetterBodies (Vogt
 466 et al., 2024) and structured Q-learning (Cowen-Rivers et al., 2022) for Q-learning-based optimiza-
 467 tion, and stability-focused approaches using reward fine-tuning (Wang et al.) and PPO (Cao et al.,
 468 2025a). Finally, **peptide binder design** employs specialized algorithms: TCRPPO (Chen et al.,
 469 2023) for T-cell receptor sequences, and MCTS-based methods like HighPlay (Lin et al., 2025) and
 CYC_BUILDER (Wang et al., 2025a) for cyclic peptide optimization.

470 471 5 CONCLUSION

472 This study is the first to directly explore what reinforcement learning (RL) can teach protein lan-
 473 guage models (PLMs) in protein design tasks. Through an analysis of two leading PLM architec-
 474 tures, three RL algorithms, and four prominent experimental systems, we conclude that RL enables
 475 more efficient sampling of high-reward regions. However, RL’s ability to learn new patterns and
 476 optimize high-reward distributions comes with trade-offs, including reduced diversity, increased
 477 shrinkage (ESR < 1), and other costs. These effects are influenced by factors such as the initializa-
 478 tion capacity of the policy model (base model), reward accuracy, and task complexity. We believe
 479 this insight offers a meaningful explanation for the current landscape of RL-based protein design.
 480 Building on this, researchers can adopt a fresh perspective on how to make RL fine-tuning more
 481 effective. While this work primarily focuses on PLMs for protein sequence design, future research
 482 will extend to Diffusion/Flow Matching architectures, protein structure and sequence-structure co-
 483 design, and additional RL algorithms (e.g., MCTS). We anticipate that the findings from this study,
 484 coupled with future validation, will provide valuable insights that drive innovation in the field.

486 REFERENCES
487

488 Aadyot Bhatnagar, Sarthak Jain, Joel Beazer, Samuel C Curran, Alexander M Hoffnagle, Kyle
489 Ching, Michael Martyn, Stephen Nayfach, Jeffrey A Ruffolo, and Ali Madani. Scaling unlocks
490 broader generation and deeper functional understanding of proteins. *bioRxiv*, pp. 2025–04, 2025.

491 Nathaniel Blalock, Srinath Seshadri, Agrim Babbar, Sarah A Fahlberg, Ameya Kulkarni, and
492 Philip A Romero. Functional alignment of protein language models via reinforcement learning.
493 *bioRxiv*, pp. 2025–05, 2025.

494 Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert: a universal
495 deep-learning model of protein sequence and function. *Bioinformatics*, 38(8):2102–2110, 2022.

496 Hanqun Cao, Haosen Shi, Chenyu Wang, Sinno Jialin Pan, and Pheng-Ann Heng. Glid²e: A
497 gradient-free lightweight fine-tune approach for discrete sequence design. In *ICLR 2025 Work-
498 shop on Generative and Experimental Perspectives for Biomolecular Design*, 2025a.

499 Hanqun Cao, Marcelo D. T. Torres, Jingjie Zhang, Zijun Gao, Fang Wu, Chunbin Gu, Jure Leskovec,
500 Yejin Choi, Cesar de la Fuente-Nunez, Guangyong Chen, and Pheng-Ann Heng. A deep re-
501 enforcement learning platform for antibiotic discovery, 2025b. URL <https://arxiv.org/abs/2509.18153>.

502 Bo Chen, Xingyi Cheng, Pan Li, Yangli-ao Yang, Bin Chen, Tangkai Xu, Zhuoming Yi, Duanyang
503 Xu, Yinghui Zheng, Qiwei Li, et al. xtrimopglm: Unified 100b-scale pre-trained transformer for
504 deciphering the language of protein, 2024.

505 Ziqi Chen, Martin Renqiang Min, Hongyu Guo, Chao Cheng, Trevor Clancy, and Xia Ning. T-
506 cell receptor optimization with reinforcement learning and mutation polices for precision im-
507 munotherapy. In *International Conference on Research in Computational Molecular Biology*, pp.
508 174–191. Springer, 2023.

509 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
510 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
511 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

512 Alexander I Cowen-Rivers, Philip John Gorinski, Aivar Sootla, Asif Khan, Liu Furui, Jun Wang,
513 Jan Peters, and Haitham Bou Ammar. Structured q-learning for antibody design. *arXiv preprint
514 arXiv:2209.04698*, 2022.

515 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
516 2025. URL <https://arxiv.org/abs/2501.12948>.

517 Yasha Ektefaie, Olivia Viessmann, Siddharth Narayanan, Drew Dresser, J Mark Kim, and Armen
518 Mkrtchyan. Reinforcement learning on structure-conditioned categorical diffusion for protein
519 inverse folding. *arXiv preprint arXiv:2410.17173*, 2024.

520 Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised lan-
521 guage model for protein design. *Nature Communications*, 13(1):4348, 2022. doi: 10.1038/
522 s41467-022-32007-7.

523 Noelia Ferruz, Michael Heinzinger, Mehmet Akdel, Alexander Gonçarenc, Luca Naef, and Chris-
524 tian Dallago. Direct preference optimization of protein language models, 2024.

525 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
526 tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. *arXiv
527 preprint arXiv:2503.01307*, 2025.

528 Ziqi Gao, Tao Feng, Jiaxuan You, Chenyi Zi, Yan Zhou, Chen Zhang, and Jia Li. Deep reinforcement
529 learning for modelling protein complexes. *arXiv preprint arXiv:2405.02299*, 2024.

530 Chengyue Gong, Xinshi Chen, Yuxuan Zhang, Yuxuan Song, Hao Zhou, and Wenzhi Xiao.
531 Protenix-mini: Efficient structure predictor via compact architecture, few-step diffusion and
532 switchable plm. *arXiv preprint arXiv:2507.11839*, 2025.

540 Tom Hayes, Rohith Krishnan, Mahdi Hashemi, Daniel Erwin, Lukas Adesina, Jeffrey Ruffolo,
 541 Nikhil Naik, and Ali Madani. Simulating 500 million years of evolution with a language model.
 542 *Science*, 386(6724):eado9496, 2024. doi: 10.1126/science.ado9496.

543

544 Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grp to beyond distribution
 545 sharpening. *arXiv preprint arXiv:2506.02355*, 2025.

546

547 Kaiyi Jiang, Zhaoqing Yan, Matteo Di Bernardo, Samantha R Sgrizzi, Lukas Villiger, Alisan
 548 Kayabolen, BJ Kim, Josephine K Carscadden, Masahiro Hiraizumi, Hiroshi Nishimasu, et al.
 549 Rapid in silico directed evolution by a protein language model with evolvepro. *Science*, 387
 550 (6732):eadr6006, 2024.

551

552 Kadina E Johnston, Clara Fannjiang, Bruce J Wittmann, Brian L Hie, Kevin K Yang, and Zachary
 553 Wu. Machine learning for protein engineering. In *Machine Learning in Molecular Sciences*, pp.
 554 277–311. Springer, 2023.

555

556 Huitian Lin, Cheng Zhu, Tianfeng Shang, Ning Zhu, Kang Lin, Chengyun Zhang, Xiang Shao,
 557 Xudong Wang, and Hongliang Duan. Highplay: Cyclic peptide sequence design based on rein-
 558 force learning and protein structure prediction. *Journal of Medicinal Chemistry*, 2025.

559

560 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 561 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 562 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023. doi: 10.1126/
 563 science.ade2574.

564

565 Chen Liu, Mingchen Li, Yang Tan, Wenrui Gou, Guisheng Fan, and Bingxin Zhou. Sequence-only
 566 prediction of binding affinity changes: a robust and interpretable model for antibody engineering.
 567 *Bioinformatics*, 41(8):btaf446, 08 2025a. ISSN 1367-4811. doi: 10.1093/bioinformatics/btaf446.
 568 URL <https://doi.org/10.1093/bioinformatics/btaf446>.

569

570 Mengdi Liu, Xiaoxue Cheng, Zhangyang Gao, Hong Chang, Cheng Tan, Shiguang Shan, and Xilin
 571 Chen. Protinvtree: Deliberate protein inverse folding with reward-guided tree search. *arXiv*
 572 *preprint arXiv:2506.00925*, 2025b.

573

574 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 575 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 576 *arXiv preprint arXiv:2505.24864*, 2025c.

577

578 Tianyu Liu, Yifei Zhang, Yanling Zhao, Shijie Geng, Chunyang Li, Jiangning Zhao, and Chengquan
 579 Yuan. Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional
 580 human feedback, 2024.

581

582 Isaac D Lutz, Shunzhi Wang, Christoffer Norn, Alexis Courbet, Andrew J Borst, Yan Ting Zhao,
 583 Annie Dosey, Longxing Cao, Jinwei Xu, Elizabeth M Leaf, et al. Top-down design of protein
 584 architectures with reinforcement learning. *Science*, 380(6642):266–273, 2023.

585

586 Tianyu Mi, Yuxiang Wang, Jingyu Zhao, Wanze Wang, Yunhao Shen, Nan Xiao, Ligong Chen,
 587 Guo-Qiang Chen, Shuyi Zhang, Wen-Bin Zhang, et al. Accelerating virtual directed evolution of
 588 proteins via reinforcement learning. *bioRxiv*, pp. 2025–06, 2025.

589

590 Noardeen Munsamy, Alexey Strokach, Philip Tran, and Philip M Kim. Zymctrl: a conditional
 591 language model for the controllable generation of artificial enzymes. *Nature Machine Intelligence*,
 592 6:1–12, 2024. doi: 10.1038/s42256-024-00792-1.

593

594 Erik Nijkamp, Jeffrey A Ruffolo, Eli N Weinstein, Nikhil Naik, and Ali Madani. Progen2: exploring
 595 the boundaries of protein language models. *Cell Systems*, 14(11):968–978, 2023. doi: 10.1016/j.
 596 cels.2023.10.002.

597

598 Pascal Notin, Aaron Kollasch, Daniel Ritter, Lood Van Niekerk, Steffanie Paul, Han Spinner, Nathan
 599 Rollins, Ada Shaw, Rose Orenbuch, Ruben Weitzman, et al. Proteingym: Large-scale benchmarks
 600 for protein fitness prediction and design. *Advances in Neural Information Processing Systems*, 36:
 64331–64379, 2023.

594 Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Ablang: an antibody language model for
 595 completing antibody sequences. *Bioinformatics Advances*, 2(1):vbac046, 2022. doi: 10.1093/
 596 bioadv/vbac046.

597 Jeffrey Ouyang-Zhang, Daniel Diaz, Adam Klivans, and Philipp Krähenbühl. Predicting a protein's
 598 stability under a million mutations. *Advances in Neural Information Processing Systems*, 36:
 599 76229–76247, 2023.

600 Ryan Park, Darren J Hsu, C Brian Roland, Maria Korshunova, Chen Tessler, Shie Mannor, Olivia
 601 Viessmann, and Bruno Trentini. Improving inverse folding for peptide design with diversity-
 602 regularized direct preference optimization. *arXiv preprint arXiv:2410.19471*, 2024.

603 Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
 604 summarization. *arXiv preprint arXiv:1705.04304*, 2017.

605 Malak Pirtskhalava, Anthony A Armstrong, Maia Grigolava, Mindia Chubinidze, Evgenia Alim-
 606 barashvili, Boris Vishnepolsky, Andrei Gabrielian, Alex Rosenthal, Darrell E Hurt, and Michael
 607 Tartakovsky. Dbaasp v3: database of antimicrobial/cytotoxic activity and structure of peptides
 608 as a resource for development of new therapeutics. *Nucleic acids research*, 49(D1):D288–D297,
 609 2021.

610 Anna I Podgornaia and Michael T Laub. Pervasive degeneracy and epistasis in a protein-protein
 611 interface. *Science*, 347(6222):673–677, 2015.

612 Jiezhong Qiu, Junde Xu, Jie Hu, Hanqun Cao, Liya Hou, Zijun Gao, Xinyi Zhou, Anni Li, Xiujuan
 613 Li, Bin Cui, et al. Instructplm: Aligning protein language models to follow protein structure
 614 instructions. *bioRxiv*, pp. 2024–04, 2024.

615 Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
 616 ing with recurrent neural networks. *arXiv preprint arXiv:1511.06732*, 2015.

617 Dingyi Rong, Haotian Lu, Wenzhuo Zheng, Fan Zhang, Shuangjia Zheng, and Ning Liu.
 618 Enerbridge-dpo: Energy-guided protein inverse folding with markov bridges and direct prefer-
 619 ence optimization. *arXiv preprint arXiv:2506.09496*, 2025.

620 Jeffrey A Ruffolo, Stephen Nayfach, Joseph Gallagher, Aadyot Bhatnagar, Joel Beazer, Riffat Hus-
 621 sain, Jordan Russ, Jennifer Yip, Emily Hill, Martin Pacesa, et al. Design of highly functional
 622 genome editors by modelling crispr-cas sequences. *Nature*, pp. 1–8, 2025.

623 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 624 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

625 Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis Ser-
 626 rano. The foldx web server: an online force field. *Nucleic acids research*, 33(suppl_2):W382–
 627 W388, 2005.

628 Darsh J. Shah et al. Rethinking reflection in pre-training. *arXiv preprint arXiv:2504.04022*, 2025.

629 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 630 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 631 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

632 Guobang Shi, Xinyue Kang, Fanyi Dong, Yanchao Liu, Ning Zhu, Yuxuan Hu, Hanmei Xu,
 633 Xingzhen Lao, and Heng Zheng. Dramp 3.0: an enhanced comprehensive data repository of
 634 antimicrobial peptides. *Nucleic acids research*, 50(D1):D488–D496, 2022.

635 Richard W Shuai, Jeffrey A Ruffolo, and Jeffrey J Gray. IgLM: Infilling language modeling for
 636 antibody sequence design. *Cell Systems*, 14(11):979–989, 2023. doi: 10.1016/j.cels.2023.10.001.

637 Ian Sillitoe, Nicola Bordin, Natalie Dawson, Vaishali P Waman, Paul Ashford, Harry M Scholes,
 638 Camilla SM Pang, Laurel Woodridge, Clemens Rauer, Neeladri Sen, et al. Cath: increased struc-
 639 tural coverage of functional space. *Nucleic acids research*, 49(D1):D266–D273, 2021.

648 Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
 649 the analysis of massive data sets. *Nature biotechnology*, 35(11):1026–1028, 2017.
 650

651 Jin Su, Chenchen Han, Yuyang Zhou, Junjie Shan, Xibin Zhou, and Fajie Yuan. Saprot: Protein
 652 language modeling with structure-aware vocabulary, 2023.

653 Haoran Sun, Liang He, Pan Deng, Guoqing Liu, Zhiyu Zhao, Yuliang Jiang, Chuan Cao, Fusong Ju,
 654 Lijun Wu, Haiguang Liu, et al. Accelerating protein engineering with fitness landscape modelling
 655 and reinforcement learning. *Nature Machine Intelligence*, pp. 1–15, 2025.
 656

657 Timothy Truong Jr and Tristan Bepler. Poet: A generative model of protein families as sequences-
 658 of-sequences. *Advances in Neural Information Processing Systems*, 36:77379–77415, 2023.

659 Yannick Vogt, Mehdi Naouar, Maria Kalweit, Christoph Cornelius Miething, Justus Duyster,
 660 Joschka Boedecker, and Gabriel Kalweit. Betterbodies: Reinforcement learning guided diffu-
 661 sion for antibody sequence design. *CoRR*, 2024.

662

663 Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Avantika Lal, Tommi Jaakkola, Sergey
 664 Levine, Aviv Regev, Tommaso Biancalani, et al. Fine-tuning discrete diffusion models via re-
 665 ward optimization with applications to dna and protein design. In *The Thirteenth International
 666 Conference on Learning Representations*.

667 Fanhao Wang, Tiantian Zhang, Jintao Zhu, Xiaoling Zhang, Changsheng Zhang, and Luhua Lai.
 668 Reinforcement learning-based target-specific de novo design of cyclic peptide binders. *Journal
 669 of Medicinal Chemistry*, 2025a.
 670

671 Guangshun Wang, Xia Li, and Zhe Wang. Apd3: the antimicrobial peptide database as a tool for
 672 research and education. *Nucleic acids research*, 44(D1):D1087–D1093, 2016.

673

674 Menglun Wang, Zixuan Cang, and Guo-Wei Wei. A topology-based network tree for the prediction
 675 of protein–protein binding affinity changes following mutation. *Nature Machine Intelligence*, 2
 676 (2):116–123, 2020.

677

678 Yi Wang, Hui Tang, Lichao Huang, Lulu Pan, Lixiang Yang, Huanming Yang, Feng Mu, and Meng
 679 Yang. Self-play reinforcement learning guides protein engineering. *Nature Machine Intelligence*,
 680 5(8):845–860, 2023.

681

682 Yuhao Wang, Qiang Zhang, Ming Qin, Xiang Zhuang, Xiaotong Li, Zhichen Gong, Zeyuan Wang,
 683 Yu Zhao, Jianhua Yao, Keyan Ding, et al. Knowledge-aware reinforced language models for
 protein directed evolution. In *Forty-first International Conference on Machine Learning*, 2024.

684

685 Ziwen Wang, Jiajun Fan, Ruihan Guo, Thao Nguyen, Heng Ji, and Ge Liu. Proteinzero:
 686 Self-improving protein generation via online reinforcement learning. *arXiv preprint
 arXiv:2506.07459*, 2025b.

687

688 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 689 Wang, Junjie Li, Ziming Miao, Jiang Bian, and Mao Yang. Reinforcement learning with verifiable
 690 rewards implicitly incentivizes correct reasoning in base llms, 2025. URL <https://arxiv.org/abs/2506.14245>.

691

692 Fang Wu and Yejin Choi. On the limits of rlvr: Support, entropy, and the illusion of reasoning. In
 693 *2nd AI for Math Workshop@ ICML 2025*.

694

695 Fang Wu, Weihao Xuan, Ximing Lu, Zaid Harchaoui, and Yejin Choi. The invisible leash: Why rlvr
 696 may not escape its origin. *arXiv preprint arXiv:2507.14843*, 2025.

697

698 Ziwei Wu, Yang Zhang, and Hongyan Li. Maye: A transparent rl framework for vision-language
 699 models, 2024.

700

701 Junde Xu, Zijun Gao, Xinyi Zhou, Jie Hu, Xingyi Cheng, Le Song, Guangyong Chen, Pheng-
 Ann Heng, and Jiezhong Qiu. Protein inverse folding from structure feedback. *arXiv preprint
 arXiv:2506.03028*, 2025.

702 Minghao Xu, Xinyu Yuan, Santiago Miret, and Jian Tang. Protst: Multi-modality learning of protein
 703 sequences and biomedical texts. In *International Conference on Machine Learning*, pp. 38749–
 704 38767. PMLR, 2023a.

705
 706 Xiaopeng Xu, Tiantian Xu, Juxiao Zhou, Xingyu Liao, Ruochi Zhang, Yu Wang, Lu Zhang, and
 707 Xin Gao. Ab-gen: antibody library design with generative pre-trained transformer and deep
 708 reinforcement learning. *Genomics, Proteomics & Bioinformatics*, 21(5):1043–1053, 2023b.

709
 710 Fanglei Xue, Andrew Kubaney, Zhichun Guo, Joseph K Min, Ge Liu, Yi Yang, and David Baker.
 711 Improving protein sequence design through designability preference optimization. *arXiv preprint*
 712 *arXiv:2506.00297*, 2025.

713 Jason Yang, Ravi G Lal, James C Bowden, Raul Astudillo, Mikhail A Hameedi, Sukhvinder Kaur,
 714 Matthew Hill, Yisong Yue, and Frances H Arnold. Active learning-assisted directed evolution.
 715 *Nature Communications*, 16(1):714, 2025.

716 Kevin K Yang, Zachary Wu, and Frances H Arnold. Machine-learning-guided directed evolution for
 717 protein engineering. *Nature methods*, 16(8):687–694, 2019.

718 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 719 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 720 *preprint arXiv:2504.13837*, 2025.

721
 722 Hao Zhang, Wei Li, Zhi Jin, Xiaoying Luo, Nan Yang, and Zenglin Chen. Enhancing code llms with
 723 reinforcement learning in code generation: A survey, 2024a.

724
 725 Hauxuan Zhang, Dianbo Yu, and Shimon Whiteson. Grpo-lead: A difficulty-aware reinforcement
 726 learning approach for concise mathematical reasoning in language models, 2024b.

727
 728 Lei Zhang, Jianhua Wang, and Xiaofeng Li. Deep reinforcement learning-based dialogue policy
 729 with graph convolutional q-network. *Proceedings of the Language Resources and Evaluation*
 730 *Conference*, pp. 4681–4688, 2024c.

731
 732 Qiang Zhang, Wanyi Chen, Ming Qin, Yuhao Wang, Zhongji Pu, Keyan Ding, Yuyue Liu, Qun-
 733 feng Zhang, Dongfang Li, Xinjia Li, et al. Integrating protein language models and automatic
 734 biofoundry for enhanced protein evolution. *Nature Communications*, 16(1):1553, 2025.

735 Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
 736 tm-score. *Nucleic acids research*, 33(7):2302–2309, 2005.

737
 738 Yang Zhang, Wei Li, Kai Chen, and Honggang Liu. Memprotmd: Membrane protein molecular
 739 dynamics with machine learning, 2024d.

740
 741 Rosie Zhao et al. Echo chamber: RL post-training amplifies behaviors learned in pretraining. *arXiv*
 742 *preprint arXiv:2504.07912*, 2025.

743 A IMPLEMENTATION DETAILS

744 A.1 PROTEIN INVERSE FOLDING

745
 746 **Training Details** Following (Xu et al., 2025), the DPO framework used $\beta = 0.5$ to balance
 747 reference model retention with preference adaptation, and regularization weight $\lambda = 1$ for optimal
 748 learning from chosen and rejected sequence pairs. Training employed AdamW optimizer with learn-
 749 ing rate 1×10^{-5} , $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1 \times 10^{-8}$, and batch size 128 across 8 NVIDIA A100
 750 GPUs. LoRA adaptation used rank $r = 16$ and $\alpha = 16$, training only 0.1% of total parameters.

751
 752 Single-round training used 4,000 steps with 20 sequences per structure, while multi-round training
 753 employed 200 steps per round across 20 rounds using 200 sequences per structure. The reference
 754 model π_{ref} was reinitialized with previous iteration weights during multi-round training to maintain
 755 preference alignment and prevent catastrophic forgetting.

756 **Sampling Details** Sequence generation employed distinct sampling parameters for training and
 757 evaluation phases. For **Training**, single-round training used temperature $T = 1.0$ and top-p =
 758 0.9 to generate 20 sequences per structure, while multi-round training utilized more exploratory
 759 parameters ($T = 1.1$, top-p = 1.0) with 200 sequences per structure to encourage broader search
 760 space exploration. For **evaluation**, temperature was reduced to $T = 0.15$ with 128 sequences per
 761 structure to ensure reproducible comparisons across benchmarks.

762 A.2 ANTIMICROBIAL PEPTIDE DESIGN

763 **Training Details** Following (Cao et al., 2025b), the PPO framework applied learning rate 1×10^{-5} ,
 764 increased batch size to 256, and reduced training to 10 epochs over 3000 steps. The MIC predictor
 765 employed ESM2 embeddings processed through multi-layer perceptron architecture, trained using
 766 Focal Loss with focusing parameter γ and class weighting α_i to address dataset imbalance. The base
 767 ProGen2-xlarge model (6.4B parameters) underwent supervised fine-tuning using LoRA adaptation
 768 with rank 32, alpha 16, dropout 0.1, learning rate 1×10^{-4} , and batch size 16 over 30 epochs.

769 **Sampling Details** Sequence generation employed temperature 1.0, top-p 0.95, beam number 4,
 770 length penalty 1.2, and repetition penalty 1.2 with maximum sequence length 50. It also excluded
 771 invalid amino acids (B, O, U, X, Z) and maintained consistent sequence length constraints. The sam-
 772 pling strategy ensured diverse peptide generation while preserving antimicrobial sequence patterns
 773 learned during fine-tuning. During evaluation, 131,072 (4096*32) and 160,000 AMP sequences are
 774 generated for pass@k-related metric and latent visualization, respectively.

775 A.3 KINASE MUTATION

776 **Training details** Following (Wang et al., 2024), we applied learning rate $1e - 5$, batch 16. We set
 777 the maximum total steps to 10,000 and created 50 parallel environments for training. The entropy-
 778 loss coefficient is set to 0. To prevent the policy from being trapped in local optima, we set the
 779 discount factor to 0 so that only the reward of the final sequence is used. The PPO clipping ratio
 780 is 0.2 and the sampling temperature is 1.0. Reward is the experimentally measured fitness from the
 781 dataset; sequences not present in the dataset receive -1, and invalid sequences receive -100.

782 **Sampling details** During sampling, we used temperature = 1.0 and top-p = 1.0, and created a sin-
 783 gle environment to perform 50,000 rounds of sampling. Following the same protocol as in training,
 784 mutation was terminated—and the result saved—either when the maximum number of mutation
 785 steps was reached or when the sequence’s fitness exceeded the initial fitness. After each sample was
 786 completed, the environment was re-initialized by randomly selecting a new starting sequence from
 787 the test set for the next round of mutation.

788 A.4 ANTIBODY MUTATION

789 **Training details** During training, we used a fixed random seed as 42 and optimize with Adam
 790 ($lr=4e - 5$, weight decay= $1e - 4$), batch size 32, and global gradient clipping at 0.5 for 30 epochs.
 791 Training is conducted on 4 A100 GPUs. In RL fine-tuning, we performed on-policy multi-step
 792 rollouts ($T = 4$) and restrict edits to CDR-masked positions. At each step, up to four sites are
 793 mutated while disallowing the wild-type residue; sites are selected greedily from position proba-
 794 bilities, and amino acids are chosen as the non-wild-type arg max under temperature-scaled logits.
 795 Both amino-acid and position temperatures linearly anneal from 1.0 to 0.5 over the first 1,000 steps.
 796 Advantages/returns are computed with GAE ($\gamma = 0.99$, $\lambda = 0.95$), returns are standardized, and
 797 GRPO rank normalization is applied to advantages. We optimize a PPO objective with clipping 0.2;
 798 the log-probability sums amino-acid and position terms with weight 0.5 on the position term:

$$800 \log \pi = \log \pi_{AA} + 0.5 \log \pi_{pos}.$$

801 The loss weight for KL loss (α), value loss (β), and entropy loss (γ) are 20.0, 0.4, and 0.01, re-
 802 spectively. KL was computed only at mutated sites; and the final KL term is clipped to ≤ 10.0 .
 803 Sequences and masks use `pad_id=1`.

810 **Sampling details** We generate each antibody sequence we mutate up to K sites (default $K = 4$);
 811 site choice and residue replacement are driven by the model’s position propensities and amino-acid
 812 logits with `temperature=1.0`, `position_temp=1.0`, and `position_threshold=0.5`. A
 813 frozen reward model predicted ddG for each mutant and can optionally score the wild type. Inference
 814 was conducted on a single A100 GPU, default `batch_size=16`.
 815

816 B DATASET AND EVALUATION METRICS

817 B.1 KINASE MUTATION

820 **Datasets** We evaluate the impact of RL training on protein mutations using the PhoQ
 821 dataset(Podgornaia & Laub (2015)). This dataset provides 140,517 annotated data points among
 822 the 160,000 possible variants that differ at four mutational sites (A284,V285, S288, T289). Fitness
 823 is reported as the corresponding phosphatase or kinase activity for each PhoQ variant. For the re-
 824 maining unlabeled variants, we follow the convention in Wang et al. (2024) and assign a fitness value
 825 of -1. Following the fitness-split protocol of (Ouyang-Zhang et al. (2023)), we fixed the fourth site
 826 and partitioned the first three positions into training and test sets in an 8:2 ratio. All sequences were
 827 then assigned to four bins according to their fitness values ($=0, \leq 1, \leq 10, > 10$). From each bin we
 828 randomly sampled 100 sequences in both the training and test splits to form the initial-seed pools.
 829

830 **Evaluation metrics** **Positional entropy** is calculated as the Shannon entropy at each of the first
 831 three mutable positions of the mutated sequence.

833 B.2 ANTIBODY MUTATION

835 **Datasets** we utilized AB1101, an open-source dataset comprising 32 antigen-antibody complexes
 836 with comprehensive mutational sequence data. This dataset contains 645 single-point mutation en-
 837 tries and 456 multi-point mutation entries. Following the data partitioning strategy established in
 838 ProtAttBA, we employed single-point mutations as training data for both the policy model and re-
 839 ward model, while reserving multi-point mutations for testing purposes. For reinforcement learning
 840 training, we performed additional stratification of the multi-point mutation data based on complex
 841 PDB identifiers. Through random selection, we designated 1MLC and 1VFB as the test PDB struc-
 842 tures to ensure robust evaluation of our approach.

843 **Evaluation metrics** **Positional Entropy** is calculated based on the Shannon entropy at each in-
 844 dividual position within the CDR (Complementarity-Determining Region) of the mutated antibody
 845 sequences. **Perplexity** is computed as the exponential of the average negative log-likelihood of the
 846 generated protein sequences under a specific model.

848 B.3 AMP DESIGN

850 **Datasets** Following the AMPHION framework, we trained a reward model utilizing currently
 851 available open-source MIC values sourced from three established databases: DBAASP, DRAMP,
 852 and APD3. We selected sequences with lengths ranging from 6 to 50 amino acids and classified
 853 them as active peptides based on MIC values below 32 $\mu\text{g}/\text{mL}$. This process yielded a total of 7,888
 854 samples encompassing both positive and negative instances. To ensure proper data partitioning
 855 and minimize sequence similarity bias, we employed MMseqs2 for clustering and dataset splitting,
 856 resulting in a training, validation, and test distribution of 6153, 789, and 946 samples, respectively.

857
 858 **Evaluation metrics** **Diversity** is calculated as the average sequence similarity between gener-
 859 ated sequences, measuring the model’s ability to produce varied outputs and avoid mode collapse.
 860 **Novelty** is computed based on the degree of novelty between generated sequences and natural se-
 861 quences, specifically defined as the average of (1 - maximum sequence similarity) across all gener-
 862 ated sequences, where the maximum similarity represents the highest identity score between each
 863 generated sequence and any reference natural sequence. **Perplexity** is computed as the exponential
 of the average negative log-likelihood of the generated protein sequences under a specific model.

864 B.4 PROTEIN INVERSE FOLDING
865866 **Datasets** The dataset construction leverages CATH4.2, following to the official train-test split
867 scheme established by the CATH database. Both the base model training and DPO dataset construc-
868 tion are exclusively conducted on the training partition, which comprises 18,024 protein structures.
869 Model performance evaluation is carried out on the CATH4.2 test set containing 1,120 structures,
870 supplemented by two additional evaluation benchmarks: TS50 and TS500, which contain 50 and
871 470 protein structures respectively. This evaluation framework ensures comprehensive assessment
872 across diverse structural complexity and provides robust validation of the model’s generalization
873 capabilities.
874875 **Evaluation metrics** **Diversity** is calculated as the average sequence similarity between gener-
876 ated sequences, measuring the model’s ability to produce varied outputs and avoid mode collapse.
877 **Novelty** is computed based on the degree of novelty between generated sequences and natural se-
878 quences, specifically defined as the average of $(1 - \text{maximum sequence similarity})$ across all gener-
879 ated sequences, where the maximum similarity represents the highest identity score between each
880 generated sequence and any reference natural sequence. **Perplexity** is computed as the exponential
881 of the average negative log-likelihood of the generated protein sequences under a specific model.
882 **Recovery Rate** is computed as the percentage of amino acid positions that are correctly predicted
883 compared to the native sequence. **TM-Score** evaluates the structural similarity between predicted
884 and native structures by measuring the geometric alignment quality across all residue positions.
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 C METHOD DETAILS
919920 C.1 ANTIBODY MUTATION NETWORK
921922 **Algorithm 1** ProtAttBA-improved: Antibody-antigen Binding Affinity Prediction and Featurization
923924 **Require:** Wild-type antibody sequence S_{ab}^{wt} , mutant antibody sequence S_{ab}^{mt}
925926 **Require:** Wild-type antigen sequence S_{ag}^{wt} , mutant antigen sequence S_{ag}^{mt}
927928 **Require:** Attention masks $M_{ab}^{wt}, M_{ab}^{mt}, M_{ag}^{wt}, M_{ag}^{mt}$
929930 **Ensure:** Binding affinity prediction \hat{y} and auxiliary outputs
931932 1: // Step 1: Protein Language Model Encoding
933 2: $E_{ab}^{wt} \leftarrow \text{ESM}(S_{ab}^{wt}, M_{ab}^{wt}) \in \mathbb{R}^{B \times L_{ab} \times H}$ {Wild-type antibody embeddings}
934 3: $E_{ab}^{mt} \leftarrow \text{ESM}(S_{ab}^{mt}, M_{ab}^{mt}) \in \mathbb{R}^{B \times L_{ab} \times H}$ {Mutant antibody embeddings}
935 4: $E_{ag}^{wt} \leftarrow \text{ESM}(S_{ag}^{wt}, M_{ag}^{wt}) \in \mathbb{R}^{B \times L_{ag} \times H}$ {Wild-type antigen embeddings}
936 5: $E_{ag}^{mt} \leftarrow \text{ESM}(S_{ag}^{mt}, M_{ag}^{mt}) \in \mathbb{R}^{B \times L_{ag} \times H}$ {Mutant antigen embeddings}
937 6: // Step 2: Attention-based Feature Enhancement
938 7: **for** $x \in \{E_{ab}^{wt}, E_{ab}^{mt}, E_{ag}^{wt}, E_{ag}^{mt}\}$ **do**
939 8: $x' \leftarrow \text{AttnTransform}(x) = \text{softmax}(\text{Conv1D}(\text{LayerNorm}(x))) \odot x$ {Enhanced features}
940 9: **end for**
941 10: // Step 3: Cross-Modal Attention Mechanism
942 11: $\tilde{E}_{ag}^{wt} \leftarrow \text{MultiHeadAttn}(E_{ag}^{wt}, E_{ab}^{wt}, E_{ab}^{wt}, M_{ab}^{wt})$ {Antigen attends to antibody}
943 12: $\tilde{E}_{ag}^{mt} \leftarrow \text{MultiHeadAttn}(E_{ag}^{mt}, E_{ab}^{mt}, E_{ab}^{mt}, M_{ab}^{mt})$ {Mutant antigen-antibody attention}
944 13: $\tilde{E}_{ab}^{wt} \leftarrow \text{MultiHeadAttn}(E_{ab}^{wt}, E_{ag}^{wt}, E_{ag}^{wt}, M_{ag}^{wt})$ {Antibody attends to antigen}
945 14: $\tilde{E}_{ab}^{mt} \leftarrow \text{MultiHeadAttn}(E_{ab}^{mt}, E_{ag}^{mt}, E_{ag}^{mt}, M_{ag}^{mt})$ {Mutant antibody-antigen attention}
946 15: // Step 4: Auxiliary Classification Heads
947 16: $L_{ab}^{wt} \leftarrow \text{Linear}(\tilde{E}_{ab}^{wt}) \in \mathbb{R}^{B \times L_{ab} \times 33}$ {Wild-type antibody logits}
948 17: $L_{ab}^{mt} \leftarrow \text{Linear}(\tilde{E}_{ab}^{mt}) \in \mathbb{R}^{B \times L_{ab} \times 33}$ {Mutant antibody logits}
949 18: $L_{ag}^{wt} \leftarrow \text{Linear}(\tilde{E}_{ag}^{wt}) \in \mathbb{R}^{B \times L_{ag} \times 33}$ {Wild-type antigen logits}
950 19: $L_{ag}^{mt} \leftarrow \text{Linear}(\tilde{E}_{ag}^{mt}) \in \mathbb{R}^{B \times L_{ag} \times 33}$ {Mutant antigen logits}
951 20: // Step 5: Attention-weighted Global Pooling
952 21: $h_{ab}^{wt} \leftarrow \text{AttnMean}(\tilde{E}_{ab}^{wt}, M_{ab}^{wt}) \in \mathbb{R}^{B \times H}$ {Pooled antibody representation}
953 22: $h_{ab}^{mt} \leftarrow \text{AttnMean}(\tilde{E}_{ab}^{mt}, M_{ab}^{mt}) \in \mathbb{R}^{B \times H}$ {Pooled mutant antibody}
954 23: $h_{ag}^{wt} \leftarrow \text{AttnMean}(\tilde{E}_{ag}^{wt}, M_{ag}^{wt}) \in \mathbb{R}^{B \times H}$ {Pooled antigen representation}
955 24: $h_{ag}^{mt} \leftarrow \text{AttnMean}(\tilde{E}_{ag}^{mt}, M_{ag}^{mt}) \in \mathbb{R}^{B \times H}$ {Pooled mutant antigen}
956 25: // Step 6: Complex Formation and Prediction
957 26: $h^{wt} \leftarrow h_{ab}^{wt} + h_{ag}^{wt}$ {Wild-type complex representation}
958 27: $h^{mt} \leftarrow h_{ab}^{mt} + h_{ag}^{mt}$ {Mutant complex representation}
959 28: $h_{concat} \leftarrow \text{Concat}(h^{wt}, h^{mt}) \in \mathbb{R}^{B \times 2H}$ {Concatenated complexes}
960 29: $h_{norm} \leftarrow \text{BatchNorm}(h_{concat})$ {Normalized features}
961 30: // Step 7: Multi-layer Prediction Head
962 31: $h_1 \leftarrow \text{Tanh}(\text{Linear}(h_{norm})) \in \mathbb{R}^{B \times H/2}$ {First hidden layer}
963 32: $h_1 \leftarrow \text{Dropout}(h_1, p = 0.1)$ {Apply dropout}
964 33: $h_2 \leftarrow \text{ReLU}(\text{Linear}(h_1)) \in \mathbb{R}^{B \times H/2}$ {Second hidden layer}
965 34: $\hat{y} \leftarrow \text{Linear}(h_2) \in \mathbb{R}^B$ {Binding affinity prediction}
966 35: **return** $\hat{y}, L_{ab}^{wt}, L_{ag}^{wt}, L_{ab}^{mt}, L_{ag}^{mt}$
967968 C.2 ANTIBODY MUTATION STRATEGY
969

970

971

972 **Algorithm 2** Policy-Guided Antibody Mutation

973 **Require:** Policy model position probabilities $P_{pos} \in \mathbb{R}^L$

974 **Require:** Mutation model logits $L_{mut} \in \mathbb{R}^{L \times V}$

975 **Require:** Wild-type sequence S_{wt} , CDR mask M_{cdr}

976 **Require:** Temperature τ , stochastic flag s

977 1: $P_{masked} \leftarrow P_{pos} \odot M_{cdr}$ {Mask to CDR}

978 2: **Position Selection:**

979 3: **if** $s = \text{True}$ **then**

980 4: Select positions where $P_{masked} > \theta$ via multinomial sampling {Stochastic inference}

981 5: **else**

982 6: Select top- k positions by P_{masked} values {Deterministic training}

983 7: **end if**

984 8: **Amino Acid Mutation:**

985 9: **for** each selected position i **do**

986 10: $P_{aa} \leftarrow \text{softmax}(L_{mut}[i]/\tau)$ {Apply temperature}

987 11: $P_{aa}[S_{wt}[i]] \leftarrow 0$ {Mask wild-type residue}

988 12: $P_{aa} \leftarrow P_{aa}/\sum P_{aa}$ {Re-normalize}

989 13: **if** $s = \text{True}$ **then**

990 14: $S_{mut}[i] \leftarrow \text{sample}(P_{aa})$ {Stochastic sampling}

991 15: **else**

992 16: $S_{mut}[i] \leftarrow \arg \max(P_{aa})$ {Greedy selection}

993 17: **end if**

994 18: **end for**

995 19: **return** Mutated sequence S_{mut}

C.3 KINASE MUTATION STRATEGY

996 **Algorithm 3** Kinase Mutation

1000 **Require:** Initial sequence $S_0 \in \mathbb{Z}^L$, Pretrained ESM Encoder f_{ESM} , Action Network f_{Action} ,

1001 Value Network f_{Value} , Masked Language Model f_{MLM} , Tokenizer T , Mutation positions $P =$

1002 $\{p_1, p_2, p_3\}$, Amino acid vocabulary \mathbb{A} .

1003 **Ensure:** Final mutated sequence S_N .

1004 1: **// Initialization**

1005 2: $S_{obs} \leftarrow S_0$ {Initialize observation with the starting sequence}

1006 3: $E_{ref} \leftarrow f_{ESM}(S_{protein})$ {Get reference embedding for normalization}

1007 4: **for** $t = 0$ to $N - 1$ **do**

1008 5: **// Step 1: Sequence Feature Extraction**

1009 6: $E_t \leftarrow f_{ESM}(S_{obs}) \in \mathbb{R}^{B \times L \times H}$ {Encode current sequence}

1010 7: $E'_t \leftarrow E_t / (E_{ref} + \epsilon)$ {Normalize embeddings}

1011 8: $E_{flat} \leftarrow \text{Flatten}(E'_t) \in \mathbb{R}^{B \times (L \cdot H)}$ {Flatten for policy networks}

1012 9: **// Step 2: Select Mutation Position (Actor)**

1013 10: $l_{pos} \leftarrow f_{Action}(E_{flat}) \in \mathbb{R}^{B \times |P|}$ {Get logits for positions}

1014 11: $\pi_{pos} \leftarrow \text{Categorical}(\text{logits} = l_{pos})$ {Create position distribution}

1015 12: $idx_p \leftarrow \pi_{pos}.\text{sample}()$ {Sample position index, e.g., 0, 1, or 2}

1016 13: $p_t \leftarrow P[idx_p]$ {Map index to actual sequence position, e.g., 96, 97, 100}

1017 14: **// Step 3: Predict Candidate Amino Acid (Masked LM)**

1018 15: $S_{mask} \leftarrow S_{obs}; S_{mask}[p_t] \leftarrow \text{MASK_TOKEN}$ {Mask selected position}

1019 16: $l_{aa} \leftarrow f_{MLM}(S_{mask})[p_t] \in \mathbb{R}^{|\mathbb{A}|}$ {Get logits for amino acids at position p_t }

1020 17: $\pi_{aa} \leftarrow \text{Softmax}(l_{aa}/\tau)$ {Create amino acid distribution with temperature τ }

1021 18: $a_t \leftarrow \pi_{aa}.\text{sample}()$ {Sample a new amino acid token}

1022 19: **// Step 4: Update Sequence and Get Reward**

1023 20: $S_{new} \leftarrow S_{obs}; S_{new}[p_t] \leftarrow a_t$ {Apply mutation}

1024 21: $R_t, \text{done} \leftarrow \text{PhoQEnv.step}(S_{new})$ {Get reward from environment}

1025 22: $S_{obs} \leftarrow S_{new}$ {Update the state for the next iteration}

23: **end for**

24: **return** S_{obs}

1026
1027

C.4 REINFORCEMENT LEARNING LOSS FOR AMP DESIGN

1028
1029
1030

We employ three widely used RL algorithms to fine-tune PLMs $p_\theta(\mathbf{s})$ parameterized by θ , each targeting different aspects of biological knowledge acquisition.

1031
1032

Direct Preference Optimization (DPO) DPO learns from preference pairs without explicit reward modeling. Given preference dataset $\mathcal{D} = \{(\mathbf{s}_i^+, \mathbf{s}_i^-)\}$ where $\mathbf{s}_i^+ \succ \mathbf{s}_i^-$, the DPO loss is:

1033
1034
1035

$$\mathcal{L}_{DPO}(\theta) = -\mathbb{E}_{(\mathbf{s}^+, \mathbf{s}^-) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{p_\theta(\mathbf{s}^+)}{p_{ref}(\mathbf{s}^+)} - \beta \log \frac{p_\theta(\mathbf{s}^-)}{p_{ref}(\mathbf{s}^-)} \right) \right],$$

1036
1037

where p_{ref} is the reference model, $\beta > 0$ controls KL divergence, and σ is the sigmoid function.

1038
1039

Proximal Policy Optimization (PPO) PPO optimizes the policy using clipped importance sampling. For sequence \mathbf{s} with reward

1040
1041

$$\mathcal{L}_{PPO}(\theta) = \mathbb{E}_{\mathbf{s} \sim p_{\theta_{old}}} \left[\min \left(\rho_\theta(\mathbf{s}) \hat{A}(\mathbf{s}), \text{clip}(\rho_\theta(\mathbf{s}), 1 - \epsilon, 1 + \epsilon) \hat{A}(\mathbf{s}) \right) \right] + \beta \cdot \mathbb{E}_{\mathbf{s} \sim p_\theta} [D_{KL}(p_\theta(\mathbf{s}) || p_{\theta_{old}}(\mathbf{s}))],$$

1042
1043
1044
1045
1046
1047
1048
1049

where $\rho_\theta(\mathbf{s}) = \frac{p_\theta(\mathbf{s})}{p_{\theta_{old}}(\mathbf{s})}$ represents the **importance ratio**, which measures the change in probability of a sequence between the current and the old policy. The term $\hat{A}(\mathbf{s})$ is the **advantage estimate**, which quantifies how much better or worse the current action is compared to the baseline. The parameter ϵ is the **clipping parameter**, which ensures that the policy update does not change too drastically. To prevent large policy updates, the loss includes the **Kullback-Leibler (KL) divergence**, denoted as $D_{KL}(p_\theta(\mathbf{s}) || p_{\theta_{old}}(\mathbf{s}))$, which measures deviation from the old policy to the current policy. Finally, β denotes a **hyperparameter** that controls the strength of the KL regularization.

1050
1051
1052

Group Relative Policy Optimization (GRPO) GRPO computes relative advantages within sequence groups, making it suitable for comparative protein design. For group $\mathcal{G} = \{\mathbf{s}_1, \dots, \mathbf{s}_m\}$, the relative advantage is:

1053
1054
1055

$$\hat{A}^{rel}(\mathbf{s}_j) = R(\mathbf{s}_j) - \frac{1}{m} \sum_{i=1}^m R(\mathbf{s}_i)$$

1056

The GRPO loss extends PPO with group-wise normalization:

1057
1058
1059
1060
1061

$$\mathcal{L}_{GRPO}(\theta) = \mathbb{E}_{\mathcal{G}} \left[\frac{1}{|\mathcal{G}|} \sum_{\mathbf{s} \in \mathcal{G}} \min \left(\rho_\theta(\mathbf{s}) \hat{A}^{rel}(\mathbf{s}), \text{clip}(\rho_\theta(\mathbf{s}), 1 - \epsilon, 1 + \epsilon) \hat{A}^{rel}(\mathbf{s}) \right) \right] + \gamma \cdot \mathbb{E}_{\mathbf{s} \sim \pi_\theta} [D_{KL}(p_\theta(\mathbf{s}) || p_{\theta_{old}}(\mathbf{s}))],$$

1062
1063
1064
1065
1066
1067
1068

where $\hat{A}^{rel}(\mathbf{s}_j)$ represents the **relative advantage** of sequence \mathbf{s}_j within the group \mathcal{G} . The importance ratio, denoted as $\rho_\theta(\mathbf{s}) = \frac{p_\theta(\mathbf{s})}{p_{\theta_{old}}(\mathbf{s})}$, measures the change in probability of a sequence between the current and old policies. The clipping parameter ϵ ensures that the policy update remains within a bounded range, preventing large, destabilizing changes. The **KL divergence** is regularized to avoid large policy updates. Finally, γ denotes the hyperparameter that controls the strength of the KL regularization.

1069
1070
1071

D SUPPLEMENTARY EXPERIMENTAL RESULTS OF ANTIBODY MUTATION

1072
1073

D.1 TEST RESULTS ON THE RE-IMPLEMENTED PROTATTBA

1074
1075
1076
1077

Method	RMSE	Pearson cor.	Spearman cor.
ProtAttBA (Original)	2.10	0.55	0.45
ProtAttBA (Ours)	1.50	0.58	0.47

1078
1079

D.2 DISTRIBUTION SHIFT OF PREDICTED DDG

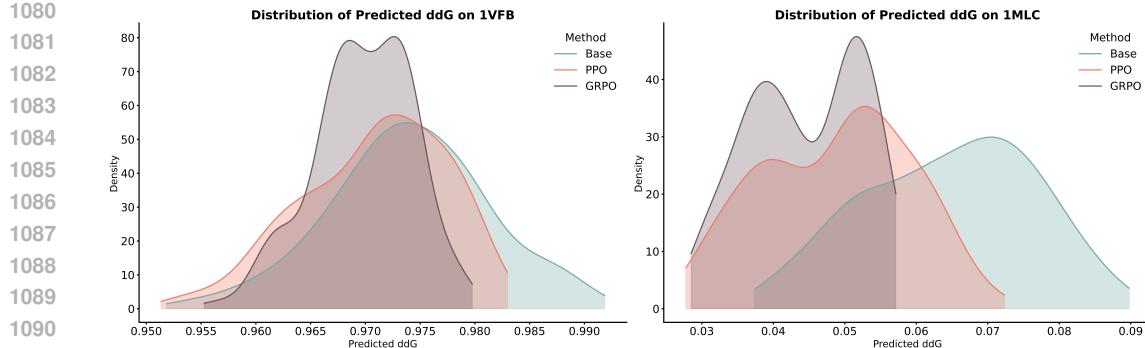


Figure 6: Predicted ddG distribution on test set PDBs.

E SUPPLEMENTARY EXPERIMENTAL RESULTS OF INVERSE FOLDING

E.1 ABLATION ON SUPPORT METRIC OF K

Table 2: Results for *Support* metric for four biological systems.

	Preservation	Expansion	Shrinkage	Out-Of-Support	ESR \uparrow
k=128	891	9	21	199	2.33
k=32	886	12	23	199	1.92
k=8	865	23	27	205	1.17
k=2	831	31	33	225	1.06

E.2 LATENT VISUALIZATION OF SUPPORT SUBSETS

F SUPPLEMENTARY EXPERIMENTAL RESULTS OF AMP DESIGN

F.1 BINARY CLASSIFICATION PERFORMANCE OF REWARD MODEL

Table 3: Results for ApexMIC on binary classification.

	Accuracy	Precision	Sensitivity	Specificity	F1-score	AUC-ROC
ApexMIC	0.96	0.62	0.82	0.98	0.70	0.90

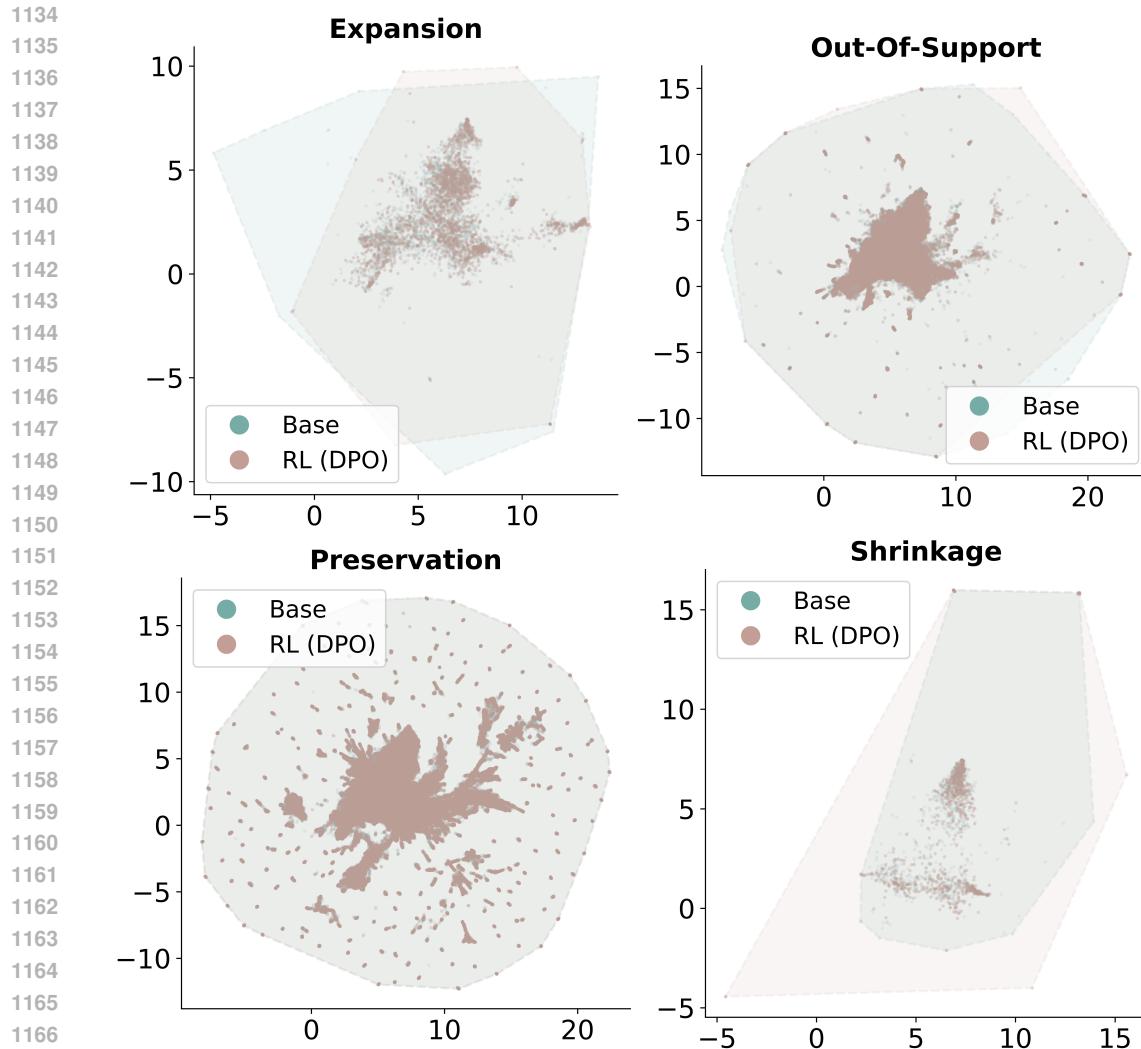


Figure 7: Latent visualization on inverse folding tasks for different support subsets.

G SUMMARY OF REINFORCEMENT LEARNING-GUIDED PROTEIN DESIGN METHODS

Table 4: Taxonomy of RL approaches in protein design.

Task	Method	RL Algorithm	Reward Function	Designed Biological Entity
Structural Design	Issac et al. (Lutz et al., 2023)	MCTS	Composite structural score: architecture/topology fit, sterics, geometry constraints	Symmetric multi-subunit protein assemblies

Continued on next page

Task	Method / Paper	RL Algorithm	Reward Function	Designed Entity
	GAPN (Gao et al., 2024)	PPO	Direct docking reward (pose/energy), adversarial reward to improve global assembly rules	Multimer protein complex assembly / docking paths
Sequence Optimization	EvoPlay (Wang et al., 2023)	MCTS (AlphaZero)	Task-specific predicted fitness/activity (surrogate property predictors)	Enzymes / general proteins
	RLXF (Blalock et al., 2025)	PPO	Experimentally measured function (e.g., fluorescence/fitness)	Diverse protein families (e.g., CreiLOV variants)
	μProtein (Sun et al., 2025)	PPO	Predicted/experimental fitness from landscape model	Enzymes (e.g., β -lactamase)
	RelaVDEP (Mi et al., 2025)	MCTS	Fine-tuned SPIRED-Fitness; structure/foldability filters (ESMFold/AF2 pLDDT, SPIRED-Stab $\Delta\Delta G/\Delta T_m$); diversity–fitness metric	GFP (fluorescence), NUDT15/VKOR1 (cellular abundance), AmeR (fold repression), PETase (enzymatic activity)
	ApexAmphion (Cao et al., 2025b)	PPO	Predicted MIC, physicochemical properties	Board-spectrum antimicrobial peptides
Inverse Folding	ProteinZero (Wang et al., 2025b)	PPO, GRPO	ESM-Fold structural fidelity, $\Delta\Delta G$ stability proxy, diversity	General protein sequences
	Xu et al. (Xu et al., 2025)	Multi-round DPO	TM-score	General protein sequences
	EnerBridge-DPO (Rong et al., 2025)	DPO	Energy score	Protein complex sequences
	ResiDPO (Xue et al., 2025)	DPO	pLDDT score, designability	General protein sequences
	Park et al. (Park et al., 2024)	DPO	TM-score, diversity metric	Peptide / short-protein sequences
	RL-DIF (Ektefaie et al., 2024)	DDPO	Foldability, TM-score	General protein sequences
	ProtInvTree (Liu et al., 2025b)	MCTS	TM-score, scTM-score from ESMFold	General protein sequences

Continued on next page

Task	Method / Paper	RL Algorithm	Reward Function	Designed Entity
Antibody Engineering	DRAKES (Wang et al.)	Reward Fine-tuning	Sequence stability	General protein sequences
	GLID ² E (Cao et al., 2025a)	PPO	Sequence stability	General protein sequences
Antibody Engineering	AB-Gen (Xu et al., 2023b)	REINVENT	Developability, specificity	Antibody CDRH3 libraries (HER2, etc.)
	BetterBodies (Vogt et al., 2024)	Q-learning	Absolute free-energy, affinity	Antibody CDRH3 binders (SARS-CoV-2 RBD, etc.)
	Structured Q-learning (Cowen-Rivers et al., 2022)	Q-learning	Docking affinity	Antibody CDRH3 binders (IGG4, etc.)
Peptide Binder Design	TCRPPPO (Chen et al., 2023)	PPO	Valid-TCR likelihood, peptide-recognition probability	T-cell receptor (TCR) sequences (β -chain CDR3, etc.)
	HighPlay (Lin et al., 2025)	MCTS	Structure-/pose-guided scores, binding/energy proxies by HighFold	Cyclic peptide binders
	CYC_BUILDER MCTS (Wang et al., 2025a)		Docking/binding-energy, pose-quality scores	Cyclic peptide binders

H MORE RELATED WORK

H.1 PROTEIN LANGUAGE MODELS AND BEYOND

The landscape of protein language models compose distinct architectures: BERT-based encoder models like ESM-2 (Lin et al., 2023) excel at understanding tasks through bidirectional context, autoregressive models such as ProGen2 (Nijkamp et al., 2023) and ProtGPT2 (Ferruz et al., 2022) focus on generation, while recent approaches like ESM-3 (Hayes et al., 2024), SaProt (Su et al., 2023), and xTrimoPGLM (Chen et al., 2024) integrate multimodal information. A critical limitation of these foundational models is their general focus, which delivers diminishing returns for specialized protein tasks despite requiring substantial computational resources. This has driven emergence of protein-specific architectures including antibody models like IgLM (Shuai et al., 2023) and AbLang (Olsen et al., 2022), enzyme systems like ZymCTRL (Munsamy et al., 2024), and domain-targeted approaches for inverse folding (Qiu et al., 2024), RL design (Cao et al., 2025b) and membrane proteins (Zhang et al., 2024d). These specialized models outperform general approaches through domain-specific training, but face fundamental limitations on training data.

H.2 RL FOR NATURAL LANGUAGE PROCESSING

Math reasoning is a key RL success in NLP, showing emergent self-verification and adaptive scaling via GRPO and RL with Verifiable Rewards (DeepSeek-AI, 2025; Zhang et al., 2024b; Cobbe et al., 2021). Multimodal tasks use RL for cross-modal reasoning; MAYE and RLHF-V help vision-language models solve math and reduce hallucinations (Wu et al., 2024; Liu et al., 2024). RL is also used for compiler feedback (Zhang et al., 2024a), conversational optimization (Zhang et al., 2024c),

1296 and ranking (Paulus et al., 2017; Ranzato et al., 2015). The effectiveness of RLVR for reasoning is
1297 contested: some view it as smart sampling toward high-reward outputs (Gandhi et al., 2025; Shah
1298 et al., 2025); several studies attribute reasoning to pretraining (Yue et al., 2025; Wu et al., 2025;
1299 Wu & Choi) and argue RLVR echoes pretrained patterns (Zhao et al., 2025). Others report gains
1300 from structured RLVR (Liu et al., 2025c) and from unlikeliness rewards to reduce rank bias (He
1301 et al., 2025). Wen et al. (2025) propose CoT-passk, showing RLVR benefits under more robust
1302 evaluation.

1303

1304 I USAGE OF LANGUAGE MODELS

1305

1306 We use large language model (LLM) to aid in the preparation of this manuscript. Its use was limited
1307 to editorial tasks, including proofreading for typographical errors, correcting grammar, and improv-
1308 ing the clarity and readability of the text.

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349