
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MITIGATING DISCRETIZATION BIAS IN NEURAL
STOCHASTIC DIFFERENTIAL EQUATIONS WITH
INFERENCE-TIME DROPOUT

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural stochastic differential equations (NSDEs) provide a powerful framework
for modeling complex continuous-time dynamics by combining deep learning
with Itô calculus. However, prior work has largely overlooked a key source of
error: the discretization bias introduced by the Euler–Maruyama scheme. We ar-
gue that this bias is intrinsic and persists regardless of whether the driving noise is
Brownian motion or a more general process. To address this issue, we introduce a
lightweight mechanism—inference-time dropout—which acts as a stochastic cor-
rection layer that counteracts discretization-induced errors during simulation and
prediction. This mechanism also reframes dropout, showing its potential as a tool
for modeling distributional uncertainty rather than only as a training-time regu-
larizer. We provide a formal analysis and empirical results demonstrating that
this approach improves the robustness of Neural SDEs across diverse stochastic
settings. To facilitate further research, we release the code and implementation
details at the following link: https://anonymous.4open.science/r/
FreeSDE-FC37/.

1 INTRODUCTION

Stochastic differential equations (SDEs) describe how random processes evolve in continuous time.
They have been widely applied in finance, climate science, and biology (Black and Scholes, 1973;
Merton, 1973; Yang et al., 2020; Mariani et al., 2022; Alshammari and Khan, 2021; Kamrujjaman
et al., 2022; Floris, 2015; Mishi et al., 2020). Neural stochastic differential equations (NSDEs) (Tzen
and Raginsky, 2019) extend this classical framework by parameterizing drift and diffusion terms
with neural networks. This combination enables data-driven learning of stochastic dynamics while
preserving the formal structure of SDEs. Unlike discrete-time models, NSDEs naturally handle
irregular sampling and provide principled uncertainty representations, making them attractive for
real-world systems with complex temporal behaviors (Cohen et al., 2023; Gierjatowicz et al., 2022b;
2020; Cuchiero et al., 2024; Hwang et al., 2021; Giebel and Rainer, 2011).

Despite their promise, current NSDE methods inherit a critical limitation from numerical simulation.
The commonly used Euler–Maruyama scheme introduces discretization bias: once a continuous-
time process is approximated with discrete steps, its randomness no longer strictly follows the
Gaussian law assumed by the scheme. This discrepancy becomes especially pronounced when the
diffusion coefficient is nonlinear. As a result, the simulated dynamics systematically deviate from
the true process, and the bias accumulates over long horizons. Importantly, this limitation persists
not only for Brownian motion but also for more general Lévy processes. In Section 3.1, we formally
analyze this phenomenon and show that the resulting error is intrinsic and cannot be ignored.

To address this issue, we introduce inference-time dropout as a lightweight, plug-and-play stochastic
correction mechanism. By injecting Bernoulli-driven noise at prediction, it compensates for the
Gaussian approximation implicit in Euler–Maruyama and expands the class of noise behaviors that
NSDEs can capture. This reframes dropout from a training-only regularizer into a principled tool
for uncertainty modeling in continuous-time systems. Our contributions are threefold:

• We introduce inference-time dropout as a lightweight, plug-and-play mechanism to mitigate
discretization-induced errors in NSDEs.

1

https://anonymous.4open.science/r/FreeSDE-FC37/
https://anonymous.4open.science/r/FreeSDE-FC37/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We provide a theoretical analysis showing that inference-time dropout can approximate a broad
class of non-Gaussian noise distributions, thereby extending the expressiveness of NSDEs.

• We validate the approach on simulated and real-world tasks, demonstrating competitive perfor-
mance in long-horizon forecasting and robustness of uncertainty quantification.

2 RELATED WORK

We review related work on NSDEs from two complementary perspectives: (i) methodological ad-
vances, focusing on training paradigms, (ii) applications, highlighting the use of NSDEs in diverse
domains. Importantly, across both lines of work, the vast majority of methods discretize dynamics
using the EM scheme, which introduces biases that remain largely unaddressed.

Methodological Advances. NSDEs model complex temporal dynamics in continuous time, but
training involves balancing stochastic trajectory simulation with tractable gradient estimation. Early
methods used variational inference for latent SDEs (Tzen and Raginsky, 2019; Li et al., 2020) and
adversarial training to match path distributions (Kidger et al., 2021a). While GAN-based approaches
can capture complex data distributions, they often suffer from instability. To address this, recent
work has proposed non-adversarial paradigms, such as using signature kernel scores (Issa et al.,
2023), which provide theoretical guarantees and mitigate mode collapse. Advances in gradient
computation have also been crucial: the adjoint sensitivity method (Li et al., 2020) and reversible
solvers (Kidger et al., 2021b) improve both accuracy and efficiency, enabling scalable training of
NSDEs. Nevertheless, all of these approaches still rely on EM discretization as the numerical back-
bone.

Applications. NSDEs have been increasingly applied to stochastic continuous processes across
domains. In finance, they are used for irregular time series forecasting (Oh et al., 2024), model-
ing asset dynamics, derivative pricing, and risk management (Gierjatowicz et al., 2022a; Kidger
et al., 2021a). Beyond finance, NSDEs have been applied to general sequential data such as motion
capture (Li et al., 2020), hybrid systems combining continuous flows with discrete jumps (e.g., tem-
poral point processes (Jia and Benson, 2019)), and principled uncertainty quantification (Kong et al.,
2020), broadening their role in decision-making and scientific modeling. Again, these applications
inherit EM discretization as the default numerical scheme, and thus share the same bias limitations.
Our work departs from the above by questioning this discretization choice and proposing a correc-
tion mechanism.

3 METHODOLOGY

We begin in Section 3.1 with an analysis of discretization bias, highlighting why the Euler–
Maruyama scheme introduces systematic deviations in NSDE simulation. In Section 3.2, we present
inference-time dropout as a lightweight correction mechanism. Section 3.3 then provides intuition
for how inference-time dropout mitigates discretization-induced errors and expands the expressive
power of NSDEs beyond Gaussian approximations. Finally, in Section 3.4, we offer a formal theo-
retical analysis that characterizes the approximation capacity of this mechanism, before moving on
to empirical validation.

3.1 DISCRETIZATION BIAS ANALYSIS

Preliminaries. An NSDE is defined by parameterizing the drift and diffusion terms of an Itô SDE
with neural networks:

dXt = µθ(Xt, t) dt+ σϕ(Xt, t) dWt,

where µθ and σϕ are learnable neural networks and Wt is a standard Wiener process. Training and
simulation of NSDEs require discretization of this continuous-time system. The most widely used
method is the EM scheme, which approximates the dynamics as

Xk+1 = Xk + µθ(Xk, tk)∆ + σϕ(Xk, tk)∆Wk, ∆Wk ∼ N (0,∆I).

This scheme is attractive due to its simplicity and low computational cost, and thus has become the
de facto standard in existing NSDE works.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Discretization Bias. The Euler–Maruyama (EM) scheme, though widely adopted, suffers from an
unavoidable discretization bias. Even under global Lipschitz and linear growth conditions, Theo-
rem 3.1 shows that EM achieves only strong order 1/2 and weak order 1. This implies two funda-
mental limitations: (i) an order barrier that prevents eliminating bias even with small step sizes, and
(ii) error accumulation over long horizons due to the exponential dependence on T . Consequently,
NSDEs built upon EM discretization inevitably inherit this bias, leading to systematic distortion
of the noise distribution when the diffusion coefficient is nonlinear, and degrading both predictive
performance and uncertainty quantification.

Theorem 3.1 (Error bounds for Euler–Maruyama). Consider the Itô SDE

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt, X0 ∈ Rd,

where µ and σ satisfy global Lipschitz and linear growth conditions. Let XT denote the exact
solution at time T and X∆

T the Euler–Maruyama approximation with step size ∆. Then there
exist constants C,Cf > 0 depending on µ, σ, f such that:

(Strong error)
(
E∥XT −X∆

T ∥2
)1/2 ≤ C eCT ∆1/2, (1)

(Weak error)
∣∣E[f(XT )]− E[f(X∆

T )]
∣∣ ≤ Cf e

CT ∆, (2)

for any f ∈ C4
p(Rd) (polynomially bounded smooth test function).

Proof. The proof follows the standard recursion argument. Let ek = Xtk − X∆
k denote the grid-

point error. Subtracting the EM update from the exact mild solution yields

ek+1 = ek +

∫ tk+1

tk

(µ(Xs, s)− µ(X∆
k , tk)) ds+

∫ tk+1

tk

(σ(Xs, s)− σ(X∆
k , tk)) dWs.

Applying Itô isometry, Lipschitz bounds, and moment estimates gives the discrete recursion
E∥ek+1∥2 ≤ (1 + C∆)E∥ek∥2 + C∆2.

A discrete Grönwall inequality then yields

E∥eN∥2 ≤ CeCT∆,

establishing the strong error bound equation 1. For the weak error, consider u(t, x) =
E[f(XT ) |Xt = x], which solves the Kolmogorov backward PDE. A Talay–Tubaro expansion
shows that the weak error admits an asymptotic expansion in ∆ with leading term O(∆), and con-
stants growing as eCT , giving equation 2.

3.2 INFERENCE-TIME DROPOUT

Inference-Time Dropout Implements. Motivated by the limitations highlighted in Theorem 3.1,
we introduce Inference-Time Dropout (ITD) as a stochastic correction mechanism at the discretiza-
tion level. The key idea is to preserve dropout masks during inference and repurpose them as a
source of randomness, thereby replacing the Gaussian increments assumed in EM. Concretely, we
propose to update the state as

Xk+1 = Xk + µθ(Xk, tk)∆t+ σϕ(Xk, tk) ϵθ(∆t),

where ϵθ(∆t) is a random vector generated by a neural network with fixed dropout masks. Unlike
∆Wk, whose distribution is restricted to Gaussian, the law of ϵθ(∆t) is implicitly defined by the
dropout pattern and network parameters, allowing the model to approximate richer, non-Gaussian
increment distributions.

In this way, ITD directly intervenes in the discretization step: it substitutes the Gaussian surrogate
in EM with dropout-induced randomness, effectively reshaping the distribution of discrete-time up-
dates. This preserves the computational simplicity of EM while mitigating its inherent distributional
mismatch. Moreover, ITD can be extended hierarchically to capture stochasticity across temporal
scales. Parallel branches with different dropout rates (p1 < p2 < p3) generate complementary
noise components—ranging from high-frequency fluctuations to low-frequency trends. A soft or-
thogonality constraint across branches encourages diversity, ensuring that the induced increments
approximate a broad class of non-Gaussian behaviors.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.3 UNDERSTANDING INFERENCE-TIME DROPOUT

Connection to Mixture-of-Experts. ITD can be viewed as a generalized form of Mixture-of-
Experts (MoE) (?). For a given input x, let M denote the dropout mask and fθ(M,x) the cor-
responding network output. The distribution induced by dropout can be written as p(y | x) =∑

M p(M) δfθ(M,x)(y), where p(M) is the Bernoulli probability of selecting mask M . This corre-
sponds exactly to a mixture model in which each “expert” is a subnetwork fθ(M, ·) and the routing
distribution is fixed by the dropout probabilities. In standard MoE, the output distribution takes the
form p(y | x) =

∑K
i=1 πi(x) δfi(x)(y), where gating weights πi(x) adaptively depend on the

input. By contrast, ITD replaces adaptive gating with stochastic but static routing: πi(x) = p(Mi),
independent of x. If dropout is applied only to the final layer, the mechanism degenerates to a fixed
router plus several subnetworks that share lower-layer parameters: p(y | x) =

∑N
j=1 pj δgj(x)(y),

which can be interpreted as a simplified MoE with a shared backbone and N experts gj . When
dropout is applied across multiple layers, the effective distribution becomes conditional on x, as
the outputs fθ(M,x) vary with both input and dropout mask, yielding a richer conditional mixture
family.

Connection to Gaussian Mixtures. ITD also shares structural similarities with mixture models
such as Gaussian Mixture Models (GMMs). Formally, the distribution induced by ITD can be writ-
ten as

∑
i piδfθ(Mi,x), where each atom corresponds to the deterministic output of a subnetwork

and {pi} are determined by dropout probabilities. This is analogous to GMMs
∑

j αjN (µj ,Σj),
where mixture richness comes from combining multiple Gaussian components. The key difference
lies in flexibility: GMMs use fixed kernel families, whereas ITD generates data-adaptive atoms
through neural subnetworks. Moreover, convolving the discrete dropout mixture with a small Gaus-
sian kernel yields a continuous approximation, effectively bridging dropout-induced distributions
with classical mixture models.

3.4 THEORETICAL ANALYSIS

We now develop a theoretical framework that justifies interpreting ITD as a universal sampling
mechanism, capable of approximating any conditional output distribution through appropriate net-
work design. The key idea is that injecting independent Bernoulli masks into the hidden units at
inference time induces a randomized computation graph whose law corresponds to sampling from
an explicit distribution over networks. This view naturally connects dropout to Bayesian reason-
ing: each forward pass can be seen as a Monte Carlo sample from a posterior-like ensemble. The
remainder of this section is devoted to formalizing this equivalence and quantifying the approxima-
tion guarantees it entails.

Formulations. Let X ⊂ Rdx be compact and Y ⊂ Rdy be bounded. For each x ∈ X , suppose we
are given a target conditional distribution PY |X=x on Y . Fix a dropout rate p ∈ (0, 1), a network
depth L ≥ 1, and widths (nℓ)

L−1
ℓ=1 . For every input x, we define a random feed-forward ReLU

network with dropout:

fθ(M,x) =
(
ϕL ◦DM(L−1) ◦ ϕL−1 ◦ · · · ◦DM(1) ◦ ϕ1

)
(x), (3)

where θ denotes all deterministic weights and biases, and each M (ℓ) ∼ Ber(p)nℓ is an indepen-
dent Bernoulli mask sampled at inference time, applied via the diagonal operator DM(ℓ) . Each ϕℓ
represents the affine transformation of layer ℓ followed by ReLU activation.

We denote by L(fθ(M,x)) the distribution of the network output induced by the randomness in
M . Discrepancies between distributions are measured using the 1-Wasserstein metric W1 on the
bounded space Y .

The following regularity conditions are assumed for the target conditional distribution:

Assumption 3.2. The map x 7→ PY |X=x is weakly continuous on X .

Assumption 3.3. For every x ∈ X , the distribution PY |X=x admits a continuous cumulative
distribution function (CDF) in each coordinate; equivalently, the associated quantile function
F−1
x : (0, 1) → Y is continuous.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We are now ready to state the main result of this section, which establishes that inference-time
dropout can universally approximate conditional distributions in Wasserstein distance.

Theorem 3.4 (Universal Approximation with Inference-Time Dropout). Assume that Condi-
tions 3.2 and 3.3 hold. Then for any ε > 0, there exist a depth L, widths (nℓ), dropout rate
p ∈ (0, 1), and weights θ such that the network defined in equation 3 satisfies

sup
x∈X

W1

(
L(fθ(M,x)), PY |X=x

)
< ε.

Theorem 3.4 formalizes the expressive power of inference-time dropout: under mild continuity
assumptions, dropout-induced random networks can approximate any target conditional distribution
to arbitrary accuracy in W1 distance. This result provides a rigorous basis for viewing dropout as a
mechanism for posterior approximation and supports its use in uncertainty quantification tasks.

The proof of Theorem 3.4 is constructive: we first approximate the target distribution via quantile
functions and then construct a randomized network whose output distribution matches it. Full details
are deferred to Appendix 4.

4 EXPERIMENTS

In Section 4.1, we first describe the datasets, baselines, and evaluation metrics. Section 4.2 then re-
ports the main simulation results under a range of synthetic and semi-synthetic settings. Section 4.3
examines the empirical performance of our approach on three practical tasks—reconstruction, pre-
diction, and uncertainty estimation. Finally, additional details are provided in the Appendix.

4.1 EXPERIMENTS SETTING

Simulated Datasets and Real-world Datasets. The simulated datasets are carefully designed to
cover both Gaussian and non-Gaussian noise regimes. Specifically, Gaussian noise scenarios in-
clude classical models such as Geometric Brownian Motion, Ornstein-Uhlenbeck process, and Cox-
Ingersoll-Ross process. Non-Gaussian cases are represented through jump diffusion processes with
Poisson innovations and generalized Gamma processes with composite noise. The detailed param-
eter configurations for these data generation processes are summarized in Appendix 4. For the
evaluation on real-world scenarios, we follow the protocol of (Park et al., 2021) and assess cross-
domain performance on four datasets: PhysioNet clinical time series for medical monitoring, the
Speech Commands audio corpus for voice recognition, Beijing Air Quality Index for environmental
sensing, and S&P 500 tick data for financial markets.

Baselines. Our comparisons focus primarily on established SDE-based generative models, includ-
ing Latent-SDE (Li et al., 2020) and GAN-SDE (Li et al., 2020), which provide the most direct
benchmarks for evaluating our proposed method. To provide a broader perspective, we also in-
clude ODE-based approaches like ODE2VAE (Yildiz et al., 2019) and Latent-ODE (Rubanova et al.,
2019), together with strong sequence modeling baselines including GRU-D (Che et al., 2018) and
mTAND (Shukla and Marlin, 2021).

Metrics. For the simulation studies, we evaluate the model’s ability to recover the underlying DGP
by measuring the maximum mean discrepancy (MMD) between the learned and true distributions.
On real-world benchmarks, we focus on three core aspects: temporal forecasting accuracy, measured
by mean squared error (MSE); distributional alignment, assessed via MMD between generated and
observed sequences; and probabilistic calibration, evaluated through negative log-likelihood (NLL)
on both prediction and reconstruction tasks.

4.2 SIMULATION RESULTS ANALYSIS

As shown in Table 1, models based on SDEs consistently outperform those built on ODEs and
recurrent neural networks (RNNs) across all simulated processes. Incorporating ITD further yields
order-of-magnitude improvements by mitigating discretization errors, with particularly strong gains
on complex distributions. To better understand how ITD contributes to these improvements, Figure 1

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model OU GBM CIR Jump Gamma Phys PL Poly
GRU-D 4.40 2.16 12.79 2.66 60.11 16.12 2.79 3.50
mTAND 2.94 0.04 32.08 18.00 40.40 73.34 32.08 37.59
ODE2VAE 3.50 5.50 15.11 27.55 26.62 152.45 15.11 103.21
Latent-ODE 16.97 7.50 12.41 23.50 43.74 65.45 12.41 4.78
Latent-SDE 3.39 9.55 12.36 8.57 31.20 42.07 9.36 3.51
GAN-SDE 5.75 9.88 11.61 8.91 35.46 40.87 11.26 6.51

Latent-SDE (w/ ITD) 0.61 (-82%) 0.79 (-92%) 0.98 (-92%) 1.40 (-84%) 0.55 (-98%) 3.72 (-91%) 1.12 (-88%) 1.73 (-51%)
GAN-SDE (w/ ITD) 0.60 (-90%) 0.89 (-91%) 0.15 (-99%) 2.57 (-71%) 0.96 (-97%) 5.05 (-88%) 2.09 (-81%) 3.32 (-49%)

Table 1: Performance comparison of models on simulated stochastic process generation tasks. All
values are MMD ×10−2, rounded to two decimals. Bold indicates the best result per column. Red
percentages denote the relative reduction compared to the corresponding baseline.

visualizes the model’s ability to recover key stochastic properties. The top panels show that the
generated noise increments align closely with the theoretical distributions for both Gaussian (GBM)
and non-Gaussian (Jump) processes, validating the fidelity of the learned noise structure. The bottom
panels illustrate the agreement between predicted and true terminal value distributions, highlighting
the model’s capacity to capture sequence-level distributions accurately.

Distribution of Dropout Generated dW (GBM)

GBM: True vs. Predicted Value Distributions JUMP: True vs. Predicted Value Distributions

Distribution of Dropout Generated dW (JUMP)
Dropout Generated dW

Theoretical SDE Distribution

True Value (Empirical)

True Value (KDE)

Predicted Value (Empirical)

Predicted Value (KDE)

True Value (Empirical)

True Value (KDE)

Predicted Value (Empirical)

Predicted Value (KDE)

Statistics:

Mean = -0.0057

Variance = 0.0438

Theoretical Mean = -0.0049

Theoretical Variance = 0.0417

Statistics:

Mean = -0.0005

Variance = 0.0097

Theoretical Mean = 0.0

Theoretical Variance = 0.0100

0

1

2

3

4

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

-2 -1 0 1 2

0 1 2 3 4

Figure 1: Visualization of the model’s ability to recover stochastic properties using ITD. The top
panels show that the generated noise increments align closely with theoretical distributions for both
Gaussian (GBM) and non-Gaussian (Jump) processes, validating the fidelity of the learned noise
structure. The bottom panels illustrate the agreement between predicted and true terminal value
distributions, highlighting the model’s capacity to capture sequence-level distributions accurately.

4.3 REAL-WORLD RESULTS ANALYSIS

The weaker performance of RNN- and ODE-based baselines can be attributed to their lack of explicit
stochasticity and their limited ability to cope with non-stationary dynamics. These models tend to
treat randomness as deterministic variation, which leads to systematic mis-specification in domains
where uncertainty is intrinsic. As a consequence, they either overfit noise or drift away from the true
dynamics in long-horizon prediction and reconstruction tasks, as reflected in Table 2. In contrast,
by injecting structured randomness at inference, ITD restores the capacity of SDE-based models to
represent stochastic fluctuations faithfully. This mechanism not only compensates for discretization

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

bias but also improves robustness and adaptability to real-world conditions where variability and
non-stationarity are fundamental rather than incidental.

Reconstruction Tasks Prediction Tasks

Method PhysioNet Speech Commands PhysioNet Air Quality
MSE NLL MSE NLL MSE NLL MSE NLL

RNN-VAE 6.66 -33.24 0.98 -4.92 6.23 -25.81 6.72 -4.84
ODE2-VAE 5.52 -24.20 0.72 -3.76 5.37 -26.81 7.94 -3.97
mTAND 0.89 -4.40 0.58 -2.90 1.55 -7.72 1.87 -0.93
Latent-ODE 2.38 -11.84 0.88 -4.40 2.04 -10.15 3.40 -1.77
Latent-SDE 2.42 -12.05 0.85 -4.25 2.00 -9.98 3.68 -1.83
GAN-SDE 2.60 -9.05 0.89 -3.25 2.04 -8.97 3.97 -1.34

Latent-SDE (w/ ITD) 0.84 -0.10 0.26 -0.01 0.72 -5.35 2.30 -0.03

Table 2: Evaluation of reconstruction and prediction tasks. For readability, values are rescaled: MSE
on PhysioNet is reported as ×10−1, and NLL as ×102; MSE on Speech Commands is reported as
×100 and NLL as ×103; NLL on Air Quality as ×103. Bold indicates the best result per column.

Method MMD
RNN-VAE 427.05
Latent ODE 194.75
Latent SDE 190.11
Latent-SDE (w/ ITD) 0.27

Table 3: Uncertainty estimation on the
Stock Market dataset (MMD ×10−3).
Bold indicates the best result.

Uncertainty Estimation Uncertainty estimation is a
core task in modeling dynamical systems with wide rel-
evance in science, industry, and society. In financial time
series, it is essential to capture distributional shifts, volatil-
ity, and tail risks such as black-swan events, which di-
rectly affect risk management, portfolio allocation, and
algorithmic trading. Table 3 shows that adding ITD to
Latent-SDE leads to a substantial improvement in uncer-
tainty estimation, reducing MMD by orders of magnitude
compared to all baselines. This demonstrates that ITD not
only mitigates discretization error but also enables SDE-
based models to capture non-Gaussian stochastic behavior
that standard approaches fail to represent.

4.4 MORE ANALYSIS

ITD for Distributional Approximation. For a fixed input, ITD is equivalent to sampling from
a distribution, since stochastic dropout masks induce random perturbations across forward passes,
yielding an empirical distribution qθ(z|x). Unlike reparameterization methods, ITD does not rely on
explicit transformations of the sampling operator but instead exploits intrinsic network stochastic-
ity. As shown in Figure 2, ITD reproduces a wide range of target distributions—including unimodal,
heavy-tailed, skewed, bounded, and multimodal Gaussian mixtures—without requiring explicit mix-
ture priors, confirming its effectiveness as an approximate differentiable sampling mechanism. To
further validate this property in a generative setting, we conduct a controlled generation study. A
decoder-only architecture is trained to map a simple Gaussian prior to the target distribution, and we
compare three settings:

• Input noise only: dropout disabled, randomness introduced with resampling latent vectors.

• Inference-time dropout (ITD): dropout activated during inference while keeping the latent
vector fixed, injecting stochasticity inside the mapping.

• Deterministic baseline: both latent vector and dropout fixed, yielding identical outputs.

As shown in Figure 3, the ITD setting produces diverse outputs from a fixed latent vector, indicating
that the model has learned to approximate high-dimensional distributions through internal stochas-
ticity. In contrast, input-only noise confines randomness to the latent space, while the deterministic
baseline collapses to identical outputs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

True Target Distribution Model Generated Distribution

Normal Distribution Log-Normal Distribution Student’s t-Distribution

Chi-squared Distribution F-Distribution Logistic Distribution

Cauchy Distribution Laplace Distribution Gamma Distribution

Beta Distribution Exponential Distribution Uniform Distribution

Bimodal Gaussian Distribution Trimodal Gaussian Distribution Quadrimodal Gaussian Distribution

Value ValueValue

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Figure 2: Each subplot compares the target distribution (orange) with the distribution induced by
ITD (blue) under the same sampling scheme. The evaluation covers a broad class of distribu-
tions, including light- and heavy-tailed (e.g., Normal, Cauchy), skewed (e.g., Gamma, Exponential),
bounded (e.g., Beta, Uniform), and multimodal cases (bimodal, trimodal, quadrimodal Gaussian
mixtures). Detailed parameter configurations are provided in the Appendix 4.

...

Different noise vectors

Fixed noise vector

Dropout OFF

Dropout OFFDropout ON

Dropout OFFDropout OFF

Figure 3: Visualization of generated digits under different stochasticity settings. Top: randomness
injected via different latent vectors with dropout disabled. Middle: inference-time dropout with a
fixed latent vector. Bottom: deterministic setting with both fixed latent vector and no dropout. The
middle row exhibits the richest diversity, showing that inference-time dropout captures distributional
variability through internal sampling. Detailed experimental configurations are provided in the Ap-
pendix 4.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Impact of network depth on ITD
approximation. Results are reported for
models with 64 and 128 hidden units. Per-
formance is evaluated using MMD (↓) on the
quadrimodal Gaussian benchmark.

Impact of Dropout Configuration on Model Be-
havior. To gain deeper insight into how ITD con-
tributes to approximating distributions under dis-
cretization, we conduct a systematic hyperparame-
ter study. The results indicate that network depth
has a non-monotonic effect: shallow architectures
underfit due to limited capacity, while very deep
ones encounter optimization difficulties or exces-
sive regularization. As shown in Figure 4, the most
reliable trade-off emerges with intermediate depths
of roughly three to six layers, which consistently
achieve lower MMD values across different hidden-
unit settings. This observation is consistent with
our analysis in Section 3.2, where the effect can
be viewed as implicitly learning 2N subnetworks
through dropout-based stochastic routing. When the
number of neurons N becomes too large, the result-
ing explosion in implicit models makes optimization
substantially harder.

Drop. Layers MMD (×10−3)

1 16.2
3 12.9
6 22.3

10 5.9

Table 4: Effect of varying the number
of final layers to which dropout is ap-
plied. All models use 10 layers with
128 hidden units per layer, and a fixed
dropout rate p = 0.5. Performance is
evaluated using MMD (↓) on the quad-
rimodal Gaussian task. Values are re-
ported in scientific notation, ×10−3;
the best result is shown in bold.

We observe that increasing dropout coverage enhances
distributional fitting. As shown in Table 4, the lowest
MMD is obtained when dropout is applied across all lay-
ers, indicating that injecting stochasticity throughout the
network is most effective for capturing complex noise. If
randomness is injected only in the final layers, each for-
ward pass first traverses a deterministic backbone and then
stochastically activates a subset of subnetworks through
dropout masks, effectively forming an implicit ensemble
of experts. This behavior is consistent with our earlier
analysis in Section 3.3, where dropout was interpreted as
a form of static stochastic routing. In this case, the mech-
anism degenerates into a simplified Mixture-of-Experts,
which reduces the diversity of stochasticity and ultimately
degrades model performance.

5 LIMITATION

Our approach alleviates the discretization errors inherent in conventional NSDEs by introducing
inference-time dropout as an adaptive source of stochasticity. While our theoretical and empirical
results demonstrate clear advantages in predictive accuracy and uncertainty estimation, an important
limitation lies in scalability. In particular, it remains unclear how well the framework extends to
settings with massive datasets and very large parameter counts, such as those encountered in large
language models. We leave the investigation of scaling laws and efficient training strategies for such
large-scale deployments to future work.

6 CONCLUSION

We proposed ITD as a simple yet effective mechanism for enhancing neural SDEs. Theoretically,
we established that ITD can be interpreted as a universal stochastic generator, capable of approxi-
mating arbitrary conditional distributions, and showed that it mitigates discretization errors inherent
in NSDE formulations. Empirically, incorporating ITD into Latent SDEs improves both predictive
accuracy and uncertainty estimation across synthetic and real-world datasets. These findings demon-
strate that ITD provides a principled and practical tool for uncertainty-aware sequence modeling.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT AND REPRODUCIBILITY STATEMENT

This paper aims to advance the field of Machine Learning. While the work may have potential so-
cietal implications, we do not identify any specific ethical concerns that require special attention.
We provide sufficient details of the model, training procedure, and evaluation setup to allow inde-
pendent reproduction of our results. All hyperparameters, datasets, and experimental settings are
documented in the paper or supplementary material.

REPRODUCIBILITY CHECKLIST

Instructions for Authors:

This document outlines key aspects for assessing reproducibility. Please provide your input by
editing this .tex file directly.

For each question (that applies), replace the “Type your response here” text with your answer.

Example: If a question appears as

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
Type your response here

you would change it to:

\question{Proofs of all novel claims are included}
{(yes/partial/no)}
yes

Please make sure to:

• Replace ONLY the “Type your response here” text and nothing else.

• Use one of the options listed for that question (e.g., yes, no, partial, or NA).

• Not modify any other part of the \question command or any other lines in this document.

You can \input this .tex file right before \end{document} of your main file or compile it as
a stand-alone document. Check the instructions on your conference’s website to see if you will be
asked to provide this checklist with your paper or separately.

1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode description of AI methods introduced (yes/-
partial/no/NA) yes

1.2. Clearly delineates statements that are opinions, hypothesis, and speculation from objective facts
and results (yes/no) yes

1.3. Provides well-marked pedagogical references for less-familiar readers to gain background nec-
essary to replicate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions? (yes/no) yes

If yes, please address the following points:

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

2.2. All assumptions and restrictions are stated clearly and formally (yes/partial/no) yes

2.3. All novel claims are stated formally (e.g., in theorem statements) (yes/partial/no) yes

2.4. Proofs of all novel claims are included (yes/partial/no) yes

2.5. Proof sketches or intuitions are given for complex and/or novel results (yes/partial/no) yes

2.6. Appropriate citations to theoretical tools used are given (yes/partial/no) yes

2.7. All theoretical claims are demonstrated empirically to hold (yes/partial/no/NA) yes

2.8. All experimental code used to eliminate or disprove claims is included (yes/no/NA) yes

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no) Type your response here

If yes, please address the following points:

3.2. A motivation is given for why the experiments are conducted on the selected datasets
(yes/partial/no/NA) yes

3.3. All novel datasets introduced in this paper are included in a data appendix (yes/par-
tial/no/NA) yes

3.4. All novel datasets introduced in this paper will be made publicly available upon publi-
cation of the paper with a license that allows free usage for research purposes (yes/par-
tial/no/NA) yes

3.5. All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are accompanied by appropriate citations (yes/no/NA) yes

3.6. All datasets drawn from the existing literature (potentially including authors’ own previ-
ously published work) are publicly available (yes/partial/no/NA) yes

3.7. All datasets that are not publicly available are described in detail, with explanation why
publicly available alternatives are not scientifically satisficing (yes/partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments? (yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values tried per (hyper-) parameter during de-
velopment of the paper, along with the criterion used for selecting the final parameter
setting (yes/partial/no/NA) yes

4.3. Any code required for pre-processing data is included in the appendix (yes/partial/no) yes

4.4. All source code required for conducting and analyzing the experiments is included in a
code appendix (yes/partial/no) yes

4.5. All source code required for conducting and analyzing the experiments will be made pub-
licly available upon publication of the paper with a license that allows free usage for
research purposes (yes/partial/no) yes

4.6. All source code implementing new methods have comments detailing the implementation,
with references to the paper where each step comes from (yes/partial/no) yes

4.7. If an algorithm depends on randomness, then the method used for setting seeds is de-
scribed in a way sufficient to allow replication of results (yes/partial/no/NA) yes

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

4.8. This paper specifies the computing infrastructure used for running experiments (hardware
and software), including GPU/CPU models; amount of memory; operating system; names
and versions of relevant software libraries and frameworks (yes/partial/no) no

4.9. This paper formally describes evaluation metrics used and explains the motivation for
choosing these metrics (yes/partial/no) yes

4.10. This paper states the number of algorithm runs used to compute each reported result
(yes/no) yes

4.11. Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,
average; median) to include measures of variation, confidence, or other distributional in-
formation (yes/no) yes

4.12. The significance of any improvement or decrease in performance is judged using appro-
priate statistical tests (e.g., Wilcoxon signed-rank) (yes/partial/no) no

4.13. This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s
experiments (yes/partial/no/NA) yes

REFERENCES

Fehaid Salem Alshammari and Muhammad Altaf Khan. Dynamic behaviors of a modified sir model
with nonlinear incidence and recovery rates. Alexandria Engineering Journal, 60(3):2997–3005,
2021.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654, 1973.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

Samuel N Cohen, Christoph Reisinger, and Sheng Wang. Arbitrage-free neural-sde market models.
Applied Mathematical Finance, 30(1):1–46, 2023.

Christa Cuchiero, Eva Flonner, and Kevin Kurt. Robust financial calibration: a bayesian approach
for neural sdes. arXiv preprint arXiv:2409.06551, 2024.

Claudio Floris. Mean square stability of a second-order parametric linear system excited by a colored
gaussian noise. Journal of Sound and Vibration, 336:82–95, 2015.

Stefan Giebel and Martin Rainer. Stochastic processes adapted by neural networks with application
to climate, energy, and finance. Applied Mathematics and Computation, 218(3):1003–1007, 2011.

Patryk Gierjatowicz, Marc Sabate-Vidales, David Šiška, Lukasz Szpruch, and Žan Žurič. Robust
pricing and hedging via neural sdes. arXiv preprint arXiv:2007.04154, 2020.

Patryk Gierjatowicz, Marc Sabate-Vidales, David Siska, Lukasz Szpruch, and Zan Zuric. Robust
pricing and hedging via neural stochastic differential equations. Journal of Computational Fi-
nance, 26(3), 2022a.

Patryk Gierjatowicz, Marc Sabate-Vidales, David Siska, Lukasz Szpruch, and Zan Zuric. Robust
pricing and hedging via neural stochastic differential equations. Journal of Computational Fi-
nance, 26(3), 2022b.

Jeehyun Hwang, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee, and Noseong
Park. Climate modeling with neural diffusion equations. In 2021 IEEE International Conference
on Data Mining (ICDM), pages 230–239. IEEE, 2021.

Zacharia Issa, Blanka Horvath, Maud Lemercier, and Cristopher Salvi. Non-adversarial training of
neural sdes with signature kernel scores. Advances in Neural Information Processing Systems,
36:11102–11126, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Md Kamrujjaman, Pritam Saha, Md Shahidul Islam, and Uttam Ghosh. Dynamics of seir model: A
case study of covid-19 in italy. Results in Control and Optimization, 7:100119, 2022.

Patrick Kidger, James Foster, Xuechen Li, and Terry J Lyons. Neural sdes as infinite-dimensional
gans. In International conference on machine learning, pages 5453–5463. PMLR, 2021a.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747–18761, 2021b.

Lingkai Kong, Jimeng Sun, and Chao Zhang. Sde-net: Equipping deep neural networks with uncer-
tainty estimates. arXiv preprint arXiv:2008.10546, 2020.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pages 3870–3882. PMLR, 2020.

Maria C Mariani, Peter K Asante, Osei K Tweneboah, and William Kubin. A 3-component super-
posed ornstein-uhlenbeck model applied to financial stock markets. Research in Mathematics, 9
(1):2024339, 2022.

Robert C Merton. Theory of rational option pricing. The Bell Journal of economics and management
science, pages 141–183, 1973.

Alfred H. Mishi, Arigu I. Sabari, Deborah A. Amos, Chinedu F. Egbogu, Charity A. Kuje, and
John O. Ojosipe. Application of differential equations in physics. Global Scientific Journal, 8(9):
757–773, 2020.

YongKyung Oh, Dong-Young Lim, and Sungil Kim. Stable neural stochastic differential equations
in analyzing irregular time series data. arXiv preprint arXiv:2402.14989, 2024.

Sung Woo Park, Kyungjae Lee, and Junseok Kwon. Neural markov controlled sde: Stochastic
optimization for continuous-time data. In International Conference on Learning Representations,
2021.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Satya Narayan Shukla and Benjamin M Marlin. Multi-time attention networks for irregularly sam-
pled time series. arXiv preprint arXiv:2101.10318, 2021.

Belinda Tzen and Maxim Raginsky. Neural stochastic differential equations: Deep latent gaussian
models in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

Xiangfeng Yang, Yuhan Liu, and Gyei-Kark Park. Parameter estimation of uncertain differential
equation with application to financial market. Chaos, Solitons & Fractals, 139:110026, 2020.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. Advances in Neural Information Processing Systems, 32,
2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

EXPERIMENTAL SETUP

SIMULATED DATASET CONFIGURATION

Stochastic Process Configuration. Our simulation datasets encompass two types of SDEs. The
first type is designed to confirm that our approach maintains stable performance under the standard
Gaussian noise setting. The second type, which is more challenging, involves non-Gaussian noise in
SDEs. In the subsequent sections, we will delve into these two types of SDEs and detail their specific
parameter configurations. We begin by examining a class of SDEs driven by standard Gaussian
noise. These serve as controlled environments for evaluating the stability and consistency of our
approach under well-understood dynamics. In particular, many of these models admit closed-form
or well-characterized solutions, making them ideal for benchmarking and diagnostic purposes. The
most canonical example is the Geometric Brownian Motion (GBM), which is analytically solvable
via Itô’s lemma and is widely used in mathematical finance and physics.

Typically, the Geometric Brownian Motion is analytically tractable due to its explicit closed-form
solution derived via Itô’s lemma. The process is governed by the stochastic differential equation:
dXt = µXt dt + σXt dWt with the solution expressed as: Xt = X0 exp

((
µ− σ2

2

)
t+ σWt

)
where the exponential transformation guarantees path positivity. The SDEs in this group share the
common structure of being driven by Brownian motion, dWt, and include both linear and nonlinear
dynamics. Their formulations and parameter detailed configurations are listed below.

• Geometric Brownian Motion (GBM). Formula:dXt = µXtdt + σXtdWt. Parameters: µ =
0.05, σ = 0.2, x0 = 1.0, T = 1.0, n steps = 100.

• Ornstein-Uhlenbeck Process (OU). Formula: dXt = κ(α − Xt)dt + σdWt. Parameters:
κ = 1.0, α = 1.0, σ = 0.3, x0 = 1.0, T = 1.0, n steps = 100.

• Cox-Ingersoll-Ross Process (CIR). Formula: dXt = κ(α − Xt)dt + σ
√
XtdWt. Parame-

ters:κ = 0.5, α = 1.0, σ = 0.3, x0 = 1.0, T = 1.0, n steps = 100.

• Physical Stochastic Differential Equation (Phys). Formula: dXt = (η − ν/2)X2η−1
t dt +

Xη
t dWt. Parameters: η = 0.7, ν = 0.3, x0 = 1.0, T = 1.0, n steps = 100.

• Nonlinear Stochastic Differential Equation (NL). Formula: dXt = Xt(κ − (σ2 − κXt))dt +

σX
3/2
t dWt. Parameters:κ = 0.5, σ = 0.3, x0 = 1.0, T = 1.0, n steps = 100.

• Power Law Volatility Model (PL). Formula:dXt = κ(α−Xt)dt+σX
p
t dWt. Parameters:κ =

0.5, α = 1.0, σ = 0.3, p = 0.5, x0 = 1.0, T = 1.0, n steps = 100.

• Polynomial Drift Model (Poly). Formula: dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt +

σX
3/2
t dWt. Parameters:α−1 = −0.1, α0 = 0.1, α1 = 0.2, α2 = −0.05, σ = 0.3, x0 = 1.0,

T = 1.0, n steps = 100.

Non-Gaussian processes incorporate discontinuous innovations through jump components or Lévy-
driven noise, essential for modeling systems with abrupt state changes. Jump-diffusion models
generalize Brownian motion through dXt = µXtdt+σXtdWt +JtdNt, where compound Poisson
jumps Jt superimposed on diffusion dynamics capture financial market crashes and epidemiological
surges. The generalized gamma process dXt = a(Xt)dt+ b(Xt)dWt + c(Xt)dNt further couples
state-dependent jump intensities with multiplicative noise, simulating information cascades in social
networks through its self-exciting feedback mechanism. The detailed configurations are listed below.

• Jump Diffusion Process (JUMP). Formula: dXt = µXtdt+ σXtdW
′
t , where dW ′

t = dWt +
dJt. Parameters: µ = 0.05, σ = 0.2, x0 = 1.0, T = 1.0, n steps = 100, jump rate = 5.0,
jump mean = −0.1, jump std = 0.8

• Generalized Gamma Process (Gamma). Formula: dXt = a(Xt, t)dt + b(Xt, t)dWt +
c(Xt, t)dNt (specific form: dXt = (acoefXt)dt + (bcoefXt)dWt + (ccoefXt)dJt). Param-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

eters: acoef = 0.1, bcoef = 0.2, ccoef = 0.3, jump rate = 3.0, jump mean = 0.1,
jump std = 0.2, x0 = 1.0, T = 1.0,n steps = 100.

Distributional Configurations. As summarized in Table 5, we consider both unimodal and mul-
timodal distributions with varying tail behaviors and skewness.

Distribution Form Parameters

Normal N (µ, σ2) µ = 0.0, σ = 1.0
Log-Normal LogNormal(µ, σ2) µ = 0.0, σ = 1.0
Student-t t(df) df = 3.0
Chi-Squared χ2(df) df = 3.0
F-Distribution F (df1, df2) df1 = 5.0, df2 = 2.0
Logistic Logistic(µ, s) µ = 0.0, s = 1.0
Cauchy Cauchy(x0, γ) x0 = 0.0, γ = 1.0
Laplace Laplace(µ, b) µ = 0.0, b = 1.0
Gamma Γ(k, θ) k = 2.0, θ = 2.0
Beta Beta(α, β) α = 2.0, β = 5.0
Exponential Exp(λ) λ = 1.0
Uniform U(a, b) a = −1.0, b = 1.0

Gaussian Mixture (bimodal)
∑2

i=1 πiN (µi, σ
2
i )

π = [0.5, 0.5]
µ = [−2, 2]
σ = [0.5, 0.5]

Gaussian Mixture (trimodal)
∑3

i=1 πiN (µi, σ
2
i )

π = [1/3, 1/3, 1/3]
µ = [−3, 0, 3]
σ = [0.5, 0.7, 0.5]

Gaussian Mixture (quadrimodal)
∑4

i=1 πiN (µi, σ
2
i )

π = [0.25, 0.25, 0.25, 0.25]
µ = [−4,−1.5, 1.5, 4]
σ = [0.5, 0.4, 0.4, 0.5]

Table 5: Distributional configurations used in simulated experiments.

MODEL CONFIGURATIONS

The drift network µθ(Xt, t) and the diffusion network σϕ(Xt, t) are both implemented as feedfor-
ward neural networks with three hidden layers [64, 128, 64], using the SiLU activation function. To
ensure positivity of the output, the diffusion network σϕ applies a Softplus activation function in
its final layer. ITD module ϵθ(dt)—adopts a hierarchical design. It consists of a base network with
hidden layers [256, 512, 256], using a base dropout rate of 0.2. On top of this, our inference dropout
uses p2 = 0.5. For real-world sequential datasets, the drift and diffusion functions are parameter-
ized by a 2-layer gated recurrent unit (GRU) with a hidden dimension of 128, enabling effective
modeling of temporal dependencies in historical data. All networks employ BatchNorm to ensure
training stability.

OPTIMIZATION AND TRAINING

Latent SDEs with ITD are trained end-to-end by maximizing the evidence lower bound (ELBO),
consistent with the original formulation. We employ the Adam optimizer with an initial learning
rate of 1×10−4. The learning rate is dynamically adjusted using a ReduceLROnPlateau sched-
uler, which halves the rate if the validation loss does not improve for 10 consecutive epochs. For
synthetic datasets, training is performed for up to 40 epochs with a batch size of 1024. For real-
world benchmarks, we use a batch size of 64 and train for up to 40 epochs with early stopping based
on validation performance. All experiments are implemented in PyTorch and executed on NVIDIA
A100 GPUs. For fair comparison, part of the results are directly taken from (Park et al., 2021). For
all baseline models, we followed the original implementations and performed hyperparameter search
over batch size and learning rate. Specifically, we considered batch sizes {32, 64, 128, 256, 512} and
learning rates {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3}. The best configuration was

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

selected based on validation performance, with early stopping applied to prevent overfitting. We
report the average performance over five independent runs with different random seeds, using the
same hyperparameters selected via validation for each run.

PROOFS

Proof of Theorem 3.4. Fix x ∈ X . By Assumption 3.3, the conditional distribution PY |X=x

admits a continuous quantile function F−1
x : (0, 1)d → Y such that if U ∼ Unif(0, 1)d, then

F−1
x (U) ∼ PY |X=x. Since Y is bounded, uniform continuity of F−1

x follows.

Consider the dropout masks M = (M (1), . . . ,M (L−1)) with M (ℓ) ∼ Ber(p)nℓ independently,
and define a deterministic mapping ψ such that Z = ψ(M) ∈ Z takes values in a finite set Z =
{z1, . . . , zK} with probabilities {q1, . . . , qK} determined by p and the layer widths. The law of the
randomized network output can then be written as

L(fθ(M,x)) =

K∑
k=1

qk δfθ(zk,x).

Let {uk}Kk=1 ⊂ (0, 1)d be a finite grid. By uniform continuity of F−1
x , there exists such a grid

satisfying
sup

u∈(0,1)d
inf
k≤K

∥F−1
x (u)− F−1

x (uk)∥ < ε/2.

This implies that the discrete distribution
∑K

k=1 qk δF−1
x (uk)

approximates PY |X=x in W1 distance
up to ε/2.

By the universal approximation theorem for ReLU networks, there exists a network fθ with sufficient
depth and width such that

sup
x∈X

sup
k≤K

∥fθ(zk, x)− F−1
x (uk)∥ < ε/2.

It follows that
W1

(
L(fθ(M,x)), PY |X=x

)
< ε uniformly for x ∈ X.

Therefore, there existL, widths (nℓ), dropout rate p, and weights θ such that the randomized network
output distribution approximates the target conditional law within ε in W1 distance, as claimed.

MORE ANALYSIS

Sensitivity Analysis on Dropout Probability. We further examined the effect of varying the
dropout probability p during inference. As shown in Table 6, the results indicate that the perfor-
mance is relatively insensitive to the exact choice of p, as long as the underlying neural network has
sufficient capacity (i.e., enough parameters). This suggests that the expressive power of the network
can compensate for different stochastic rates, ensuring stable behavior across a range of p values.

p Accuracy (↑) NLL (↓)

0.1 0.612 0.485
0.3 0.609 0.481
0.5 0.611 0.479
0.7 0.610 0.483
0.9 0.608 0.487

Table 6: Effect of varying inference-time dropout probability p on Latent-SDE (with ITD), evaluated
on the synthetic dataset. Results show predictive accuracy (↑) and negative log-likelihood (NLL, ↓).
Performance remains stable across different p values when the network has sufficient capacity.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Other Discretization Methods: Complexity Analysis. As shown in Table 7, higher-order
schemes such as the Milstein method and Enhanced Local (EL) methods can theoretically reduce
the discretization bias of Euler–Maruyama. However, their computational and memory costs in-
crease substantially: Milstein requires evaluating derivatives of the diffusion term, while EL methods
rely on higher-order expansions whose cost grows with the order k. Consequently, these methods
are difficult to scale to high-dimensional systems or long-horizon forecasting tasks. In contrast,
our Inference-Time Dropout (ITD) maintains constant complexity while effectively mitigating dis-
cretization bias, providing a lightweight and scalable alternative.

Method Time Complexity Space Complexity
Euler–Maruyama (baseline) O(1) per step O(1)
Milstein Scheme O(1 + Cg′) per step O(1)
Enhanced Local (EL) O(k) per step O(k)
Inference-Time Dropout (ITD) O(1) per step O(1)

Table 7: Time and space complexity of different discretization strategies.

17


	Introduction
	Related Work
	Methodology
	Discretization Bias Analysis
	Inference-Time Dropout
	Understanding Inference-Time Dropout
	Theoretical Analysis

	Experiments
	Experiments Setting
	Simulation Results Analysis
	Real-world Results Analysis
	More Analysis

	Limitation
	Conclusion
	Experimental Setup
	Simulated Dataset Configuration
	Model Configurations
	Optimization and Training

	Proofs
	More Analysis

