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Abstract

State-of-the-art approaches to reasoning and question answering over knowledge
graphs (KGs) usually scale with the number of edges and can only be applied
effectively on small instance-dependent subgraphs. In this paper, we address this
issue by showing that multi-hop and more complex logical reasoning can be accom-
plished separately without losing expressive power. Motivated by this insight, we
propose an approach to multi-hop reasoning that scales linearly with the number of
relation types in the graph, which is usually significantly smaller than the number
of edges or nodes. This produces a set of candidate solutions that can be prov-
ably refined to recover the solution to the original problem. Our experiments on
knowledge-based question answering show that our approach solves the multi-hop
MetaQA dataset, achieves a new state-of-the-art on the more challenging WebQues-
tionsSP, is orders of magnitude more scalable than competitive approaches, and
can achieve compositional generalization out of the training distribution.

1 Introduction

Reasoning, namely the ability to infer conclusions and draw predictions based on existing knowledge,
is a hallmark of human intelligence. Infusing the same ability into machine learning models has
been a major challenge [34, 29] and has historically required complex systems made of several
hand-crafted or learned components [47, 19]. Recently, the paradigm has shifted to deep learning
approaches [43, 42], where neural networks are used to reason over structured knowledge or a text
corpus. In this work, we assume that the source of knowledge is a structured knowledge graph (KG)
and we tackle the problem of knowledge-based question answering (KBQA), namely finding answers
to natural language queries involving multi-hop and logical reasoning over the KG.

Answering queries over a knowledge graph involves many challenges, among which scalability is
a major issue. Real-world KGs often contain millions of nodes and even a 2-hop neighborhood of
the entities mentioned in the query may comprise tens of thousands of nodes. Many state-of-the-art
approaches [41, 42, 39] address the challenge of scalability by building small query-dependent
subgraphs. To this end, they usually use simple heuristics [41] or, in some cases, iterative procedures
based on learned classifiers [42]. This preprocessing step is usually needed because each forward
pass in end-to-end neural networks for KBQA scales at least linearly with the number of edges in
the subgraph. Training neural networks involves repeated evaluation, which renders even a linear
complexity impractical for graphs of more than a few tens thousands of nodes.

In order to address this issue, we introduce a novel approach called SQALER (Scaling Question
Answering by Leveraging Edge Relations). The method first learns a model that generates a set of
candidate answers (entities in the KG) by multi-hop reasoning: the candidate solutions are obtained
by starting from the set of entities mentioned in the question and seeking those that provide an answer
by chained relational following operations. We refer to this module as the relation-level model.
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We show that this multi-hop reasoning step can be done efficiently and provably generates a set of
candidates including all the actual answers to the original question. SQALER then uses a second-stage
edge-level model that recovers the real answers by performing logical reasoning on a subgraph in the
vicinity of the candidate solutions. A visual summary of our approach is depicted in Figure 1.

The main contributions and takeaway messages of this work are the following:

1. KBQA can be addressed by first performing multi-hop reasoning on the KG and then refining
the result with more sophisticated logical reasoning without losing expressive power (we will
elaborate this claim in more details in Section 2.3).

2. Multi-hop reasoning can be accomplished efficiently with a method that scales linearly with the
number of relation types in the KG, which are usually significantly fewer than the number of facts
or entities.

In the remainder of the paper, we first provide an extensive overview of our approach and a theoretical
analysis of the expressive power and the computational complexity of SQALER. Our experimental
results show that SQALER achieves better reasoning performance than state-of-the-art approaches,
generalizes compositionally out of the training distribution, and scales to the size of real-world
knowledge graphs with millions of entities.

2 Scaling KBQA with relation and edge-level reasoning

This section provides a detailed description of our approach. We start by defining the problem
formally and giving an intuitive overview of SQALER. Then, we discuss the approach in more details
and we analyze its computational complexity and expressive power

Problem statement. We denote a knowledge graph as G = (V,R, E), where v ∈ V represents an
entity or node in G, r ∈ R is a relation type, and we write v r−→ v′ to denote an edge in E labeled with
relation type r ∈ R between two entities v, v′ ∈ V . We extend the same notation to sets of nodes
by writing Vi

r−→ Vj if Vj = {vj ∈ V | vi
r−→ vj , vi ∈ Vi}. Given a knowledge graph G = (V,R, E)

and a natural language question Q, expressed as a sequence of tokens Q = (q1, q2, . . . , q|Q|), in
knowledge-based question answering the objective is to identify a set of nodes AQ ⊆ V representing
the correct answers to Q. Following previous work [41, 42, 43], we assume that the set of entities
mentioned in the question VQ ⊆ V is given. These nodes are also called the anchor nodes of the
question and in practice are commonly obtained using an entity-linking module.

Overview. KBQA can be cast as an entity seeking problem on G by translatingQ into a set of nodes
VQ ⊆ V (the starting points of the search) and seeking for nodes that provide an answer [41, 42, 43].
Attempting to find AQ directly on G is prohibitive in practice, as even the most efficient graph-based
neural networks generally scale at least linearly with the number of edges. Our approach mitigates
this issue by breaking the problem in two subproblems.

(a) We first utilize a relation-level model ϕ to obtain a set of candidate answers ÃQ, such that
AQ ⊆ ÃQ. We refer to ϕ as “relation-level” because, as we will see, it operates on the coalesced
graph, a simplified representation of G, where edges of the same relation type are coalesced. The
coalesced graph is constructed before training and incurs a one-time linear cost. By exploiting it
during training, the relation-level model scales with the number of (distinct) relation types in the KG,
which are usually significantly fewer than the number of edges or entities.

(b) The candidate answers are then refined using an edge-level model ψ applied on a subgraph G(ÃQ)

of the original knowledge graph in the vicinity of ÃQ. We should note that the refining step is not
always necessary. Indeed, we found that a relation-level model is sufficient to perfectly solve tasks
like multi-hop question answering [50]. Figure 1 shows an overview of our approach.

2.1 Relational coalescing for efficient knowledge seeking

Our approach relies on a relation-level model ϕ that operates as a knowledge seeker in G. The model
identifies a node v as a candidate v ∈ ÃQ based on the sequence of relations that connect it with VQ.
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Figure 1: Overview of our approach. A relation-level model operates on a coalesced representation of
the original KG to generate a set of candidate answers ÃQ. This approximate solution is then refined
by an edge-level model applied on a subgraph of the original KG.

This can be achieved by using a neural network ϕ to predict how likely it is that the correct answer is
reached from VQ by following a sequence of relations R.

Reachability. To define how our method works, it will help to formalize the concept of reachability.
Let R = (r1, . . . , r|R|) be a sequence of relations. We say that “v is R-reachable from VQ” if there
exists a path P = (v1, . . . , v|R|, v) in G such that:

v1 ∈ VQ and vi
ri−→ vi+1 for every i = 1, . . . , |R|.

That is, we can reach v by starting from a node in VQ and following a sequence of edges with relation
types R. We also denote by reachG(VQ, R) the set of nodes that are R-reachable from VQ:

reachG(VQ, R) = {v ∈ V | v is R-reachable from VQ}.

Relational coalescing. Given a knowledge graph G, a question Q, and a set of entity mentions
VQ, we consider a representation of the graph G̃Q = (ṼQ, R̃Q, ẼQ), which allows us to efficiently
compute sets of nodes that are reachable from VQ. We refer to this representation as the question-
dependent coalesced KG, because edges with the same relation type are coalesced, as shown in Figure
1. The nodes of G̃Q are sets of nodes of G that are reachable from VQ by following any possible
sequence of relations originating from VQ. The graph G̃Q has an edge Vi

r−→ Vj if Vj is the set of
nodes that are reachable from Vi by following relation r. For convenience, we include a relation type
self ∈ R̃Q to denote self loops. We refer the reader to Appendix A for a formal definition of G̃Q.
The coalesced graph can be precomputed once as a preprocessing step for each question Q and incurs
a one-time linear cost. In practice, however, we do not need to compute and store all the nodes in G̃Q

but only edge labels. This makes learning efficient because each forward/backward pass scales with
the number of relation types and does not depend on the number of nodes or edges in the KG.

Knowledge seeking in G̃Q. The coalesced graph allows us to provide approximate answers to input
questions in an efficient manner. Specifically, we seek k ≥ 1 sequences of relations R⋆

i , such that:

AQ ⊆ ÃQ =

k⋃
i=1

reachG(VQ, R
⋆
i ).

We can achieve this by using a model ϕ that only considers relation sequences originating from VQ.
The model predicts the likelihood ϕ : ẼQ → [0, 1] of following a certain edge in a relation sequence
from VQ to ÃQ. Then, given R = (r1, . . . , r|R|) and a node in the coalesced graph VQ, we can
compute the likelihood of R by multiplying the likelihood of all edges traversed by R in G̃Q:

P(R | Q, G̃Q,VQ) ∝
|R|∏
i=1

ϕ(reachG(VQ, R1→i−1), ri, reachG(VQ, R1→i) | Q),
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where R1→i = (r1, . . . , ri) is the subsequence of R up to the i-th relation. We generate ÃQ by
selecting the top k relation sequences R⋆

i with maximum likelihood P(R⋆
i | Q, G̃Q,VQ). This can

be done by an efficient search algorithm, such as beam search starting from VQ. Then, we compute
ÃQ as the union of all target nodes of the selected relation sequences. More details about the
knowledge-seeking algorithm are provided in Appendix B.

2.2 Refining the solution on the original KG

In certain cases, like multi-hop question answering [50], the set of candidate answers ÃQ may already
be a reasonable estimate of AQ. We will substantiate this claim experimentally in Section 4. In
general, however, we recover AQ by using an edge-level model ψ applied on a subgraph G(ÃQ) of
G. Specifically, we construct G(ÃQ) as the subgraph induced by the set of nodes V(ÃQ), which
includes all nodes visited when following the top-k relation sequences along with their neighbors (see
Figure 1 for an example). Any existing method for KBQA can be used to instantiate ψ by running it
on G(ÃQ) rather than G. We opted to use a Graph Convolutional Network (GCN) conditioned on the
input question with the same architecture as in [41]. The edge-level model is constrained to predict
an answer among the candidates generated by the relation-level model.

2.3 Analysis of scalability and expressive power

This section provides a scalability analysis of our approach and shows that the relation-level model
scales linearly with the number of relation types in the graph. Then, we analyse the expressive power
of SQALER and we show the class of supported logical queries.

Computational complexity. As mentioned, we do not evaluate the likelihood ϕ for all edges in
G̃Q, but we generate the most likely relation sequences using a knowledge-seeking procedure based
on the beam search algorithm. At any given time step, only the β most likely relation sequences
are retained and further explored at the next iteration. Hence, the time complexity required by our
algorithm is O(τmax · β · d+max(G̃Q)), where τmax is the maximum allowed number of decoding time
steps and d+max(G̃Q) is the maximum outdegree of G̃Q. Note that d+max(G̃Q) is bounded by the number
of relations in the graph, whereas τmax and β are constant parameters of the algorithm and are usually
small. This gives a time complexity of:

O(τmax · β · |R|) = O(|R|).

Hence, the knowledge-seeking algorithm scales linearly with the number of relations in the KG. The
space complexity is also O(τmax · β · |R|). A more detailed analysis is provided in Appendix B.

Expressive power. Given a natural language question Q, we can represent the inferential chain
needed to obtain AQ from VQ as a logical query Q on G. As an example, the question in Figure
2, “Who starred in films directed by George Lucas?”, can be represented by the logical query:
Q[V?] = V?.∃V : Directed(George_Lucas,V) ∧ Starred(V,V?). We denote with V? the target
variable of the query and we say that v ∈ V satisfies Q if Q[v] = True. A query Q is an existential
positive first-order (EPFO) query if it involves the existential quantification (∃), conjunction (∧),
and disjunction (∨) [12] of literals corresponding to relations in the KG. Each literal is of the form
r(V,V′), where V is either a node in VQ or an existentially quantified bound variable, and V′ is
either an existentially quantified bound variable or the target variable. A literal r(V,V′) is satisfied
if V r−→ V′, for r ∈ R. Any EPFO query can be represented in disjunctive normal form (DNF)
[15], namely as a disjunction of conjunctions. Note that, we do not consider queries with universal
quantification (∀), as we assume that in real-world KGs no entity connects to all the others. Then, the
following proposition holds for any knowledge graph and EPFO query.
Proposition 1. Let G = (V,R, E) be a knowledge graph and VQ ⊆ V denote a set of entities in G.
Let Q be a valid existential positive first-order query on G and let n∨ be the number of disjunction
operators in the disjunctive normal form of Q. Then, there exist k ≤ n∨ + 1 sequences of relations
R⋆

i ∈ R∗ such that:

AQ ⊆
k⋃

i=1

reachG(VQ, R
⋆
i ),
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Figure 2: Architecture of the SQALER relation-level model. A question encoder is used to obtain
a representation of tokens in the input natural language question. Then a graph-guided decoder is
applied to obtain the likelihood of output relation sequences. The decoder is constrained to only
attend to valid relations according to the structure of the coalesced KG.

where AQ = {v ∈ V | Q[v] = True} is the denotation set of Q, namely the entities satisfying Q.

This shows that sampling n∨ + 1 sequences of relations allows generating a set of candidate answers
ÃQ that does not miss any of the real answers AQ. Then, assuming that the edge-level model ψ can
recover AQ from ÃQ, our approach can be used to answer any EPFO query on G. More details about
the expressive power of SQALER and the proof of Proposition 1 are provided in Appendix C.

3 Architecture of the relation-level model

For the relation-level model ϕ, we propose an auto-encoder, where the the decoder is constrained to
follow sequences of relations in the coalesced representation G̃Q. We train the network with weak
supervision, assuming that a sequence of relations is correct if it reaches a set of candidate answers
ÃQ that is the smallest reachable superset of the AQ. We found it useful to pretrain the model in
order to infuse knowledge from the KG. In this case, we train the model to predict a path in the KG,
given the representations of the source and target nodes. More details about training strategies are
given in Appendix D.

The architecture of the model (see Figure 2) includes three main components: a question encoder, a
relation encoder and a graph-guided decoder. We explain each one below.

Question encoder. The encoder receives as input a natural language question, which comprises
a sequence of tokens Q = (q1, q2, . . . , q|Q|). The question is encoded using a pre-trained BERT
[18] model and processed with the same positional encoding technique used in [44]. The resulting
embeddings are then fed into nl = 3 transformer encoder layers [44]. This results in a matrix
Q ∈ R|Q|+1×dmodel , where the first row vector is an overall representation of the whole query Q
(derived from the embedding of the [CLS] token introduced by BERT) and each remaining row
represents the final dmodel-dimensional encoding of a token in the input question.

Relation encoder. The relation encoder produces a representation r ∈ Rdmodel for each relation
type r ∈ R. We decided to encode relations based on their surface form, with the same pre-trained
BERT model used in the question encoder. In this case, only the embedding of the [CLS] token is
used in order to get the final representation r of each relation type r ∈ R. At inference time, or in
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case the BERT model is not fine-tuned, the embeddings of the relations can be precomputed as a
preprocessing step to improve the efficiency of the approach.

Graph-guided decoder. The decoder’s job is to predict a sequence of relations leading from VQ to
ÃQ in G̃Q. At any time step t, it receives as input a sequence of relations Rt = (self, r1, . . . , rt−1)
and predicts the next relation rt (self is used as a special token to denote the start of decoding). Note
that the input sequence uniquely determines a node Vt in the graph G̃Q, namely the node reachable
from VQ by following Rt. The decoder thus selects rt by choosing amongst the outgoing edges
Ẽt of Vt. We use the same number of layers nl both for the question encoder and the decoder. Let
Xl

t = [xl
0, . . . ,x

l
t−1]

⊤ ∈ Rt×dmodel denote the hidden state of the l-th layer of the decoder preceding
time step t. Note that X0

t is the representation of the sequence Rt, obtained by using the relation
encoder described above and the same positional encoding technique used in the question encoder.
For each decoder layer, we perform self-attention over the target sequence Xl

t by computing:

x̄l
t = Attention(xl

t,X
l
t,X

l
t),

where Attention is a function that performs multi-head scaled dot-product attention [44] with skip
connections and layer normalization [4]. The above step allows each relation in the decoded sequence
to attend to all the others predicted up to time step t. We then let the result attend to the question as:

x̄Q,l
t = Attention(x̄l

t,Q,Q).

This is done in order to update the current state of the decoder based on the input question. Next,
let Rt ∈ R|Ẽt|×dmodel denote the encoding of the relations labeling all edges in Ẽt. We constrain the
decoded sequence to follow the structure of the graph by attending only to valid relations as follows:

x̄R,l
t = Attention(x̄Q,l

t ,Rt,Rt).

We get the hidden state of the next layer xl+1
t by processing the result with a feed forward network.

The model outputs a categorical distribution ϕ(e | Q) ∈ [0, 1] over the edges e ∈ Ẽt, by applying a
softmax function as follows:

ϕ(Vi
r−→ Vj | Q) =

exp(r⊤xnl
t )∑

V′
i

r′−→V′
j∈Ẽt

exp(r′⊤xnl
t )

,

where xnl
t is the output of the final layer of the decoder, whereas r and r′ denote the representations

of relations r and r′ respectively.

4 Experiments

This section presents an evaluation of our approach with respect to both reasoning performance and
scalability. We first show that SQALER reaches state-of-the-art results on popular KBQA benchmarks
and can generalize compositionally out of the training distribution. Then, we demonstrate the
scalability of our approach on KGs with millions of nodes. We refer the reader to Appendix E for
more details about the experiments.

4.1 Experimental setup

Datasets. We evaluate the reasoning performance of our approach on MetaQA [50] and WebQues-
tionsSP [49]. MetaQA includes multi-hop questions over the WikiMovies KB [35] and we consider
both 2-hop (MetaQA 2) and 3-hop (MetaQA 3) queries. WebQuestionsSP (WebQSP) comprises
more complex questions answerable over a subset of Freebase [21, 7], a large KG with millions of
entities. We further assess the compositional generalization ability of SQALER on the Compositional
Freebase Questions (CFQ) dataset [28]. Each question in CFQ is obtained by composing primitive
elements (atoms). Whereas the training and test distribution of atoms are similar, the test set contains
different compounds, namely new ways of composing these atoms. CFQ comprises three dataset splits
(MCD1, MCD2, and MCD3), with maximal compound divergence (MCD) between the training and
test distributions. We refer the reader to Appendix E.1 for an extensive description of the datasets.
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Evaluation protocol. In our experiments on MetaQA and WebQuestionsSP, we assess the per-
formance of three variants of our approach: (a) a version that only makes use of the relation-level
model without the refinement step (SQALER – Unrefined), (b) a model that utilizes a key-value
memory network to identify the correct answers from the candidates (SQALER – KV-MemNN), and
(c) a model that uses a GNN architecture for the refinement step (SQALER – GNN), as explained in
Section 2.2. Following previous work [41, 42, 43, 39], we evaluate the models based on the Hits@1
metric. On the CFQ dataset, we evaluate the accuracy of the refined model with the GNN based on
whether it predicts exactly the same answers given by the corresponding SPARQL query.

4.2 Main results

KBQA Performance. Table 1 summarizes the results of our experiments on the two benchmark
datasets. For the two multi-hop MetaQA datasets, we achieve state-of-the-art performance by only
using the relation-level model of SQALER. As shown in Table 1, SQALER outperforms all the
baselines on MetaQA 3, demonstrating the ability of our approach to perform multi-hop reasoning
over a KG. For the more complex questions in the WebQuestionsSP dataset, the unrefined SQALER
model achieves better performance than all but one (EmQL) of the baselines. To achieve such
performance, however, EmQL creates a custom set of logical operations tailored towards the specifics
of the target KG and the kind of questions in the dataset, while our approach is agnostic with respect
to such details. Combining the relation and edge-level models improves the performance on WebQSP.
In particular, SQALER – GNN outperforms all considered baselines on the three datasets.

Table 1: Hits@1 on MetaQA and WebQuestionsSP
MetaQA 2 MetaQA 3 WebQSP

KV-MemNN [35] 82.7 48.9 46.7
GRAFT-Net [41] 94.8 77.7 70.3
ReifKB + mask [10] 95.4 79.7 52.7
PullNet [42] 99.9 91.4 69.7
EmbedKGQA [39] 98.8 94.8 66.6
EmQL [43] 98.6 99.1 75.5

SQALER – Unrefined 99.9 99.9 70.6
SQALER – KV-MemNN 99.9 99.9 72.1
SQALER – GNN 99.9 99.9 76.1

Compositional generalization. In order to evaluate the compositional generalization ability of
SQALER, we performed additional experiments on the CFQ dataset. Table 2 shows the accuracy on
the three MCD splits and the mean accuracy (MCD-mean) in comparison to the other methods in the
leaderboard. Note that the other approaches address a semantic parsing task and require additional
supervision, as they are trained to predict the target query. On the other hand, we aim to predict
directly the set of answers to the input question. The experiment shows that SQALER is able to
achieve compositional generalization with an accuracy comparable to the state-of-the-art model on
CFQ for semantic parsing.

Subgraph extraction. We analyzed the candidate solutions produced by the relation-level model in
order to evaluate the suitability of our approach to building small question subgraphs that are likely
to contain the answers to a natural language question. For this purpose, we computed the precision
and recall of the set of candidate answers with varying number of relation sequences sampled by
the relation-level model. Figure 3 shows the top relation sequences predicted by the relation-level
model on two questions from the test set of WebQuestionsSP. The precision and recall curves are
shown in Figure 4. As expected, on MetaQA the recall is high for all values of k, because selecting
the most likely sequence of relations is sufficient to solve the multi-hop question answering task. On
WebQuestionsSP, only 3 sequences of relations are sufficient to obtain a recall of 0.91, and we can
improve it to 0.95 by generating still small subgraphs consisting of only 10 sequences of relations.
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Table 2: Accuracy and 95% confidence interval on the CFQ dataset
MCD1 MCD2 MCD3 MCD-mean

LSTM + Attention [28, 27, 5] 0.289 ± 0.018 0.050 ± 0.008 0.108 ± 0.006 0.149 ± 0.011
Transformer [28, 44] 0.349 ± 0.011 0.082 ± 0.003 0.106 ± 0.011 0.179 ± 0.009
Universal Transformer [28, 17] 0.374 ± 0.022 0.081 ± 0.016 0.113 ± 0.003 0.189 ± 0.014
Evolved Transformer [20, 40] 0.424 ± 0.010 0.093 ± 0.008 0.108 ± 0.002 0.208 ± 0.007
T5-11B [36, 20] 0.614 ± 0.048 0.301 ± 0.022 0.312 ± 0.057 0.409 ± 0.043
T5-11B-mod [20, 22] 0.616 ± 0.124 0.313 ± 0.128 0.333 ± 0.023 0.421 ± 0.091
HPD [23] 0.720 ± 0.075 0.661 ± 0.064 0.639 ± 0.057 0.673 ± 0.041
SQALER – GNN 0.734 ± 0.039 0.653 ± 0.040 0.627 ± 0.045 0.671 ± 0.041
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Figure 3: Attention weights given by the relation-level model to the edges of the coalesced graph for
two questions in WebQuestionsSP. Thicker and darker edges represent higher attention weights.

4.3 Efficiency and scalability

We analyze the efficiency of our approach on synthetic KBs (as in [9, 10]) and then compare the
scalability of different preprocessing methods on the KGs of MetaQA and WebQuestiontsSP. First,
we perform experiments on KBs where the relational coalescing has no effect: the outdegree of each
node is equal to the number of relation types and all edges originating from a node have different
relation labels. We perform two experiments on such KBs. In the first one (Figure 5a), the number of
relation types is fixed to |R| = 10 and the number of entities varies from |V| = 102 to |V| = 106. In
the second task (Figure 5b), the number of entities is fixed to |V| = 5000 and the number of relations
varies from |R| = 1 to |R| = 103. The single answer node is always two-hops away from the
entities mentioned in the question. We compare SQALER (unrefined) against a GNN-based approach
(GRAFT-Net [41]) and a key-value memory network (KV-MemNN [35]). The approaches are
evaluated based on the queries per second at inference time with a mini-batch size of 1. The results
show that increasing the number of entities has negligible impact on the performance of SQALER,
whereas GRAFT-Net and the key-value memory network are limited to graphs with less than 10k
nodes. This shows that, in large KGs like Freebase, the baselines would not be able to handle even a
2-hop neighborhood of the entities mentioned in the question (we refer the reader to Appendix E.5
for more details). Finally, from the results in Figure 5b, we see that the throughput of our approach
decreases with the number of relation types. However, in practice, we can leverage the GPU to score
the edges of the graph in parallel. This is why we observe only a minor drop in performance when
the number of relation types grows from |R| = 1 to |R| = 100.

In order to assess the scalability of the proposed relational coalescing operation, we further compare
commonly used preprocessing methods on the KG of WebQuestionsSP. We evaluate the time required
to extract complete 2-hop neighborhoods of the entities mentioned in the question and the time to
perform Personalized Page Rank (PPR) on such graphs. The results are shown in Figure 5c. Note that,
at inference time, we can perform the coalescing only on the portion of the graph explored by the
model, which makes SQALER much more efficient. At training time, the preprocessing is comparable
to the 2-hop neighborhood extraction. Finally, Figure 5d shows the performance of the models with
the respective preprocessing step at inference time on synthetic KBs with growing number of edges.
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Figure 4: Precision and recall of the top k sequences of relations on MetaQA 2 (left), MetaQA 3
(center) and WebQSP (right)
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Figure 5: Inference time in queries/sec on synthetic KBs with increasing number of entities (a) and
relation types (b). Time required by different preprocessing steps on the KG of WebQuestionsSP and
MetaQA (c). Complete inference and preprocessing time on synthetic KBs with increasing number of
edges (d). We set the queries/sec to 0 when the model runs out-of-memory (OOM).

4.4 Incomplete knowledge graphs

In order to evaluate the capability of our approach to cope with missing information in the knowledge
graph, we performed two additional experiments. In the first experiment, we evaluated our approach
(the SQALER – GNN variant) on WebQuestionsSP using incomplete knowledge graphs with only
50% of the original edges (50% KG). Then, following previous work [41, 42], we tried to mitigate
the missing information using additional sources of external knowledge. In particular, for each
question, we used the same text documents extracted from Wikipedia as done by Sun et al. [41]
(50% KG + Text). In this experiment, the relation-level model is unaware of the additional source of
knowledge, but the information from the text documents is infused into the edge-level GNN with
the same strategy used in GRAFT-Net [41] (note that this makes the edge-level GNN-based model
essentially equivalent to the full version of GRAFT-Net, with both KG and text support). We compare
our approach against GRAFT-Net and PullNet, namely the two baselines designed for open-domain
question answering with incomplete KGs and text documents.

The results of the experiments are reported in Table 3. We observe that, despite not being designed
for incomplete KGs, SQALER outperforms the baselines on both experimental settings. This is not
surprising, as GRAFT-Net relies on a simple heuristic process to construct question subgraphs and
PullNet is constrained to follow the structure of the incomplete graph, because its iterative retrieval
process can only expand nodes that are reachable from the set of anchor entities. This means that,
in principle, any node retrieved by PullNet’s iterative process can also be reached by SQALER’s
relation-level model. Similarly to the baselines, we note only a minor gain in performance when
using the text documents as an additional source of information.

Table 3: Hits@1 on WebQuestionsSP with incomplete KGs (50% of the edges) and additional text
50% KG 50% KG + Text

GRAFT-Net [41] 48.2 49.9
PullNet [42] 50.3 51.9
SQALER – GNN 53.5 55.2
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5 Related work

Several lines of research in the past few years have focused on introducing deep learning approaches
aimed at reasoning over structured knowledge. In particular, this paper is closely related to methods
for learning to traverse KGs [14, 13, 24] and recent works on answering conjunctive queries using
deep learning approaches [25, 16]. In this context, several KB and query embedding methods have
been proposed [45]. Many KB embedding approaches support the same operation performed by our
relation-level model, namely relation projection [10, 43, 25, 38]. Some KB embedding methods also
explicitly learn to follow chains of relations and traverse KGs [24, 30, 13]. Notably, Query2Box [38]
is a query embedding method that represents sets using box embeddings and the more recent beta
embeddings [37] extend the framework to support a complete set of first-order logic operators. The
main difference with our model is that these methods operate on vector space, whereas our approach
is constrained on the graph structure and learns to traverse the KG while keeping the ability to scale
to large graphs. Also, our method answers questions in natural language, while the above methods
are primarily designed for query answering. Recently, Sun et al. [43] introduced EmQL, a query
embedding method which has also been integrated in a question answering model.

Other lines of research on KBQA have focused on unsupervised semantic parsing [3, 2, 1] or on the
introduction of supervised models, like graph neural networks (GNNs) designed for reasoning over
knowledge graphs [41, 42, 48]. These approaches pose the KBQA problem as a node classification
task. For this reason, they have been applied succesfully only on small query-dependent graphs.
Cohen et al. [10] addressed the problem of creating a representation of a symbolic KB that enables
building neural KB inference modules that are scalable enough to perform non-trivial inferences with
large graphs. Another recent work [39] has explored using KG embeddings for question answering
and handle incompleteness in the KG.

In our work, we combine relation projection with an edge-level GNN to address the KBQA problem.
The same idea of combining GNNs with relational following was introduced in Gretel [11], which
learns to complete natural paths in a graph given a path prefix. Also, our idea of accelerating GNNs
by operating on a reduced graph representation has strong connections with graph coarsening and
sparsification [32, 33, 6].

Methods based on reinforcement learning (RL) have also been proposed to perform multi-hop
reasoning over knowledge graphs. Xiong et al. [46] proposed DeepPath, which relies on a policy-
based agent that learns to reason over multi-hop paths by sampling relations at each step. Also, Das
et al. [14] introduced MINERVA, a RL agent that learns how to navigate the graph conditioned only
on an input entity and on a query. These approaches are designed for simple query answering and KB
completion rather than KBQA. A main difference with our work is that SQALER samples multiple
paths and employs an edge-level model to reach higher expressivity.

6 Conclusion

This paper introduced SQALER, a scalable approach to reasoning and question answering over KGs.
Our method is expressive and can reach state-of-the-art performance on widely used and challenging
datasets. Further, SQALER scales with the number of (distinct) relation types in the graph and can
effectively handle large-scale knowledge graphs with millions of entities. Our empirical evaluation
also showed that our approach can generalize compositionally and that it can be used to generate
question-dependent subgraphs that strike a good trade-off between precision and recall.

Overall, our work proposes an improvement to existing KBQA technology which carries impact to
several practical applications. Nevertheless, we remind that the deployment of such models needs
to be done cautiously. KBQA replaces a mature technology (traditional KBs and query languages)
with less understood methods. The underlying KB may be incomplete, contain misinformation or
biases that could negatively affect the decisions of the learned model. We hope that our work will
spur further research in this area and contribute to the development of reliable KBQA systems.
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