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ABSTRACT

Symbolic regression seeks to uncover physical knowledge from experimental data.
Recently a line of work on deep reinforcement learning (DRL) formulated the
search for optimal expressions as a sequential decision-making problem. How-
ever, training these models is challenging due to the inherent instability of the
policy gradient estimator. We observe that many numerically equivalent yet sym-
bolically distinct expressions exist, such as log(x2

1x
3
2) and 2 log(x1) + 3 log(x2).

Building on this, we propose Deep Symbolic Regression via Reasoning Equivalent
eXpressions (DSR-REX). The high-level idea is to enhance policy gradient esti-
mation by leveraging both expressions sampled from the DRL and their numer-
ically identical counterparts generated via an expression reasoning module. Our
DSR-REX (1) embeds mathematical laws and equalities into the deep model, (2)
reduces gradient estimator variance with theoretical justification and (3) encour-
ages RL exploration of different symbolic forms in the search space of all expres-
sions. In our experiments, DSR-REX is evaluated on several challenging scien-
tific datasets, demonstrating superior performance in discovering equations with
lower Normalized MSE scores. Additionally, DSR-REX computes gradients with
smaller empirical standard deviation, compared to the previous DSR method.

1 INTRODUCTION

Mathematical modeling of observed phenomena is essential to many scientific and engineering dis-
ciplines. Symbolic regression has emerged as a promising approach to automatically discover new
physical laws from experimental data (Schmidt & Lipson, 2009; Wang et al., 2019; Udrescu &
Tegmark, 2020; Cory-Wright et al., 2024). Recent researchers proposed the use of deep reinforce-
ment learning (DRL) to guide the search for optimal expressions by framing the problem as a se-
quential decision-making process (Petersen et al., 2021; Landajuela et al., 2022; Jiang et al., 2024).

The main challenge of DRL is the unstable training, which arises primarily from the high variance
of the policy gradient estimator (Wu et al., 2018). In literature, the common solution to reduce the
variance is to subtract a baseline from the estimator (Weaver & Tao, 2001). Another approach is
reward-shaping (Ng et al., 1999), which smooths the reward function in RL by designing an extra
potential function. However, this potential is hard to design, since the reward function is sensitive to
small modifications in the expression. The rest of the works are discussed in the related work.

We observe that different symbolic formats can represent identical mathematical expressions. For
example, log(x2

1x
3
2), log(x

2
1)+log(x3

2), and 2 log(x1)+3 log(x2) are a group of numerically equiv-
alent but symbolically distinct expressions. Such a group can be obtained by a symbolic reasoning
engine that combinatorially applies mathematical equalities of addition, exp, log, etc. From the
DRL model perspective, this group is obtained by exploring the search space of all expressions
using different sequences of step-by-step prediction from the model.

Building on this observation, we introduce Deep Symbolic Regression via Reasoning Equivalent
eXpressions (DSR-REX). DSR-REX integrates an existing deep reinforcement learning model with
a proposed symbolic reasoning module to accelerate the discovery of governing expressions. By
comparing with the existing works, the major advantages of DSR-REX are (1) embedding domain-
specific knowledge into the deep model by encoding known mathematical rules, laws, and equalities,
(2) achieving variance reduction of the gradient estimator with a theoretical guarantee (in Theo-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Reasoned expressions

￼ 


￼

ϕ′￼= cos(c1x1)ec2x1

ϕ′￼′￼= ec1x1 sin (c3x1 +
π
2 )

Deep 
sequential 
decoder

(a) Sample expressions from deep model step-by-step.

Sampled expression
￼ϕ = ec1x1 cos(c2x1)

Symbolic 
reasoning 
module

new 
gradient 
estimator

exp and log operators

Trigonometric operators

Hyperbolic operators

￼ 

￼
ea+b = eaeb

log(ab) = log(a) + log(b)

￼ 

￼
cos(a) = sin(a + π/2)
sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)

￼sinh(a) =
ea − e−a

2
, cosh(a) =

ea + e−a

2Input: 

Output: A → cos(A)

A

A → A × A

A → cx1

Categorial

distribution

A → exp(A) A → cx1

(b) Table of selected math laws.
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￼

A → (A + A)
A → (A − A)
A → A × A
A → exp(A)
A → cos(A)
A → cx1
A

Vocabulary 

of rules

Sequential

decoder

A → A × A A → exp(A)

Figure 1: Our DSR-REX integrates symbolic reasoning with reinforcement learning to accelerate
symbolic regression, which embeds mathematical equalities into learning, reduces the variance of
gradient estimator, and encourages RL exploration. (a) In deep reinforcement learning, the deep
model predicts an expression by iteratively sampling rules using the probability modeled by the
sequential decoder. (b) In the proposed reasoning module, mathematical laws are applied to manip-
ulate the input expression to obtain other symbolic-distinct while numerical-equivalent expressions.

rems 1 and 2), and (3) encouraging the exploration of different symbolic forms for DRL model,
in the search space of all expressions. In experiments, we demonstrate the advantage of the pro-
posed DSR-REX method over DSR and other baselines by evaluating them on several challenging
datasets.

2 PRELIMINARIES

Symbolic Expression. Let x ∈ Rn be a set of input variables and c ∈ Rm be a set of constants. The
expression ϕ connects a set of input variables x and a set of constant coefficients c by mathematical
operators. Variables are allowed to vary and coefficients remain the same. The mathematical opera-
tors can be addition, multiplication, etc. For example, ϕ = ec1x1 cos(c2x2) is a symbolic expression
with one variable x1, two constant {c1, c2} and three operators {×, exp, cos}. To cope with the
deep reinforcement learning, expression is represented as the traversal sequence of the expression
tree (Petersen et al., 2021), the traversal sequence of expression graph (Kahlmeyer et al., 2024), or
the sequence of grammar rules (Gec et al., 2022). We adopt the grammar definition in this work,
because of it is clear definition and easy integration with the proposed reasoning module.

Symbolic Regression aims to discover governing equations from the experimental data. It has been
widely applied in diverse scientific domains (Ma et al., 2022; Brunton et al., 2016). Given a dataset
D = {(xi, yi)|xi ∈ Rn, yi ∈ R}mi=1 with m samples, symbolic regression searches for the optimal
expression ϕ∗, such that ϕ∗(xi, c) ≈ yi, where c denotes the constant coefficients in the expression.
From an optimization perspective, ϕ∗ minimizes the averaged loss on the dataset:

ϕ∗ ← argmin
ϕ∈Φ

1

m

m∑
i=1

ℓ(ϕ(xi, c), yi),

where Φ indicates the set of all possible expressions; the loss function ℓ measures the difference
between the output of the candidate expression ϕ(xi, c) and the ground truth yi. Since the set of
all possible expressions Φ is exponentially large to the size of input variables and mathematical
operators, finding the optimal expression is challenging and is shown to be NP-hard (Virgolin &
Pissis, 2022).

Deep Reinforcement Learning for Symbolic Regression. A line of recent work proposes the use
of deep reinforcement learning (DRL) for searching the governing equations (Abolafia et al., 2018;
Petersen et al., 2021; Mundhenk et al., 2021; Landajuela et al., 2022; Jiang et al., 2024). Their

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

idea is to model the search of different expressions, as a sequential decision-making process using a
RL algorithm. The recurrent neural network (RNN) computes the distribution of the next possible
symbol given the predicted output. The predicted sequence will then be converted into a valid
expression. A high reward is assigned to those predicted equations that fit the dataset well.

Specifically, let τ := (τ1, . . . , τk) be a sequence composing math operators, variables, and coef-
ficients. The probability pθ(τ) is modeled by the RNN. The reward function R(τ) computes the
goodness-of-fit of the corresponding expression over the dataset D. The learning objective is to
maximize the expected reward:

J(θ) := Eτ∼pθ
[R(τ)] (1)

∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] , (2)

where θ are the parameters of the neural network and ∇θJ(θ) is the policy gradient of the expected
reward w.r.t. the parameters θ. During training, given N sequences {τ1, . . . , τN} sampled from the
model with probability pθ(τ1), . . . , pθ(τN ) and the gradient estimator is formulated as follow:

∇̃θJ(θ) =
1

N

N∑
k=1

R(τi)∇θ log pθ(τi). (3)

Afterward, gradient-based optimization is adopted to update the parameters θ using ∇̃θJ(θ). The
estimator ∇̃θJ(θ) is known to have high variance (Sutton & Barto, 1999; Weaver & Tao, 2001).
Recent methods have considered several practical strategies to reduce the variance of the estimator
and smooth the learning curve. The discussion of these strategies is presented in the related work.

3 METHODOLOGY

Motivation. We take Figure 1 as an illustrative example to explain a new perspective on symbolic
regression. One possible predicted expression is ϕ = ec1x1 cos(c2x1), describing the time-evolving
behavior of the damped harmonic oscillator. This equation can be symbolically rewritten as ϕ′ =
cos(c2x1)e

c1x1 by simply switching the operands of the multiplication operator. Additionally, it can
be transformed into ϕ′′ = ec1x1 sin(c2x1 + π/2) using a trigonometric identity, that is cos(a) =
sin(a+π/2). Despite their different symbolic forms, these expressions produce the same numerical
output for the same input x, i.e., ϕ(x) = ϕ′(x) = ϕ′′(x). We refer to such sets of symbolically
distinct expressions that yield the same numerical output as numerically equivalent. They can be
generated by systematically applying mathematical identities or laws. Figure 1(b) shows part of the
applicable mathematical laws.

From a reinforcement learning (RL) perspective, generating symbolically distinct expressions cor-
responds to exploring different subspaces of the expression space, by applying various sequences of
grammar rules during decision-making. Denote τ, τ ′, τ ′′ as three sequences of predicted rules from
the RL that can be converted into expression ϕ, ϕ′, ϕ′′ accordingly. We know τ ̸= τ ′ ̸= τ ′′. Since the
reward function in DRL is based on the error between the output from the predicted expression and
the ground truth, all three expressions are assigned the same reward R(τ) = R(τ ′) = R(τ ′′). Thus,
these expressions are equivalent under the RL reward function and are distinct under the prediction
order of the RL policy.

Our idea is to utilize the sequences sampled from the RL model and additional sequences gener-
ated by a symbolic expression reasoning module. These additional sequences capture mathematical
equality knowledge and also promote better exploration during RL policy learning. In the space
of all possible expressions, the RL model explores those sub-spaces directly sampled according to
the policy distribution and additional sub-spaces resulting from different predicted orders of the
grammar rules. By integrating this reasoning-driven exploration, our proposed method, DSR-REX,
has the potential to discover higher-quality expressions with fewer iterations compared to the Deep
Symbolic Regression (DSR) (Petersen et al., 2021).

Main Procedure. As depicted at the bottom of Figure 1, DSR-REX consists of three key compo-
nents: (1) a sequential decoder that samples sequences of grammar rules following its probability
distribution step-by-step, (2) a symbolic reasoning module that extracts those equivalent expres-
sions as well as the corresponding sequences of grammar rules, and (3) a parameter update module
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that computes the objective and updates the decoder parameters using a gradient-based optimizer.
Throughout the training process, the expression with the best goodness-of-fit among all sampled
expressions is selected as DSR-REX’s final prediction. In the following sections, the problem defi-
nition is formulated in section 3.1, and the complete pipeline is presented in section 3.3.

3.1 PROBLEM DEFINITION OF DSR-REX

Let ϕ = MAP(τ) denote the process of converting a sequence τ into an expression ϕ. It is inter-
nally implemented by converting the sequences into an expression following the grammar defini-
tion and then fitting the coefficients of ϕ with training data D = ((x1, y1), . . . , (xm, ym)) with a
gradient-based optimizer (like BFGS (Fletcher, 2000)). The expressions with fitted coefficients are
considered numerically equivalent if they can either (1) be derived from each other using symbolic
transformations or (2) produce the same output for a large set of random inputs.

We further define an equivalent group over a set of sequences if the converted expressions are
numerical-equivalent. The probability of each group is defined as the summation of probability for
each individual sequence:

qθ(ϕ) :=
∑
τ∈Π

I{MAP(τ) = ϕ}pθ(τ) (4)

where pθ(τ) is the probability of sampling sequence τ from the sequential decoder, and Π is the set
of all possible sequences. The indicator function I{·} outputs 1 if sequence τ can be converted into
expression ϕ; otherwise it outputs 0. In other words, it checks τ if it belongs to the group indicated
by ϕ. In practice, we do not need to enumerate all sequences in Π. Equation 4 is defined in this way
for the clarity of presentation.

Based on our probability definition in equation 4, the objective together with its gradient becomes:

J(θ) := Eϕ∼qθ [R(ϕ)] (5)
∇θJ(θ) = Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)] (6)

For notation simplicity, we assume the reward function R can evaluate the goodness-of-fit for either
the expression ϕ or the sequence τ as input. Compared with the classic objective (in equation 1), the
main difference is the expectation in equation 5 is over another distribution qθ. We show in Theo-
rem 1 that our objective is equivalent to the classical formulation. So is the gradient of the objective
in the second line. This ensures that DSR-REX and DSR (with no reasoning module) (Petersen
et al., 2021) will converge to the same set of optimal parameters.

Since we cannot directly use the probability distribution qθ to sample a group of sequences with the
same reward. Instead, we only have one sampler that draws sequences from the sequential decoder
with probability distribution pθ. To accommodate this setting, the following estimator is used for
the new policy gradient (in equation 6). By draw N sequences from the decoder τ1, . . . , τN with
probability pθ(τ1), . . . , pθ(τN ), we compute:

∇̂θJ(θ)=
1

N

N∑
i=1

∑
ϕ∈Φ

I{MAP(τi)=ϕ}R(ϕ)∇θ log qθ(ϕ) (7)

where
∑

ϕ∈Φ I{MAP(τi)=ϕ} outputs 1 if there exists at least one expression ϕ in the space of all
expressions Φ that can be mapped from the sequence τi. In practice, equation 7 is not computed by
enumerating every expression in Φ (as indicated by the inner summation). Please see section 3.2 for
the detailed steps.

We show in Theorem 2 that this estimator is unbiased and exhibits lower variance than the previous
estimator. This implies that the proposed estimator leads to faster convergence and needs fewer
iterations required for training than the classic DSR method.

3.2 REASONING EQUIVALENT EXPRESSIONS

The implementation of the symbolic reasoning module relies on the expression representation. We
first brief the expression representation and present how we generate symbolic variants.

4
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Expression Representation. We use a context-free grammar defined by a tuple ⟨V,Σ, R, S⟩, where
V is a set of non-terminal symbols, Σ is a set of terminal symbols, R is a set of production rules and
S ∈ V is the start symbol (Todorovski & Dzeroski, 1997; Sun et al., 2023). We use (1) a set of non-
terminal symbols representing sub-expressions as V = {A}. (2) Set of input variables and constants
{x1, x2, . . . , xn, const} as Σ. (3) Set of rules representing possible mathematical operations such
as addition, subtraction, multiplication, and division, as R. For example, the addition operation is
represented as A→ (A+A), where the rule replaces the left-hand symbol with the right-hand side.
(4) An start symbol A ∈ V . Given a sequence of rules that begin with the start symbol A, each
rule replaces the first non-terminal symbol A iteratively. The obtained output with only terminal
symbols is a valid mathematical expression. Figure 1(a) presents a sequence of grammar rules that
corresponds to equation ϕ = ec1x1 cos(c2x1).

To generate numerical-equivalent expressions, we use two strategies: (1) directly modifying the
sequence of grammar rules through pattern matching with mathematical laws, and (2) manipulating
the symbolic form using simplification and transformation rules from libraries like Sympy.

If we are given a sequence of grammar rules, the process begins by converting the sequence into
recursive arrays. If a rule contains two non-terminal symbols on the right-hand side, we group
the array into two sub-arrays, each representing a sub-expression. The next step involves pattern
matching with available mathematical laws, enabling element exchanges within these arrays. After
each modification, a copy of the entire array is saved. For example, commutative properties such
as a + b = b + a and a × b = b × a, as well as trigonometric, exponential, and logarithmic
identities like cos(x − y) = cos(x) cos(y) + sin(x) sin(y), can be applied. A selected list of these
mathematical laws is provided in Figure 1(b), while more rules can be found in Appendix Table 2.
Finally, the recursive array is flattened back into a sequence, and the sequential decoder is queried
for its probability value. Summing these probabilities yields the grouped probability value qθ(ϕ), as
defined in equation 4. Use the example in Figure 1(a), we have:

τ = (A→ A×A,A→ exp(A), A→ cx1, A→ cos(A), A→ cx1)

⇒ step 1: (A→ A×A, (A→ exp(A), A→ cx1), (A→ cos(A), A→ cx1))

⇒ step 2: (A→ A×A, (A→ cos(A), A→ cx1), (A→ exp(A), A→ cx1)︸ ︷︷ ︸
exchange operands of multiplication operator

)

⇒ step 3: τ ′ = (A→ A×A,A→ cos(A), A→ cx1, A→ exp(A), A→ cx1)

⇒ step 4: compute qθ = pθ(τ
′) + pθ(τ)

For modification on the symbolic format of expression, we utilize the Sympy Python package to
simplify, factor, or convert the expression into a canonical form. Each of the available operations
will return one symbolic variant. Sympy applies a broader set of pattern-matching rules to transform
the expressions. As an additional step, each new expression is converted back into a sequence of
grammar rules based on context-free grammar.

It is important to note that the number of equivalent expressions can grow exponentially through
various augmentations. For instance, given an expression ϕ, one can generate infinitely many distinct
expressions by introducing and canceling a sub-expression ϕe, such as ϕ + ϕe − ϕe or ϕ × ϕe/ϕe.
We do not consider the above cases in implementation. Still, we can generate 2n distinct expressions
for x1 + . . .+xn by randomly reordering the operands of the summation. To prevent the group size
from becoming too large, we introduce a hyperparameter (max-group-size) to limit the number
of expressions in each group.

3.3 THE LEARNING PIPELINE OF DSR-REX

Expression generation begins with the decoder sampling a sequence of grammar rules in an autore-
gressive manner. This decoder can be implemented using various architectures such as RNNs (Sale-
hinejad et al., 2017), GRUs (Chung et al., 2014), LSTMs (Greff et al., 2016), or Decoder-only
Transformer (Vaswani et al., 2017). The input and output vocabularies consist of grammar rules that
encode input variables, coefficients, and mathematical operators. Figure 1(a) illustrates an example
of output vocabulary.

The model predicts the categorical probability of the next token at each time step, conditioned on
the previously generated tokens as the input context. At the t-th step, the decoder (denoted as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Deep Symbolic Regression via Reasoning over Equivalent Expressions.
Input: #input variables n; Mathematical operators Op; Training data D; Sequential decoder.
Output: The best-predicted expression ϕ.

1: initialize the set of best predicted expressions Q ← ∅.
2: construct grammar rules from Op and variables {x1, . . . , xn}.
3: set input and output vocabulary with the grammar rules.
4: for k ← 1 to #epochs do
5: sample a batch of sequences {s1, . . . , sN} from the sequential decoder.
6: construct expressions ϕi from grammar rules τi, for i = 1 to N .
7: fitted coefficients ci ← BFGS(ϕi, D), for i = 1 to N .
8: saving tuple ⟨ci, ϕi⟩ into Q, for i = 1 to N .
9: reasoning extra sequences following section 3.2.

10: compute the estimated policy gradient ∇̂θJ(θ) (in equation 6).
11: update parameters of decoder θk+1 ← θk + α∇̂θJ(θ).
12: return the best-predicted equation in Q.

SequentialDecoder) takes the output from the previous step, τt, and the hidden state ht. It then
computes the categorical probability distribution over the vocabulary using the softmax function:

zt = SequentialDecoder(τt,ht)

pθ(τt+1|τ1, τ2, . . . , τt) = softmax(ztWo + bo)

where Wo ∈ Rd×|V | is the output weight matrix, bo ∈ R|V | is the bias term, and |V | is the size
of the output vocabulary. The next token τt+1 is sampled from the categorical distribution τt+1 ∼
p(τt+1|τ1, τ2, . . . , τt). The output from each step is recursively used as the input for the subsequent
step, progressively generating the entire sequence. After L steps, the full sequence τ = (τ1, . . . , τL)

is generated, with its probability given by pθ(τ) =
∏L−1

t=1 pθ(τt+1|τ1, . . . , τt). Since τ1 is the fixed
start symbol, pθ(τ1) = 1 is omitted here.

The function MAP(τ) is then called to convert the sequence into an expression. If the sequence
ends before a complete expression is formed, grammar rules representing variables or constants are
randomly appended. Conversely, if a valid expression is produced before the sequence is fully con-
sumed, the remaining grammar rules are discarded, and the expression is returned. The probability
value pθ(τ) is updated accordingly whenever grammar rules are added or removed.

For each sequence sampled from the decoder, we (1) obtain all additional expressions using possible
mathematical rules, (2) reconstruct the corresponding sequence τ ′ based on the expression grammar
definition, and query the sequential decoder for its probability value pθ(τ

′) for each additional ex-
pression ϕ′, and (3) compute qθ using Equation 4 for each group of probability values.

The objective of DSR-REX is to maximize the probability of sampling expressions that fit the data
well. This is achieved through a reinforcement learning objective, where the reward function com-
putes the goodness-of-fit of the sampled expression to the data. The new gradient estimator ∇̂θJ(θ)
is then used to compute the gradient with respect to the neural network parameters, as shown in
Equation 7. At the k-th iteration, the parameters are updated using gradient-based optimization.
The overall pipeline is summarized in Algorithm 1.

3.4 THEORETICAL INSIGHT ON THE ADVANTAGE OF DSR-REX

Theorem 1 establishes that the objective of DSR-REX is equivalent to that of classic Deep Symbolic
Regression (DSR), and similarly, their gradients are identical. This implies that DSR-REX and DSR
will converge to the same set of optimal parameters. Consequently, after the convergence of the
DSR-REX and DSR, they will sample expressions with identical rewards with a high probability.

Theorem 1. (1) The expectation of reward over probability distribution pθ(τ) equals the expectation
over probability distribution qθ(ϕ), that is:

Eτ∼pθ
[R(τ)] = Eϕ∼qθ [R(ϕ)].

6
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(2) The expectation of policy gradient over probability distribution pθ(τ) equals the expectation
over probability distribution qθ(ϕ), that is:

∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] = Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)].

Sketch of the proof. The result can be obtained by expanding the terms according to the proposed
problem definition in section 3.1. The full proof is provided in Appendix B.

We also demonstrate that DSR-REX provides an unbiased gradient estimator and reduces the vari-
ance of the gradient estimate, as shown in Theorem 2).

Theorem 2. Using N seqeunces τ1, . . . , τN drawn according to the probability distribution pθ. (1)
Unbiased estimator. The expectation of ∇̂θJ(θ) over distribution pθ(τ) equals to ∇θJ(θ), that is

∇θJ(θ) = Eτ∼pθ

[
∇̂θJ(θ)

]
= Eϕ∼qθ [R(ϕ)∇θ log qθ(ϕ)]

(2) Variance reduction. The variance of the proposed estimator ∇̂θJ(ϕ) is smaller than the original
estimator ∇̃θJ(θ), that is

Varϕ∼qθ

[
∇̂θJ(ϕ)

]
≤ Varτ∼pθ

[∇̃θJ(θ)]

Sketch of the proof. For unbiasedness, we show the two estimators in Equations 3 and 7 equals to
each other based on Theorem 1. In terms of variance reduction, the key insight is (1) the number of
samples with grouping is larger. (2) Since the reward is the same in the group, the variance within
the group is smaller. The full proof is provided in Appendix C.

4 RELATED WORK

Reinforcement Learning for Scientific Discovery. Recent advancements in artificial intelligence,
particularly in deep reinforcement learning (RL), have demonstrated its potential for automating
discoveries across various scientific fields (Kirkpatrick et al., 2021; Jumper et al., 2021; Wang
et al., 2023). Early work in this area focused on learning symbolic representations of scientific
concepts (Bradley et al., 2001; Bridewell et al., 2008). In domains such as materials discovery
and chemical engineering, RL agents have been applied to propose novel materials with desirable
properties (Beeler et al., 2024; Popova et al., 2018).

Variance-Reduced Policy Gradient. Several techniques have been introduced to reduce the vari-
ance of policy gradient estimates, a common challenge in reinforcement learning. One widely used
approach is the control variate method, where a baseline is subtracted from the reward to stabilize
the gradient (Weaver & Tao, 2001). Recent developments, such as Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015; Zhang et al., 2021) and Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), leverage second-order information to enhance training stability. Other approaches,
such as reward reshaping (Zheng et al., 2018), modify rewards for specific state-action pairs. In-
spired by stochastic variance-reduced gradient methods (Johnson & Zhang, 2013; Deng et al., 2021),
Papini et al. (2018) proposed a variance-reduction technique tailored for policy gradients. Unlike
these methods, our proposed DSR-REX is the first to reduce variance through symbolic reasoning
over expressions, providing a novel contribution to this field.

Symbolic Regression with Domain Knowledge. Recent efforts have explored incorporating phys-
ical and domain-specific knowledge into the symbolic discovery process. AI-Feynman (Udrescu &
Tegmark, 2020; Udrescu et al., 2020; Keren et al., 2023; Cornelio et al., 2023) constrained the search
space to expressions that exhibit compositionality, additivity, and generalized symmetry. Similarly,
Tenachi et al. (2023) encoded physical unit constraints into equation sampling to eliminate physi-
cally impossible solutions. Other works, such as (Bendinelli et al., 2023; Kamienny, 2023), further
constrained the search space by integrating user-specified hypotheses and prior knowledge, offering
a more guided approach to symbolic regression.

Thinking Fast and Slow. The interplay between fast and slow cognitive processes is a key feature
of human intelligence (Kahneman, 2011; Anthony et al., 2017; Booch et al., 2021). We argue that
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rather than relying solely on the brute-force approach of learning from big data and extensive com-
putation (fast thinking), incorporating careful meta-reasoning to guide the discovery of ground-truth
equations (slow thinking) can lead to more efficient and effective outcomes.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We consider the Trigonometric dataset (Jiang & Xue, 2023), where each group contains 10 randomly
sampled expressions. Also, we select 10 challenging equations from the Feynman dataset (Udrescu
et al., 2020). In terms of baselines, we consider a series of methods based on the deep reinforce-
ment learning model: Priority queue training (PQT) (Abolafia et al., 2018), Vanilla Policy Gradient
(VPG) (Williams, 1992), Deep Symbolic Regression (DSR) (Petersen et al., 2021), and Neural-
Guided Genetic Programming Population Seeding (GPMeld) (Mundhenk et al., 2021).

Evaluation Metrics. The goodness-of-fit indicates how well the learning algorithms perform in
discovering underlying expressions. We use the normalized mean-squared error (NMSE) of the best-
predicted expression by each algorithm, on a separately-generated testing dataset. Given a testing
dataset Dtest = {(xi, yi)}ni=1 generated from the ground-truth expression, we measure the goodness-
of-fit of a predicted expression ϕ, by evaluating the normalized-mean-squared-error (NMSE):

NMSE(ϕ) =
1

nσ2
y

n∑
i=1

(yi − ϕ(xi))
2 (8)

The empirical variance σy =

√
1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2
. We use the NMSE as the main crite-

rion for comparison in the experiments and present the results on the remaining metrics in the case
studies. The main reason is that the NMSE is less impacted by the output range.

5.2 EXPERIMENTAL ANALYSIS

Regression on Algebraic Equations. In Figure 2(a), we present the top-ranked equations discov-
ered by the proposed DSR-REX compared to baseline methods, evaluated using the NMSE metric.
The quantiles (25%, 50%, 75%) of NMSE demonstrate that DSR-REX consistently identifies better
expressions than the baselines after multiple learning iterations. This improvement is primarily due
to the generated symbolic variants, which guide the model to strategically explore a broader search
space of expressions.

We also compare the empirical mean and standard deviation of the loss for DSR-REX and DSR in
Figure 2. The computation details for each estimator are provided in Appendix D.2. Our results

10−1 100 101 102 103 104

NMSE

DSR-R
ex

DSR

VPG

PQT

GPMeld

sin, cos, inv (4, 4, 6)
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al 
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Empirical Loss Comparison: DSR-Rex vs DSR

DSR-Rex Mean Loss
DSR Mean Loss

Figure 2: (Left) Quantiles (25%, 50%, 75%) of NMSE values for discovered equations across all
methods. DSR-REX outperforms baselines due to the generated symbolic variants, which encourage
more strategic exploration of the expression search space. (Right) Empirical mean and standard
deviation of the loss for DSR-REX and DSR, with DSR-REX showing a lower empirical deviation.
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show that DSR-REX achieves a smaller empirical deviation than DSR. This reduced variance can
be attributed to the group of expressions obtained through symbolic reasoning, which allows us to
compute a grouped probability value more efficiently.

Time Benchmark of DSR-REX. Figure 3 presents a time benchmark of the four key steps in
DSR-REX: (1) sampling sequences, (2) fitting expression coefficients to data, (3) reasoning over
additional expressions, and (4) computing the loss, gradients, and updating neural network param-
eters. We benchmarked three neural network architectures: three-layer LSTM (a), three-layer GRU
(b), and six multi-head self-attention layers (c). Our results show that symbolic reasoning is faster
than both coefficient fitting and parameter updates. The experimental configuration details are pro-
vided in Appendix D.3.

This efficiency is largely attributed to the fact that symbolic manipulations based on mathemati-
cal laws do not require refitting coefficients for each modified expression, significantly reducing
computational overhead.
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(a) 3 layers of GRU (hidden_size=1024)
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(b) 3 layers of LSTM (hidden_size=1024)

0 10 20
Learning Iteration

102

103

104
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(c) 6 heads of Transformer (hidden_size=1024)

Sequence Sampling Fitting Coefficients Reasoning Expressions Computing Gradient

Figure 3: Empirical time benchmark for the four main steps of DSR-REX across different neural ar-
chitectures: (a) three-layer LSTM, (b) three-layer GRU, and (c) six multi-head self-attention layers.
Symbolic reasoning proves to be faster than fitting coefficients and updating parameters.

Case Studies in DSR-REX. In addition to the example equations shown in Figure 1, we provide
further case studies from the Feynman dataset (Udrescu et al., 2020) to demonstrate the symbolic
variants generated by DSR-REX. Table 1 illustrates several symbolic transformations, obtained
through symbolic derivation steps, that retain numerical equivalence. These case studies highlight
DSR-REX’s capability to discover and reason over symbolic variants of complex physical equations.

Equation Symbolic variants obtained by DSR-REX

I = I0
sin2(nθ/2)
sin2(θ/2)

I = I0
1−cos(nθ)
1−cos(θ)

κ = 1 + Nα
1−Nα/3 κ = 1 + 3

3/Nα−1

Q = nkT ln(V2/V1) Q = nkT (ln(V2)− ln(V1))

x1 = x−ut√
1−u2/c2

x1 = c(x−ut)√
c2−u2

E = p
4πϵ

3 cos θ sin θ
r3 E = 3p

8πϵr3 sin(2θ)

M = Nµ tanh(µB/kT ) M = Nµ e
2µB
kT −1

e
2µB
kT +1

I12 = I1 + I2 + 2
√
I1I2 cos(δ) I12 =

(√
I1 +

√
I2e

iδ
)2

ϕ = N
exp(µB/kT )+exp(−µB/kT ) ϕ = N

2 cosh(µB
kT )

x = K(cos(ωt) + ϵ cos2(ωt)) x = K cos(ωt) (1 + ϵ cos(ωt))

Table 1: Case studies showcasing the reasoning module of DSR-REX through symbolic variants
obtained from the Feynman dataset (Udrescu et al., 2020).
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6 CONCLUSION

In this paper, we presented Deep Symbolic Regression via Reasoning Equivalent eXpressions
(DSR-REX), a novel approach that enhances deep reinforcement learning with symbolic reason-
ing. DSR-REX effectively leverages mathematically equivalent expressions to stabilize the policy
gradient estimator, reducing its variance and encouraging exploration across the search space. Our
theoretical justification and empirical results demonstrate that DSR-REX not only improves gradi-
ent estimation but also outperforms existing DRL-based methods in discovering governing equations
from real-world scientific data.

In terms of future work, we plan to include laws for vector-field operators, like div, curl, and
Laplacian operators. Another possible future direction is to give theoretical convergence analysis
for DSR-REX.
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