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Abstract—Federated learning mitigates the need to store user
data in a central datastore for machine learning tasks, and is
particularly beneficial when working with sensitive user data or
tasks. Although successfully used for applications such as improv-
ing keyboard query suggestions, it is not studied systematically
for modeling affective computing tasks which are often laden with
subjective labels and high variability across individuals/raters
or even by the same participant. In this paper, we study the
federated averaging algorithm FedAvg to model self-reported
emotional experience and perception labels on a variety of speech,
video and text datasets. We identify two learning paradigms that
commonly arise in affective computing tasks: modeling of self-
reports (user-as-client), and modeling perceptual judgments such
as labeling sentiment of online comments (rater-as-client). In the
user-as-client setting, we show that FedAvg generally performs
on-par with a non-federated model in classifying self-reports.
In the rater-as-client setting, FedAvg consistently performed
poorer than its non-federated counterpart. We found that the
performance of FedAvg degraded for classes where the inter-
rater agreement was moderate to low. To address this finding,
we propose an algorithm FedRater that learns client-specific
label distributions in federated settings. Our experimental results
show that FedRater not only improves the overall classification
performance compared to FedAvg but also provides insights for
estimating proxies of inter-rater agreement in distributed settings.

Index Terms—emotion experience, emotion perception, feder-
ated learning, sentiment classification

I. INTRODUCTION

In recent years, there is growing interest in employing
machine learning to model affective computing (AC) con-
structs such as emotion and sentiment. AC tasks are often
subjective, personal and private in nature. Due to the sensitive
nature of the data associated with these attributes and tasks,
minimizing the need to centrally store such data is a much
desired feature. The recent advances of federated learning
offer one solution here to advance user agency over their data,
labels, and compute.

Federated learning (FL) [1] has greatly enabled large-scale
distributed learning without the sharing of user data with
a central datastore – enabling opportunities for preserving
privacy, and even security, when potentially sensitive data from
users is used to train machine learning models. In FL, a group
of user client devices (often referred simply as clients) collab-
orate with a server to train statistical models with data stored
only locally (on-device). Besides many proof-of-concept ex-
periments such as handwritten digit or image classification,
keyword spotting and visual question answering [2], [3], FL
was successfully applied in large-scale tasks such as next-
word prediction on mobile keyboards [4], improving on-device
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speaker verification [5] and speech recognition [6]. While
these underscore the promise of FL for developing distributed
machine learning models at scale, FL is not systematically
studied for AC tasks. Existing studies at the intersection
of FL and AC (e.g., [7], [8]) treat labels for AC tasks as
objective groundtruth for training models. They do not study
the variability associated with the subjective labels obtained
from raters. Our paper addresses this gap through carefully
considering how the data/labels in an AC task maybe collected
in a federated setting.

To understand the applicability of FL beyond the data
provenance and computational constraint considerations, two
key design questions are crucial: data partition: who are
the clients (population of federated users)? and what is the
nature of data and labels needed for the learning task? In
exploring these questions for AC tasks, we identify two distinct
paradigms: (1) user-as-client and (2) rater-as-client. Consider
training a model to predict a user’s experienced emotion
from selfies on their device. Here, we consider the users as
individual clients, and call this learning paradigm user-as-
client. While some prevalent FL applications such as next-
word prediction perform data partition per user-as-client, the
associated learning task is not highly subjective as in AC tasks.
Examples that can be conceptualized in this paradigm include
self-reported emotion from face images [9] or speech [10]. The
data/labels are stored only on the client’s device, promoting
user trust critical for such sensitive attributes. Consider another
example of asking multiple users to label their response to the
same stimulus. With FL, modeling these raters as clients can
ensure the server side does not have direct access to the data
being labeled as well as the labels. We call these settings rater-
as-client. Examples include classifying sentiment perceived
from comments on Reddit [11] and reporting likes/dislikes to
sensitive media content.

The objective in this work is to empirically assess the perfor-
mance of FL in AC tasks for the two paradigms. Specifically,
we study classifying self-reported emotional experiences in a
user-as-client paradigm and emotional perceptual judgments
in a rater-as-client setting on speech, video and text datasets.
We first discuss the two proposed FL paradigms and highlight
the benefits, expectations and challenges in contrast to non-
federated (centralized) model training where data and labels
are available on a central datastore. We next describe our
proposed federated modeling of raters as clients followed by
a series of experiments to evaluate classification performance
of FL with respect to centralized models.
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II. RELATED WORK

Perhaps the most widely used FL backbone is the federated
averaging (FedAvg) algorithm [1]. Here, a variable number
of devices participate in training local (on-device) models for
a small number of epochs and communicate the weights to
a central server that aggregates them and returns the updated
weights to available devices. In real-world scenarios, many
problems in FL stem from non-IID distributions of data
resulting from systems heterogeneity (variability of device
characteristics and availability of devices, a.k.a. stragglers)
and statistical heterogeneity (two devices may not have the
same distributions of data/labels for a learning task), be-
yond communication and on-device computation costs [3].
To address some of these challenges, [12] proposed two
algorithms: FedIR (IR: importance resampling) to address
class imbalance and FedVC (VC: virtual clients) to tackle
variability between devices. More recently, the problem of
stragglers was addressed in FedProx [2] where the on-device
gradient updates are modified by measuring their dissimilarity
with server updates.

The use of FL for AC tasks is still nascent. Notably, the
Sentiment140 dataset [13] was used to benchmark sentiment
classification in tweets using FedAvg [14] and FedProx
algorithms. The positive/negative sentiment labels here were
automatically determined by the emoticons used by the Twitter
users. Speech emotion recognition was studied using the
IEMOCAP dataset in [7] and [8]. They used the emotion
labels pre-aggregated using majority vote to train models using
FL. However, a systematic study of the self-reported emotion
labels or those collected from multiple raters is lacking in
related work. To this end, we discuss the two FL paradigms,
that arise when considering the nature of labeling and users
involved in the collection of an AC dataset.

A. User-as-client paradigm

Let us revisit the example of modeling a user’s experienced
emotion reports from selfies on their mobile device. In a
federated setting, the user data and labels from client devices
remain local to the device, enabling privacy and anonymity.
The associated data samples and self-reported labels may
be characterized by large intra-individual variability resulting
from personal preferences that change over time and could
vary across individuals. Although the ultimate objective would
be to develop personalized models tailored to each client, a
first step is to evaluate how well (classification performance) a
federated model performs versus a non-federated (centralized)
one for a fixed client pool. The potentially large intra- and
inter-individual variability of the data and self-reports give
rise to a high statistical or data heterogeneity [1] in training
federated models. While data heterogeneity is common in
other applications (e.g., object classification), AC tasks elicit
labels that are particularly subjective and the “ground truth”
is either absent or unknown [16].

We highlight two recent works in this domain to delin-
eate the concept of subjective labels from noisy labels. [17]
examined the performance of FedAvg with simulated noisy

labels in CIFAR-10 [18] and a large-scale dataset of clothing
with noisy labels obtained from online shopping websites [19]
whereas [20] explored federated representation learning for
human activity recognition. Although these studies addressed
heterogeneity resulting from noisy labels, the learning tasks
have a known “ground truth”. Furthermore, the FL simulations
were performed by randomly dividing the data into client sub-
sets which ensured that the label noise is uniformly distributed
across all clients. In contrast, when the data are partitioned
into user-as-client for learning from self-reports, the associated
subjectivity introduces statistical noise specific to each client,
inflating data heterogeneity.

B. Rater-as-client paradigm

When self-reports are not available, a widely adopted
practice for modeling human-perception tasks is to obtain
labels from multiple people other than self (raters). Due to
the context- and person-dependent nature of these tasks, true
“ground truth” is often absent or unknown. Typically, in non-
federated model training, some form of label aggregation
is performed to obtain a single set of labels for model
supervision (e.g., [21]). To apply FL in this context, we
propose having each rater act as a client and partition the data
accordingly. Modeling rater-as-client ensures that the central
server is not only agnostic to the identity of the samples rated
by the client but also to the identity of the client associated
with their labels. While this promotes user trust and anonymity
(for example, a 2012 study [22] showed that likes/dislikes from
users can be used to infer their personal traits), it presents two
distinct challenges for the application of FL.

First, two raters may respond to the same input stimulus
differently leading to concept heterogeneity, i.e., the distri-
bution of local data on two devices could be identical but
the distribution of the labels conditioned on the data are
not identical. With the notable exception of [23], concept
heterogeneity is not widely studied in federated learning.
[23] used FL for classifying symptom severity in patients
with Parkinson’s disease by measuring hand tremors while
holding a smartphone using labels collected from two expert
raters across three hospitals. The data were partitioned by
treating different hospitals as individual clients and the fed-
erated models were trained with labels from the first expert
and evaluated using labels from the second expert. Unlike
this experiment — which limits the concept heterogeneity
introduced by partitioning hospitals (and not raters) as clients
— it may not be feasible to collect labels for AC tasks
from a fixed pool of raters uniformly. This is largely due to
the practical limitation of intermittent availability of devices
participating in federated training. Unlike symptom severity,
labeling in AC tasks involves human perceptual judgment and
lacks objective labels. In such cases, aggregated labels (e.g.,
majority vote) are often treated as a proxy for the ground truth.
Thus, the goal of a federated model in this context is to not
learn how an individual rater may respond to a stimulus, but
rather to approximate the “average” perceptual response of a
rater population.

Authorized licensed use limited to: GOOGLE. Downloaded on April 01,2023 at 14:53:22 UTC from IEEE Xplore.  Restrictions apply. 



Dataset Modality Classification task No. samples No. ratings Clients No. clients No. samples/client
(min — max) No. classes

IEMOCAP [10] Speech Self-report 2,409 2,409 users 8 53 — 633 10
Perception rating 4,784 14,352 raters 6 170 — 4,709 10

BRAVE [15] Video Self-report 49,102 49,102 users 1,399 1 — 813 34
Perception rating 308,572 649,900 raters 3,286 25 — 2,575 42

GoEmotions [11] Text Perception rating 58,009 207,813 raters 81 7 — 10,508 28
TABLE I

DESCRIPTIVE STATISTICS OF DATASETS STUDIED IN user-as-client AND rater-as-client FEDERATED SETTINGS.

Second, direct label aggregation is impossible in FL as the
identity of data/labels rated by the clients is not visible to the
server model. To address this challenge, we look to hidden
rater models proposed in the non-federated domain [24], [25].
Here, the conditional distribution of a label for each rater is
estimated with respect to the “true” underlying distribution
of the corresponding label which is the unknown ground-
truth in the case of subjective labels. A variant of this
general idea was recently extended to discrete multi-class
classification problems in [26] by estimating rater-specific
confusion matrices. Inspired by these ideas, we propose an
algorithm called FedRater to model raters in a federated
setting by jointly estimating client-specific stateful parameters
while minimizing the overall loss of the shared model.

III. DATASETS

Here, we describe datasets studied in this paper associated
with the two AC tasks of classifying self-report and perception
ratings. These datasets are of different modalities (audio, text
and video) labeled in a multi-label fashion, along with the
availability of (anonymized) participant and rater ID; allowing
us to simulate user-as-client and rater-as-client settings. The
descriptive statistics of the datasets and related tasks are
presented in Table I.

A. Interactive Emotional Dyadic Motion Capture

IEMOCAP, developed at the University of Southern Cali-
fornia (USC) [10], is widely used for benchmarking emotion-
related classification. It consists of 10 professional actors (five
women and five men) either enacting a script or improvising
(improv). The data are organized into five sessions where
each session includes interactions between a female and male
actor. Each sample is an utterance corresponding to manually
segmented speaker turns from interactions with labels along
10 discrete emotion classes. In our paper, we only focus on
the improv part of IEMOCAP as it has labels from both the
participants themselves (self-report, for user-as-client setting)
as well as labels from multiple raters (perception ratings, for
rater-as-client setting). Only four out of five improv sessions
have self-report, resulting in about 2400 samples across eight
clients for simulating user-as-client whereas all five sessions
were labeled by three raters per utterance from a pool of six
USC students. This resulted in a total of about 14K samples
across six clients for simulating rater-as-client. The number of
utterances and corresponding labels are described in Table I.

Features: Utterance-level acoustic features, i.e., functionals
applied to low-level acoustic descriptors were extracted from
openSMILE [27]. Specifically we extracted 88 features using
the “eGemaps” configuration provided in openSMILE. They
were based on the Geneva Minimalistic Acoustic Parameter
Set (Gemaps, [28]), which was developed for benchmarking
AC tasks in voice research to minimize differences caused
by varying parameter sets or their implementations. These
features are widely used for emotion-related classification
tasks [29].

B. Berkeley Reactions to Affective Video Elicitors
BRAVE [15] is a recent corpus of over 49K video recordings

from nearly 1400 participants reacting to a pre-selected set
of short evocative video stimuli. The participants label their
emotional response to the stimulus along 34 discrete emotion
classes and record their facial expressions while reacting to
the video. We used the reaction videos (mean duration=12.2s)
from the participants as input and self-report labels for simu-
lating user-as-client. The reaction videos were then segmented
into non-overlapping clips of 2s duration and labeled by
multiple external raters along 42 discrete emotion classes,
providing perception ratings. Each clip has labels from at least
two raters resulting in nearly 650K samples across 3286 clients
for simulating rater-as-client (See Table I for details).
Features: Consistent with prior work in facial expression
research [9], [30], we extract face-based features using the
NN2-FaceNet architecture [31] at 6 FPS. Specifically, we
apply average pooling to the inception (5a) block with a 7×7
feature map composed of 1024 channels resulting in a multi-
dimensional feature vector per detected face.

C. GoEmotions
GoEmotions [11] is a corpus of about 58K carefully curated

comments extracted from Reddit with 28 discrete emotion
labels from 82 human raters. GoEmotions does not have
self-reported emotion labels. Thus, we only simulate rater-
as-client. For centralized model training, we use the subset
of the data with majority agreement labels released by [11]
Each sample was labeled by 2–5 raters with an average of 3
raters. We only retain raters who labeled more than one sample
resulting in a total of about 207K samples from 81 clients to
simulate rater-as-client training.
Features: As described in the GoEmotions paper [11], we
extracted a 768-dimensional dense feature embedding from
the BERT-base model [32].
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IV. METHODS

In this section, we first describe FedAvg [1] which we
use to train a baseline FL model in all experiments. Next, we
discuss a probabilistic model of multiple raters for centralized
training and present our proposed adaptation for FL.

A. FedAvg: Federated averaging

The pseudocode for FedAvg is detailed in Algorithm 1
in black font. For every federated round t on the server
model (Server training loop), K clients referred to as report
goal are randomly selected from a pool of available clients,
(Line 4). All selected clients k = 1, . . . ,K receive the same
starting model θt from the central server and perform local
mini-batch SGD optimization with a learning rate η for E
epochs (Line 16–17) over nk samples Xk available on-device.
The accumulated model updates for each client ∆θk (Line
22) are communicated back to the server, where a weighted
aggregation of the updates across all clients is performed (Line
10) with weights nk/n proportional to the client sample size
nk. The federated training round is completed by updating
the starting model with the aggregated updates with a server
learning rate ν (Line 11). In all our experiments, the SGD
optimizer on the local models is replaced by a momentum
optimizer, which was shown to improve robustness to non-
identically distributed client data [33].

B. FedRater: Modeling raters in a federated setting

Let us consider K raters and denote the label distribution
of each rater k = 1, . . . ,K for a given sample x as p(y(k)|x),
then by assuming that the raters are statistically independent,
the joint label distribution across all raters can be written as

p(y(1), . . . , y(K)|x) =

K∏
k=1

∫
y

p(y(k)|y,x) · p(y|x)dy (1)

where p(y|x) is the “true” label distribution and p(y(k)|y,x)
describes the rater-specific model for sample x. By assuming
that the label noise introduced by raters is independent of x,
the rater-specific distribution can be parameterized as p(y(k) =

i|y = j,x) = α
(k)
ij where i, j correspond to the label values of

the rater and true distribution respectively. [26] extended this
probabilistic model to a multi-class classification problem by
estimating a rater-specific confusion matrix Â ∈ R+c×c with c
number of classes. The modified classification loss with cross-
entropy loss CE is:

L(b;θ) =
b∑
i=1

CE(Âkp̂θ(xi), y
(k)
i ) + λTr(Âk) (2)

where p̂θ(xi) and y
(k)
i denote the model prediction and the

labels corresponding to sample xi, and Tr(·) is the trace
operation applied on the rater-specific confusion matrix with a
corresponding weighting factor λ. The trace factor in the loss
ensures that the Â matrices are diagonally dominant.

Our proposed adaptation of the rater modeling for a fed-
erated setting is described in blue font and referred to as

Algorithm 1: FedAvg, FedRater, FedRater+
1 Server training loop;
2 Initialize θ0
3 for each round t = 0, 1, . . . do
4 Select K clients sampled uniformly
5 for each client k = 1, 2, . . . ,K do
6 nk = |Xk|
7 ∆θkt ← ClientUpdate(k, θt)
8 end

9 n =

K∑
k=1

nk

10 ḡt ←
K∑
k=1

nk

n
∆θkt

11 θt+1 ← θt − νḡt
12 end
13 ClientInitializer(k, c): // c classes

14 Initialize Âk = I ∈ R+c×c, α̂k = 1 ∈ R+

15 ClientUpdate(k, θt):
16 θ ← θt
17 for each local mini-batch b over E epochs do

18 L(b;θ) =

b∑
i=1

CE(Âkp̂θ(xi), y
(k)
i ) + λTr(Âk)

19 L(b;θ) =
b∑
i=1

α̂kCE(Âkp̂θ(xi), y
(k)
i ) + λTr(Âk)

20 θ ← θ − ηL(b;θ)
21 end
22 return ∆θ ← θt − θ to server

FedRater in Algorithm 1. Similar to FedAvg, K clients
are randomly selected from the pool of available raters (Line
4). When a client first receives a starting model θt, a rater-
specific confusion matrix Â is initialized (Line 14, in blue)
and added to set of local model parameters on the client side
which are updated as the model is trained for E local epochs
(Line 18). This parameter is stateful. It is updated when θt
is received from the server model and a client is available
and selected by the server. Furthermore, Â is only available
locally on the client’s device. It is not visible to the server.
FedRater does not change the server training loop and can
be easily incorporated into FedAvg.

The estimated confusion matrix, along with trace normaliza-
tion ensures that the distribution of rater-specific predictions
are close to the “true” distribution of the labels. In a centralized
model training, the “true” distribution in often estimated using
some form of label aggregation (weighted sum). For example,
when the labels are binary, a median operation across the
available ratings per sample gives the majority vote label
distribution. However, for training federated models, we do
not have access to all the ratings per sample. In this context,
we pose the label aggregation operation (weighted sum across
all ratings) as a task of learning rater-specific scaling of the
loss function using the parameter α ∈ R+. We refer to
this algorithm as FedRater+ (shown in red, Algorithm 1).
Similar to FedRater when a client k first receives a set of
updates from the server model, two stateful parameters αk
and Ak are initialized (Line 14), and updated when training
locally on-device using a modified loss function as shown in
Line 19 of Algorithm 1. It is important to note that αk is
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separate from the weighting factor nk/n used for gradient
updates (Line 10). Intuitively, αk is analogous to the weighting
factor used for label aggregation in centralized model training,
measuring a proxy of “rater quality”. In case of subjective
labels, rater quality can be approximated by measures of inter-
rater agreement, described in the next section.

C. Class-normalized inter-rater agreement (c-IRR)

When a rater is allowed to choose more than one label, raw
IRR per sample such as Cohen’s Kappa and Krippendorf’s
alpha do not control for the base rates of choosing a certain
class. We must normalize for the number of times that a rater
chooses a class label among all the samples rated by the given
rater. We refer to this measure as class-normalized IRR (c-
IRR). Let Yk ∈ RN×c be a c-class label matrix across N
samples labeled by rater k ∈ {1, . . . ,K}. For the same sample
subset, let Yk′ ∈ RN×c be the label matrix obtained from
raters other than k. The c-IRR measure for rater k is computed
as:

ρk = σ(vec(Yk − Ȳk), vec(Yk′ − Ȳk′)) (3)

where σ denotes a Pearson correlation coefficient (measure
of similarity), and Ȳ· denotes the column-wise mean which
estimates the base rate of choosing a class label. When a
sample is rated by more than two raters, the labels of the raters
in label matrix Yk are repeated to match the dimensions of
Yk′ matrix, allowing us to compute correlation.

Note that c-IRR can only be obtained for raters who labeled
more than one sample, to robustly estimate the base rates of a
rater choosing a class label. In real-world settings, c-IRR can
only be estimated in centralized and not federated settings.
We use c-IRR as a proxy of rater quality to understanding
its relationship to the client-specific parameters estimated by
FedRater+ in rater-as-client simulations.

V. EXPERIMENTS

The primary objective of this work is to assess how well
FL performs for subjective tasks compared to centralized
models under the same dataset (train/test splits) and model
configuration conditions. In developing centralized models, the
goal was not necessarily to have state-of-the-art performance
for each dataset but to develop a competitive baseline using
features informed by related work. When using the same
features and same amount of training data, the performance
of machine learning models trained with FL algorithms are
inherently upper bound by that of the models trained in the
centralized fashion.

A. Model implementation and evaluation setup

Consistent with previous work, for both IEMOCAP (88-dim
low-level acoustic features) and GoEmotions (768-dim BERT
features), we train models by adding a dense output layer on
top of the input features for fine-tuning, with sigmoid cross-
entropy loss for multi-label classification.

For videos in the BRAVE dataset, we used a model configu-
ration informed by a previous related work [9]. For self-report
classification, where the average duration of videos is about

12s, we used two long short-term memory (LSTM) layers each
with 64 recurrent cells. The output of the LSTM is then fed
through a mixture of experts (MoE) layer (2 mixtures and
a dummy expert) followed by an output layer with sigmoid
cross entropy loss. For classifying perception ratings from
clips (average duration of 2s), we used two LSTM layers
each with 32 recurrent cells followed by a MoE layer with 3
experts and an output layer with sigmoid cross entropy loss. In
both cases, the number of LSTM layers, recurrent cells, and
experts was tuned for the centralized models, and the same
configuration was used for training federated models.

Following hyper-parameter tuning, we used a batch size of
64 for all experiments. In our initial experiments, we found
that FedAvg algorithm performed better with a momentum
optimizer on the server model than a SGD optimizer. Hence for
all FL experiments, we used a momentum optimizer (learning
rate=0.01, momentum=0.9) on the server model and a SGD
optimizer on the client model. A momentum optimizer with
the same parameters was used for training centralized models
as well.

B. User-as-client setting

As described in the Datasets section, we use the self-
reports from IEMOCAP and BRAVE where the participants
(users) reporting their emotional experience are treated as
clients. All evaluations here are done in an open-set fashion,
i.e., the users in test-set are not seen during training. For
IEMOCAP, we created four different splits with utterances
from six users across three sessions for training/validation,
and utterances from two users of the remaining session for
testing. For BRAVE, which has a larger number of users,
we created five different splits where data of 200 participants
was used for testing and that of the remaining participants
was used for training. The performance metrics reported are
averaged across all train/test splits. In FL simulations, open-
set evaluation helps evaluate how well models generalize
for unseen participants given that the labels are subjective
in nature. Federated models are trained with varying two
parameters: number of clients selected in each server training
loop, i.e., report goal in Algorithm1 with K = {2, 5, 6} for
IEMOCAP, and K = {2, 5, 10, 20} for BRAVE. The report
goal for BRAVE (which has 1199 users in train set) was
chosen to simulate a case where only a handful of users are
available in each training loop. The number of local epochs E
on the client side (See Line 17, Algorithm 1) was tuned over
{1, 3, 5}. We did not observe a significant change in overall
model performance by varying E, consistent with observations
in related work [12].

C. Rater-as-client setting

We use the rater ID and the corresponding perception ratings
from in IEMOCAP, GoEmotions and BRAVE to simulate
rater-as-client setting. For IEMOCAP, Session04 is used for
testing whereas for BRAVE, we use one of the splits from the
previous setting. For GoEmotions, we use the splits provided
by the authors [11].
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Per-class AP (%) IEMOCAP (c=10) BRAVE (c=34)

FedAvg (K=4) 12.9 ± 14.1 11.7 ± 9.4
FedAvg (K=6) 14.8 ± 13.1 11.9 ± 10.2
FedAvg (K≥10) — 12.8 ± 10.1

Centralized 18.4 ± 14.2 13.1 ± 9.2
TABLE II

PERFORMANCE EVALUATION IN user-as-client SETTING FOR DIFFERENT
REPORT GOAL CHOICES AVERAGED ACROSS ALL TRIALS.

We create two centralized baselines for each dataset
(1) cez: Training with aggregated labels as “ground truth”
(2) cez-cm: Learning rater-specific confusion matrices while
minimizing loss function per Eq. 2 [26].
Label aggregation on all datasets is performed as follows: if
there was consensus among the raters on at least one class,
a majority vote across all labels for each sample is used as
the aggregated label, otherwise, the labels across the raters
are simply averaged. Due to the subjective nature of the tasks,
aggregated labels are considered as “ground truth” for testing.

For federated models, we wish to test if the server model
behaves as an “average rater”, i.e., the labels predicted by
the FL model must be closer to the majority vote labels than
any individual rater (client). Thus, we use the aggregated
labels in each dataset as the “ground truth” for evaluation.
It is important to underscore that unlike centralized model
training, two raters may have same data features but have
different labels in a federated setting, and the server model
does not know the identity of the samples being rated. While
the train/test splits are created in an open-set fashion with
respect to participants, the raters in the test set are a subset of
raters seen during training. This simulates a FL setting where
the pool of raters or the client population is fixed and the
server model is expected to learn the overall rater behavior,
while generalizing to data from unseen participants. For cez-
cm, FedRater and FedRater+, the trace normalization
weight λ (see Eq. 2) is set 0.001 after parameter tuning. The
report goal K was chosen to simulate systems heterogeneity
i.e., not all few raters available for each training loop. It
was tuned over K = {5, 10, 15}, except for IEMOCAP with
K = {2, 4, 5}. We chose this paramter set to simulate the case
where maximum number of clients available in each round in
strictly less than the total number of raters available. This is
why the choices for K in this setting are not the same as
in user-as-client (see ‘users’ vs. ‘raters’ counts in Table I,
column 7). All federated models are trained for 20K rounds.
To compare the performance of multi-label classification tasks,
we report per-class average precision (AP) (mean, std), we also
monitored micro-averaged AP during evaluation.

VI. RESULTS

We first present the classification results for the two settings
with users and raters as clients and discuss their performance
vis-à-vis centralized models. We next present FedRater
model analysis on the BRAVE dataset.

Dataset
(No. classes)

IEMOCAP
(c=10)

BRAVE
(c=42)

GoEmotions
(c=28)

c-IRR 0.53 ± 0.08 0.2 ± 0.15 0.55 ± 0.13
Report goal 5 5 10

Per-class average precision (%)

FedAvg 27.2 ± 21.9 8.7 ± 8.9 18.6 ± 16.8
FedRater 27.6 ± 22.2 9.0 ± 7.7 20.8 ± 16.7
FedRater+ 29.1 ± 23.2 10.2 ± 8.3 21.0 ± 17.4

cez 30.0 ± 23.6 10.9 ± 9.1 20.9 ± 15.2
cez-cm 30.5 ± 23.9 10.5 ± 8.6 22.3 ± 17.1

TABLE III
EVALUATION IN rater-as-client SETTING FOR THE BEST PERFORMING

REPORT GOAL IN EACH DATASET.

A. User-as-client setting

The per-class AP of centralized models for classifying self-
reports in IEMOCAP and BRAVE are presented in Table II.
First, in the case of IEMOCAP, the performance of FedAvg
model improves by increasing the report goal K (about
2% AP), and on average performs about 80% as well as
the centralized upper-bound. For IEMOCAP, both centralized
and federated models perform the best for emotions with
overt low-level markers (“excited”, “neutral” and “frustration”:
AP > 24%). The centralized model performance is consistent
with previous reports [29].

For BRAVE, K > 10 did not further improve the model
performance. Compared to the upper bound, FedAvg at
K = 10 performs at 98%, suggesting that federated models
can perform on par with centralized models for learning
subjective affective constructs when a large user pool is avail-
able (over 1000 users in BRAVE vs. 8 users in IEMOCAP),
although the number of users needed for each training loop
is minimal (K ≥ 10). Both centralized and federated models
on the BRAVE dataset performed the best for “amusement”,
“disgust” and “joy” (AP> 36%).

B. Rater-as-client setting

First, we examined the range of rater c-IRR (see Eq. 3)
scores across all datasets. As shown in Table III, both IEMO-
CAP (6 raters) and GoEmotions (81 raters) have moderate to
high agreement (c-IRR≥ 0.5), whereas the agreement scores
across the 3286 raters in BRAVE are generally low (25–75
percentile range: 0.06 and 0.32, respectively). These c-IRR
scores are also reflective of the per-sample majority agreement:
83.1% for IEMOCAP and 100% for GoEmotions vs. 18%
for BRAVE. Thus, these datasets have a wide variety of rater
agreements, which is common in real-world subjective tasks.

Centralized rater modeling (cez-cm) slightly improved the
overall performance (except for BRAVE, likely due to low
inter-rater agreement) which we use as the upper bound for
comparing federated models. In general, we observed that
FedAvg performs better (i.e., closer to centralized models)
when the rater agreement is higher: Relative performance of
90% for IEMOCAP and 88% for GoEmotions vs. 79% for
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Fig. 1. Analysis of the client-specific α learnt by FedRater+ for BRAVE: (A) Correlation between α and c-IRR during training, and (B) α captures a
proxy of c-IRR distinct from the number of samples labeled by the rater .

BRAVE. Across all datasets, we observed a consistent signif-
icant improvement (FedRater+ > FedRater > FedAvg:
paired t-test on per-class AP scores, p-value< 0.01) in FL
performance for FedRater and FedRater+ compared to
FedAvg. While the confusion matrix Âk in FedRater
and FedRater+ estimates the distribution of rater-specific
labels with respect to that of the “true” labels, the additional
parameter αk in FedRater+ adjusts the client updates as they
are communicated back to the server (Line 20, Algorithm 1).
FedRater+ achieved a further improvement of 1% AP over
FedRater. We also observed that a small number of clients
per server loop (See report goal row in Table III) is sufficient
(increasing K further did not yield significant improvements).

To understand the source of performance gains, we exam-
ine AP with respect to agreement scores per class. While
FedRater and FedRater+ models not only boost the per-
formance for classes with high agreement, we also noticed a
significant improvement for classes with moderate agreement,
on par with the upper bound. Detailed analysis are presented
in the supplementary material. In order to understand why
FedRater+ improves the overall performance, we conducted
post-hoc analysis comparing the client-specific parameters in
FedRater+ to per-rater c-IRR.

C. FedRater+ model analysis

We examine the client-specific stateful parameter αk (Line
19, Algorithm 1) and its relationship to c-IRR during model
training. As shown in Fig. 1A, this correlation between α and
c-IRR per rater for BRAVE increases across training rounds
(we observed similar trends IEMOCAP and GoEmotions).
After 20K rounds of training, the correlation between α and
c-IRR was significant (permutation test n = 105, p < 0.001)
with 0.30, 0.42 and 0.48 for BRAVE, IEMOCAP and GoEmo-
tions respectively. It suggests that the client-specific parameter
in FedRater+ can learn a proxy of “rater quality” in the
distributed federated setting. Furthermore, as shown in Fig 1B,
while α is positively correlated with c-IRR, it is negatively
correlated with the number of samples available per client.
The disassociation of α with respect to inter-rater agreements
and rater sample sizes suggests that FedRater+ is able to
capture aspects of “rater quality” that are complementary to
merely how many samples a rater may have labeled.

VII. CONCLUSION

In this paper, we describe two parallel paradigms to model
frequently occurring affective computing tasks in a federated
learning (FL) setting: user-as-client and rater-as-client. We
conducted a detailed empirical evaluation to study the use
of FL to classify affective constructs from self-reports and
perception ratings in audio, video and text datasets. First,
where users are treated as clients, our results suggest that the
performance of widely used (FedAvg) algorithm is compara-
ble to that of centralized models, when there are a sufficient
number of clients reporting updates to the server. In the rater-
as-client setting, results suggest that our proposed algorithms
FedRater and FedRater+ outperform FedAvg by 2%
points average precision. A post-hoc analysis showed that the
client-specific parameters learnt by the FedRater+ capture
proxies of inter-rater agreement, enabling the server model in
FL to behave as an “average rater” for predicting emotion
perception labels.

VIII. ETHICAL IMPACT STATEMENT

Developing machine learning models to classify affective
constructs such as emotion is an open area and needs further
research to understand the scope of their use. We note that
these models do not try to infer the internal emotional state of
individuals, but instead look at proxies such as facial or vocal
expressions that may suggest one’s expressed or perceived
emotional state. In addition, the area of federated learning
research and its application to model human-perception as in
the case of affective computing is a new and evolving area of
research. Our work does not currently take into account socio-
cultural differences of the population studied in the federated
setting and potential fairness issues that are typical to federated
learning.
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