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Abstract

Computing eigenvalues of very large matrices is a critical task in many machine
learning applications, including the evaluation of log-determinants, the trace of ma-
trix functions, and other important metrics. As datasets continue to grow in scale,
the corresponding covariance and kernel matrices become increasingly large, often
reaching magnitudes that make their direct formation impractical or impossible.
Existing techniques typically rely on matrix-vector products, which can provide
efficient approximations, if the matrix spectrum behaves well. However, in settings
like distributed learning, or when the matrix is defined only indirectly, access to
the full data set can be restricted to only very small sub-matrices of the original
matrix. In these cases, the matrix of nominal interest is not even available as an
implicit operator, meaning that even matrix-vector products may not be available.
In such settings, the matrix is “impalpable,” in the sense that we have access to
only masked snapshots of it. We draw on principles from free probability theory
to introduce a novel method of “free decompression” to estimate the spectrum of
such matrices. Our method can be used to extrapolate from the empirical spectral
densities of small submatrices to infer the eigenspectrum of extremely large (im-
palpable) matrices (that we cannot form or even evaluate with full matrix-vector
products). We demonstrate the effectiveness of this approach through a series of
examples, comparing its performance against known limiting distributions from
random matrix theory in synthetic settings, as well as applying it to submatrices of
real-world datasets, matching them with their full empirical eigenspectra.

1 Introduction

Eigenvalues encode essential information about matrices and are central to the evaluation of spectral
invariants in computational linear algebra. Two such invariants, the log-determinant and the trace of
the inverse, appear frequently in statistical modeling and Bayesian inference (Ubaru & Saad, 2017).
However, these quantities require access to the full range of eigenvalues, posing substantial challenges
in modern large-scale settings. As datasets continue to scale up, it is becoming increasingly common
to encounter matrices that cannot be practically formed in their entirety. This may occur, for example,
if the matrices are so large that they exceed the storage capacity in local memory. Popular methods for
operating with large matrices often rely on randomized low-rank approximations from Randomized
Numerical Linear Algebra (RandNLA) (Drineas & Mahoney, 2016; Murray et al., 2023; Dereziński
& Mahoney, 2021), and can broadly be classified as either iterative subspace or sampling methods,
although hybrid methods have become prominent (Ubaru et al., 2017; Saibaba et al., 2017; Chen
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et al., 2021). Implicit methods (Adams et al., 2018) that rely on Krylov subspaces using Arnoldi- or
Lanczos-based techniques (Ubaru et al., 2017) have been successful for estimating arbitrary spectral
invariants (Gardner et al., 2018; Potapczynski et al., 2023), and they require access only to matrix-
vector products. These techniques avoid explicit matrix storage and can often converge quickly.
However, their performance degrades significantly when the matrix is ill-conditioned.

The situation is particularly dire when most matrix entries are inaccessible and matrix-vector prod-
ucts are unavailable or too costly. This can occur when the data used to generate the matrix is spread
across a distributed system, or when the matrix itself is enormous (see e.g., Ameli et al. (2025)). Such
matrices can be considered impalpable, because neither the matrix nor its matrix-vector products can
be handled in their entirety. Despite being inaccessible, the information these impalpable matrices
contain can be crucial, making methods to summarize or access them highly valuable. Approaches
which subsample a few rows and columns are feasible, assuming that any observed quantities can be
directly extended to the full matrix (Drineas et al., 2008). This is the strategy behind the Nyström
method, which accesses a matrix via column/row sampling, and then reconstructs the matrix under
linearity assumptions (Gittens & Mahoney, 2016; Gittens et al., 2016). Unfortunately, such tech-
niques incur significant bias, as they target behavior dictated by large eigenvalues by design, giving
less prominence to the near-singular dimensions that play a crucial role in determinants and inverses.

In the setting of impalpable matrices, or when otherwise fine-grained behavior of ill-conditioned
matrices becomes important and implicit methods fail, there are very few tools currently available
(Couillet & Liao, 2022; Ameli et al., 2025). To address this gap, we provide a novel method for
approximating the empirical spectral density of extremely large (impalpable) matrices, requiring only
access to appropriate submatrices. Our technique is based on tools from random matrix theory and
free probability, and it applies to virtually any class of matrices. Assuming only that the underlying
matrix is sufficiently large, the empirical spectral density of a (sampled) submatrix can be evolved
by a partial differential equation (PDE) in terms of the dimension of the matrix to access the spectral
density of the full (impalpable) matrix. Due to connections with free probability theory, which we
explain below, we call this process free decompression.

To summarize, we:

(I) introduce and derive free decompression, the first method for spectral density estimation of
impalpable matrices, by evolving the empirical spectral density of submatrices, and provide
rigorous polynomial error bounds under mild assumptions (Proposition 4);

(II) demonstrate the utility of our free decomposition method for a range of synthetic examples,
social media graph data, and empirical neural tangent kernels; and

(III) provide a user-friendly Python package, freealg,1 implementing all proposed algorithms,
that reproduces the numerical results of this paper.

The remainder of this paper is structured as follows: Section 2 provides background and outlines the
different classes of matrices of interest; Section 3 provides the necessary tools in order to construct
our free decompression procedure; Section 4 describes its implementation and issues faced in oper-
ationalization; Section 5 provides numerical examples. We conclude with discussion in Section 6.
A summary of the notation used throughout the paper is provided in Appendix A. An overview
of free decompression and its application to well-studied random matrix ensembles is presented
in Appendix B.1. Discussions of the significant numerical considerations required to perform free
decompression are provided in Appendix C and Appendix D. Proofs of our theoretical contributions
can be found in Appendices E and F. Background on the neural tangent kernel example is provided
in Appendix G. Finally, Appendix H presents a guide to our implementation of free decompression.

2 Impalpable Matrices

We are interested in estimating the spectral density of a wide class of matrices for which operating
on the full matrix is infeasible. In the most extreme case, these matrices cannot be formed in their
entirety, either implicitly or explicitly. We call these matrices impalpable. We will consider the case
where the impalpable matrix of interest is Hermitian. Since we are interested in the setting where we

1The source code of the Python package freealg is available at https://github.com/ameli/freealg,
with documentation at https://ameli.github.io/freealg.

2

https://github.com/ameli/freealg
https://ameli.github.io/freealg


cannot access the full matrix, we will work with submatrices indexed by randomly sampled columns
of the impalpable matrix of interest, where the submatrix consists of the intersection of the impalpable
matrix’s rows and columns that appear in this index set. This corresponds to an assumption that
the matrices are part of a sequence that is asymptotically free (Maïda, 2023). We will then see
that it is convenient to work with tools from random matrix theory and free probability, namely the
familiar Stieltjes transform (Couillet & Liao, 2022), whose favorable properties we exploit in our
free decompression procedure.

2.1 Categories of Matrix Difficulty

We find it useful to classify matrices by four modes of computational difficulty: explicit, implicit,
out-of-core, and impalpable, the latter of which is our focus.

Explicit Matrices. This is the most straightforward class of matrices. They can be formed explicitly
as contiguous arrays and operated on in memory. Existing implementations on such matrices are
highly optimized, with their runtime limited only by their computational complexity.

Implicit Matrices. Difficulties begin to arise once matrices become too large to be stored in
memory. Implicit matrices are those that can be computed or estimated only in terms of matrix–
vector products v 7→ Av (Adams et al., 2018). Treating a matrix A ∈ Rn×n as implicit often has
significant computational benefits, even before the memory wall (Gholami et al., 2024); for iterative
methods, computation time can often be reduced, e.g., from O(n3) operations to O(n2). If the
formation of the matrix–vector product is efficient, this can be further reduced to O(n). Memory
requirements may follow similar reductions. Implicit methods exist for most standard linear algebra
operations, often based on Arnoldi- or Lanczos-based iterations, and appear in mature software
packages (Potapczynski et al., 2023). One of the most popular implicit matrix algorithms for spectral
function estimation is stochastic Lanczos quadrature (SLQ) (Ubaru et al., 2017); however, the
performance of such methods may deteriorate for highly ill-conditioned matrices (Ameli et al., 2025).

Out-of-Core Matrices. Implicit methods typically operate on Krylov iteration schemes, with error
rates depending on condition numbers of the matrix—see Bhattacharjee et al. (2025), e.g., in the case
of SLQ. This can be disastrous for large and ill-conditioned dense matrices, with accurate estimates
requiring a large number of matrix–vector products. Exact methods become necessary in this setting
if a high level of accuracy is required, but the memory bottleneck still remains. Out-of-core matrices
have the property that for some integerm≪ n, any subblock of size Rm×m can be formed explicitly
and operated on in memory, and the full matrix can be stored locally by iterating through these blocks
(Aggarwal & Vitter, 1988). Decompositions (Rabani & Toledo, 2001; Mu et al., 2014), inverses
(Caron & Utard, 2002), and products of out-of-core matrices can be (slowly) computed to high
precision, assuming adequate (typically very large) available external storage.

Access in Memory

Type Matrix
Matrix–Vector

Product
Any

Subblock

Explicit
Implicit
Out-of-core ∼
Impalpable

Table 1: Comparison of matrix classes, according to at-
tributes that can be formed and operated on in memory.

Impalpable Matrices. The most ex-
treme category of matrices includes cases
that do not fit into the other categories.
Here, the matrix cannot be formed in mem-
ory, as it is either too large for out-of-
core operations, or has missing portions.
Matrix-vector products are assumed too ex-
pensive to compute accurately, or are ren-
dered useless due to strong ill-conditioning.
In principle, such a matrix can be consid-
ered “impalpable,” as the vast proportion
of either its elements or properties cannot
be operated on. Comprising the worst-case
scenario, impalpable matrices offer unique challenges for linear algebra practitioners. Determining
accuracy of any proposed solution is an underdetermined problem in general. The only feasible
strategy is extrapolation, using available information. While this is inherently risky, the class of
impalpable matrices simply offer no alternative. To our knowledge, only the FLODANCE algorithm
of Ameli et al. (2025) offers a valid approach for estimating log-determinants of impalpable matrices.
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2.2 Examples of Impalpable Matrices

Enormous Gram Matrices. Our motivating example of an impalpable matrix is an ill-conditioned
Gram matrix A = (κ(xi,xj))

n
i,j=1 comprised of a massive number n of points xi and a kernel

κ that is expensive to compute. In this case, computing a few subblocks of A is viable, but out-
of-core methods are too expensive. Ameli et al. (2025) demonstrates the challenges of computing
the log-determinant of a neural tangent kernel matrix for a large neural network model. Their most
cost-effective strategy extrapolated the behavior of the log-determinant from smaller submatrices
in accordance with a scaling law. This is an example of an impalpable matrix strategy, relying on
smaller portions of the matrix without matrix–vector products. The potential gains are best demon-
strated with a synthetic example: the covariance matrix of x1, . . . ,xn, where each xi ∼ N (0p, Ip×p)
is p-dimensional. Once p and n become extremely large, forming this matrix is prohibitive. However,
its spectral density is well-approximated by the Marchenko–Pastur law (Marčenko & Pastur, 1967),
and its log-determinant over submatrices of increasing size is predictable (Nguyen & Vu, 2014; Cai
et al., 2015; Ameli et al., 2025; Hodgkinson et al., 2023a).

Catastrophic Cancellation. Impalpable matrices typically arise due to issues of scale, but they
need not be large themselves. Indeed, such matrices can arise due to catastrophic cancellation.
Some matrices can be comprised of a non-trivial product of rectangular matrices; for example,
cond(A⊺A) = cond(A)2, so representing the outer product A⊺A (e.g. in the normal equations) in
floating-point precision can incur greater numerical error (Ameli et al., 2025). Higham (2022) refers
to the formation of A⊺A as a “cardinal sin” of numerical linear algebra. More products yield even
larger errors. General Gram matrices exhibit similar behavior: the condition number can become
so large that the matrix cannot be accurately represented in double precision, rendering even exact
methods hopeless (Lowe et al., 2025). Fortunately, submatrices have smaller condition numbers, so
there may be a submatrix that can be represented in double precision. Ideally, spectral behavior of
these submatrices can then be extrapolated to obtain insight into the behavior of the full matrix in a
meaningful way.

3 Free Decompression

Free decompression of a random submatrix
An to a larger matrix A requires:
1. estimation of its Stieltjes transform mAn

;
2. evolution of mAn

in n via equation (1);
3. evaluation of the spectral distribution of A.

Our objective is to approximate the spec-
tral distribution of an impalpable matrix A,
given only explicit access to a randomly
sampled n× n submatrix. This seemingly
intractable task can be accomplished by
working with the Stieltjes transform of the
submatrix, and observing that for large n,
this Stieltjes transform varies with n in a
manner that is well approximated by a PDE.
This enables an approximation of the Stieltjes transform of the full matrix A, from which a corre-
sponding spectral distribution is easily computed. We emphasize that the matrix A itself may be
arbitrary and deterministic. Asymptotic freeness enters our model through the method of sumbatrix
selection, making it amenable to random matrix theoretic and free probabilistic tools.

3.1 Tools from Free Probability

In order to make free decompression concrete, we require tools from free probability. Let A be a
fixed matrix of large size. If we can approximate the spectral density of a small randomly sampled
submatrix, and extrapolate its behavior to the full matrix, it should also be possible to extrapolate
further to larger matrices than the one we are given. To this end, we treat A as an element in an
infinite sequence of matrices {A1,A2, . . . } of increasing size, where An ∈ Rn×n. For consistency,
we assume that for each n, the matrix An is the top-left n × n submatrix of An+1. This ensures
that [An]ij = [A]ij is constant in n for fixed i, j ≤ n. We will also assume that for any integer
k ≥ 1, the quantity 1

n tr(A
k
n) converges as n→∞. This is equivalent to assuming that the empirical

spectral distributions of An converge weakly as n→∞ (Voiculescu, 1991). Note that this imposes
no requirements on the matrix to be approximated.
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Figure 1: (a) Estimation of the Marchenko–Pastur law with ratio λ = 1
50 from eigenvalues of Wishart

matrices with d = 50,000 degrees of freedom and size n× n = 1000× 1000; (b) approximation of
densities for various values of n via free decompression (Algorithm 1); and (c) comparison of our
decompressed approximation of n = 32,000 with the known limiting analytic density for λ = 32

50 .

Still, we cannot predict the upcoming row and column in An+1 from An alone, and we will need
to appeal to random transformations to connect each element in the sequence together. One way to
transform A into a random matrix, while preserving its eigenspectrum, is to perform a similarity
transform with a random matrix P, recovering PAP−1. The most inexpensive choice of random
matrix P is a (Haar) random permutation matrix, so that the (random) similarity transform is
equivalent to the following operation: let Sn be the uniform distribution on the space of permutations
on {1, . . . , n}, and consider the matrix Aσ

n = (Aσ(i)σ(j))
n
i,j=1, where σ ∼ Sn.

Free Compression. Due to a result of Nica (1993), the sequence of matrices Aσ
n is asymptotically

free as n → ∞, in the sense of free probability theory. We shall not further discuss free random
matrices here, but we refer the interested reader to Maïda (2023) for a detailed introduction. Instead,
we rely on one useful property.

LetmA(z) denote the Stieltjes transform ofA of size n×n, given bymA(z) = n−1E[tr(A−zI)−1],
and let ω(z) denote the functional inverse of m(z), satisfying m(ω(z)) = z. The corresponding
R-transform is then defined as R(z) = ω(−z) − z−1. Our method depends on the following
fundamental theorem of Nica & Speicher (1996); see also Olver & Nadakuditi (2012, Section 7).
Theorem 1 (NICA-SPEICHER). For a free random matrix A of size n× n with R-transform R(z),
the R-transform of the top-left ns × ns submatrix of A is given by Rns

(z) = R(z ns

n ).

In other words, to arrive at the R-transform for a submatrix comprised of only the top-left proportion
α of rows and columns, one need only scale the argument by α. In free probability theory, this
procedure is called free compression (Olver & Nadakuditi, 2012).

Free Decompression. Our main approach is based on the observation that nothing obstructs this
operation from being conducted in reverse, to glean information about a larger matrix from a smaller
one. For this reason, we call our procedure free decompression: starting from the R-transform
of a smaller ns × ns submatrix Rns

(z), the R-transform of the larger n × n matrix is given by
Rn(z) = Rns

( n
ns
z).

Example (COVARIANCE MATRICES). Let X ∈ Rn×d have elements Xij ∼ N (0, 1) and let
A := 1

dXX⊺ ∈ Rn×n. Assuming d ≥ n, then A is almost surely full rank, and it is n× n Wishart-
distributed with d degrees of freedom. The top-left ns × ns corner of Aσ is also Wishart-distributed
with d degrees of freedom; and so, for large ns and d, its eigenvalues approximately follow the
Marchenko–Pastur law with ratio λ = ns/d. TheR-transform is given byRns

(z) = (1−zns/d)−1.
Applying free decompression, we estimate the R-transform of the full matrix to be

Rn(z) =

(
1− z · n

ns
· ns
d

)−1

=
(
1− z · n

d

)−1

.

This is the R-transform of a Marchenko–Pastur law with ratio λ = n/d, and it approximates the
spectral density of a Wishart-distributed matrix with d degrees of freedom and size n × n. This

5



is precisely what we expected for the full matrix A. In effect, this allows us to infer spectral
properties of the A = 1

dXX⊺ ∈ Rn×n from the submatrix Ans
= 1

dXns
X⊺

ns
∈ Rns×ns , where the

Xns
∈ Rns×d are (much) shorter matrices with (much) smaller aspect ratio λ (see Figure 1).

However, for more general classes of matrices, inverting the Stieltjes transform in order to compute its
R-transform is not analytically tractable. Instead, we will work with the Stieltjes transform directly.

3.2 Evolution of the Stieltjes Transform

Our approach can be made precise by appealing to Theorem 1 and operating directly on the R
transform. We do this in Proposition 2, which shows that free decompression corresponds to the
evolution of a PDE in the Stieltjes transform, given by (1). To do so, for a fixed R-transform, we let
R(t, z) = R(zet), so that α = n/ns = et, and we consider the corresponding Stieltjes transform
m(t, z) and its inverse ω(t, z). Then, the following proposition, proved in Appendix E, holds.

Proposition 2. The Stieltjes transform m(t, z) corresponding to R-transforms R(zet) satisfies

∂m

∂t
= −m+m−1 ∂m

∂z
. (1)

Since (1) is a first-order quasilinear PDE, it can be readily solved using the method of characteristics.
This is outlined in Proposition 3, which is proved in Appendix E. A key consequence of this
proposition is that we obtain explicit solutions to (1) in terms of the initial data and desired “time” t.
Proposition 3. Suppose m0 is analytic in an open domain Ω ⊂ C, and m0(z) ̸= 0 for all z ∈ Ω.
Consider the initial-value problem (1) with m(0, z) = m0(z). For z0 ∈ Ω, there is a unique solution
m(t, z) whose graph can be parametrized by curves τ 7→ (t(τ), z(τ),m(τ)), τ ∈ R≥0, where

t(τ) = τ, z(τ) = z0 −m0(z0)
−1(eτ − 1), m(τ) = m0(z0)e

−τ , (2)

valid for τ such that z(τ) ∈ Ω. Furthermore, letting Φ(t, z, z0) := z − z0 +m(z0)
−1(eτ − 1), so

Φ(t(τ), z(τ), z0) = 0, there exists an inverse function z0 = ϕ(t, z) solving Φ(t, z, ϕ(t, z)) = 0

which allows the explicit solution of (1) by m(t, z) = m0(ϕ(t, z))e
−t.

Finally, Proposition 4, proved in Appendix F, shows that errors in free decompression can grow, but
no more than polynomially fast in the decompression ratio n

ns
.

Proposition 4. Let m be a Stieltjes transform of a density ρ such that ∥ρ∥L∞ < +∞, and let δmns

denote the error in an approximation to m starting with a matrix size of ns. For δmn, the error
under free decompression (1) to a ratio n/ns, there is a constant ν > 0 such that for any t > 0,

∥δmn∥L2 ≤ (n/ns)
ν∥δmns

∥
L

2 .

3.3 Heuristic Motivation

While our method is ultimately constructed via Theorem 1, it is illustrative to consider the behavior
of the Stieltjes transforms of successive matrices An in our sequence. In what follows, we will
proceed informally, roughly following the reasoning outlined in Tao (2017). This heuristic approach
is to aid the reader’s intuition by viewing the evolution equations in terms of the Schur complement,
to motivate the full proof in Appendix E. We let ei denote the i-th column basis vector. Taking
two successive matrices in our sequence An, we exploit properties of the Schur complement and the
Woodbury matrix identity, to obtain the relationship between the trace of their inverses

tr(An+1 − zI)−1 = tr(An − zI)−1 +
e⊺n+1(An+1 − zI)−2en+1

e⊺n+1(An+1 − zI)−1en+1

. (3)

Assuming the rows and columns of A have already been randomly permuted, then the distribution
of each row and column of (An+1 − zI)−1 is the same. Therefore, in expectation,

E
[
e⊺n+1(An+1 − zI)−1en+1

]
=

1

n+ 1

n+1∑
i=1

E
[
e⊺i (An+1 − zI)−1ei

]
=

1

n+ 1
E
[
tr(An+1 − zI)−1

]
.
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Figure 2: Analytic continuation of the Stieltjes transform of a Marchenko–Pastur distribution (with
ratio λ = 1

50 ). (a) The principal branch contains a branch cut along the support of the spectral density,
while (b) the secondary branch is continuous in this region. Curves (white) highlight the evolution
of t 7→ ϕ(t, z) over t ∈ [0, 4], crossing the support of the spectral density.

Algorithm 1: Pseudocode for Free Decompression

Input :random submatrix Ans
∈ Rns×ns of Hermitian matrix A ∈ Rn×n ;

spectral smoothing function EigApprox; gluing function Glue;
Stieltjes transform approximation Stieltjes, perturbation δ

Output :Estimated spectral density values {ρ̂(x)}x∈X .

1 Compute the spectrum of Ans
, {λi}ni=1. // Step 1: Compute spectrum

2 S = EigApprox({λi}ni=1) // Step 2: Estimate smoothed spectral density
3 G = Glue(S) // Step 3: Estimate glue function
4 m(z) = Stieltjes(S,G). // Step 4: Compute the Stieltjes transform

5 foreach x ∈ X do
6 Find zx ∈ C− such that x+ iδ = zx −

n
ns

−1

m(zx)
. // Step 5: Solve characteristics

7 return
{

1
πℑm(zx)

ns

n

}
x∈X . // Step 6: Return the estimated spectral density

The same holds for e⊺n+1(An+1 − zI)−2en+1. This is effectively a Hutchinson trace estimation
procedure (Bekas et al., 2007), and we note that the variance of the Hutchinson estimators be-
come small for large n as well (Roosta-Khorasani & Ascher, 2015). Assuming this and noting that
tr(An+1 − zI)−2 = d

dz tr(An+1 − zI)−1, normalizing by n+ 1 we deduce the difference equation

mAn+1
(z)−mAn

(z) = n−1
(
−mAn

(z) +m−1
An

(z)m′
An

(z)
)
+O(n−2). (4)

For n large, provided et ≈ n for t > 0 so that ∂
∂tm(et, z) ≈ n[mAn+1

(z) −mAn
(z)], (4) is well

approximated by the differential equation for the Stieltjes transform mA(t, z) given by (1).

4 Approximating the Stieltjes Transform

In principle, Propositions 2 and 3 suggest a straightforward approach to estimating the Stieltjes
transform under free decompression, but these results disguise two main practical challenges:

1. The Stieltjes transform is singular on the support of the spectral density, requiring analytic con-
tinuation in a way that does not disrupt the complex transport flow of (1). Without imposing
additional properties, numerical analytic continuation is notoriously ill-posed (Trefethen, 2023).

2. The second challenge is accurately approximating the initial Stieltjes transform m(z) from the
submatrix eigenvalues. This is a well-studied problem, but as we will see, the nature of the PDE
(1) necessitates accomplishing this task to a much higher degree of precision than is typically
required.
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4.1 Analytic Continuation

The Stieltjes transform m is typically defined on the upper half-plane C+ := {z : ℑ(z) > 0} and
extended to the lower half-plane C− via the Schwarz reflection principle,m(z) = m(z). This defines
the principal branch, which exhibits a branch cut along the real axis on I := supp(ρ). However,
the curves ϕ(t, z) traced by the PDE dynamics descend from C+ into C−, crossing the real axis
precisely through I , where the principal branch becomes discontinuous. This is formalized in the
following proposition.

Proposition 5. Let the curve t 7→ ϕ(t, z) be the solution of characteristic curve given in Propo-
sition 3. Then, for each z ∈ C+, there exists t∗ > 0 such that ℑϕ(t∗, z) = 0. In particular,
ℜϕ(t∗, z) ∈ I .

Proposition 5 is proven in Appendix C.1, and this crossing necessitates defining a new branch of
the transform—equal to the principal branch in C+—that extends analytically into C− and remains
holomorphic across the interior I◦. The existence of such a continuation is guaranteed by the
principle of analytic continuation: since m is holomorphic in C+ and has no singularities on I , it
can be extended across the cut into C−. We refer to this extension as the secondary branch.

Figure 2 illustrates this continuation for the Marchenko–Pastur law, showing both branches. Multiple
approaches were considered to construct the secondary branch, and are discussed in Appendix D.
The most successful approach, and the one considered in experiments to follow, introduces a gluing
function G(z) defined in (C.5), which compensates for the discontinuity across I◦. In Appendix C,
we show that this function can be accurately approximated by a low-degree rational function (a Padé
approximant). When the analytic form of the Stieltjes transform is known, this construction is exact,
as shown in Table B.3. In empirical settings—when the density is estimated from the eigenvalues of
a submatrix—the same approximation still enables accurate continuation.

In the sequel, all references to the Stieltjes transformm implicitly refer to this secondary, analytically
continued branch.

4.2 Approximating the Empirical Spectral Density

In light of Proposition 5, free decompression cannot be applied—even in a weak sense—to the empir-
ical Stieltjes transform, m̂An

(z) =
∑n

i=1
1

λi−z . Instead, we must work with the Stieltjes transform
of a smoothed approximation to the empirical spectral distribution. For the synthetic examples we
consider, the spectral densities of interest exhibit square-root behavior at the edges of their support,
as shown in Table B.1, making Chebyshev polynomials a natural basis for approximation.

However, for real datasets, which may exhibit more complex or irregular spectral behavior, it is
often preferable to use the more flexible class of Jacobi polynomials. These introduce two tunable
hyperparameters (α, β) and recover Chebyshev polynomials when (α, β) = ( 12 ,

1
2 ). To fit these

polynomials, we found that Galerkin projections of kernel density estimates were often necessary,
using Gaussian or Beta kernels. Once the spectral density is approximated in the Jacobi basis, the
Stieltjes transform is computed directly using Gauss–Jacobi quadrature (Shen et al., 2011, Section
3.2.2). Details of these procedures and a full algorithmic description of our implementation can be
found in Appendix D. Pseudocode for the full free decompression method is provided in Algorithm 1.

5 Numerical Examples

We now present numerical examples that demonstrate the utility of our free decompression method.
To begin, we consider a number of synthetic examples for random matrices whose spectral densities
and their corresponding Stieltjes transforms have known analytic expressions. We then consider two
evaluations on real-world large-scale datasets: Facebook Page-Page network (Leskovec & Krevl,
2014; Rozemberczki et al., 2021); and the empirical Neural Tangent Kernel (NTK) corresponding to
ResNet50 (He et al., 2016) trained on CIFAR10 (Krizhevsky, 2009). All experiments were conducted
on a consumer-grade device with an AMD Ryzen®7 5800X processor, NVIDIA RTX 3080, and
64GB RAM. Hyperparameters used in each experiment are listed in Appendix H.
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Figure 3: (a) Empirical spectral densities (dashed) of the symmetrically normalized Laplacian matrix
of the SNAP Facebook dataset, compared against estimates obtained via free decompression from
an initial submatrix of size 212 (solid). (b) Empirical spectral densities (dashed) of submatrices of
the log-NTK matrix of size 50,000, computed from the CIFAR-10 dataset using a ResNet-50 model,
and estimates obtained via free decompression from an initial submatrix of size 210 (solid).

Synthetic Experiments: We consider five families of distributions that commonly arise as spectral
distributions in random matrix theory: the Wigner (1955) semicircle law (free Gaussian); Marčenko
& Pastur (1967) (free Poisson); Kesten (1959) and McKay (1981) (free binomial); Wachter (1978)
(free Jacobi); and the general free-Meixner family (Saitoh & Yoshida, 2001; Anshelevich, 2008)
(free analogs of the classical Meixner (1934) laws). In Table B.1, we list, for each law, its absolutely
continuous density ρ(x) supported on [λ−, λ+], and any point masses. Immediately following,
Table B.2 summarizes the simplest random-matrix or combinatorial constructions realizing these
laws in practice. Figure 1 depicts our free decompression procedure for the Marchenko–Pastur case.
We sampled X ∈ Rn×d, n = 1000, d = 50,000, with each Xij ∼ N (0, 1). The left panel shows the
empirical density of A = 1

dXX⊺ as well as our density approximation using Beta kernels projected
onto 50-degree Chebyshev polynomials. The center panel shows a range of densities estimated by
free decompression. The right panel compares our freely decompressed approximation of the spectral
distribution of A ∈ Rn×n, n = 32,000, with the known exact Marchenko–Pastur law with ratio
λ = 32

50 . The principal and secondary branches are compared in Figure 2. The remaining models
are treated in Appendix B.1, with comparison of the expected log-determinants and distributional
distances.

SNAP Facebook Dataset: We use the publicly available Facebook Page–Page network from SNAP
(Leskovec & Krevl, 2014; Rozemberczki et al., 2021), where nodes represent verified Facebook pages
(e.g., politicians, musicians) and edges indicate mutual likes. This graph is undirected with 22,470
nodes and 171,002 edges. We study the eigenvalue distribution of the symmetrically normalized
Laplacian matrix of the graph (see e.g., (Mahoney, 2016, p. 16, Definition 4)), which yields a compact
spectrum in [0, 2]. To avoid artificial spikes caused by degree-1 leaf nodes (which concentrate
eigenvalues at λ = 1), we apply a small Erdős–Rényi perturbation graph G(n, p) at the connectivity
regime where p = 1

n log(n) (Huang & Landon, 2020) to the adjacency matrix of the graph before
constructing the Laplacian. Comparison of the empirical spectral densities of randomly sampled
submatrices with their free decompression approximations is shown in the left panel of Figure 3.

Neural Tangent Kernel: Finally, we consider the spectrum of an empirical NTK derived from
a ResNet50 network trained on CIFAR10. The NTK is a well-studied object in machine learning
(Jacot et al., 2018; Novak et al., 2022); see Appendix G for background. This example is particularly
challenging where naïve approaches fail. The empirical NTK is known to be highly ill-conditioned
for well-trained multi-class models (Ameli et al., 2025). When the NTK is constructed in blockwise
fashion, classification models with c classes often exhibit a low-rank structure, with approximately
1/c of the eigenvalues being extremely small. To address this, we project the NTK matrix onto its non-
null eigenspace, removing the near-zero eigenvalues, and then reconstruct a Hermitian matrix in the
reduced space. Subsamples are drawn from this reduced matrix. Specifically, we took Â to be the full
55,560×55,560 matrix (corresponding to 5556 images), and reduced this to a 50,000×50,000 matrix
A after removing the null component. Submatrices of dimension 1024, 2048, 4096, 8192, 16,382,
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Table 2: Comparison of process time for direct computation of the spectral density versus free
decompression (FD) on the NTK dataset. In the FD column, the first term is the time to compute
eigenvalues of the initial 210-sized submatrix (common to all rows) and the second term is the FD
step. Metrics (columns 4–8) compare the true spectral density with the FD approximation, and are
reported as distributional distances (total variation, Jensen–Shannon, Kolmogorov–Smirnov) and
relative errors of the first and second moments, all multiplied by 100 to give percentages. Values are
the mean over 20 randomly sampled initial submatrices with standard deviations in parentheses.

Size Process Time (sec) Distributional Distances (×100) Moments Rel. Error (×100)

ns Direct FD (ours) TV JS KS ∆µ1/µ1 ∆µ2/µ2

210 3.6 3.6 + 0.0 0.00% (±0.00) 0.00% (±0.00) 0.00% (±0.00) 0.00% (±0.00) 0.00% (±0.00)
211 10.2 3.6 + 0.6 1.72% (±0.37) 7.60% (±1.99) 0.48% (±0.10) 0.05% (±0.03) 0.09% (±0.04)
212 50.9 3.6 + 0.6 2.06% (±0.35) 4.67% (±0.67) 0.70% (±0.12) 0.01% (±0.01) 0.02% (±0.02)
213 358.9 3.6 + 0.6 3.24% (±0.56) 6.30% (±0.51) 1.18% (±0.22) 0.01% (±0.00) 0.02% (±0.01)
214 2820.2 3.6 + 0.7 4.33% (±0.87) 7.55% (±0.80) 1.76% (±0.48) 0.01% (±0.01) 0.03% (±0.01)
215 20451.2 3.6 + 0.8 5.16% (±1.18) 7.96% (±1.11) 2.51% (±0.84) 0.02% (±0.01) 0.05% (±0.02)
50K 67331.1 3.6 + 0.8 5.94% (±1.48) 8.33% (±1.41) 3.02% (±1.14) 0.17% (±0.03) 0.49% (±0.06)

and 32,768 were then sampled, and their empirical spectral distributions are shown as dashed lines in
the right panel of Figure 3. Free decompression approximations based on the Stieltjes transform of the
1024× 1024 submatrix (see Figure G.1) are shown as solid lines. Table 2 reports the corresponding
process times and errors in total variation (TV) distance, Jensen–Shannon (JS) distance, Kolmogorov–
Smirnov (KS) distance, and the relative error in the first and second moments.

6 Conclusion

In modern settings, it is becoming increasingly common that the spectrum information of a matrix
is required, even when the matrix is too large to fit into memory, or is otherwise unavailable. These
matrices comprise the category of impalpable matrices, offering unique challenges to numerical
linear algebra practitioners. We have outlined free decompression, a novel method of approximating
the spectral density of a large impalpable Hermitian matrix from the spectrum of a randomly sampled
submatrix. Our initial implementation of this method shows promise as a tool to extract accurate
information about the spectrum of extremely large matrices that would otherwise be unavailable. We
hope that this work motivates other researchers to further develop these and similar tools to further
unlock information in impalpable matrices that is otherwise out of reach.

Limitations. While our method imposes few restrictions on the large matrix of interest, the quality
of approximation depends strongly on asymptotic estimates of the spectral density of An. While
promising for future research, performing free decompression accurately remains highly challenging,
with Proposition 4 highlighting the need for accurate spectral density estimation and analytic continu-
ation. Without a general approach to estimate and operate on the Stieltjes transform on log-scale, that
is, estimating z 7→ m(ez), highly ill-conditioned matrices still remain out of reach. At present, the
implementation of our method is sensitive to the quality of approximation of the gluing function; and,
while our approach works flawlessly in simple scenarios, it becomes more delicate with real data.
Nevertheless, we stress that despite these limitations, no competing alternative exists for estimating
the spectral density of impalpable matrices.
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Appendix A Nomenclature

We use boldface lowercase letters for vectors, boldface upper case letters for matrices, and normal
face letters for scalars, including the components of vectors and matrices. Table A.1 summarizes the
main symbols and notations used throughout the paper, organized by context.

Appendix B Benchmark Matrix Ensembles

We evaluate our method on a suite of benchmark matrix ensembles with known limiting spectral
distributions. Appendix B.1 reviews the underlying matrix models and associated laws, while Ap-
pendix B.2 presents decompression results on these closed-form distributions.

B.1 Overview of Random Matrix Ensembles

We review several canonical spectral laws arising from random matrix and combinatorial models,
which serve as ground-truth distributions in our benchmarks. Concretely, we consider the Wigner
(1955) semicircle law (free Gaussian), Marčenko & Pastur (1967) (free Poisson), Kesten (1959) and
McKay (1981) (free binomial), Wachter (1978) (free Jacobi), and the general free-Meixner family
(Saitoh & Yoshida, 2001; Anshelevich, 2008) (free analogs of the classical Meixner (1934) laws).

2This definition differs by a factor of −1/π from the more common definition 1
π
p. v.

∫ ρ(y)
x−y

dy.
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Table A.1: Common notations used throughout the manuscript.

Context Symbol Description

Free Probability ρ Absolutely continuous empirical spectral density, R→ R+

I Compact support interval of density ρ, I = [λ−, λ+] ⊊ R
m Stieltjes transform of density, m(z) =

∫
R

ρ(y)
y−z dy, C \ I → C

H[ρ] Hilbert transform2 of density,H[ρ](x) = p. v.
∫
R

ρ(y)
y−x dy, R→ R

R Voiculescu’s R-transform, R(z) = ω(−z)− 1
z with ω(m(z)) = z

Free
Decompression

n Size of the target (large) matrix
ns Size of the sampled (small) sub-matrix, ns < n
t Decompression scale, t = log

(
n
ns

)
ρ0,m0 Density and Stieltjes transform at t = 0

Notation C± Upper (lower) half complex plane
ℜ,ℑ Real and imaginary part of complex variable
p. v. Cauchy principal value

In Table B.1, we list, for each law, its absolutely continuous density ρ(x) supported on I = [λ−, λ+],
and any point masses. Immediately following, Table B.2 summarizes the simplest random-matrix or
combinatorial constructions realizing these laws in practice.

Table B.1: Spectral laws used in our analytic benchmarks, along with their free-probability analogs,
absolutely continuous density functions ρ(x), compact support intervals [λ−, λ+], and any point-
mass atoms.

Distribution Free Corresp. Abs. Cont. Density ρ(x) Support λ± Number of Atoms

Wigner semicircle Free Gaussian
2
√

r
2 − x

2

πr
2 ±r None

Marchenko–Pastur Free Poisson

√
(λ+ − x)(x− λ−)

2πλx
(1±

√
λ)

2
(1− 1

λ
)δ(x) if λ > 1

Kesten–McKay Free Binomial
d
√

4(d− 1)− x
2

2π(d
2 − x

2
)

±2
√
d− 1 None

Wachter Free Jacobi
(a+ b)

√
(λ+ − x)(x− λ−)

2πx(1− x)

(√
b±

√
a(a+ b− 1)

a+ b

)2

x = 0, 1

Meixner Free Meixner
c
√

4b− (x− a)
2

2π((1− c)x
2
+ acx+ bc

2
)

a± 2
√
b At most two

All of the above distributions arise—up to affine rescaling—from the free Meixner class of measures
(Anshelevich, 2007), whose orthogonal-polynomial recursion coefficients stabilize after the first level.
Equivalently, the associated Jacobi matrix takes the bordered–Toeplitz form

J =


α0 β0
β0 α1 β1

β1 α1 β1
. . . . . . . . .

 , αn = α1, βn = β1 (n ≥ 1).

See Dubbs & Edelman (2015, Table 2) for the specific (α1, β1) giving each law. In particular, setting
α0 = 0, β0 = 1 yields the standard zero-mean, unit-variance normalization.
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Table B.2: Empirical realizations of the spectral laws listed in Table B.1. The matrix X is assumed
to have i.i.d. standard normal entries.

Distribution Matrix or Combinatorial Model Parameters

Wigner semicircle Gaussian orthogonal ensemble 1√
2
(X+X

⊺
) r = 2

√
n

Adjacency matrix of Erdős–Rényi graph G(n, p) pn = O(log(n))

Marchenko–Pastur Sample covariance (Wishart) 1
d
XX

⊺, X ∈ Rn×d
λ = n

d

Kesten–McKay Haar–orthogonal Hermitian sum
∑k

i=1(Oi +O
⊺
i ) d = 2k

Projection model dPODO
⊺
P (Longoria & Mingo, 2023) d ≥ 2

Adjacency matrix of a random d-regular graph d ≥ 2

Wachter Generalized eigenvalues of (S1,S1 + S2), Si =
1
di
XiX

⊺
i a =

d1
n

, b = d2
n

Arises in MANOVA problems

Meixner Bordered Toeplitz tridiagonal with Jacobi coefficients α1, β1 a = α1, b = β1 − 1
Block–Gaussian ensembles (Lenczewski, 2015)

Since the Jacobi parameters in the above become constant beyond the second level, the continued-
fraction expansion of the Stieltjes transform

m(z) =
1

z − α0 −
β2
0

z − α1 −
β2
1

z − α1 −
β2
1

. . .

,

becomes eventually periodic, exhibiting a repeating tail that we encode by

m(z) =
1

z − α0 − β2
0T

, where T =
1

z − α1 − β2
1T

.

Eliminating T yields the quadratic equation

Q(z)m(z)2 − P (z)m(z) + 1 = 0,

where

P (z) = 2(z − α0)−
β2
0

β2
1

(z − α1),

Q(z) = (z − α0)
2 − β2

0

β2
1

(z − α0)(z − α1) +
β4
0

β2
1

.

Note that Q(z) is at most quadratic (degenerating to linear when β2
0 = β2

1 ), and P is at most linear.
Solving for m(z) yields

m(z) =
P (z) +

√
P (z)2 − 4Q(z)

2Q(z)
, (B.1)

where the branch of the square root is chosen such thatm(z) defines a Herglotz map C+ → C+. The
corresponding Hilbert transformH[ρ](x) = ℜm(x+ i0) inside the support interval I = [λ−, λ+] is
thus the rational function

H[ρ](x) = P (x)

2Q(x)
, x ∈ I. (B.2)

Table B.3 lists these polynomials P,Q and the corresponding free cumulant R-transforms for every
distribution in Table B.1.
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Table B.3: Stieltjes, Hilbert, and R-transforms for the spectral laws listed in Table B.1. The Stieltjes
and Hilbert transforms are constructed from the polynomials P (z) and Q(z) according to (B.1) and
(B.2).

Stieltjes and Hilbert Transforms

Distribution P (z) Q(z) R-Transform

Wigner semicircle −z
r
2

4

r
2

4
z

Marchenko–Pastur 1− λ− z λz
1

1− λz

Kesten–McKay
(2− d)z

d− 1

d
2 − z

2

d− 1

−d+ d
√

1 + 4z
2

2z

Wachter
a− 1− (a+ b− 2)z

a+ b− 1

z(1− z)

a+ b− 1

−(a+ b) + z +
√

(a+ b)
2
+ 2(a− b)z + z

2

2z

Meixner (c− 2)z − ac (1− c)z
2
+ acz + bc

2

(
c

1− c

)
1− az +

√
(1− az)

2 − 4b(1− c)z
2

2z
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(c) Final Empirical Density (n = 32K)
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Free Decompression Solution

Figure B.1: (a) Estimation of the Wigner semi-circle law for A = (X+X⊺)/
√
2, where X is a n×n

matrix with standard normal entries for n = 1000; (b) approximation of densities for various values
of n via free decompression (Algorithm 1); and (c) comparison of our decompressed approximation
of n = 32,000 with the known limiting analytic density.

B.2 Free Decompression of Closed-Form Benchmark Distributions

In addition to the Marchenko–Pastur case discussed earlier (Figure 1), free decompression was tested
on a matrices with Wigner, Kesten–McKay, Wachter, and Meixner limiting spectral distributions, as
shown in Figures B.1 to B.4, respectively. To identify the Meixner distribution under free decom-
pression, we make use of the R-transform. Let Ra,b,c(z) denote the R-transform for the Meixner
distribution with parameters a, b, c as given in Table B.3. A few calculations show that for any α > 0,
it holds Ra,b,c(αz) = Ra(α),b(α),c(α)(z) where

a(α) = aα, b(α) =
bα2(1− c(α))

1− c , c(α) =
c

c+ α(1− c) .

Consequently, performing free decompression on a Meixner distribution with parameters a, b, c by a
factor α = n/ns will yield a Meixner distribution with parameters a(n/ns), b(n/ns) and c(n/ns).

For the Marchenko–Pastur density we also compared the spectral samples of our free decompression
estimates with those taken from the analytic density, in order to measure sensitivity to the initial
sample that was decompressed. We used three measures of accuracy: total variation, Jensen–Shannon
distance, and log-determinants. To this end, free decompression was performed on ten different
matrices of size n = 1000, each with d = 50,000 degrees of freedom, to obtain approximations
of the spectral density corresponding to 32,000 dimensional expansions. Eigenvalues were then
sampled from the corresponding distributions via quasi-Monte Carlo, and compared to samples from
the analytic density with aspect ratio λ = 32

50 . The average distance in total variation was found to
be 0.2%, while the average Jensen–Shannon distance was 1.867%. The mean log-determinant was
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Figure B.2: Estimation of the Kesten–McKay law from the model A =
∑k

i=1(Oi +O⊺
i ) (Longoria

& Mingo, 2023, Section 5), with d = 2k = 2 and size n = 32,000, where Oi are Haar–orthogonal
matrices generated via Mezzadri (2007). (a) Spectral density from a subsample of size ns = 1000.
(b) Densities for various n via free decompression (Algorithm 1). (c) Comparison of decompressed
and exact density at n = 32,000.
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Figure B.3: (a) Estimation of the Wachter distribution with ratios a = 80, b = 50, from eigenvalues
of Wishart matrices with d1 = 80,000 and d2 = 50,000 degrees of freedom, respectively, and
size n = 1000; (b) approximation of densities for various values of n via free decompression
(Algorithm 1); and (c) comparison of our decompressed approximation of n = 32,000 with the
known limiting analytic density for a = 80

32 , b = 50
32 .
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Figure B.4: (a) Estimation of the Meixner distribution with a = 0.1, b = 4, c = 0.6 from n =
1000 quasi-Monte Carlo samples; (b) approximation of densities for various values of n via free
decompression (Algorithm 1); and (c) comparison of our decompressed approximation of n =
32,000 with the known analytic density given by the Meixner distribution with a ≈ 0.566, b ≈ 253,
c ≈ 0.210.

computed to be −13514.88 with a standard deviation of 1.503, versus the baseline of −13538.94.
This corresponds to an absolute relative error of 1.78% with standard error of 0.01%.
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Appendix C Considerations for Solving the PDE Using Characteristics

Our task is to compute m(t, z) for a grid of points z ∈ C+ and times t ∈ [0, τ ], given the initial con-
dition m(0, z) = m0(z). By Proposition 3, one has the explicit representation m(t, z) = m0(z0)e

−t

where the “initial label” z0 satisfies the characteristic relation

z = z0 −
et − 1

m0(z0)
. (C.1)

Equivalently, each characteristic is a straight line emanating from z0 with direction vector
−m0(z0)

−1.

To evaluate m(t, z) at a given (t, z), one must solve the nonlinear equation (C.1) for the unknown
initial point z0 = ϕ(t, z). Although this root-finding is numerically tractable, it raises two interlock-
ing issues. First, the map t 7→ ϕ(t, z) departs the upper half-plane and crosses the real axis through
the spectral support I := supp(ρ0), where m0 is discontinuous. Second, evaluating m0 on the lower
half-plane requires a holomorphic extension of m0 across the cut I .

In the remainder of this section, we address these points in two stages. In Appendix C.1, we prove
that every trajectory ϕ(t, z) indeed intersects R precisely on I . In Appendix C.2, we construct a
second-sheet continuation of m0, holomorphic across I , via an additive Riemann-Hilbert (gluing)
ansatz.

C.1 Challenge: Crossing the Cut

Consider a fixed target point z ∈ C+. We seek to determine the initial points z0 = ϕ(t, z) that, under
the flow of the characteristic equation (C.1), pass through z at time t. Define the curve C : t 7→ z0 by
z0(t) = ϕ(t, z), given implicitly as the solution of (C.1) for fixed z. This curve traces the locus of
initial conditions z0 whose corresponding characteristic trajectories intersect the point z at time t.

Unlike the characteristic curves themselves—which are straight lines—this curve z0(t) is highly
nonlinear, beginning at z0(0) = z. In the following propositions, we show that this curve descends
from its initial point z ∈ C+, eventually crossing into the lower half-plane C−, and in fact intersects
the real axis precisely on the support of ρ.
Proposition C.1 (Characteristic curve exiting C+). Let ρ0 be an absolutely continuous probability
density (with respect to Lebesgue measure) supported on a compact interval I ⊂ R. Assume there
exist a compact subinterval I ′ ⊂ int I and a constant c0 > 0 such that ρ0(x) ≥ c0 for all x ∈ I ′.
Let m0(z) denote the Stieltjes transform of ρ0, which defines a Herglotz map C+ → C+. For each
z ∈ C+ and t > 0, define ϕ(t) := ϕ(t, z) ∈ C implicitly by

z = ϕ(t)− et − 1

m0(ϕ(t))
. (C.2)

Then there exists a finite time t∗ = t∗(z) > 0 such that ℑϕ(t) > 0 for 0 ≤ t < t∗ and ℑϕ(t∗) = 0.

Proof. Let a(t) = et−1 and definew(z) = −1/m0(z), so thatw : C+ → C+. Fix z = x+iy ∈ C+.
Write ϕ(t) = u(t) + iv(t) and w(ϕ(t)) = α(t) + iβ(t) with β(t) > 0.

First, we show that when the density ρ0 has no atoms, ϕ(t) does not asymptote to the edges of I as
t→∞. Taking real parts in (C.2) gives

x = u(t) + a(t)α(t).

If u(t) → u∗ ∈ ∂I and v(t) → 0+, then by Plemelj–Sokhotski m0(u
∗ + i0) ∈ R is finite (no

atom at u∗), hence α(t) → α∗ := ℜw(u∗ + i0) = −1/m0(u
∗ + i0) ̸= 0, which forces x =

u(t) + a(t)α(t) → u∗ + a(t)α∗, a contradiction since a(t) → ∞. Thus the trajectory cannot
converge to an endpoint while v(t) > 0. This rules out the pathological possibility that the trajectory
merely approaches the boundary without ever entering the support. Consequently, we may assume
the curve eventually moves inside the interior of I , where the following estimates apply.

Next, we show β is bounded below. By the Plemelj boundary values, for u ∈ I we have

lim
v→0

+
ℑw(u+ iv) =

π ρ0(u)

|m0(u+ i0)|2
.
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Since ρ0 ≥ c0 > 0 on I ′ and |m0(u + i0)| is continuous on I ′, there exist v0 > 0 and c > 0 such
that ℑw(u+ iv) ≥ c for all u ∈ I ′ and 0 < v ≤ v0. Hence, once u(t) ∈ I ′ with v(t) ≤ v0, we have
β(t) ≥ c.
Finally, taking imaginary parts in (C.2) gives

v(t) = y − a(t)β(t).
As t → ∞, we have a(t) → ∞ while β(t) remains bounded below by c whenever u(t) ∈ I ′ and
0 < v(t) ≤ v0. Thus, v(t)→ −∞, so by continuity there exists a first time t∗ where v(t∗) = 0.

Proposition C.2 (Crossing on the support). Suppose the hypotheses of Proposition C.1 hold, and
define the curve t 7→ ϕ(t, z) ∈ C implicitly by (C.2) for a fixed z ∈ C+. Let t∗ > 0 be the first time
such that ℑϕ(t∗) = 0, whose existence is guaranteed by Proposition C.1. Then the real part of the
crossing point lies in the support of the density: ℜϕ(t∗) ∈ I .

Proof. Let x∗ := ϕ(t∗) be the real-valued point where the curve ϕ intersects the real axis. Suppose,
for contradiction, that x∗ /∈ I . Since I is compact, there exists an open interval J ⊂ R \ I containing
x∗. On such an interval J , the Stieltjes transform m0(x) admits real boundary values. Indeed, by the
Plemelj–Sokhotski formula,

lim
ϵ→0

+
m0(x+ iϵ) = H[ρ0](x) + iπρ0(x), x ∈ R, (C.3)

and since ρ0(x) = 0 for all x ∈ J , the imaginary part vanishes and m0(x) is real-valued on J . In
particular, m0(x

∗) ∈ R. Substituting ϕ(t∗) = x∗ into (C.2), we find that the right-hand side of the
equation is real, so z ∈ R, contradicting the assumption that z ∈ C+. Therefore, the assumption
x∗ /∈ I is false, and we conclude x∗ ∈ I .

Since the trajectory C enters the lower half-plane, we must evaluate the initial field m0 both across
the real line at points on supp(ρ0), and inside C−. However, by definition, the Stieltjes transform

m0(z) =

∫
I

ρ0(x)

x− z dx,

is only defined for ℑ(z) > 0, and exhibits a jump discontinuity across the real axis precisely on
supp(ρ0). This creates an analytic obstruction: to evaluate m0(ϕ(t, z)) for arbitrary t, we require
a holomorphic continuation of m0 to the lower half-plane that is smooth across the cut I . This
continuation is constructed in the next section.

C.2 Holomorphic Continuation of Stieltjes Transform

Let m+(z) denote the Stieltjes transform corresponding to a density ρ supported on a compact
interval I ⊂ R (such as the field m0(z) and the density ρ0 in our case). By definition, this function
is a Herglotz map C+ → C+, holomorphic on C+, and admits boundary values on R via the
Sokhotski–Plemelj theorem:

lim
ϵ→0

+
m+(x+ iϵ) = H[ρ](x) + iπρ(x).

A natural extension of m+ to C− is the Schwarz reflection

m+(z) = m+(z̄), ℑ(z) < 0.

This extension is holomorphic on R\I , but has a discontinuity across I . Specifically, the discontinuity
arises from a jump in the imaginary part:

lim
ϵ→0

+
ℑ(m+(x+ iϵ))−ℑ(m+(x− iϵ)) = 2πρ(x).

Thus, ℑ(m+) is discontinuous on I , while it vanishes and remains continuous on R \ I . We also
note that the real part, ℜ(m+) = H[ρ](x), is continuous across the entire real axis.

Our goal is to construct a second analytic continuation of m+, denoted m−, that is holomorphic
across the interior of the cut I . That is, m− agrees with m+ on C+ and continues analytically to C−
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through I , at the expense of developing a discontinuity across R \ I . This setup forms an additive
Riemann–Hilbert problem: find two branches m+ and m− such that

lim
ϵ→0

+
m+(x+ iϵ) = lim

ϵ→0
+
m−(x− iϵ), x ∈ I.

We propose the following structure:

m−(z) :=

{
m+(z), ℑ(z) > 0,

−m+(z) +G(z), ℑ(z) < 0,
(C.4)

where G(z) is a glue function chosen to cancel the jump across I . In particular, we require that

ℑ(G(x+ i0)) = 0 x ∈ I,
ℜ(G(x+ i0)) = 2H[ρ](x), x ∈ I. (C.5)

The first condition in the above ensures the continuity of the imaginary part on the whole of R:

lim
ϵ→0

+
ℑ(m−(x+ iϵ))−ℑ(m−(x− iϵ)) = πρ(x)− πρ(x) = 0,

and the second condition guarantees continuity of the real part across I:

lim
ϵ→0

+
ℜ(m−(x+ iϵ))−ℜ(m−(x− iϵ)) = 0,

while allowing discontinuities on R \ I , which are harmless for our purposes. In this way, m+ and
m− form two complementary Riemann sheets: m+ is holomorphic in C+∪(R\I) but discontinuous
across I , while m− is holomorphic in C− ∪ I , with a branch cut on R \ I .

To characterizeG, note thatG(z) = m−(z)+m+(z), and it must be analytic in C−. On the real axis
inside the support, this glue function satisfies ℜG(x) = 2H[ρ](x), and thus inherits key structural
properties from the Hilbert transform. In order to design an efficient functional form for G, we first
study the behavior ofH[ρ] itself in Proposition C.3, which guides the minimal rational approximation
ansatz in the next step.

Proposition C.3 (Properties of the Hilbert transform). Let ρ be a bounded, piecewise-C1 density
supported on a connected compact interval I = [λ−, λ+] ⊂ R. Define the Hilbert transform

H[ρ](x) = p. v.

∫ λ+

λ−

ρ(t)

t− x dt,

where p. v. denotes the Cauchy principal value. Then H[ρ] and its derivative with respect to x
satisfy:

1. For x ∈ (−∞, λ−): H[ρ](x) > 0 andH[ρ]′(x) > 0.

2. For x ∈ [λ−, λ+]: the equation H[ρ](x) = 0 has an odd (hence at least one) number of
solutions x∗ ∈ (λ−, λ+).

3. For x ∈ (λ+,∞): H[ρ](x) < 0 andH[ρ]′(x) > 0.

4. As x→ ±∞,H[ρ](x) ∼ −1/x.

Proof. Step 1. Outside the support. If x /∈ [λ−, λ+], differentiation under the integral sign is valid:

H[ρ]′(x) =
∫ λ+

λ−

ρ(t)

(t− x)2
dt > 0.

Hence, H[ρ] is strictly increasing on (−∞, λ−) ∪ (λ+,∞). A direct sign check of the integrand
confirms thatH[ρ](x) > 0 for x < λ− andH[ρ](x) < 0 for x > λ+, establishing items (1) and (3).
Furthermore, the asymptotic statement in item (4) follows directly from (King, 2009, Eq. 4.111),
which givesH[ρ](x) ∼ −(

∫
ρdx)/x as |x| → ∞; since

∫
ρdx = 1, this is −1/x.

Step 2. Existence of a zero. From steps (1), we have H[ρ] > 0 as x ↓ λ−, and H[ρ] < 0 as
x ↑ λ+. SinceH[ρ] is continuous—guaranteed by by the boundedness of ρ—the intermediate value
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theorem ensures that there exists at least one root x∗ ∈ (λ−, λ+) such thatH[ρ](x∗) = 0. Moreover,
every simple zero flips the sign ofH[ρ], so starting with positive sign on the left and finishing with
negative sign on the right forces an odd number of sign-changes and hence an odd number of interior
zeros.

The properties in Proposition C.3 provide a clear picture of the behavior of the Hilbert transform of
a probability density with compact support; see Figure C.1 for an example.

λ− λ+

x∗

H[ρ](x)

Figure C.1: A schematic example of the behavior of the Hilbert transform as prescribed by Proposi-
tion C.3.

We now seek a practical approximation for the real part of the glue function G(x) on the support
interval I . Motivated by the fact that many classical spectral laws—such as the free Meixner family
of distributions in Appendix B.1—admit closed-form Hilbert transforms of rational form, we adopt
a Padé-type ansatz:

G(x) ≈ P (x)

Q(x)
, (C.6)

with P and Q polynomials of minimal degree. In the classical examples of Appendix B.1, this
rational structure is not merely an approximation but exact, as shown in (B.2), with P at most linear
and Q at most quadratic (see Table B.3).

Even in more general settings—where the density ρ is empirical or lacks a closed-form expression—
the Padé approximant remains attractive as it provides a compact, flexible representation with inter-
pretable parameters. Once we commit to this functional form, we can leverage structural properties of
the Hilbert transform to constrain the numerator and denominator more effectively. Proposition C.3
provides key analytic features of H[ρ] that guide this design. Namely, P should have at least a
zero inside I , while Q should have no zeros in C− or within I , though it may have zeros in R \ I .
Mirroring these features, we parametrize the Padé approximant as

G(z) =
P (z)

Q(z)
= d+ cz +

q∑
j=1

ri
z − aj

,

which is a Padé approximant of degree [q + 1/q], or [q/q] if c = 0 or [q − 1/q] if c = d = 0. We
constrain the parameters to ensure there is at least one zero in I and no pole aj inside I .

Appendix D Methods of Estimating Stieltjes Transform

Given a probability density ρ(x) supported on an interval I ⊂ R, its Stieltjes transform is defined by

m(z) :=

∫
R

ρ(x)

x− z dx, z ∈ C \ I.

The density ρ can be recovered from the boundary behavior of m(z) via the inversion formula:

ρ(x) =
1

π
lim

ϵ→0
+
ℑm(x+ iϵ).

Accurately estimating m(z) is therefore essential for recovering the underlying spectral density.
Given a Hermitian matrix A ∈ Rn×n, the Stieltjes transform of its empirical spectral distribution is
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defined by

m(z) =
1

n
tr (A− zI)−1

, z ∈ C \ I.

A direct way to compute m(z) is

m(z) =
1

n

n∑
i=1

1

λi − z
,

where λi are the eigenvalues of A. However, because the characteristic curves must pass through
the roots of m (Proposition C.2), applying free decompression to this empirical version of m will
not remove its poles. It is necessary to consider approximations of m that correspond to Stieltjes
transforms for smooth densities.

In this section, we describe three numerical strategies for estimating the Stieltjes transform of a
Hermitian matrix. The most widely used approach in the literature is based on the Lanczos algorithm
(Appendix D.1), which constructs a continued fraction approximation to the resolvent. However,
we find that this method often suffers from slow convergence and numerical instability, due in part
to its reliance on a random initial vector and the large number of Lanczos steps required to achieve
acceptable accuracy. As such, it is often ill-suited for tasks that demand high-precision estimates of
m(z).

To overcome these limitations, we present two alternative methods. The first, described in Ap-
pendix D.2, expands the spectral density in a Jacobi polynomial basis, offering flexibility in modeling
various edge behaviors. The second, described in Appendix D.3, specializes this approach to Cheby-
shev polynomials, for which we derive a closed-form expression for the Stieltjes transform of each
basis element. This enables direct and stable evaluation via power series. Together, these methods
offer more accurate and robust alternatives to Lanczos-based approaches, especially in regimes where
high-resolution spectral information is required.

D.1 Estimating Stieltjes Transform using Lanczos Method

The key idea of the Lanczos method is to approximate m(z) by constructing a rational function—
specifically, a continued fraction—that reflects the spectral properties of A. This is achieved via
a three-term recurrence relation satisfied by orthogonal polynomials associated with the spectral
measure (Golub & Meurant, 2010; Meurant, 2006). The recurrence is obtained from the Lanczos
algorithm, which builds a tridiagonal (Jacobi) matrix capturing the action of A on a low-dimensional
Krylov subspace. In brief, the procedure is as follows.

Given a normalized starting vector v0 ∈ Rn, ∥v∥2 = 1, the Lanczos algorithm constructs an
orthonormal basis {v0,v1, . . . ,vp−1} for the Krylov subspace

Kp(A,v0) = span
{
v0,Av0,A

2v0, . . . ,A
p−1v0

}
,

and produces the symmetric triadiagonal Jacobi matrix

Tp :=


α0 β1
β1 α1 β2

. . . . . . ,
. . .

βp−1 αp−1

 ,
which satisfies

AVp ≈ VpTp,

where Vp := [v0,v1, . . . ,vp−1] ∈ Rn×p. This identity captures the three-term recurrence relation
satisfied by the orthogonal polynomials associated with the spectral measure of A. The Stieltjes
transform m(z) can then be approximated by the first element of the resolvent of Tp:

mp(z) = e⊺1(Tp − zI)−1e1.
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where e1 = (1, 0, . . . , 0) ∈ Rn denotes the first standard basis vector. The above expression is
equivalent to the continued fraction

mp(z) =
1

z − α0 −
β2
0

z − α1 −
β2
1

. . . − β2
p−1

z − αp

.

This approximation is the [0/p] Padé approximant of m(z), and typically exhibits convergence with
increasing p, especially when m(z) is analytic away from the real axis (Golub & Meurant, 1997).
However, the effectiveness of this approximation in practice depends on several implementation
details, which we briefly summarize below.

The choice of the starting vector v0 is not critical, as any unit-norm vector suffices. In practice, a
randomly chosen unit vector often leads to a convergence, while in theory, the approximation mp(z)
is independent of this choice when p = n. However, for larger values of p, numerical stability may
require full or partial reorthogonalization during the Lanczos process to maintain orthogonality of
the Krylov basis vectors (Meurant, 2006).

A typical stopping criterion is based on monitoring the difference between successive approximants
and terminating when ∣∣mp(z)−mp−1(z)

∣∣ < ε,

for a fixed test point z ∈ C+; see (Frommer & Schweitzer, 2016; Ubaru et al., 2017) for detailed
analyses of convergence rates and practical recommendations.

The continued fraction mp(z) can be evaluated efficiently either through recursive computation or,
equivalently, by solving the tridiagonal system (Tp − zI)x = e1. The overall computational cost
is O(pn2) for dense matrices or O(p nnz(A)) for sparse matrices (where nnz(A) is the number of
non-zero elements of A), plus O(p2) for reorthogonalization. If the algorithm is run to completion
with p = n and numerical orthogonality is preserved, the approximation yields the exact spectrum
of A, and thus fully recovers m(z).

D.2 Estimating Stieltjes Transform using Jacobi Polynomials

Jacobi polynomials provide a highly flexible basis for approximating spectral densities, particu-
larly when the distribution exhibits distinctive edge behavior—such as square-root singularities or
vanishing derivatives at the boundaries of the support. This family of orthogonal polynomials can
represent a wide range of distributions encountered in random matrix theory (e.g., distributions in
Appendix B.1) and more general beta-like distributions.

Let ρ(x) be a probability density with support on the interval [λ−, λ+]. Through an affine change of
variables, we map the domain to the canonical interval [−1, 1] via

t(x) :=
2x− (λ+ + λ−)

λ+ − λ−
.

The density is then expanded in the Jacobi polynomial basis:

ρ(x) ≈
K∑

k=0

ψk w
(α,β)(t(x))P

(α,β)
k (t(x)), (D.1)

where P (α,β)
k is the Jacobi polynomial of degree k and parameters α, β > −1, orthogonal with

respect to the weight

w(α,β)(t) = (1− t)α(1 + t)β , α, β > −1.

This expansion is especially effective when ρ(x) ∼ (λ+−x)α(x−λ−)β near the endpoints, aligning
the basis with the singularity structure of ρ, and accelerating the convergence.
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Projection. Given a set of eigenvalues {λi}Ni=1, we first construct a smoothed density estimate
ρ̂(x), e.g., via Gaussian or beta kernel density estimation. Mapping to the variable t, we approximate
the expansion coefficients using the orthogonality of Jacobi polynomials:

ψk =
1

∥P (α,β)
k ∥2

∫ 1

−1

ρ̂(t)P
(α,β)
k (t) dt ≈

∑
j ρ̂(tj)P

(α,β)
k (tj)∆t

∥P (α,β)
k ∥2

, (D.2)

where {tj} are grid points on [−1, 1] and ∥P (α,β)
k ∥2 denotes the squared norm, which admits a

closed-form expression

∥P (α,β)
k ∥2 =

2α+β+1

2k + α+ β + 1

Γ(k + α+ 1) Γ(k + β + 1)

Γ(k + 1) Γ(k + α+ β + 1)
.

In the above, Γ is the Gamma function.

Stieltjes transform in Jacobi basis. Once the coefficients ψk are obtained, the Stieltjes transform

m(z) =

∫ λ+

λ−

ρ(x)

x− z dx,

can be approximated via the expansion (D.1). First, by mapping x and z as

x(t) :=
1

2
(λ+ + λ−) +

1

2
(λ+ − λ−)t, t ∈ [−1, 1],

z(u) :=
1

2
(λ+ + λ−) +

1

2
(λ+ − λ−)u, u ∈ C \ [−1, 1],

we arrive at the transformed expression

m(u) ≈ 2

λ+ − λ−

K∑
k=0

ψk

∫ 1

−1

w(α,β)(t)P
(α,β)
k (t)

t− u dt, u ∈ C+ \ [−1, 1].

The inner integral in the above defines the so-called Jacobi function of the second kind,

Q
(α,β)
k (u) =

∫ 1

−1

w(α,β)(t)P
(α,β)
k (t)

t− u dt,

and the Stieltjes transform becomes

m(z(u)) ≈ 2

λ+ − λ−

K∑
k=0

ψkQ
(α,β)
k (u).

Gauss–Jacobi quadrature. In practice, we do not evaluate Q(α,β)
k directly via numerical integra-

tion. Instead, we compute each term using a dedicated Gauss–Jacobi quadrature rule (Shen et al.,
2011, Section 3.2.2) tailored to the weight w(α,β)

Q
(α,β)
k (u) ≈

nk∑
i=1

wiP
(α,β)
k (ti)

ti − u
,

where {ti, wi} are the quadrature nodes and weights for the given weight function. The number of
nodes nk depends on the degree k, typically chosen as nk := max(k+1, n0). Evaluating each mode
Q

(α,β)
k (u) independently using its own quadrature is critical for numerical stability, especially for

large k. This separation of summation and integration avoids artifacts that arise when attempting to
quadrature-integrate the full series at once.

Choosing parameters. Jacobi polynomials provide a flexible basis for modeling spectral densities
with various edge behaviors, particularly those of the form ρ(x) ∼ (λ+ − x)α(x− λ−)β . Different
choices of α and β yield classical orthogonal polynomials:
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Figure D.1: Effect of Jackson damping on approximating the Marchenko–Pastur density from the
Gram matrix 1

dXX⊺, where X is an n×d random matrix with n = 1000 and n/d = 0.9. Parameters
were intentionally selected to amplify Gibbs oscillations for illustrative purposes; typical cases exhibit
much milder artifacts.

• α = β = 0 recovers Legendre polynomials.

• α = β = 1
2 gives Chebyshev polynomials of the second kind, well-suited for densities with

square-root vanishing edges, such as ρ(x) ∼
√
(λ+ − x)(x− λ−), which are common in

free probability models (see Table B.1).

• α = β = − 1
2 yields Chebyshev polynomials of the first kind, appropriate for densities with

inverse square-root singularities at the edges.

This parameterization aligns the orthogonal basis with the singular structure of ρ(x), often resulting
in exponential convergence with respect to the number of terms K. In practice, we find that the
method is not highly sensitive to precise values of α and β, as long as their qualitative effect on edge
behavior is appropriate.

Gibbs oscillations. Expansions in orthogonal polynomials can exhibit Gibbs oscillations, espe-
cially for large truncation orders K. These oscillations can be suppressed by applying damping to
the coefficients via a filter gk, resulting in the smoothed expansion:

ρ(x) ≈
K∑

k=0

gkψkP
(α,β)
k (x).

Several damping schemes exist, including Jackson (1912), Lanczos, Fejér, and Parzen filters. In this
work, we use Jackson damping, defined as

gk :=
(K − k + 1) cos

(
πk

K+1

)
+ sin

(
πk

K+1

)
cot
(

π
K+1

)
K + 1

, k = 0, 1, . . . ,K.

Figure D.1 shows how Jackson damping improves the stability of the approximation.

Regularization. To further stabilize the coefficients ψk, we introduce Tikhonov regularization by
modifying (D.2) as

ψk =
1

γk + ∥P (α,β)
k ∥2

∫ 1

−1

ρ̂(t)P
(α,β)
k (t) dt,

with the penalty term γk chosen as

γk := γ

(
k

K + 1

)2

,

where γ > 0 is a small regularization parameter. This form penalizes higher-order coefficients more
strongly, resulting in smoother approximations without significantly biasing the shape or integral of
the estimated density.
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Preserving positivity and mass. Finally, to enforce positivity of ρ(x) over its support and ensure∫
ρ(x) dx = 1, we perform a secondary constrained optimization over ψk, initialized at the projected

values, subject to constraints enforcing unit mass and pointwise non-negativity over a fine grid.

D.3 Estimating Stieltjes Transform using Chebyshev Polynomials

Constructing the principal branch of the Stieltjes transform numerically is straightforward: one can
estimate m on the real axis by letting m(x+ i0+) = H[ρ](x) + iπρ(x) and estimating the Hilbert
transform using FFT techniques. Then, m can be extended to C+ by convolution with the Poisson
kernel. The lower-half plane is obtained by the Schwarz reflection principle. However, constructing
the secondary branch of the Stieltjes transform numerically is ordinarily very challenging, as it is
tantamount to numerical analytic continuation.

Our primary mechanism for estimating the Stieltjes transform of a density with compact support is
the following lemma. Here, we let j(z) := 1

2 (z + z−1) denote the Joukowski transform, and let

J(z) := z −
√
z2 − 1

denote the inverse Joukowski transform, where we take the branch of the square root to have positive
imaginary part for z ∈ C+. The Chebyshev polynomials of the second kind Uk(x) are defined for
x ∈ [−1, 1] by the recurrence relation

Uk+1(x) = 2xUk(x)− Uk−1(x)

from U0(x) = 1 and U1(x) = 2x.

Lemma D.1. The Stieltjes transform of Uk(x)
√
1− x2 on [−1, 1] is given by πJ(z)k+1 for any

k ∈ {0} ∪ N.

Proof. Let m(z) = πJ(z)k+1. Since m : C+ → C+ is analytic, by the Herglotz-Nevanlinna
representation theorem, there exist constants C,D > 0 and a Borel measure µ such that

m(z) = C +Dz +

∫
1

λ− zdµ(λ).

Since J(iη) → 0 as η → ∞, C = D = 0, and so m is the Stieltjes transform of a measure µ. If
x := cos θ for θ ∈ [0, π], since j(eiθ) = cos θ, j(eiθ) = x and J(x) = eiθ. Since Uk(cos θ) sin θ =
sin((k + 1)θ), it follows that

Uk(x)

√
1− x2 = ℑ(ei(k+1)θ) = ℑ(J(x)k+1).

Since J is analytic on C+, this, in turn, implies that

dµ(x)

dx
= lim

δ→0
+

1

π
ℑ[m(x+ iδ)] = Uk(x)

√
1− x2,

and the result follows.

The significance of Lemma D.1 is that we can approximate a spectral density as a Chebyshev series,
and immediately read off the corresponding Stieltjes transform. To see this, suppose that a spectral
density ρ on [−1, 1] has the Chebyshev expansion

ρ(x) =

√
1− x2

∞∑
k=0

ψkUk(x).

By Fubini’s Theorem,

EX∼ρ[Uk(X)] =

∞∑
l=0

ψl

∫ 1

−1

Uk(x)Ul(x)

√
1− x2 dx =

π

2
ψk,
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and so ψk can be estimated by ψ̂n,k = 2
πn

∑n
i=1 Uk(λi). The corresponding Stieltjes transform is

then m(z) = πΛ(J(z)) where

Λ(z) =

∞∑
k=0

ψkz
k+1.

Noting that |J(z)| = exp(−ℜ(arccosh(z))), for z ∈ C+, |J(z)| ≤ 1, and so J(z) will lie in
the domain of convergence of the power series for Λ. However, this series is unlikely to converge
for z ∈ C−, and is therefore insufficient for estimating the secondary branch. The solution is to
analytically continue Λ outside the domain of convergence of its power series by appealing to Padé
approximants. Computing Padé approximants algebraically is an expensive task, so we appeal to
Wynn’s ϵ-algorithm to rapidly evaluate the Padé approximant for Λ, given estimates of its coefficients
ψk (Brezinski, 1996). For a sequence of partial sums Λn(z) =

∑n
k=0 ψkz

k+1, n = 0, 1, . . . , the
ϵ-algorithm constructs a tableau {ϵ(n)k (z)}n,k by

ϵ
(n)
−1 (z) = 0, ϵ

(n)
0 (z) = Λn(z), ϵ

(n)
k+1(z) = ϵ

(n+1)
k−1 (z) + (ϵ

(n+1)
k (z)− ϵ(n)k (z))−1.

The coefficient ϵ(n)2k (z) provides the Padé approximant for Λ with numerator and denominator degrees
of k + n and k, respectively (Baker Jr. & Graves-Morris, 1996, Eq. (4.10)). In particular, Nuttal’s
Theorem (Baker Jr. & Graves-Morris, 1996, Theorem 6.5.3) shows that ϵ(0)2n (z) converges in measure
to the analytic continuation of Λ(z) regardless of whether the partial sums Λn converge.

Algorithm 2: Padé–Chebyshev Free Decompression

Input :Hermitian matrix A ∈ Rn×n;
Maximum Chebyshev polynomial order K;
Evaluation set X ⊂ R;
Subsampling parameter ns (with 1 ≤ ns ≤ n);
Perturbation δ where 0 < δ ≪ 1.

Output :Estimated spectral density values {ρ̂(x)}x∈X .

// Step 1: Generate eigenvalues from a random submatrix

1 Extract a random submatrix Â from A and compute its eigenvalues {λi}ni=1.
2 λ− ← min{λi}ni=1 − δn−1 // Estimate of the left endpoint of the support

3 λ+ ← max{λi}ni=1 + δn−1 // Estimate of the right endpoint of the support

// Step 2: Estimate Chebyshev coefficients
4 for k = 0 to K do
5 ψ̂n,k ← 4

π(λ+−λ−)n

∑n
i=1 Uk(Mλ−,λ+

(λi))

// Step 3: Compute the Padé approximant
6 Using Wynn’s ϵ–algorithm, obtain the Padé approximant Λ(z) for the power series∑K

k=0 ψ̂n,k z
k+1.

// Step 4: Form the Stieltjes transform
7 m(z)← πΛ(J(Ma,b(z)))

// Step 5: Solve characteristic curves
8 foreach x ∈ X do
9 Using Newton’s method, find zx ∈ C such that

x+ iδ = zx −
n
ns
− 1

m(zx)
.

// Step 6: Return the estimated spectral density
10 return

{
1
πℑm(zx)

ns

n

}
x∈X .
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To extend this procedure to an arbitrary support interval [λ−, λ+], we can make use of a conformal
map

Mλ−,λ+
(z) =

2z − (λ+ + λ−)

λ+ − λ−
: [λ−, λ+] 7→ [−1, 1].

In this case, the spectral density is given by

ρ(x) =
2
√
(λ+ − x)(x− λ−)

b− a
∞∑
k=0

ψkUk(Mλ−,λ+
(x)),

where the coefficients of the estimates are

ψ̂n,k =
4

πn(λ+ − λ−)
Uk(λi),

and the Stieltjes transform becomes

m(z) = πΛ(J(Mλ−,λ+
(z))).

Appendix E Proofs of Propositions 2 and 3

Proof of Proposition 2. By construction, R(t, e−tz) = R(0, z). In terms of the inverse Stieltjes
transform, this implies

ω(t, e−tz)−
(
1− et

) 1

z
= ω(0, z).

Differentiating both sides in t gives

∂ω

∂t
(t, e−tz)− ze−t ∂ω

∂z
(t, e−tz) +

et

z
= 0. (E.1)

Since m(t, ω(t, z)) = z, ∂m
∂z

∂ω
∂z = 1 and ∂m

∂t + ∂m
∂z

∂ω
∂t = 0. Applying these relations to (E.1) gives

−∂m
∂t

(t, ω(t, e−tz))− ze−t +
et

z

∂m

∂z
(t, ω(t, e−tz)) = 0.

Now evaluate this expression at z = z̃ where z̃ = etm(t, z) so that ω(t, e−tz̃) = z. Then

−∂m
∂t

(t, z)−m(t, z) +
1

m(t, z)

∂m

∂z
(t, z) = 0.

Rearranging this expression implies the result.

Proof of Proposition 3. Let τ 7→
(
t(τ), z(τ)

)
be a characteristic curve of the quasilinear PDE (1).

By the chain rule,

dm(t(τ), z(τ))

dτ
=
∂m(t, z)

∂t

dt(τ)

dτ
+
∂m(t, z)

∂z

dz(τ)

dτ
. (E.2)

Matching coefficients in (E.2) with the PDE (1) yields the system of ODEs

dt(τ)

dτ
= 1, t(0) = 0, (E.3a)

dz(τ)

dτ
= −m(τ)−1, z(0) = z0, (E.3b)

dm(τ)

dτ
= −m(τ), m(0) = m0(z0). (E.3c)

Solving (E.3) is straightforward, yielding (2).

By standard ODE existence and uniqueness theorems, for each z0 there is a unique characteristic
curve τ 7→ (t(τ), z(τ),m(τ)) near τ = 0. Since dt

dτ = 1 and dz
dτ ̸= 0 if m0(z0) ̸= 0, we can

(locally) invert τ 7→ t and
(
z0
)
7→ z. This yields a unique C1 function m(t, z) solving (1) with

m(0, z) = m0(z).
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Finally, the condition m0(z) ̸= 0 for all z ∈ Ω ensures that m(τ) ̸= 0 in a neighborhood of τ = 0,
so the term m−1 in (1) is well-defined. Uniqueness follows from the uniqueness of solutions to (E.3)
with given initial data. We see that Proposition 3 gives explicit solutions to (1) in terms of the initial
data and desired time t.

It remains to show the existence of ϕ. Define Φ(t, z, z0) := z0+m0(z0)
−1(1−et)−z. If ∂Φ/∂z0 ̸=

0, by the implicit function theorem (Hamilton, 1982), there exists an inverse function z0 = ϕ(t, z)

solving Φ(t, z, ϕ(t, z)) = 0, which allows the explicit solution of (1) by m(t, z) = m0(ϕ(t, z))e
−t.

This completes the proof.

Appendix F Stability Analysis

To analyze the stability of m(t, z) over time t, we perturb the PDE (1) by replacing m with m+ δm,
and derive a PDE governing the evolution of the perturbation field δm(t, z). We then quantify the
impact of this perturbation using an appropriate functional norm.

A natural choice for this purpose is the L2-norm along horizontal slices in the upper half-plane,
defined by

∥m(t, ·+ iy)∥2
L

2
(Γy)

:=

∫
R
|m(t, x+ iy)|2 dx,

where Γy := {z = x+ iy | x ∈ R} is the horizontal line at height y > 0. This norm is particularly
suitable for our analysis since we are ultimately interested in evaluating m(t, x+ iδ) slightly above
the real axis, in order to recover the spectral density from the Stieltjes transform.

Moreover, this space includes the boundary values of Stieltjes transforms m(t, x+ i0+) whenever
ρ(t, ·) ∈ L2(R), since one can show that

∥m(t, x+ i0+)∥2
L

2
(Γ

0
+ )

= (1 + π2)∥ρ(t, ·)∥2
L

2
(R).

We now establish an upper bound on the growth of this norm over time, culminating in a Grönwall-
type inequality. This is formalized in the following proposition.

Proposition F.1. Suppose ρ(t, ·) ∈ L2(R), and let m(t, z) be the Stieltjes transform defined on the
domain C+. Let δm be a small functional (Gâteaux) perturbation of m (so ∥δm∥ ≪ 1) satisfying
the Bernstein inequality

∥∂xδm(t, z)∥
L

2
(Γy)
≤M∥δm(t, z)∥

L
2
(Γy)

, z ∈ Γy,∀y > 0 (F.1)

which means on each horizontal slice, δm(t, ·+ iy) is M -band-limited (Paley–Wiener space), ensur-
ing sufficient decay of the perturbations. Then, for every y > 0, it holds that

d

dt
∥δm(t)∥2

L
2
(Γy)
≤ (−2 + Cy(t)) ∥δm(t)∥2

L
2
(Γy)

, (F.2)

where

Cy(t) := 3 sup
z∈Γy

∣∣∣∣ℜ ∂zm(t, z)

m(t, z)2

∣∣∣∣+ 2M sup
z∈Γy

∣∣∣∣ℑ 1

m(t, z)

∣∣∣∣ . (F.3)

Proof. Let m̃ = m + δm, where δm ∈ H2(R>0 × C+) (the usual Hardy space) is a small pertur-
bation with the boundary condition δm(t, z) = 0 at |z| → ∞. Plugging m̃ into the PDE (1) and
subtracting the unperturbed PDE gives the perturbation equation

∂δm

∂t
= −δm+

1

m+ δm

∂(m+ δm)

∂z
− 1

m

∂m

∂z
.

Expanding the nonlinear term using a first-order approximation and rearranging, we obtain

∂δm

∂t
=

1

m

∂δm

∂z
− δm− δm

m2

∂m

∂z
+O(|δm|2).

The linearized equation above is essentially a transport-type PDE, with the first, second, and third
terms on the right-hand side representing the transport term, damping term, and perturbation term,
respectively.
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To obtain the energy, we multiply both sides of the above by δm (the complex conjugate of δm),
integrate over Γy , and consider its real part, yielding

ℜ
∫
R

∂δm

∂t
δmdx = ℜ

∫
R

1

m

∂δm

∂z
δmdx−ℜ

∫
R

(
1 +

1

m2

∂m

∂z

)
|δm|2 dx. (F.4)

The term on the left-hand side of (F.4), after taking supy>0, can be expressed as

ℜ
∫
R

∂δm

∂t
δmdx =

1

2

d

dt
∥δm∥2

L
2
(Γy)

. (F.5)

Since δm is holomorphic, we have ∂zδm = ∂xδm on every stripe Γy. Writing m−1 = a+ ib with
real valued a, b, we have

ℜ
(

1

m
(∂xδm) δm

)
=

1

2
ℜ
(
∂xm

m2

)
|δm|2 − bℑ

(
(∂xδm) δm

)
+

1

2
∂x(a|δm|2).

Integrating over x ∈ R, the third term on the right hand side of the above vanishes. As for the other
terms, we apply Cauchy–Schwarz and the Bernstein bound (F.1) to obtain

ℜ
∫
R

1

m

∂δm

∂z
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(
1

2
sup
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∣∣∣∣+M sup
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∣∣∣∣ℑ 1

m

∣∣∣∣
)∫

R
|δm|2 dx. (F.6)

Also, the second term on the right-had side of (F.4) satisfies
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∫
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)
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∫
R
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R
|δm|2 dx. (F.7)

Putting all together by substituting (F.5), (F.6), and (F.7) into (F.4), we obtain
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2
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= (−1 + Cy(t)) ∥δm∥2L2
(Γy)

.

This completes the proof.

Remark F.1. To complete Proposition F.1, we verify that the constant Cy(t) is finite for every
0 < y <∞. Recall the representation of the Stieltjes transform,

m(t, z) =

∫
R

ρ(t, ξ)

ξ − z dξ, (F.8)

for z = x+ iy ∈ C+ with y > 0. Then, since ρ(t, x) is supported on a compact interval of diameter
D := diam(supp(ρ)), we have

|m(t, z)| ≥ ℑm(t, z) =

∫
R

y ρ(t, ξ)

(ξ − x)2 + y2
dξ ≥ y

D2 + y2

∫
R
ρ(t, ξ) dξ =

y

D2 + y2
.

It follows that

sup
z∈Γy

|ℑm(t, z)−1| ≤ sup
z∈Γy

|m(t, z)−1| ≤ D2 + y2

y
. (F.9)

On the other hand, from the derivative of (F.8):

∂zm(t, z) =

∫
R

ρ(t, ξ)

(ξ − z)2
dξ,

so

|∂zm(t, z)| ≤
∫
R

ρ(t, ξ)

(ξ − x)2 + y2
dξ ≤ 1

y2
.
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Combining the above with (F.9), we obtain
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y

)2

=
(D2 + y2)2

y4
. (F.10)

Substituting the uniform bounds (F.9) and (F.10) into (F.3) confirms that Cy(t) <∞ for all 0 < y <
∞.

We note that this bound is not defined at y = 0, which is expected: as y → 0+, the Stieltjes transform
approaches the real axis where it develops discontinuities, and quantities like ∂zm may diverge.
However, in both our theory and implementation, we evaluate m(t, z) slightly above the real axis
(e.g., at z = x + iδ for fixed 0 < δ ≪ 1), where all terms remain finite. In practice, the observed
error propagation is significantly milder than this worst-case upper bound suggests. △
Proposition F.1 then implies that the perturbation δm satisfies an exponential growth bound in time:

∥δm(t)∥2
L

2
(Γy)
≤ ∥δm0∥2L2

(Γy)
eνt,

with exponent ν = −2 + Cy < ∞ for any fixed y > 0. But since et = n
ns

, the exponential bound
translates to polynomial growth in n,

∥δm(t)∥2
L

2
(Γy)
≤ ∥δm0∥2L2

(Γy)

(
n

ns

)ν

.

Appendix G Background Material for the Neural Tangent Kernel

The neural tangent kernel (NTK) is an important object in machine learning (Jacot et al., 2018), and
has become a prominent theoretical and practical tool for studying the behavior of neural networks
both during training and inference (Novak et al., 2022). The Gram matrix associated to the NTK
has been used in lazy training (Chizat et al., 2019), and as a tool for uncertainty quantification and
estimation (Immer et al., 2021; Wilson et al., 2025), exploiting the deep connections between neural
networks and Gaussain processes. More recently, it has been shown to arise naturally as a measure
of model quality in approximations of the marginal likelihood (Hodgkinson et al., 2023b; Immer
et al., 2023), as a tool for quantification of model complexity (Vakili et al., 2022), and in estimation
of generalization error in PAC-Bayes bounds (Hodgkinson et al., 2023c; Kim et al., 2023).

While it was first derived in the context of neural networks, the quantity is well-defined for a broader
class of functions. For clarity will consider the setting where the underlying function is C1. However,
this can be relaxed in practice to include, as an important example, networks with ReLU activations.
For such a function fθ : X → Rd parameterized by θ ∈ Rp, we define the (empirical) NTK to be

κθ(x, x
′) := Jθ

(
fθ(x)

)
Jθ

(
fθ(x

′)
)⊺
. (G.1)

Here, Jθ(fθ(x)) ∈ Rd×p is the Jacobian of fθ with respect to its (flattened vector of) parameters
θ, evaluated at the data point x. Since κθ(x, x

′) ∈ Rd×d, evaluating the NTK over n data points
produces a fourth-order tensor of shape (n, n, d, d). For computational convenience, this tensor is
typically reshaped into a two-dimensional block matrix of size nd × nd, where each (i, j)-block
contains the d× d matrix κ(xi, xj).

The fact that the NTK arises in a variety of contexts makes it a natural object of study. For well-
trained models, the Gram matrix is nearly singular, making accurate characterization of its spectral
properties crucial for estimating quantities used in downstream tasks (Ameli et al., 2025). This also
motivates considering the spectrum on a logarithmic scale. In Section 5, we analyze the empirical
NTK of a ResNet50 model trained on the CIFAR10 dataset, a 10-class classification task. In this
case, 10% of the eigenvalues are extremely small (∼ 10−14), reflecting near-singular behavior likely
tied to the model’s class structure.

To examine the scaling behavior of the non-singular bulk spectrum, we project the NTK matrix onto
its non-null eigenspace, removing the low-rank null component. We then randomly sample orthogo-
nal eigenvectors within this reduced space and reconstruct a corresponding Hermitian matrix, which
is subsequently permuted to generate random subsets for use in our free decompression procedure.
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Figure G.1: Analytic continuation of the Stieltjes transform of a density estimate of the spectral
distribution of the log-NTK matrix described in Section 5. (a) The principal branch contains a branch
cut along the support of the spectral density, while (b) the secondary branch is continuous in this
region.

The Stieltjes transform of the approximated spectrum of this matrix is depicted in Figure G.1, which
shows its analytic continuation using the principal branch (left), as well as the secondary branch
(right).

Appendix H Implementation and Reproducibility Guide

We developed a Python package, freealg,3 which implements our algorithms and enables repro-
duction of all numerical results in this paper. A minimal example using the freealg.FreeForm
class is shown in Listing 1. This example generates the results in Figures 1 and 2, illustrating the
Marchenko–Pastur distribution with parameter λ = 1

50 , starting from a matrix of size ns = 1000 and
decompressing to a matrix of size n = 32,000.

Hyperparameters used for the numerical experiments appearing in this document can be found in
Table H.1 (notation summarized in the caption). Notebook files that reproduce the figures appearing
in this work can be found in the codebase. Further details on function arguments and class parameters
are available in the package documentation.

Table H.1: Hyperparameters used in the numerical examples. Notation: h smoothing kernel band-
width; (α, β) Jacobi shape parameters; K Jacobi polynomial order; γ regularization strength; Padé
(p, q) numerator/denominator degrees; δ imaginary shift for Stieltjes evaluation (Plemelj–Sokhotski).

Smoothing Jacobi Polynomials Stieltjes Transform

Example Reference Kernel h (α, β) K γ Damping Padé (p, q) δ

Marchenko–Pastur Figure 1 Beta 3× 10
−3

( 1
2
, 1
2
) 50 0 Jackson (1, 1) 10

−4

Wigner semicircle Figure B.1 Beta 10
−2

( 1
2
, 1
2
) 50 0 Jackson (1, 1) 10

−6

Kesten–McKay Figure B.2 Beta 10
−3

( 1
2
, 1
2
) 50 0 Jackson (1, 2) 10

−6

Wachter Figure B.3 Beta 10
−3

( 1
2
, 1
2
) 20 0 Jackson (1, 2) 10

−4

Meixner Figure B.4 Beta 10
−3

( 1
2
, 1
2
) 50 0 Jackson (7, 8) 10

−6

Page-Page Figure 3 (a) Beta 10
−5

(0, 0) 100 0 Jackson (4, 3) 10
−6

NTK Figure 3 (b) Beta 10
−3

(2, 2) 50 10
−2 Jackson (3, 2) 10

−6

3freealg is available for installation from PyPI (https://pypi.org/project/freealg), the doc-
umentation can be found at https://ameli.github.io/freealg, and the source code is available at
https://github.com/ameli/freealg.
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Listing 1: A minimal usage example of the freealg package.
# Install freealg with "pip install freealg"
import freealg as fa

# Create an object for the Marchenko-Pastur distribution with the parameter λ = 1
50

5 mp = fa.distributions.MarchenkoPastur(1/50)

# Generate a matrix of size ns = 1000 corresponding to this distribution
A = mp.matrix(size=1000)

10 # Create a free-form object for the matrix within the support I = [λ−, λ+]
ff = fa.FreeForm(A, support=(mp.lam_m, mp.lam_p))

# Fit the distribution using Jacobi polynomials of degree K = 20, with α = β = 1
2

# Also fit the glue function via Pade of degree [p/q] with p = 1, q = 1.
15 psi = ff.fit(method=’jacobi’, K=20, alpha=0.5, beta=0.5, reg=0.0, damp=’jackson’,

pade_p=1, pade_q=1, optimizer=’ls’, plot=True)

# Estimate the empirical spectral density ρ(x), similar to Figure 1(a)
rho = ff.density(plot=True)

20

# Estimate the Hilbert transform H[ρ](x)

hilb = ff.hilbert(plot=True)

# Estimate the Stieltjes transform m(z) (both branches m
+ and m

−), similar to Figure 2(a,b)
25 m1, m2 = ff.stieltjes(plot=True)

# Decompress the spectral density corresponding to a larger matrix of size n = 2
5 × ns,

# similar to Figure 1(c)
rho_large, x = ff.decompress(size=32_000, plot=True)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Proofs of main theoretical claims are provided in the appendix. Numerical
evidence is provided in the body of the paper (with additional expermiments and data in the
appendices).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A limitations section is provided.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: An extensive appendix provides all proofs and relevant assumptions

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is also provided as an anonymized repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided in an anonymized repository. Where possible, datasets are
made available, with the exception of the full NTK model required for model verification
(due to the nature of the work and space constraints).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters are reported in the main document. All other details are
either previously reported or contained in the provided codebase.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: A study of sensitivity to different subsamples is provided in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources used were reported in the main document.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that
conform to this code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The authors believe there is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implement-
ing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The software provided at the anonymized repository was authored by the
paper’s authors. Datasets used were open access or computed by the authors from open
access datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Software and documentation are provided at an anonymized repository

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This is a theoretical and computational study

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This is a theoretical and computational study

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as a core part of this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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