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ABSTRACT

Data selection is designed to accelerate learning with preserved performance.
To achieve this, a fundamental thought is to identify informative data samples
with significant contributions to the training. In this work, we propose Evolved
Sampling (ES), a simple yet effective framework for dynamic sampling performed
along the training process. This method conducts batch level data selection based
on differences of historical and current losses, significantly reducing the back
propagation time with modest additional overheads while maintaining the model
performance. Due to its conciseness, ES is readily extensible to incorporate set level
data selection for further training accelerations. As a plug-and-play framework, ES
consistently achieves lossless training accelerations across various models (ResNet,
ViT, ALBERT), datasets (CIFAR, ImageNet, GLUE), and optimizers (SGD, Adam),
saving up to 40% wall-clock time. Particularly, the improvement is more significant
under the noisy supervision setting. When there are severe corruptions in labels, ES
can obtain accuracy improvements of approximately 20% relative to the standard
batched sampling. Our results motivate further investigations on the data efficiency
aspect of modern large-scale machine learning.

1 INTRODUCTION

Deep learning has showcased remarkable performance across a variety of real-world applications,
particularly leading to unparalleled successes of large “foundation” models (Touvron et al., 2023;
Rombach et al., 2022). On the other hand, since these large models are usually trained on web-scale
datasets, the overall computation and memory loads are considerably increasing, calling for more
efficient developments of modern machine learning. Efficient learning involves several aspects,
centering around models, data, optimization, systems, and so on (Shen et al., 2023).

For data-efficient machine learning, the core is to properly evaluate the importance per data sample
in the original (large-scale) datasets. A broad array of methods is applied in a static manner, where
the samples’ importance is determined before the training. By leveraging the feature representations
of data (Swayamdipta et al., 2020; Xie et al., 2023b), this importance can be evaluated based on a
variety of metrics such as distances (Har-Peled & Mazumdar, 2004; Huang et al., 2023; Bachem
et al., 2015; Xia et al., 2023; Abbas et al., 2023; Sorscher et al., 2022), uncertainties (Coleman et al.,
2020; Ducoffe & Precioso, 2018; Margatina et al., 2021; Dasgupta et al., 2019; Liu et al., 2021),
errors (Toneva et al., 2019; Paul et al., 2021; Langberg & Schulman, 2010; Munteanu et al., 2018),
etc, and learned via procedures from the meta optimization (Killamsetty et al., 2021c;b; Jain et al.,
2024; Wang et al., 2022) and dataset distillation (Nguyen et al., 2021; Wang et al., 2022; Zhao &
Bilen, 2023). However, these approaches can be prohibitively expensive to apply in practice, since
their dependence on feature representations requires additional (pre-)training in advance.

Another array of methods lies in a dynamic sense, where the samples’ importance is simultaneously
evaluated along the training process. Dynamic sampling methods can be further divided into two
categories: set level selection, to prune the whole dataset at the beginning of each epoch (Qin et al.,
2024; Raju et al., 2021; Thao Nguyen et al., 2023; Attendu & Corbeil, 2023), and batch level selection,
to sample subsets from original batches for back propagation (Kawaguchi & Lu, 2020; Katharopoulos
& Fleuret, 2017; 2018; Mindermann et al., 2022). Nevertheless, these dynamic sampling methods
leverage similar strategies to evaluate the samples’ importance. Based on the naive intuition that
samples’ contributions to the learning are directly associated with gradient updates, it is natural
to re-weight data samples with scales of gradients or losses during training. Sampling methods
based on the gradients (Mirzasoleiman et al., 2020; Killamsetty et al., 2021a; Hanchi et al., 2022;
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Katharopoulos & Fleuret, 2018; Wang et al., 2024) usually suffers from significant computation and
memory loads. Sampling methods based on the loss dynamics can involve current losses (Jiang et al.,
2019; Loshchilov & Hutter, 2016; Schaul et al., 2016; Kawaguchi & Lu, 2020; Qin et al., 2024;
Thao Nguyen et al., 2023; Kumar et al., 2023; Balaban et al., 2023) and historical losses (Attendu
& Corbeil, 2023; Raju et al., 2021), and also adopt reference models (Mindermann et al., 2022;
Deng et al., 2023; Xie et al., 2023a). However, these approaches exploit the information of losses
inadequately by only involving absolute loss values without their “evolutions”.

Table 1: The comparison of different dynamic sampling methods. The “history” column denotes
whether the method uses historical information along the training. The “robust” column represents
the performance robustness under (severe) label noises. The last column summarizes the ratio of
samples used for back propagations (BPs) relative to the standard training. Here, r stands for the
pruning ratio for set level methods (pruning data samples of the whole epoch), and b/B represents
the pruning ratio for batch level methods (selecting a mini-batch b (subset) from a meta-batch B).

set batch history robust # of samples for BP

UCB (Raju et al., 2021) ✓ ✓ 1− r
KA (Thao Nguyen et al., 2023) ✓ 1− r

InfoBatch (Qin et al., 2024) ✓ ✓ 1− r
Loss (Katharopoulos & Fleuret, 2017) ✓ b/B

Order (Kawaguchi & Lu, 2020) ✓ b/B
ES (ours) ✓ ✓ ✓ b/B

ESWP (ours) ✓ ✓ ✓ ✓ (1− r)b/B

To tackle these challeges, we propose a novel dynamic sampling framework, Evolved Sampling (ES),
which incorporates the loss evolution or differences along the training process to determine samples’
importance and conduct batch level selection, without the demand of pre-trained reference models.
Importantly, ES employs the technique of decoupled exponential moving averages (EMAs) to compute
sampling weights/probabilities, where one iterative scheme is designed to mix current losses with
tracked weights updated by the single EMA over historical losses. Due to its simplicity, this procedure
is effortless to implement and only introduces mild computational overheads with negligible memory
costs, while significantly reducing the number of samples used for back propagations (BPs) and
consequently saving the overall wall-clock time, without degrading the model performance. Moreover,
ES facilitates convenient extensions to data pruning on the set level, i.e. Evolved Sampling with
Pruning (ESWP), leading to further accelerations with lossless model performance. We demonstrate
the differences in details between our proposed methods (ES/ESWP) and previous dynamic sampling
methods in Table 1.

Our contributions can be summarized as follows:

• On the theoretical side, we provide justifications that decoupled EMAs applied in ES(WP)
introduce additional differences of losses across time, which is a certain type of first-order
information, and hence appropriately alleviates the effect of loss oscillations on sampling
with more sufficient exploitation of the loss dynamics. From another perspective, ES with
gradient decent can be viewed as the solution to a distributionally robust optimization (DRO)
problem, where the reference objective is approximated via historical losses.

• We carry out extensive experiments to verify the effectiveness, efficiency, robustness and
flexibility of ES(WP). It is shown that ES(WP) consistently achieves lossless training
accelerations across various models (ResNet, ViT, ALBERT), datasets (CIFAR, ImageNet,
GLUE), and optimizers (SGD, Adam), saving up to 40% wall-clock time. In addition, certain
hyper-parameters of ES are flexible to be tuned to trade-off between model performance
and training costs. Moreover, ES(WP) also exhibits boosted performance particularly under
the noisy supervision setting: Given severe noises in labels, ES(WP) can obtain significant
accuracy improvements of approximately 20% relative to the standard batched sampling.

The rest of this paper is organized as follows. In Section 2, we discuss the related work on static and
dynamic sampling. In Section 3, we present the proposed methods, including a comparison with
former sampling approaches and corresponding theoretical justifications. Numerical experiments and
ablation studies are provided in Section 4. The discussions and outlook are provided in Section 5. All
the details of proofs and experiments are found in the appendices.
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Notations. For consistency, we adhere to the following notations. Throughout this paper, we use
normal letters to denote scalars. Boldfaced lower-case letters are reserved for vectors. We denote the
cardinality of a set S by |S|. Let [n] := {1, 2, . . . , n} for n ∈ N+. Let 1n ∈ Rn be the vector of all
ones. For any c > 0, ⌈c⌉ represents the smallest positive integer such that ⌈c⌉ ≥ c. We use the big-O
notation f(t) = O(g(t)) to represent that f is bounded above by g asymptotically, i.e., there exists
c > 0, t0 > 0 such that f(t) ≤ cg(t) for any t ≥ t0.

2 RELATED WORK

Static sampling. Methods to sampling statically can be based on geometry, uncertainty, error, meta
optimization, dataset distillation, etc. With numerous studies on theoretical guarantees (Har-Peled
& Mazumdar, 2004; Huang et al., 2023; Bachem et al., 2015), the coreset selection is designed to
approximate original datasets with smaller (re-weighted) subsets, typically achieved by clustering in
representation spaces (Xia et al., 2023; Abbas et al., 2023; Sorscher et al., 2022). Uncertainty-based
methods use probability metrics such as the confidence, entropy (Coleman et al., 2020) and distances
to decision boundaries (Ducoffe & Precioso, 2018; Margatina et al., 2021; Dasgupta et al., 2019; Liu
et al., 2021). Sampling methods based on errors assume that training samples with more contributions
to errors are more important. Errors are evaluated with merics such as forgetting events (Toneva et al.,
2019), GRAND & EL2N score (Paul et al., 2021), and sensitivity (Langberg & Schulman, 2010;
Munteanu et al., 2018). As is discussed before, these static sampling methods require extra training,
leading to considerable costs in both computation and memory.

Dynamic sampling. Methods to sampling dynamically typically leverage metrics based on losses
and gradients along the training process. Loss-adaptive sampling re-weights data points during the
training according to current losses (Katharopoulos & Fleuret, 2017; Jiang et al., 2019; Loshchilov &
Hutter, 2016; Schaul et al., 2016) and historical losses(Oren et al., 2019; Sagawa et al., 2020). To
name a few, Ordered SGD (Kawaguchi & Lu, 2020) selects top-q samples in terms of the loss ranking
per training step. InfoBatch (Qin et al., 2024) randomly prunes a portion of less informative samples
with losses below the average and then re-scales the gradients. KAKURENBO (Thao Nguyen et al.,
2023) combines current losses with the prediction accuracy and confidence to design a sampling
framework with moving-back. Kumar et al. (2023) and Balaban et al. (2023) assign weights as
functions of current losses based on the robust optimization theory. Attendu & Corbeil (2023) and
Raju et al. (2021) use the exponential moving average over past losses for sampling. There are also
studies adopting reference models, including Mindermann et al. (2022); Deng et al. (2023); Xie et al.
(2023a) and so on. These methods either exploit the information of losses inadequately, or require
to train additional architectures. Gradient-based sampling methods involve (i) gradient matching,
such as CRAIG (Mirzasoleiman et al., 2020) and GRAD-MATCH (Killamsetty et al., 2021a), which
approximate the “full” gradients computed on original datasets via the gradients computed on subsets;
(ii) gradient adaption, where the sampling probability is basically determined by current scales of
gradients (Hanchi et al., 2022; Katharopoulos & Fleuret, 2018). A recent work (Wang et al., 2024)
uses a intricate layer-wise sampling scheme with complex variance control. Obviously, gradient-based
sampling methods lead to much more computation and memory overheads than loss-based methods.

Set level versus batch level. Dynamic sampling methods can be divided into two categories based
on the level where data selection is performed: (i) set level selection, to prune the whole dataset at
the beginning of each epoch (Qin et al., 2024; Raju et al., 2021; Thao Nguyen et al., 2023; Attendu
& Corbeil, 2023); (ii) batch level selection, to sample subsets from the original batches for back
propagations (Kawaguchi & Lu, 2020; Katharopoulos & Fleuret, 2017; 2018; Mindermann et al.,
2022). These two types of methods, facilitating training accelerations from different perspectives, are
not mutually exclusive. However, to the best of our knowledge, we are not aware of any algorithms
combining both of them.

3 METHODS

3.1 PRELIMINARIES

The classic setting of general machine learning tasks is as follows. Given a datasetD := {(xi, yi)}ni=1
(labeled) or D := {xi}ni=1 (unlabeled) of size n ∈ N+, the goal is to solve the empirical risk
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minimization (ERM) problem:

min
θ∈Θ

L̂n(θ) :=
1

n

n∑
i=1

ℓi(θ), (3.1)

where ℓi(θ) := ℓ(f(xi;θ), yi), or ℓi(θ) := ℓ(f(xi;θ)). (3.2)

Here, ℓ(·, ·) or ℓ(·) denotes the non-negative loss function, and L̂n(θ) represents the empirical aver-
aged loss over n data samples. When n is large, a common routine is to compute stochastic gradient
on a random batch instead of the whole training set. For instance, starting from an initialization
θ(0) = θ0, the SGD optimizer updates model by

θ(t+ 1) = θ(t)− ηt
B

B∑
j=1

∇θℓij (θ(t)) ≈ θ(t)− ηt∇θL̂n(θ(t)), (3.3)

where {ηt}t∈N denotes learning rates, B ∈ N+ with B ≤ n is the batch size. The standard sampling
method is to draw the batch {zij}Bj=1 ⊂ D uniformly without replacement for ⌈n/B⌉ iterations in
one epoch, which we refer as the standard batched sampling (baseline).

3.2 THEORETICAL MOTIVATIONS

Obviously, the standard batched sampling takes equal treatment to data samples. This can be
inefficient since different samples may have varied importance to the learning task at different stages
of training: As the training proceeds, there are inevitably samples that are fitted more accurately
compared with the others, leading to lower priority to learn these better-fitted samples in the sequel.
Hence, it is necessary to assign adaptive weights for data samples during training.
Convergence acceleration by loss re-weighting. As is discussed before, it is normal in practice
to measure the data samples’ importance with scales of losses along the training, which allocates
more weights on samples with larger losses. The experiments in Katharopoulos & Fleuret (2017) and
Kawaguchi & Lu (2020) have suggested that this kind of “loss-weighted” gradient decent dynamics
appears faster convergence in terms of both training and test errors compared to (3.3). To step further,
the first contribution of this work is to theoretically develop these former literatures, by proving the
following convergence rate.
Proposition 1 (Reduced version; see a full version in Proposition A.1). Consider the continuous-time
and full-batch idealization of the loss-weighted gradient decent, i.e.

d

ds
θ̂lw
n (s) = −

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

∇θℓi(θ̂
lw
n (s)), θ̂lw

n (0) = θ0. (3.4)

Assume that there exists θ∗ ∈ Θ such that L̂n(θ
∗) = 0 and ℓi(·) is convex for each i ∈ [n]. Then, we

have the more-than sub-linear convergence rate of (3.4):
1

s

∫ s

0

L̂n(θ̂
lw
n (s′))ds′ − L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′, s > 0, (3.5)

where ∆(·) is a positive-valued function on [0,∞).

Proposition 1 suggests that (under certain regularity conditions) the time-averaged loss of loss-
weighted gradient flow converges more than sub-linearly to the global minimum, while the standard
gradient flow only has the sub-linear convergence. This theoretical characterization fundamentally
gives chances to learning acceleration by leveraging losses in the gradient-based training dynamics.

In general, for any i ∈ [n] and t ∈ N, define wi(t) as the (unnormalized) weight of the i-th sample at
the t-th (training) step. For the standard batched sampling, we obviously have the uniform weights:
wi(t) ≡ 1/n. For the loss-weighted sampling corresponding to (3.4), one calculates the sampling
probability as

pi(t) ∝ wi(t) = ℓi(θ(t)), (3.6)
i.e., the weight is set as the current loss value. On top of that, there are also some variants of loss
re-weighted sampling strategies: For instance, Kumar et al. (2023) sets wi(t) = g(ℓi(θ(t))), where
the function g(·) is pre-defined based on the theory of robust optimization; Kawaguchi & Lu (2020)
directly selects top-q samples in terms of current losses per training step, which can be regarded as
another realization of Kumar et al. (2023).
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3.3 EVOLVED SAMPLING

In general machine learning tasks, the typical behaviors of loss curves often appear decent trends
overall, but can oscillate meanwhile due to certain noises. This introduces the sensitivity or instability
issue of the sampling scheme (3.6). A commonly-used smoothing operation is the exponential moving
average (EMA) of losses

pi(t) ∝ wi(t) = βwi(t− 1) + (1− β)ℓi(θ(t)), wi(0) = 1/n (3.7)

for any i ∈ [n] and t ∈ N, where the hyper-parameter β ∈ [0, 1] is typically selected close to 1 to
capture more historical information.1 However, the EMA can potentially erase too many dynamical
details (including noises) shown in the loss dynamics. To see this, we give an illustration in Figure
1. The black curve denotes a (polynomially) decayed function with random perturbations, which is
designed to mimic typical behaviors of loss curves in general machine learning tasks and fails to
provide information robustly due the noises. On the other hand, the blue curve represents the EMA,
which leads to over-smoothing due to the average effect.

Decoupled EMA. To sufficiently leverage the loss dynamics in a more robust sense, we propose to
calculate the sampling probability as

pi(t) ∝ wi(t) = β1si(t− 1) + (1− β1)ℓi(θ(t)),

si(t) = β2si(t− 1) + (1− β2)ℓi(θ(t)), si(0) = 1/n
(3.8)

with β1, β2 ∈ [0, 1] as two hyper-parameters. Here, the intermediate series {si(t)}t∈N, updated in
the EMA scheme, is also referred as the score (for the i-th sample). The scheme (3.8) is the so-called
decoupled EMA,2 which reduces to (3.7) when β1 = β2 = β. In Figure 1, it is shown by the red curve
and appears an “interpolation” between the original loss and single EMA: When losses oscillate,
the decoupled EMA reacts moderately by not only capturing detailed dynamics of losses, but also
remaining necessary robustness, exhibiting the flexibility to trade-off (by tuning two betas).

Intuitively, by setting (β1, β2)→ (0+, 1−), we are able to exploit the long-term historical information
along the training (via β2), while focusing on the importance of current losses (via β1) and thus can
get the best of both world. This simple and elegant design turns out to be surprisingly beneficial in
practice, which is further verified in numerous experiments in Section 4.

Figure 1: The effect of EMAs, where the output weight is a function of the time step t. From left to
right: β1 = 0.1, 0.5, 0.8, and β = β2 ≡ 0.9.

Annealing. Notably, similar to other loss-weighted sampling methods, the decoupled EMA sam-
pling scheme (3.8) also assigns different weights on the respective gradient of data samples, leading
to a biased estimation on the true gradient ∇θL̂n(·) (that assigns uniform weights). Inspired by Qin
et al. (2024), we adopt the annealing strategy, to perform normal training (with the standard batched
sampling, no data selection) at the last few epochs. Besides, to get a better initialization of the score
{si(·)}i∈[n], we also apply the annealing strategy at the first few epochs.

Combining the decoupled EMA sampling scheme (3.8) with the annealing strategy, we obtain the
Evolved Sampling (ES) framework (formalized in Algorithm 1).

Pruning. Note that applying the decoupled EMA sampling scheme (3.8) to meta-batches (with the
batch size B) has already introduced data selection in a batch level, since one can always select a

1The EMA can be viewed as a weighted average over past 1/(1− β) moments (when β → 1−).
2As a comparison, (3.7) is also called the single EMA. Note that (3.7) reduces to (3.6) when setting β = 0,

and (3.7) reduces to the standard batched sampling when setting β = 1.
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smaller batch (with the batch size b < B) out of the meta-batch, according to the sampling probability
pi(t) defined in (3.8). For more aggressive data pruning and enhanced data efficiency, we can further
extend ES by involving the set level data selection (i.e. randomly pruning the whole dataset according
to the probability proportional to the score {si(e)}ni=1 at the beginning of the e-th epoch), which is
Evolved Sampling with Pruning (ESWP; formalized in Algorithm 1).

Algorithm 1 Learning by Evolved Sampling (with Pruning)
Require: Dataset D = {zi}ni=1, model space Θ ∋ θ, optimizer (e.g. SGD, Adam)
Require: Pruning ratio r, meta-batch size B, mini-batch size b ≤ B, decoupled EMAs’ hyper-

parameters β1, β2 ∈ (0, 1), total number of epochs E, number of annealing epochs Ea

Initialize the model θ(0) = θ0, the score s(0) = 1
|D|1n = 1

n1n, t = 0

for e = 0, 1, · · · , E − 1 do
if Ea ≤ e < E − Ea then

Sample a sub-dataset De (|De| = (1− r)|D|) from D without replacement, according to the
probability p′i(e) ∝ si(e) (normalized w.r.t. i ∈ [n]) ▷ “pruning”

else
Set De = D

end if
for j = 0, 1, · · · , ⌈ |De|

B ⌉ − 1 do
Sample a meta-batch Bt (|Bt| = B) uniformly from De without replacement
Compute the loss ℓi(θ(t)) for zi ∈ Bt
Update the score: si(e+ 1)← β2si(e) + (1− β2)ℓi(θ(t)) for zi ∈ Bt
Update the weight: wi(e)← β1si(e) + (1− β1)ℓi(θ(t)) for zi ∈ Bt
if Ea ≤ e < E − Ea then

Sampling a mini-batch bt (|bt| = b) from Bt without replacement, according to the
probability pi(e) ∝ wi(e) (normalized w.r.t. {i ∈ N+ : zi ∈ Bt})
Update the model: θ(t+ 1)← optimizer(θ(t); bt)

else
Update the model: θ(t+ 1)← optimizer(θ(t);Bt) ▷ “annealing”

end if
t← t+ 1

end for
end for

We illustrate the ES(WP) framework (Algorithm 1) in Figure 2. For the essential differences between
ES(WP) and previous dynamic sampling methods, one can refer to the taxonomy outlined in Table 1.
Remark 1. Here, we allow the randomness to keep samples with lower weights in the training,
which reduces the biases compared to directly discarding them. In addition, there is no need for the
probability-based sampling to sort the scores/weights,3 further reducing the time complexity.

3.4 THEORETICAL JUSTIFICATIONS

We demonstrate theoretically the effectiveness of ES from two aspects. For simplicity, we consider
the full-batch case when B = |D| = n, and focus on the core sampling scheme via decoupled EMAs.
(i) Decoupled EMAs introduce losses’ differences across time. The first advantage of decoupled
EMAs (over single EMAs) can be characterized by the following proposition.
Proposition 2. For any i ∈ [n], t ∈ N and any β2 ∈ (0, 1), we have

wi(t) = si(t) +
β2 − β1

1− β2
(si(t)− si(t− 1)) (3.9)

= (1− β2)

t∑
k=1

βt−k
2 ℓi(θ(k)) + (β2 − β1)

t−1∑
k=1

βt−1−k
2 (ℓi(θ(k + 1))− ℓi(θ(k))) +O(βt

2).

(3.10)
3One of the main weaknesses of sorting is its sensitivity to noises, since noisy samples always possess larger

losses and can be selected with higher probabilities. As is shown in Section 4.2, Ordered SGD selects many
samples with noisy labels as the training proceeds, leading to sub-optimal performance.
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Figure 2: An illustration of ES(WP). At the beginning of the e-th epoch, we randomly prune the
whole dataset according to the probability proportional to the score {si(e)}ni=1. At the t-th step, we
first sample a meta-batch Bt uniformly without replacement from the remaining dataset, from which
we then sample a mini-batch bt for BP, according to the probability defined by decoupled EMA. Note
that the scores of samples are updated using the latest model parameters. At the first/last few epochs,
we use the annealing strategy, i.e. the standard batched sampling without data selection.

The proof of Proposition 2 is deferred to Appendix A.2. Proposition 2 can be understood as follows.
The equality (3.9) implies that the improvement of decoupled EMAs (i.e. w(t)) over single EMAs
(i.e. s(t)) is measured by differences of single EMAs across time. Since the single EMA leads to in
fact a convolution between hyper-parameters’ powers and historical losses, the differences across
time are also summarized in the convolution between hyper-parameters and losses. Specifically, let
(Dl)(t) := l(t+1)− l(t), t ∈ N denote the loss difference across time, then (3.10) can be written as

w ≈ (1− β2)(β2 ∗ l) + (β2 − β1)(β2 ∗ (Dl)), (3.11)

where w := [w(t)]t∈N, l := [l(t)]t∈N, Dl := [(Dl)(t)]t∈N and β2 := [βt
2]t∈N (boldfaced notations

collecting corresponding indexes (i.e. i ∈ [n])). The common convolution ∗ is operated across time.
Remark 2. When setting β1 = β2, the decoupled EMA is reduced to a single EMA, where the first
order information of losses (i.e. the second term of RHS of (3.11)) vanishes.

(ii) ES to solve a DRO problem. From another perspective, ES can be also reformulated as a
solution to the minimax problem

min
θ∈Θ

max
p∈∆n

Ln(θ;p) :=

n∑
i=1

pi(ℓi(θ)− ℓref
i ), (3.12)

where ∆n denotes the (n− 1)-dimensional probability simplex. This objective leads to a stronger
requirement for robust performances on both typical and rare samples compared to the regular ERM
(Shalev-Shwartz & Wexler, 2016). Different from traditional DRO, (3.12) introduces a reference loss
ℓref
i , with the excess loss ℓi(θ)− ℓref

i measuring the improvement of the model on the i-th sample with
respect to a reference model (typically pre-trained; see e.g. Oren et al. (2019); Xie et al. (2023a);
Mindermann et al. (2022)). The second advantage of ES is to naturally leverage losses of historical
models along the training dynamics as a proxy of the reference loss ℓref

i in (3.12), which can be
continuously updated without explicitly (pre-)training additional models.

Specifically, we have the following proposition, and its proof is deferred to Appendix A.3.
Proposition 3. Consider to solve the minimax objective (3.12) via gradient ascent-descent{

p(t) ∝ w(t) := w(t− 1) + (1− β1)(ℓ(θ(t))− ℓref(θ(1 : t− 1))),
θ(t+ 1) := θ(t)− ηθt

∑n
i=1 pi(t)∇θℓi(θ(t)),

(3.13)

where the reference loss is defined as ℓref(θ(1 : t)) := [ℓref
i (θ(1 : t))]i∈[n] with ℓref

i (θ(1 : t)) :=
1−2β1+β1β2

1−β1
ℓi(θ(t))+

β1(1−β2)
2

1−β1

∑t−1
k=1 β

t−1−k
2 ℓi(θ(k))+

β1(1−β2)β
t−1
2

n(1−β1)
, i ∈ [n]. Then, the dynamics

(3.13) is consistent with gradient descent sampled with the decoupled EMA (3.8).

4 EXPERIMENTS

In this section, we provide numerical simulations on the proposed method (ES(WP); Algorithm 1) to
demonstrate its effectiveness, efficiency, robustness and flexibility.
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4.1 EFFECTIVENESS AND EFFICIENCY

We compare the proposed methods ES/ESWP, with a group of former dynamic sampling ap-
proaches, including the standard batched sampling (Baseline), Order (Kawaguchi & Lu, 2020)),
Loss (Katharopoulos & Fleuret, 2017), InfoBatch (Qin et al., 2024), KA (Thao Nguyen et al., 2023),
UCB (Raju et al., 2021). For all sampling methods, the hyper-parameters used in data augmentation,
tokenization are maintained the same (see more details in Appendix B). All the reported results are
evaluated on the average of 2-4 independent random trials.

Configurations. For ES/ESWP, the default hyper-parameters are as follows: The annealing ratio is
Ea/E = 5%; the pruning ratio is r = 20% for ESWP; in decoupled EMAs, (β1, β2) = (0.2, 0.9)
for ES, (β1, β2) = (0.2, 0.8) for ESWP; for both ES and ESWP, the ratio of mini-batch size over
meta-batch size is b/B = 25%. For the two batch level selection methods (Order, Loss), we use
the same mini/meta-batch size. For InfoBatch, KA and UCB, we use the default hyper-parameters
in original papers. For computer vision (CV) tasks, we train ResNet-18/50 (R-18/50) models on
CIFAR-10/100, using SGD for 200 epochs, where the meta-batch size B = 128/256 for ResNet-
18/50 (b/B = 50% for ResNet-50). We also fine-tune the ViT-Large (Dosovitskiy et al., 2021) on the
ImageNet-1K dataset, using Adam for 10 epochs, where the meta-batch size B = 256. For natural
language processing (NLP) tasks, we fine-tune the ALBERT-Base-v2 (Lan et al., 2020) model on the
GLUE benchmark, using AdamW for 10 epochs, where B is set according to Xie et al. (2023b).

Results. We report the test classification accuracy and overall wall-clock time for the evaluation of
both effectiveness and efficiency. The results are as follows.

(i) For small-scale tasks, we train ResNet models on CIFAR datasets, and summarize the performance
of different sampling methods in Table 2. It is shown that the batch level selection methods (Loss,
Order, ES) typically exhibits limited accelerations on these small-scale tasks, since these methods
often require additional forward propagation overheads that are not negligible compared to BPs.
Nevertheless, ES is the only algorithm that achieves lossless accelerations across all methods. Notably,
ESWP saves the most computation time while maintaining the best performance (also comparable to
Baseline) among set level selection methods (UCB, KA, InfoBatch).

Table 2: The test accuracy (%) and saved time of training ResNet models on CIFAR datasets.
CIFAR-10 (R-18) CIFAR-100 (R-18) CIFAR-100 (R-50)

Baseline 95.4 78.8 81.1

UCB (Raju et al., 2021) 95.2↓0.2 18% 77.6↓1.2 18% 80.5↓0.6 24%
KA (Thao Nguyen et al., 2023) 95.3↓0.1 21% 78.1↓0.7 21% 80.2↓0.9 24%

InfoBatch (Qin et al., 2024) 95.3↓0.1 21% 78.4↓0.4 24% 80.4↓0.7 28%

Loss (Katharopoulos & Fleuret, 2017) 95.3↓0.1 11% 78.4↓0.4 10% 80.5↓0.6 12%
Order (Kawaguchi & Lu, 2020) 95.4↑0.0 11% 78.5↓0.3 10% 80.9↓0.2 12%

ES 95.4↑0.0 10% 78.8↑0.0 10% 81.1↑0.0 11%

ESWP 95.3↓0.1 24% 78.6↓0.2 24% 80.6↓0.5 31%

(ii) For large-scale tasks, we fine-tune the ViT-Large model on the ImageNet-1K dataset, and
summarize the performance of different sampling methods in Table 3. Under this setting, ES
continues to show the best performance among batch level selection methods and the second-to-
highest accuracy across all sampling methods. Notably, ESWP achieves the best performance and
most significant time reduction, suggesting that ESWP inherits the advantages of both set and batch
level selection methods. In addition, it is observed that the training speed-up of batch level methods
gets far more significant given these large-scale tasks, conversely surpassing the set level methods
compared to (i). This is due to the dominance of the saved computation in BPs. Furthermore, many
sampling methods achieve higher accuracies than the baseline, implying huge potentials of data
selection in large-scale machine learning.

Table 3: The validation accuracy (%) and saved time of fine-tuning ViT-Large on the ImageNet-1K.
Baseline UCB KA InfoBatch Loss Order ES ESWP

Accuracy 84.4 84.2 84.3 84.7 84.3 84.2 84.7 85.0

Time↓ - 23.6% 25.3% 23.5% 36.4% 38.2% 26.0% 40.7%
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(iii) For NLP tasks, we fine-tune the ALBERT-Base model on the GLUE benchmark, and summarize
the the performance of different sampling methods in Table 4. On most of the datasets and in
the averaged sense, ES/ESWP outperforms all the other sampling methods, and shows improved
performance over the baseline with substantial reduction of computation time.

Table 4: The validation metric (%) and saved time of fine-tuning the ALBERT-Base on the GLUE.
CoLA SST2 QNLI QQP MNLI-m MRPC RTE STSB Avg. Time↓

Baseline 56.7 92.2 91.1 90.3 84.7 88.5 74.0 89.6 83.4 -
InfoBatch 57.9 92.1 91.2 90.3 84.5 89.2 73.8 89.7 83.6↑0.2 28.3%

Loss 55.1 92.3 91.4 90.2 84.4 88.6 69.6 89.5 82.6↓0.8 20.8%

Order 55.4 92.6 91.3 90.1 80.9 84.6 63.2 89.4 80.9↓2.5 20.8%

ES 58.4 92.4 91.4 90.2 84.5 88.7 75.8 89.6 83.9↑0.5 20.2%

ESWP 57.5 93.1 91.7 90.0 84.7 89.8 72.8 89.4 83.6↑0.2 33.1%

4.2 ROBUSTNESS UNDER LABEL NOISES

In this section, we further demonstrate that ES(WP) exhibits more notable advantages when there are
label noises. We train ResNet models on CIFAR datasets under both light (10%) and heavy (40%)
label noises, which are injected randomly with uniform probabilities or flipped to another class (see
details in Appendix B.1). The other configurations remain the same as those in Section 4.1, except
that we only train 100 epochs to avoid the overfitting of ResNet-50. The results are as follows.

(i) In Table 5, we summarize the results of training the ResNet-18 model on the CIFAR-100 dataset
under different levels and types of label noises. It is shown that ES/ESWP consistently outperforms
all the other sampling methods (including the baseline) with clear gaps, and the improvement is more
significant when the label noises become severer.

Table 5: The test accuracy (%) of training the ResNet-18 on the CIFAR-100 with label noises.
Baseline UCB KA InfoBatch Loss Order ES ESWP

Clean (0%) 78.8 77.6↓1.2 78.1↓0.7 78.4↓0.4 78.4↓0.4 78.5↓0.3 78.8↑0.0 78.6↓0.2
Flip (10%) 72.3 68.7↓3.6 67.0↓5.3 71.5↓0.8 72.9↑0.6 70.8↓1.5 73.1↑0.8 73.1↑0.8
Flip (40%) 46.8 43.9↓2.9 45.0↓1.8 46.6↓0.2 53.6↑6.8 47.8↑1.0 57.1↑10.3 58.2↑11.4

Uniform (10%) 68.3 66.6↓1.7 65.4↓2.9 67.8↓0.5 67.0↓1.3 65.4↓2.9 68.7↑0.4 68.7↑0.4
Uniform (40%) 50.8 44.1↓6.7 44.0↓6.8 50.8↑0.0 57.3↑6.5 37.9↓12.9 61.1↑10.3 60.1↑9.3

(ii) For further verifications and analysis, we also plot the test accuracy versus wall-clock time
in Figure 3(a) when training the ResNet-50 model on the CIFAR-100 dataset with 40% uniform
label noises. It is observed that ES/ESWP achieves the significantly improved performance and
considerable accelerations. To further understand the underlying mechanism why ES/ESWP works,
we plot the relative magnitudes of gradients evaluated on corrupted samples over the whole mini-batch
at each training iteration in Figure 3(b). It turns out that ES/ESWP exhibits a smaller portion of noisy
gradients along the training (particularly at the convergence stage), suggesting that ES/ESWP selects
proper samples for training given severe label corruptions.
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Figure 3: Results of training the ResNet-50 on the CIFAR-100 with 40% uniform label noises.
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4.3 ABLATION STUDIES

Decoupled EMA and annealing. We numerically test the effectiveness of two important com-
ponents applied in ES, i.e. the decoupled EMA and annealing. Here, we perform ablations on
combinations of “Loss”, “A” (Annealing), “E” (single EMA) and “DE” (decoupled EMA). From
Table 6, it is observed that: (i) Annealing is an effective technique to boost performance; (ii) EMA
also contributes to the improvements; (iii) Compared to the single EMA, the decoupled EMA provides
more substantial benefits to the training process.

Table 6: Ablations on decoupled EMAs and annealing for different models, datasets and noises.
ResNet-18 ResNet-50 ALBERT-Base

CIFAR-10 (40%) CIFAR-100 (10%) CIFAR-100 CIFAR-100 (40%) CoLA
Loss 83.3 67.0 80.5 53.8 55.1

Loss + A 84.4 68.4 80.8 60.1 55.8

Loss + E 83.4 66.2 80.5 53.6 57.6

Loss + DE 83.7 66.8 81.1 54.2 57.5

Loss + A + E 84.6 68.0 80.4 60.3 57.6

ES = Loss + A + DE 85.2 68.7 81.1 60.9 58.4
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Figure 4: The effect of b/B.

Trade-offs between accuracies and accelerations. We empha-
size that the ratio (of batch sizes) b/B in ES is user-defined, and
is flexible to be tuned to trade-off between model performance
and training costs. We evaluate different values of b/B when fine-
tuning ViT-Large on the ImageNet-1K, and plot the results in Fig-
ure 4. It is shown that ES robustly achieves lossless performance
when b/B ≥ 1/16. When the data selection is too aggressive
(b/B ≤ 1/32), the performance degrades as expected, primarily
due to the increase in variances of stochastic gradients.

Choices of (β1, β2). To investigate the impact of newly introduced hyper-parameters in ES, we test
different choices of (β1, β2) when training ResNet-18 on CIFAR and ALBERT-Base on CoLA. The
results shown in Figure 5 further verify the “optimality” of default configurations to set (β1, β2)→
(0+, 1−), allowing for guidance by current losses while exploiting long-term historical information.
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Figure 5: The effect of (β1, β2) on the performance (test accuracy (%)).

5 CONCLUSION

In this work, we propose a simple yet effective framework, Evolved Sampling, which can be applied
to general machine learning tasks to improve the data efficiency in a dynamic manner. By further
adopting differences of historical losses to determine samples’ importance for data selection, Evolved
Sampling can achieve lossless training with significant accelerations, particularly when there are
severe noises in labels. Studies in the future may include three aspects: (i) More rigorous mathematical
analysis on the effect of data selection (e.g. Kolossov et al. (2024)); (ii) More specific applications,
such as data selection/reduction on domain mixtures (e.g. Chen et al. (2023); Xie et al. (2023a)); (iii)
More efficient and scalable implementation, such as data parallelism (You et al., 2017; 2020). These
directions are certainly worthy of explorations in the future.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proposition A.1 (A full version of Proposition 1). Consider the continuous-time and full-batch
idealization of the gradient decent, i.e. the standard gradient flow training dynamics

d

dt
θ̂n(t) = −∇θL̂n(θ̂n(t)) = −

1

n

n∑
i=1

∇θℓi(θ̂n(t)), θ̂n(0) = θ0, (A.1)

and its loss-weighted variant

d

ds
θ̂lw
n (s) = −

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

∇θℓi(θ̂
lw
n (s)), θ̂lw

n (0) = θ0. (A.2)

Assume that there exists θ∗ ∈ Θ such that L̂n(θ
∗) = 0,4 and ℓi(·) is convex for each i ∈ [n]. Then,

we have the more-than sub-linear convergence rate of (A.2):

1

s

∫ s

0

L̂n(θ̂
lw
n (s′))ds′ − L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′, s > 0, (A.3)

where ∆(·) is a positive-valued function on [0,∞). Moreover, for any s, t ≥ 0 such that L̂n(θ̂n(t)) =

L̂n(θ̂
lw
n (s)) ≜ l ≥ 0,5 we have

d

ds
∥θ̂lw

n (s)− θ∗∥22 ≤ −2 (l +∆(s)) , (A.4)

d

dt
∥θ̂n(t)− θ∗∥22 ≤ −2l. (A.5)

Proof. For any θ ∈ Θ, we have

d

dt
∥θ̂n(t)− θ∥22 = 2

〈
θ̂n(t)− θ,

d

dt
θ̂n(t)

〉
=

2

n

n∑
i=1

〈
θ − θ̂n(t),∇θℓi(θ̂n(t))

〉
≤ 2

n

n∑
i=1

(
ℓi(θ)− ℓi(θ̂n(t))

)
, (A.6)

and
d

ds
∥θ̂lw

n (s)− θ∥22 = 2

〈
θ̂lw
n (s)− θ,

d

ds
θ̂lw
n (s)

〉
= 2

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

〈
θ − θ̂lw

n (s),∇θℓi(θ̂
lw
n (s))

〉
≤ 2

n∑
i=1

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
. (A.7)

Note that
n∑

i=1

[
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
− 1

n

(
ℓi(θ)− ℓi(θ̂n(t))

)]

=

n∑
i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ)− ℓi(θ̂

lw
n (s))

)
+

1

n

n∑
i=1

(
ℓi(θ̂n(t))− ℓi(θ̂

lw
n (s))

)
4One can find empirical evidences of this assumption (the optimal training loss can be zero) in e.g. Zhang

et al. (2017) (Figure 1 (a)).
5For example, at the initialization, L̂n(θ̂n(0)) = L̂n(θ0) = L̂n(θ̂

lw
n (0)).
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= −
n∑

i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ)

)
︸ ︷︷ ︸

T1

+
(
L̂n(θ̂n(t))− L̂n(θ̂

lw
n (s))

)
︸ ︷︷ ︸

T2

, (A.8)

we analyze T1, T2 separately.

(i) T1: Note that if ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

≤ 1
n for any i ∈ [n], we get ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

= 1
n for

any i ∈ [n], which holds in the zero probability and implies the triviality. Let I+ :={
i ∈ [n] :

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

> 1
n

}
̸= ∅, and i+min := argmini∈I+ ℓi(θ̂

lw
n (s)), and similarly

I− :=

{
i ∈ [n] :

ℓi(θ̂
lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

≤ 1
n

}
̸= ∅, and i−max := argmaxi∈I− ℓi(θ̂

lw
n (s)). Obviously,

ℓi+min
(θ̂lw

n (s)) > 1
n

∑n
j=1 ℓj(θ̂

lw
n (s)) ≥ ℓi−max

(θ̂lw
n (s)), hence δ(s) := ℓi+min

(θ̂lw
n (s))− ℓi−max

(θ̂lw
n (s)) > 0

for any s ≥ 0. Notice that L̂n(θ
∗) = 0⇔ ℓi(θ

∗) = 0, ∀i ∈ [n], we have

T1

∣∣
θ=θ∗ =

∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ

∗)
)

+
∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi(θ̂

lw
n (s))− ℓi(θ

∗)
)

=
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi(θ̂

lw
n (s)) +

∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi(θ̂

lw
n (s))

≥
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi+min

(θ̂lw
n (s)) +

∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi−max

(θ̂lw
n (s))

=
∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)(
ℓi−max

(θ̂lw
n (s)) + δ(s)

)
+
∑
i∈I−

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
ℓi−max

(θ̂lw
n (s))

= ℓi−max
(θ̂lw

n (s))

n∑
i=1

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
+ δ(s)

∑
i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂
lw
n (s))

− 1

n

)
= ℓi−max

(θ̂lw
n (s))(1− 1) + ∆(s) = ∆(s), (A.9)

where ∆(s) := δ(s)
∑

i∈I+

(
ℓi(θ̂

lw
n (s))∑n

j=1 ℓj(θ̂lw
n (s))

− 1
n

)
> 0 for any s ≥ 0. By continuity, T1

∣∣
θ
≥

∆(s)/2 > 0 also holds for any θ ≈ θ∗.

(ii) T2: It measures the difference between losses under the standard and loss-weighted gradient flow.

Combining (A.7), (A.8) with (A.9) yields that

d

ds
∥θ̂lw

n (s)− θ∗∥22 ≤ 2

[
1

n

n∑
i=1

(
ℓi(θ

∗)− ℓi(θ̂n(t))
)
− T1

∣∣
θ=θ∗ + T2

]
≤ 2

[(
L̂n(θ

∗)− L̂n(θ̂n(t))
)
−∆(s) +

(
L̂n(θ̂n(t))− L̂n(θ̂

lw
n (s))

)]
= 2

[(
L̂n(θ

∗)− L̂n(θ̂
lw
n (s))

)
−∆(s)

]
, (A.10)

which gives

L̂n(θ̂
lw
n (s))− L̂n(θ

∗) ≤ −1

2

d

ds
∥θ̂lw

n (s)− θ∗∥22 −∆(s) (A.11)

⇒
∫ s2

s1

L̂n(θ̂
lw
n (s))ds− (s2 − s1) · L̂n(θ

∗) ≤ −1

2

(
∥θ̂lw

n (s2)− θ∗∥22 − ∥θ̂lw
n (s1)− θ∗∥22

)
−
∫ s2

s1

∆(s)ds

17
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≤ 1

2
∥θ̂lw

n (s1)− θ∗∥22 −
∫ s2

s1

∆(s)ds (A.12)

for any s2 > s1 ≥ 0. That is

1

s2 − s1

∫ s2

s1

L̂n(θ̂
lw
n (s))ds− L̂n(θ

∗) ≤ 1

2(s2 − s1)
∥θ̂lw

n (s1)− θ∗∥22 −
1

s2 − s1

∫ s2

s1

∆(s)ds,

or for any s > 0,

1

s

∫ s

0

L̂n(θ̂
lw
n (s′))ds′ − L̂n(θ

∗) ≤ 1

2s
∥θ0 − θ∗∥22 −

1

s

∫ s

0

∆(s′)ds′

<
1

2s
∥θ0 − θ∗∥22. (A.13)

Recall that (A.6) can be rewritten as

d

dt
∥θ̂n(t)− θ∗∥22 ≤ 2

(
L̂n(θ

∗)− L̂n(θ̂n(t))
)
. (A.14)

Compared with (A.10), for any s, t ≥ 0 such that L̂n(θ̂n(t)) = L̂n(θ̂
lw
n (s)), we have (A.10)’s RHS

< (A.14)’s RHS = −2L̂n(θ̂n(t)) ≤ 0, which implies a sharper convergence rate of the loss-weighted
gradient flow (at the same loss level with the standard gradient flow). The proof is completed.

Proposition A.1 suggests that, under certain regularity conditions, the time-averaged loss of loss-
weighted gradient flow converges more than sub-linearly to the global minimum, while the standard
gradient flow has the sub-linear convergence. In addition, at the same loss level, the convergence rate
of loss-weighted gradient flow is sharper than that of standard gradient flow. This theoretical charac-
terization fundamentally gives chances to learning acceleration by leveraging the loss information in
the gradient-based training dynamics.

A.2 PROOF OF PROPOSITION 2

Proof. The decoupled EMAs (3.8) can be rewritten as

p(t) ∝ w(t) = β1s(t− 1) + (1− β1)l(t),

s(t) = β2s(t− 1) + (1− β2)l(t), s(0) = 1/n
(A.15)

In (A.15), let the first equation minus the second, we get

w(t)− s(t) = (β2 − β1)(l(t)− s(t− 1)). (A.16)

The second equation gives

s(t)− s(t− 1) = (1− β2)(l(t)− s(t− 1)). (A.17)

Combining (A.16) with (A.17), we have

w(t) = s(t) +
β2 − β1

1− β2
(s(t)− s(t− 1)), (A.18)

which proves the first equality.

Expanding the second equation, by induction we get

s(t) = βt
2s(0) + (1− β2)

t∑
k=1

βt−k
2 l(k), (A.19)

hence

s(t)− s(t− 1) = βt−1
2 (β2 − 1)s(0) + (1− β2)

[
t∑

k=1

βt−k
2 l(k)−

t−1∑
k=1

βt−1−k
2 l(k)

]

= −(1− β2)β
t−1
2 s(0) + (1− β2)

[
βt−1
2 l(1) +

t∑
k=2

βt−k
2 l(k)−

t−1∑
k=1

βt−1−k
2 l(k)

]
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= −(1− β2)β
t−1
2 s(0) + (1− β2)

[
βt−1
2 l(1) +

t−1∑
k=1

βt−1−k
2 (l(k + 1)− l(k))

]

≈ (1− β2)

t−1∑
k=1

βt−1−k
2 (l(k + 1)− l(k)) (A.20)

for relatively large t, and the approximation error is exponentially small (due to limt→+∞ βt
2 = 0 for

any β2 ∈ (0, 1)). Combining (A.18), (A.19) and (A.20) yields (3.10), and the proof is completed.

A.3 PROOF OF PROPOSITION 3

Proof. The problem (3.12) can be solved in an alternative gradient descent-ascent manner:

θ(t+ 1) = θ(t)− ηθt

n∑
i=1

pi(t)∇θℓi(θ(t)),

wi(t+ 1) = wi(t) + ηwt (ℓi(θ(t+ 1))− ℓref
i ), pi(t) =

wi(t)∑
j wj(t)

.

(A.21)

Decoupled EMAs (3.8) update the weights as
wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓi(θ(t))) + β1(si(t)− si(t− 1)). (A.22)

By (A.19), we get

si(t)− si(t− 1) = −(1− β2)β
t−1
2 si(0)− (1− β2)

2
t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) + (1− β2)ℓi(θ(t)),

hence
wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓi(θ(t)))− β1(1− β2)β

t−1
2 si(0)

− β1(1− β2)
2
t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) + β1(1− β2)ℓi(θ(t)). (A.23)

Let

ℓref
i =

1− 2β1 + β1β2

1− β1
ℓi(θ(t)) +

β1(1− β2)
2

1− β1

t−1∑
k=1

βt−1−k
2 ℓi(θ(k)) +

β1(1− β2)β
t−1
2

1− β1
si(0),

(A.24)
then we have

wi(t+ 1) = wi(t) + (1− β1)(ℓi(θ(t+ 1))− ℓref
i ), (A.25)

which coincides with the update formula (A.21) with ηwt = 1− β1. The proof is completed.

B MORE DETAILS OF EXPERIMENTS

In this section, we present further experimental details. We run all the experiments with one NVIDIA
A100 (80GB) with the mixed-precision training. All the algorithms are implemented based on
PyTorch (Paszke et al., 2019) and Timm (Wightman et al., 2019). For InfoBatch, our implementation
is adapted from Qin et al. (2024).

B.1 EXPERIMENTS ON CIFAR DATASETS

For the experiments on the CIFAR-10/100 datasets, we use the SGD optimizer with the momentum
0.9 and weight decay 5 × 10−4. We apply the OneCycle scheduler (Smith & Topin, 2019) with
the cosine annealing. For CIFAR-10, the maximal learning rate is 0.2 for the baseline and set level
selection methods, while 0.05 for batch level selection methods due to larger variances of stochastic
gradients and 0.08 for ESWP. For CIAFR-100 trained with ResNet-18/50, the maximal learning rates
for all the sampling methods are 0.05/0.2, following Qin et al. (2024).

For the experiments under light/heavy label noises, we uniformly select 10%/40% samples in the
whole dataset and assign them wrong labels with uniform probabilities for uniform noises or a certain
label for flip noises (Ghosh & Lan, 2021, Section 2).
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B.2 EXPERIMENTS OF FINE-TUNING

ALBERT. Following the setup in Xie et al. (2023b) (Table 8), we use the AdamW optimizer and
the polynomial decay scheduler with the warm up.

Vision Transformer. We finetune the ViT-Large model on the ImageNet-1K dataset with a meta-
batch size B = 256 for 10 epochs, using the Adam optimizer with the OneCycle scheduler (Smith &
Topin, 2019) with the cosine annealing and a maximal learning rate of 2× 10−5.

B.3 ADDITIONAL PLOTS

Following Mindermann et al. (2022), we plot the test accuracy versus the number of samples used for
back-propagation (BP) for Baseline and ES(WP) in Figure 6. It is clear that ES(WP) can significantly
reduce the BP costs and thus improves the learning efficiency.
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(a) CIFAR-100 (ResNet-18)
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Figure 6: Learning dynamics of different data selection methods: Test accuracy versus the number of
samples used for back-propagation.
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