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Abstract

Machine learning from explanations (MLX) is an approach to learning that uses1

human-provided explanations of relevant or irrelevant features for each input to2

ensure that model predictions are right for the right reasons. Existing MLX ap-3

proaches rely on local model interpretation methods and require strong model4

smoothing to align model and human explanations, leading to sub-optimal per-5

formance. We recast MLX as a robustness problem, where human explanations6

specify a lower dimensional manifold from which perturbations can be drawn, and7

show both theoretically and empirically how this approach alleviates the need for8

strong model smoothing. We consider various approaches to achieving robustness,9

leading to improved performance over prior MLX methods. Finally, we show how10

to combine robustness with an earlier MLX method, yielding state-of-the-art results11

on both synthetic and real-world benchmarks.112

1 Introduction13

Deep neural networks (DNNs) display impressive capabilities, making them strong candidates for14

real-wold deployment. However, numerous challenges hinder their adoption in practice. Several15

major deployment challenges have been linked to the fact that labelled data often under-specifies16

the task (D’Amour et al., 2020). For example, systems trained on chest x-rays were shown to17

generalise poorly because they exploited dataset-specific incidental correlations such as hospital tags18

for diagnosing pneumonia (Zech et al., 2018; DeGrave et al., 2021). This phenomenon of learning19

unintended feature-label relationships is referred to as shortcut learning (Geirhos et al., 2020) and is20

a critical challenge to solve for trustworthy deployment of machine learning algorithms. A common21

remedy to avoid shortcut learning is to train on diverse data (Shah et al., 2022) from multiple domains,22

demographics, etc, thus minimizing the underspecification problem, but this may be impractical for23

many applications such as in healthcare.24

Enriching supervision through human-provided explanations of relevant and irrelevant re-25

gions/features per example is an appealing direction toward reducing under-specification. For26

instance, a (human-provided) explanation for chest x-ray classification may highlight scanning arti-27

facts such as hospital tag as irrelevant features. Learning from such human-provided explanations28

(MLX) has been shown to avoid known shortcuts (Schramowski et al., 2020). Ross et al. (2017)29

pioneered an MLX approach based on regularizing DNNs, which was followed by several others30

(Schramowski et al., 2020; Rieger et al., 2020; Stammer et al., 2021; Shao et al., 2021). Broadly,31

existing approaches employ a model interpretation method to obtain per-example feature saliency, and32

regularize such that model and human-provided explanations align. Since saliency is unbounded for33

relevant features, many approaches simply regularize the salience of irrelevant features. In the same34

spirit, we focus on handling a specification of irrelevant features, which we refer to as an explanation35

hereafter. We collectively refer to existing MLX methods as regularization-based.36

1Code and data at this anonymous repository: https://github.com/vps-anonconfs/robust_mlx

Submitted to the Workshop “XAI in Action: Past, Present, and Future Applications” at the 37th Conference on
Neural Information Processing Systems (NeurIPS 2023). Do not distribute.
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Regularization-based approaches suffer from a critical concern stemming from their dependence on a37

local interpretation method. MLX methods based solely on local, i.e. example-specific, explanations38

do not have the desired affect of reducing shortcuts globally, i.e. over the entire input domain (see39

Figure 1). As we demonstrate both analytically and empirically, regularization-based MLX methods40

require strong model smoothing in order to be globally effective at reducing shortcut learning.41

In this work, we explore learning from explanations using various robust training methods with the42

objective of training models that are robust to perturbations of irrelevant features. We start by framing43

the provided human explanations as specifications of a local, lower-dimensional manifold from which44

perturbations are drawn. We then notice that a model whose prediction is invariant to perturbations45

drawn from the manifold ought also to be robust to irrelevant features. Our perspective yields46

considerable advantages. Posing MLX as a robustness task enables us to leverage the considerable47

body of prior work in robustness. Further, we show in Section 4.1 that robust training can provably48

upper bound the deviation on model value when irrelevant features are perturbed without needing49

to impose model smoothing. However, when the space of irrelevant features is high-dimensional,50

robust-training may not fully suppress irrelevant features as explained in Section G. Accordingly, we51

explore combining both robustness-based and regularization-based methods, which achieves the best52

results. We highlight the following contributions:53

• We theoretically and empirically demonstrate that existing MLX methods require strong model54

smoothing owing to their dependence on local model interpretation tools.55

• We study learning from explanations using robust training methods. To the best of our knowledge,56

we are the first to analytically and empirically evaluate robust training methods for MLX.57

• We distill our insights into our final proposal of combining robustness and regularization-based58

methods, which consistently out-performs the best regularization method and reduces the error rate59

by 20-90%.60

2 Problem Definition and Background61

We assume access to a training dataset with N training examples, DT = {(x(i), y(i))}Ni=1, with62

x(i) ∈ Rd and y(i) label. In the MLX setting, a human expert also specifies input mask m(n)63

for an example x(n) where non-zero values of the mask identify irrelevant features of the input64

x(n). An input mask is usually designed to negate a known shortcut feature that a classifier is65

exploiting. Figure 2 shows some examples of masks for the datasets that we used for evaluation. For66

example, a mask in the ISIC dataset highlights a patch that was found to confound with non-cancerous67

images. With the added human specification, the augmented dataset contains triplets of example,68

label and mask, DT = {(x(i), y(i),m(i))}Ni=0. The task therefore is to learn a model f(x; θ) that fits69

observations well while not exploiting any features that are identified by the mask m.70

The method of Ross et al. (2017) which we call Grad-Reg (short for Gradient-Regularization), and71

also other similar approaches (Shao et al., 2021; Schramowski et al., 2020) employ an explanation72

algorithm (E) to assign importance scores to input features: IS(x), which is then regularized with an73

R(θ) term such that irrelevant features are not regarded as important. Their training loss takes the74

form shown in Equation 1 for an appropriately defined task-specific loss ℓ.75

IS(x) ≜ E(x, f(x; θ)).

R(θ) ≜
N∑

n=1

∥IS(x(n))⊙m(n)∥2.

θ∗ = argmin
θ

{∑
n

ℓ
(
f(x(n); θ), y(n)

)
+λR(θ) +

1

2
β∥θ∥2

}
. (1)

We use ⊙ to denote element-wise product throughout. CDEP (Rieger et al., 2020) is slightly different.76

They instead use an explanation method that also takes the mask as an argument to estimate the77

contribution of features identified by the mask, which they minimize similarly.78

2



3 Method79

Our methodology is based on the observation that an ideal model must be robust to perturbations80

to the irrelevant features. Following this observation, we reinterpret the human-provided mask as a81

specification of a lower-dimensional manifold from which perturbations are drawn and optimize the82

following objective.83

θ∗ = argmin
θ

∑
n

{
ℓ
(
f(x(n); θ), y(n)

)
+α max

ϵ:∥ϵ∥∞≤κ
ℓ
(
f(x(n) + (ϵ⊙m(n)); θ), y(n)

)}
(2)

The above formulation uses a weighting α to trade off between the standard task loss and perturbation84

loss and κ > 0 is a hyperparameter that controls the strength of robustness. We can leverage the85

many advances in robustness in order to approximately solve the inner maximization. We present86

them below.87

Avg-Ex: We can approximate the inner-max with the empirical average of loss averaged over88

K samples drawn from the neighbourhood of training inputs. Singla et al. (2022) adopted this89

straightforward baseline for supervising using human-provided saliency maps on the Imagenet90

dataset. Similar to κ, we use σ to control the noise in perturbations as shown below.91

θ∗ = argmin
θ

∑
n

ℓ
(
f(x(n); θ), y(n)

)
+

α

K

K∑
ϵj∼N (0,σ2I)

ℓ
(
f(x(n) + (ϵj ⊙m(n)); θ), y(n)

)
PGD-Ex: Optimizing for an estimate of worst perturbation through projected gradient descent92

(PGD) (Madry et al., 2017) is a popular approach from adversarial robustness. We refer to the93

approach of using PGD to approximate the second term of our loss as PGD-Ex and denote by94

ϵ∗(x(n), θ,m(n)) the perturbation found by PGD at x(n). Given the non-convexity of this problem,95

however, no guarantees can be made about the quality of the approximate solution x∗.96

θ∗ = argmin
θ

∑
n

{
ℓ
(
f(x(n); θ), y(n)

)
+ αℓ

(
f(x(n) + (ϵ∗(x(n), θ,m(n))); θ), y(n)

)}
IBP-Ex: Certified robustness approaches, on the other hand, minimize a certifiable upper-bound of97

the second term. A class of certifiable approaches known as interval bound propagation methods98

(IBP) (Mirman et al., 2018; Gowal et al., 2018) propagate input intervals to function value intervals99

that are guaranteed to contain true function values for any input in the input interval.100

We define an input interval for x(n) as [x(n) − κm(n),x(n) + κm(n)] where κ is defined in Eqn. 2.101

We then use bound propagation techniques to obtain function value intervals for the corresponding102

input interval: l(n),u(n), which are ranges over class logits. Since we wish to train a model that103

correctly classifies an example irrespective of the value of the irrelevant features, we wish to maximize104

the minimum probability assigned to the correct class, which is obtained by combining minimum105

logit for the correct class with maximum logit for incorrect class: f̃(x(n), y(n), l(n),u(n); θ) ≜106

l(n)⊙ ȳ(n)+u(n)⊙ (1− ȳ(n)) where ȳ(n) ∈ {0, 1}c denotes the one-hot transformation of the label107

y(n) into a c-length vector for c classes. We refer to this version of the loss as IBP-Ex, summarized108

below.109

l(n),u(n) = IBP (f(•; θ), [x(n) − κ×m(n),x(n) + κ×m(n)])

f̃(x(n),y(n), l(n),u(n); θ) ≜ l(n) ⊙ ȳ(n) + u(n) ⊙ (1− ȳ(n))

θ∗ = argminθ
∑
n

ℓ
(
f(x(n); θ), y(n)

)
+ αℓ

(
f̃(x(n), y(n), l,u; θ), y(n)

)
(3)

Combined robustness and regularization: PGD-Ex+Grad-Reg, IBP-Ex+Grad-Reg. We combine110

robustness and regularization by simply combining their respective loss terms. We show the objective111

for IBP-Ex+Grad-Reg below, PGD-Ex+Grad-Reg follows similarly.112

θ∗ = argmin
θ

∑
n

ℓ
(
f(x(n); θ), y(n)

)
+ αℓ

(
f̃(x(n), y(n), l,u; θ), y(n)

)
+ λR(θ). (4)

λR(θ) and α, f̃ are as defined in Eqn. 5 and Eqn. 3 respectively. In Section 4, F.1, we demonstrate113

the complementary strengths of robustness and regularization-based methods.114
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4 Theoretical Motivation115
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(a) Toy data (b) Grad-Reg with β=0 (c) Grad-Reg with β=1 (d) IBP-Ex with β=0

Figure 1: Illustration of the uneasy relationship between Grad-Reg and smoothing strength. (b)
The decision boundary is nearly vertical (zero gradient wrt to nuisance y-axis value) for all training
points and yet varies as a function of y value when Grad-Reg fitted using β = 0. (c) Grad-Reg
requires strong model smoothing (β = 1) in order to translate local insensitivity to global robustness
to x-coordinate. (d) IBP-Ex fits vertical pair of lines without any model smoothing.

In this section, we motivate the merits and drawbacks of robustness-based over regularization-based116

methods. Through non-parametric analysis in Theorems 1, 2, we argue that (a) regularization methods117

are robust to perturbations of irrelevant features (identified by the mask) only when the underlying118

model is sufficiently smoothed, thereby potentially compromising performance, (b) robust training119

upper-bounds deviation in function values when irrelevant features are perturbed, which can be120

further suppressed by using a more effective robust training. Although our analysis is restricted to121

nonparametric models for the ease of analysis, we empirically verify our claims with parametric122

neural network optimized using a gradient-based optimizer. We then highlight a limitation of123

robustness-based methods when the number of irrelevant features is large through Proposition 2.124

4.1 Merits of Robustness-based methods125

Consider a two-dimensional regression task, i.e. x(n) ∈ X and y ∈ R. Assume that the second feature126

is the shortcut that the model should not use for prediction, and denote by x
(n)
j the jth dimension127

of nth point. We infer a regression function f from a Gaussian process prior f ∼ GP (f ; 0,K)128

with a squared exponential kernel where k(x, x̃) = exp(−
∑

i
1
2
(xi−x̃i)

2

θ2
i

). As a result, we have129

two hyperparameters θ1, θ2, which are length scale parameters for the first and second dimensions130

respectively. Further, we impose a Gamma prior over the hyperparameters: G(θ−2
i ;α, β).131

Theorem 1 (Grad-Reg). We infer a regression function f from a GP prior as described above with the132

additional supervision of [∂f(x)/∂x2]|x(i) = 0, ∀i ∈ [1, N ]. Then the function value deviations133

to perturbations on irrelevant feature are lower bounded by a value proportional to the perturbation134

strength δ as shown below.135

f(x+ [0, δ]T )− f(x) ≥ 2δα

β
Θ(x2

1x
6
2 + δx2

1x
5
2) (5)

Full proof of Theorem 1 is in Appendix A, we provide the proof outline below.136

We observe from Theorem 1 that if we wish to infer a function that is robust to irrelevant feature137

perturbations, we need to set α
β to a very small value. Since the expectation of gamma distributed138

inverse-square length parameter is E[θ−2] = α
β , which we wish to set very small, we are, in effect,139

sampling functions with very large length scale parameter i.e. strongly smooth functions. This result140

brings us to the intuitive takeaway that regularization using Grad-Reg, or any local-interpretation141

methods that is closed under linear operation, applies globally only when the underlying family of142

functions is sufficiently smooth. One could also argue that we can simply use different priors for143

different dimensions, which would resolve the over-smoothing issue. However, we do not have access144

to parameters specific to each dimension in practice and especially with DNNs, therefore only overall145

smoothness may be imposed such as with parameter norm regularization in Eqn. 1.146

We now look at properties of a function fitted using robustness methods and argue that they bound147

deviations in function values better. In order to express the bounds, we introduce a numerical quantity148

called coverage (C) to measure the effectiveness of a robust training method. We first define a notion149
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of inputs covered by a robust training method as X̂ ≜ {x | x ∈ X , ℓ(f(x; θ), y) < ϕ} ⊂ X for150

a small positive threshold ϕ on loss. We define coverage as the maximum distance along second151

coordinate between any point in X and its closest point in X̂ , i.e. C ≜ maxx∈X minx∈X̂ |x2 − x̂2|.152

We observe that C is small if the robust training is effective. In the extreme case when training153

minimizes the loss for all points in the input domain, i.e. X̂ = X , then C=0.154

Theorem 2. When we use a robustness algorithm to regularize the network, the fitted function has155

the following property.156

|f(x+ [0, δ]T )− f(x)| ≤ 2C
α

β
δmaxfmax. (6)

δmax and fmax are maximum values of ∆x2 and f(x) in the input domain (X ) respectively.157

Full proof is in Appendix B. The statement shows that deviations in function values are upper bounded158

by a factor proportional to C, which can be dampened by employing an effective robust training159

method. We can therefore control the deviations in function values without needing to regress α
β (i.e.160

without over-smoothing).161

Empirical verification with a toy dataset. For empirical verification of our results, we fit a 3-layer162

feed-forward network on a two-dimensional data shown in Figure 1 (a), where color indicates the163

label. We consider fitting a model that is robust to changes in the second feature shown on y-axis.164

In Figures 1 (b), (c), we show the Grad-Reg fitted classifier using gradient (∂f/∂x2 for our case)165

regularization for two different strengths of parameter smoothing (0 and 1 respectively). With weak166

smoothing, we observe that the fitted classifier is locally vertical (zero gradient along y-axis), but167

curved overall (Figure 1 (b)), which is fixed with strong smoothing (Figure 1 (c)). On the other hand,168

IBP-Ex fitted classifier is nearly vertical without any parameter regularization as shown in (d). This169

example illustrates the need for strong model smoothing when using a regularization-based method.170

5 Experiments171

Figure 2: Sample images and masks for
different datasets.

We evaluate different methods on three datasets: one syn-172

thetic and two real-world. The synthetic dataset is similar173

to decoy-MNIST of Ross et al. (2017) with induced short-174

cuts and is presented in Section F.1. For evaluation on175

practical tasks, we evaluated on a plant phenotyping (Shao176

et al., 2021) task in Section F.2 and skin cancer detec-177

tion (Rieger et al., 2020) task presented in Section 5.3 All178

the datasets contain a known spurious feature, and were179

used in the past for evaluation of MLX methods. Figure 2180

summarises the three datasets, notice that we additionally181

require in the training dataset the specification of a mask182

identifying irrelevant features of the input; the patch for183

ISIC dataset, background for plant dataset, and decoy half184

for Decoy-MNIST images.185

More details about experimental setup including metrics,186

network architecture, datasets, data splits, computing specs, and hyperparameters can be found in187

Appendix E.188

5.1 Decoy-MNIST189

Decoy-MNIST dataset is similar to MNIST-CIFAR dataset of Shah et al. (2020) where a very simple190

label-revealing color based feature (decoy) is juxtaposed with a more complex feature (MNIST191

image) as shown in Figure 1. We also randomly swap the position of decoy and MNIST parts, which192

makes ignoring the decoy part more challenging. We then validate and test on images where decoy193

part is set to correspond with random other label.194

We make the following observations from Decoy-MNIST results presented in Table 1. ERM is only195

slightly better than a random classifier confirming the simplicity bias observed in the past (Shah et al.,196

2020). Grad-Reg, PGD-Ex and IBP-Ex perform comprably and better than ERM, but when combined197

(IBP-Ex+Grad-Reg,PGD-Ex+Grad-Reg) they far exceed their individual performances.198
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Dataset→ Decoy-MNIST Plant ISIC
Method↓ Avg Acc Wg Acc Avg Acc Wg Acc Avg Acc Wg Acc

ERM 15.1 ± 1.3 10.5 ± 5.4 71.3 ± 2.5 54.8 ± 1.3 77.3 ± 2.4 55.9 ± 2.3
G-DRO 64.1 ± 0.1 28.1 ± 0.1 74.2 ± 5.8 58.0 ± 4.6 66.6 ± 5.4 58.5 ± 10.7

Grad-Reg 72.5 ± 1.7 46.2 ± 1.1 72.4 ± 1.3 68.2 ± 1.4 76.4 ± 2.4 60.2 ± 7.4
CDEP 14.5 ± 1.8 10.0 ± 0.7 67.9 ± 10.3 54.2 ± 24.7 73.4 ± 1.0 60.9 ± 3.0

Avg-Ex 29.5 ± 0.3 19.5 ± 1.4 76.3 ± 0.3 64.5 ± 0.3 77.1 ± 2.1 55.2 ± 6.6
PGD-Ex 67.6 ± 1.6 51.4 ± 0.3 79.8 ± 0.3 78.5 ± 0.3 78.7 ± 0.5 64.4 ± 4.3
IBP-Ex 68.1 ± 2.2 47.6 ± 2.0 76.6 ± 3.5 73.8 ± 1.7 75.1 ± 1.2 64.2 ± 1.2

P+G 96.9 ± 0.3 95.8 ± 0.4 79.4 ± 0.5 76.7 ± 2.8 79.6 ± 0.5 67.5 ± 1.1
I+G 96.9 ± 0.2 95.0 ± 0.6 81.7 ± 0.2 80.1 ± 0.3 78.4 ± 0.5 65.2 ± 1.8

Table 1: Macro-averaged (Avg) accuracy and worst group (Wg) accuracy on (a) decoy-MNIST, (b)
plant dataset, (c) ISIC dataset. Results are averaged over three runs and their standard deviation is
shown after ±. I+G is short for IBP-Ex+Grad-Reg and P+G for PGD-Ex+Grad-Reg. See text for
more details.

5.2 Plant Phenotyping199

Plant phenotyping is a real-world task of classifying images of a plant leaf as healthy or unhealthy.200

Schramowski et al. (2020) discovered that standard models exploited unrelated features from the201

nutritional solution in the background in which the leaf is placed, thereby performing poorly when202

evaluated outside of the laboratory setting. Thus, we aim to regulate the model not to focus on the203

background of the leaf using binary specification masks indicating where the background is located.204

More detailed analysis of the dataset can be found in Schramowski et al. (2020).205

Figure 3: Visual heatmap of
salient features for different al-
gorithms on Plant data using
SmoothGrad (Smilkov et al.,
2017).

Table 1 contrasts different algorithms on the plant dataset. We206

visualize the interpretations of models obtained using Smooth-207

Grad (Smilkov et al., 2017) trained with five different methods for208

three sample images from the train split in Figure 3. IBP-Ex draws209

features from a wider region and has more diverse pattern of active210

pixels, leading to higher Wg and Avg.211

5.3 ISIC: Skin Cancer Detection212

ISIC is a dataset of skin lesion images, which are to be classified213

cancerous or non-cancerous. Since half the non-cancerous images in214

the dataset contains a colorful patch as shown in Figure 2, standard215

DNN models depend on the presence of a patch for classification216

while compromising the accuracy on non-cancerous images without217

a patch (Codella et al., 2019; Tschandl et al., 2018).218
Method NPNC PNC C
ERM 55.9 96.5 79.6
Grad-Reg 67.1 99.0 63.2
CDEP 72.1 98.9 62.2
Avg-Ex 62.3 97.8 71.0
PGD-Ex 65.4 99.0 71.7
IBP-Ex 68.4 98.5 67.7
I+G 66.6 99.6 68.9
P+G 69.6 98.8 70.4

Table 2: Per-group accuracies
on ISIC. Non-cancerous im-
ages without patch (NCNP)
and with patch (NCP), and
cancerous images (C).

We observe that Avg-Ex performed no better than ERM whereas219

PGD-Ex, IBP-Ex, IBP-Ex+Grad-Reg, and PGD-Ex+Grad-Reg sig-220

nificantly improved Wg accuracy over other baselines. The reduced221

accuracy gap between NPNC and C when using combined methods222

is indicative of reduced dependence on patch. Detailed results with223

error bars are shown in Table 4 of Appendix F.224

6 Conclusions225

By casting MLX as a robustness problem and using human expla-226

nations to specify the manifold of perturbations, we have shown that227

it is possible to alleviate the need for strong parameter smoothing228

of earlier approaches. Borrowing from the well-studied topic of ro-229

bustness, we evaluated two strong approaches, one from adversarial230

robustness (PGD-Ex) and one from certified robustness (IBP-Ex).231

Limitations. Detecting and specifying irrelevant regions per-example by humans is a laborious and232

non-trivial task. Hence, it is interesting to see the effects of learning from incomplete explanations ,233

which we leave for future work.234
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Supporting material for "Use Perturbations when292

Learning from Explanations"293

A Proof of Theorem 1294

We restate the result of Theorem 1 for clarity.295

The posterior mean of the function estimates marginalised over hyperparameters with Gamma prior296

has the following closed form.297

f(x) ≜ Eθ[mx] =

∫ ∫
mxG(θ−2

1 ;α, β)G(θ−2
2 ;α, β)dθ−2

1 dθ−2
2

f(x) =

N∑
n=1

 1

1 +
d(x1,x

(n)
1 )

β

α 1

1 +
d(x2,x

(n)
2 )

β

α ỹ(n) + α
β (x2 − x

(n)
2 )

1 +
d(x2,x

(n)
2 )

β

ỹ(n+N)


f(x+ [0, δ]T ])− f(x) ≥ 2δα

β

∑
n

 1

1 +
d(x1,x

(n)
1 )

β

α 1

1 +
d(x2,x

(n)
2 )

β

α+1

[
(α+ 1)ỹn+N

(
2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ]

β + d(x2, x
(n)
2 )

− 1

)
− ỹn

]

Proof. We first derive the augmented set of observations (ŷ) and K̂ explained in the main section.298

ŷ = [y1, y2, . . . , yN , ∂f(x(1))/∂x2, ∂f(x
(2))/∂x2, . . . , ∂f(x

(N))/∂x2]
T

k(x(i), x(j)) =



exp(− 1
2

∑2
k=1

(x
(i)
k −x

(j)
k )2

θ2
k

) when i, j ≤ N
(x

(i)
2 −x

(j)
2 )

θ2
2

exp(− 1
2

∑2
k=1

(x
(i)
k −x

(j)
k )2

θ2
k

) when i ≤ N, j>N

− (x
(i)
2 −x

(j)
2 )

θ2
2

exp(− 1
2

∑2
k=1

(x
(i)
k −x

(j)
k )2

θ2
k

) when j ≤ N, i>N

−2
(x

(i)
2 −x

(j)
2 )2

θ4
2

exp(− 1
2

∑2
k=1

(x
(i)
k −x

(j)
k )2

θ2
k

)

+ 1
θ2
2
exp(− 1

2

∑2
k=1

(x
(i)
k −x

(j)
k )2

θ2
k

) when i, j > N

These results follow directly from the results on covariance between observations of f and its partial299

derivative below (Hennig et al., 2022).300

cov(f(x),
∂f(x̃)

∂x̃
) =

∂k(x, x̃)

∂x̃

cov(
∂f(x)

x
,
∂f(x̃)

x̃
) =

∂2k(x, x̃)

∂x∂x̃

The posterior value of the function at an arbitrary point x would then be of the form p(f(x) |301

D) ∼ N (f(x);mx, kx) where mx and kx are have the following closed form for Gaussian prior and302

Gaussian likelihood in our case.303

mx = k(x,X)K−1
XX ŷ

kx = k(x, x)− k(x,X)K−1
XXk(X,x)

Since mx, kx are functions of the parameters θ1, θ2, we obtain the closed form for posterior mean by304

imposing a Gamma prior over the two parameters. For brevity, we denote by d(x, x̃) = (x− x̃)2/2305

and ỹ(i) is the i(th) component of K̂−1
XX ŷ.306

f(x) ≜ Eθ[mx] =

∫ ∫
mxG(θ−2

1 ;α, β)G(θ−2
2 ;α, β)dθ−2

1 dθ−2
2

=

∫ ∫ [ N∑
n=1

k(x, x(n))ỹn +

N∑
n=1

(x2 − x
(n)
2 )

θ22
k(x, x(n))ỹn+N

]
G(θ−2

1 ;α, β)G(θ−2
2 ;α, β)dθ−2

1 dθ−2
2
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∫ ∫
k(x,x(n))ỹnG(θ−2

1 ;α, β)G(θ−2
2 ;α, β)dθ−2

1 dθ−2
2

=

∫ ∫
exp

(
−θ−2

1 (x1 − x
(n)
1 )2

2
+

θ−2
2 (x2 − x

(n)
2 )2

2

)
βα

Γ(α)
θ−2α+2
1 exp (−βθ−2

1 )

βα

Γ(α)
θ−2α+2
2 exp (−βθ−2

2 )ỹndθ
−2
1 dθ−2

2

=

 β

β +
(x1−x

(n)
1 )2

2

α β

β +
(x2−x

(n)
2 )2

2

α

ỹn

∫ ∫
x2 − x

(n)
2

θ22
k(x,x(n))ỹn+NG(θ−2

1 ;α, β)G(θ−2
2 ;α, β)dθ−2

1 dθ−2
2

= (x2 − x
(n)
2 )

 β

β +
(x1−x

(n)
1 )2

2

α

βα/Γ(α)

(β +
(x2−x

(n)
2 )2

2 )α+1/Γ(α+ 1)
ỹn+N

=

 β

β +
(x1−x

(n)
1 )2

2

α

α(x2 − x
(n)
2 )

β +
(x2−x

(n)
2 )2

2

 β

β +
(x2−x

(n)
2 )2

2

α

ỹn+N

Overall, we have the following result.307

f(x) =

N∑
n=1

 1

1 +
d(x1,x

(n)
1 )

β

α 1

1 +
d(x2,x

(n)
2 )

β

α ỹn +

α
β (x2 − x

(n)
2 )

1 +
d(x2,x

(n)
2 )

β

ỹn+N


We now derive the sensitivity to perturbations on the second dimension for ∆x = [0, δ]T .308

f(x+∆x)− f(x) =

N∑
n=1

 1

1 +
d(x1,x

(n)
1 )

β

α
 1

1 +
d(x2+δ,x

(n)
2 )

β

α

−

 1

1 +
d(x2,x

(n)
2 )

β

α ỹn

 α
β (x2 + δ − x

(n)
2 )

(1 +
d(x2+δ,x

(n)
2 )

β )α+1
−

α
β (x2 − x

(n)
2 )

(1 +
d(x2,x

(n)
2 )

β )α+1

 ỹn+N

 (7)

Using Bernoulli inequality, (1 + x)r ≥ 1 + rx if r ≤ 0, we derive the following inequalities.309  1

1 +
d(x2+δ,x

(n)
2 )

β

α

−

 1

1 +
d(x2,x

(n)
2 )

β

α

=

 1

1 +
d(x2,x

(n)
2 )

β

α [(
β + d(x2, x

(n)
2 )

β + d(x2 + δ, x
(n)
2 )

)α

− 1

]

≥

 1

1 +
d(x2,x

(n)
2 )

β

α

− α

[
β + d(x2 + δ, x

(n)
2 )

β + d(x2, x
(n)
2 )

− 1

]

=

 1

1 +
d(x2,x

(n)
2 )

β

α

α

[
d(x2, x

(n)
2 )− d(x2 + δ, x

(n)
2 )

β + d(x2, x
(n)
2 )

]

Assuming |x2 − x
(n)
2 | ≫ δ ∀n ∈ [N ] (8)

≈

 1

1 +
d(x2,x

(n)
2 )

β

α

α

[
−2δ(x2 − x

(n)
2 )

β + d(x2, x
(n)
2 )

]
(9)
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Similarly,310

α
β (x2 + δ − x

(n)
2 )

(1 +
d(x2+δ,x

(n)
2 )

β )α+1
−

α
β (x2 − x

(n)
2 )

(1 +
d(x2,x

(n)
2 )

β )α+1

≥α

β
(x2 − x

(n)
2 )

 1

1 +
d(x2,x

(n)
2 )

β

α+1

(α+ 1)

[
−2δ(x2 − x

(n)
2 )

β + d(x2, x
(n)
2 )

]
+

δ α
β

(1 +
d(x2+δ,x

(n)
2 )

β )α+1

≥α

β
(x2 − x

(n)
2 )

 1

1 +
d(x2,x

(n)
2 )

β

α+1

(α+ 1)

[
−2δ(x2 − x

(n)
2 )

β + d(x2, x
(n)
2 )

]

+
δ α
β

(1 +
d(x2,x

(n)
2 )

β )α+1
(α+ 1)

[
−2δ(x2 − x

(n)
2 )

β + d(x2, x
(n)
2 )

+ 1

]

=
α+ 1

(1 +
d(x2,x

(n)
2 )

β )α+1

[
−2δ(x2 − x

(n)
2 )2α/β − 2δ2α/β(x2 − x

(n)
2 )

β + d(x2, x
(n)
2 )

+
δα

β

]

=
−2δα(α+ 1)

β(1 +
d(x2,x

(n)
2 )

β )α+1

[
−2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ]

β + d(x2, x
(n)
2 )

+ 1

]
(10)

Using inequalities 9, 10 in Equation 7, we have the following.311

f(x+∆x)− f(x) ≥
∑
n

 1

1 +
d(x1,x

(n)
1 )

β

α 1

1 +
d(x2,x

(n)
2 )

β

α

[
−2δαỹn

β + d(x2, x
(n)
2 )

+
−2δα(α+ 1)ỹn+N

β + d(x2, x
(n)
2 )

(
−2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ]

β + d(x2, x
(n)
2 )

+ 1

)]
312

f(x+∆x)− f(x) ≥ 2δα

β

∑
n

 1

1 +
d(x1,x

(n)
1 )

β

α 1

1 +
d(x2,x

(n)
2 )

β

α+1

[
(α+ 1)ỹn+N

(
2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ]

β + d(x2, x
(n)
2 )

− 1

)
− ỹn

]
(11)

Using the inequality (1 + x)r ≥ 1 + rx if r ≤ 0, we have313

f(x+∆x)− f(x) ≥2δα

β

∑
n

{(
1− α

β
d(x1, x

(n)
1 )

)(
1− α+ 1

β
d(x2, x

(n)
2 )

)
[
α+ 1

β
ỹn+N

(
2(x2 − x

(n)
2 )[x2 + δ − x

(n)
2 ](1− d(x2, x

(n)
2 ))− 1

)
− ỹn

]}
=
2δα

β
Θ(x2

1x
6
2 + δx2

1x
5
2)

314

B Proof of Theorem 2315

We restate the result of Theorem 2 for clarity.316
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When we use an adversarial robustness algorithm to regularize the network, the fitted function has317

the following property.318

|f(x+ [0, δ]T )− f(x)| ≤ α

β
δmaxfmaxC

where C = max
x∈X

min
x̂∈X̂

|x2 − x̂2|

δmax and fmax are maximum value of ∆x2 and f(x) in the input domain (X ) respectively. X̂319

denotes the subset of inputs covered by the robustness method. C therefore captures the maximum320

gap in coverage of the robustness method.321

Proof. We begin by estimating the Lipschitz constant of a GP with squared exponential kernel.322

f(x) = KxXK−1
XXy

∂f(x)

∂x2
=

∂KxXK−1
XXy

∂x2
= K̃xXK−1

XXy

where [K̃xX ]n =
∂

∂x2
exp(− ((x1 − x

(n)
1 )2 + (x2 − x

(n)
2 )2)

2θ2
)

= − (x2 − x
(n)
2 )

θ2
[KxX ]n

=⇒ ∂f(x)

∂x2
= −[

N∑
n=1

(x2 − x
(n)
2 )

θ2
[KxX ]n]K

−1
XXy

We denote with δmax the maximum deviation of any input from the training points, i.e. we define323

δmax as maxx∈X minn∈[N ] |x2 − x
(n)
2 |. Also, we denote by fmax the maximum function value in324

the input domain, i.e. fmax ≜ maxx∈X f(x). We can then bound the partial derivative wrt second325

dimension as follows.326

∂f(x)

∂x2
≤ δmaxf(x)

θ2
≤ δmaxfmax

θ2

For any arbitrary point x, the maximum function deviation is upper bounded by the product of327

maximum slope and maximum distance from the closest point covered by the adversarial distance328

method.329

|f([x1, x2]
T )− f([x1, x̂2]

T )| ≤ δmaxfmax

θ2
max
x∈X

min
x̂∈X̃

|x2 − x̂2| =
δmaxfmax

θ2
C

Therefore,330

|f(x+ [0, δ]T )− f(x)| ≤ 2
δmaxfmax

θ2
C

Marginalising θ−2 with the Gamma prior leads to the final form below.331

|f(x+ [0, δ]T )− f(x)| ≤ 2C
α

β
δmaxfmax

332

C Proof of Proposition 2333

We restate the result here for clarity.334

Consider a regression task with D + 1-dimensional inputs x where the first D dimensions are335

irrelevant, and assume they are xd = y, d ∈ [1, D] while xD+1 ∼ N (y, 1/K). The MAP estimate336

of linear regression parameters f(x) =
∑D+1

d=1 wdxd when fitted using Avg-Ex are as follows:337

wd = 1/(D +K), d ∈ [1, D] and wD+1 = K/(K +D).338
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Proof. Without loss of generality, we assume α, σ2 parameters of Avg-Ex are set to 1. In effect, our339

objective is to fit parameters that predict well for inputs sampled using standard normal perturbations,340

i.e. x(n) +mϵ,∀n ∈ [1, N ], ϵ ∼ N (0, 1),m = [1, 1, . . . , 1, 0]T ∈ {0, 1}D+1. The original problem341

therefore is equivalent to fitting on transformed input x̂ such that x̂(n)
i ∼ N (y, σ2

i ) where σ2
i = 1 for342

all i ≤ D and is 1/K when i = D + 1.343

Likelihood of observations for the equivalent problem is obtained as follows.344

P (y | x̂1, x̂2, . . . , x̂D+1) =

D+1∏
i=1

P (y | x̂i) ∝
D+1∏
i=1

P (x̂i | y)P (y)

=
∏
i

N (x̂i; y, σ
2
i ) ∝ exp(−

∑
i

(y − x̂i)
2

2σ2
i

)

= exp

{
−y2(

∑
i

1

2σ2
i

) + y(
∑
i

x̂i

σ2
i

) +
∑
i

x̂2
i

2σ2
i

}

∝ N (y;
∑
i

x̂i

σ2
i

P, P )

where P =
1∑

i 1/σ
2
i

Substituting, the value of σi defined as above, we have P=D+K and the MLE estimate for the linear345

regression parameters are as shown in the statement. The MAP estimate also remains the same since346

we do not impose any informative prior on the regression weights.347

D Parametric Model Analysis348

In this section we show that a similar result to what is shown for non-parametric models also holds349

for parametric models. We will analyse the results for a two-layer neural networks with ReLU350

activations. We consider a more general case of D dimensional input where the first d dimensions351

identify the spurious features. We wish to fit a function f : RD → R such that f(x) is robust to352

perturbations to the spurious features. We have the following bound when training a model using353

gradient regularization of Ross et al. (2017).354

Proposition 1. We assume that the model is parameterised as a two-layer network with ReLU355

activations such that f(x) =
∑

j βjϕ(
∑

i wjixi + bj) where β⃗ ∈ RF , w⃗ ∈ RF×D, b⃗ ∈ RF are the356

parameters, and ϕ(z) = max(z, 0) is the ReLU activation. For any function such that gradients357

wrt to the first d features is exactly zero, i.e. ∂f
∂xi

|
x
(n)
i

= 0 ∀i ∈ [1, d], n ∈ [1, N ], we have the358

following bound on the function value deviations for input perturbations from a training instance x:359

x̃− x = ∆x = [∆xT
1:d,0

T
d+1:D]T .360

|f(x̃)− f(x)| = Θ((∥β⃗∥2 + ∥w⃗∥2F )∥∆x∥) (12)

For a two-layer network trained to regularize gradients wrt first d dimensions on training data, the361

function value deviation from an arbitrary point x̃ from a training point x such that x̃− x = ∆x =362

[∆xT
1:d,0

T
d+1:D]T is bounded as follows.363

|f(x̃)− f(x)| = Θ((∥β⃗∥2 + ∥w⃗∥2F )∥∆x∥)

Proof. Recall that the function is parameterised using parameters w⃗, b⃗, β⃗ such that f(x) =364 ∑
j βjϕ(

∑
i wjixi + bj) where β⃗ ∈ RF , w⃗ ∈ RF×D, b⃗ ∈ RF are the parameters, and ϕ(z) =365

max(z, 0) is the ReLU activation.366

Since we train such that ∂f(x)
∂xi

= 0, i ∈ [1, d], we have that ∂f(x)
xi

=
∑

j βj ϕ̂(
∑

i wijxi + bi)wij367

where ϕ̂(a) = max( a
|a| , 0).368
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We now bound the variation in the function value for changes in the input when moving from x → x̃369

where x is an instance from the training data. We define four groups of neurons based on the sign of370 ∑
i wjixi + bj and

∑
i wjix̃i + bj . g1 is both positive, g2 is negative and positive, g3 is positive and371

negative, g4 is both negative. By defining groups, we can omit the ReLU activations as below.372

f(x̃)− f(x) =
∑
j

βjϕ(
∑
i

wjix̃i + bj)−
∑
j

βjϕ(
∑
i

wjixi + bj)

=
∑
j∈g1

βj

∑
i

wji(x̃i − xi) +
∑
j∈g2

βj(
∑
i

wjix̃i + bj)−
∑
j∈g3

βj(
∑
i

wjixi + bj)

=
∑
j∈g1

βj

d∑
i=1

wji(x̃i − xi) +
∑
j∈g2

βj(

D∑
i=1

wjix̃i + bj)−
∑
j∈g3

βj(

D∑
i=1

wjixi + bj)

Since we have that
∑

j∈g1∪g3
βjwij = 0,∀i ∈ [1, d], we have373

=
∑
j∈g1

βj

d∑
i=1

wjix̃i +
∑
j∈g2

βj(

d∑
i=1

wjix̃i +

D∑
i=d+1

wjixi + bj)−
∑
j∈g3

βj(

D∑
i=d+1

wjixi + bj)

−
∑
j∈g1

βj

d∑
i=1

wjixi −
∑
j∈g3

βj

d∑
i=1

wjixi︸ ︷︷ ︸
=
∑d

i=1 xi
∑

j∈g1∪g3
βjwji=0

374

=
∑

j∈g1∪g2

βj

d∑
i=1

wjix̃i +
∑
j∈g2

βj(

D∑
i=d+1

wjixi + bj)−
∑
j∈g3

βj(

D∑
i=d+1

wjixi + bj)

retaining only the terms that depend on ∆x = x̃− x, the expression is further simplified as a term375

that grows with ∆x and a constant term that depends on the value of x376

=
∑

j∈g1∪g2

βj

d∑
i=1

wji∆xi + constant

=⇒ = Θ(∥β∥∥w⃗∥F ∥∆x∥) Cauchy-Schwartz inequality

= Θ((∥β∥2 + ∥w⃗∥2F ∥)∥∆x∥)

377

E Further Experiment Details378

E.1 Setup379

E.1.1 Baselines380

We denote by ERM the simple minimization of cross-entropy loss (using only the first loss term of381

Equation 1). We also compare with G-DRO(Sagawa et al., 2019), which also has the objective of382

avoiding to learn known irrelevant features but is supervised through group label (see Section ??).383

Although the comparison is unfair toward G-DRO because MLX methods use richer supervision of384

per-example masks, it serves as a baseline that can be slightly better than ERM in some cases.385

Regulaization-based methods. Grad-Reg and CDEP, which were discussed in Section 2. We omit386

comparison with Shao et al. (2021) because their code is not publicly available and is non-trivial to387

implement the influence-function based regularization.388

Robustness-based methods. Avg-Ex, PGD-Ex, IBP-Ex along with combined robustness and389

regularization methods. IBP-Ex+Grad-Reg, PGD-Ex+Grad-Reg that are described in Section 3.390
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E.1.2 Metrics391

We report performance using two metrics that indicate if the model is using irrelevant features (Wg392

Acc) without compromising the average accuracy (Avg Acc).393

Avg Acc. Since the two real-world datasets contain imbalanced class populations, we only report394

accuracy macro-averaged over labels, simply denoted as “Avg Acc”.395

Wg Acc. Worst accuracy among groups where groups are appropriately defined. Different labels396

define the groups for decoy-MNIST and plant dataset, which therefore have ten and two groups397

respectively. In ISIC dataset, different groups are defined by the cross-product of label and presence398

or absence of the patch. We denote this metric as “Wg Acc”, which is a standard metric when399

evaluating on datasets with shortcut features (Sagawa et al., 2019; Piratla et al., 2021).400

E.1.3 Training and Implementation details401

Choice of the best model. We picked the best model using the held-out validation data. We then report402

the performance on test data averaged over three seeds corresponding to the best hyperparameter.403

Network details. We use four-layer CNN followed by three-fully connected layers for binary404

classification on ISIC and plant dataset following the setting in Zhang et al. (2019), and three-fully405

connected layers for multi classification on decoy-MNIST dataset.406

E.2 Hyperparameters.407

We picked the learning rate, optimizer, weight decay, and initialization for best performance with408

ERM baseline on validation data, which are not further tuned for other baselines unless stated409

otherwise. We picked the best λ for Grad-Reg and CDEP from [1, 10, 100, 1000]. Additionally, we410

also tuned β (weight decay) for Grad-Reg from [1e-4, 1e-2, 1, 10]. For Avg-Ex, perturbations were411

drawn from 0 mean and σ2 variance Gaussian noise, where σ was chosen from [0.03, 0.3, 1, 1.5, 2].412

In PGD-Ex, the worst perturbation was optimized from ℓ∞ norm ϵ-ball through seven PGD iterations,413

where the best ϵ is picked from the range 0.03-5. We did not see much gains when increasing PGD414

iterations beyond 7, Appendix F contains some results when the number of iterations is varied. In415

IBP-Ex, we follow the standard procedure of Gowal et al. (2018) to linearly dampen the value of α416

from 1 to 0.5 and linearly increase the value of ϵ from 0 to ϵmax, where ϵmax is picked from 0.01 to 2.417

We usually just picked the maximum possible value for ϵmax that converges. For IBP-Ex+Grad-Reg,418

we have the additional hyperparameter λ (Eqn. 4), which we found to be relatively stable and we set419

it to 1 for all experiments.420

E.3 Data splits421

We randomly split available labelled data in to training, validation, and test sets in the ratio of (0.75,422

0.1, 0.15) for ISIC and (0.65, 0.1, 0.25) for Plant (similar to Schramowski et al. (2020)). We use the423

standard train-test splits on MNIST.424

E.4 Datasets425

ISIC dataset The ISIC dataset consists of 2,282 cancerous (C) and 19,372 non-cancerous (NC) skin426

cancer images of 299 by 299 size, each with a ground-truth diagnostic label. We follow the standard427

setup and dataset released by Rieger et al. (2020), which included masks with patch segmentations. In428

half of the NC images, there is a spurious correlation in which colorful patches are only attached next429

to the lesion. This group is referred to as patch non-cancerous (PNC) and the other half is referred430

to as not-patched non-cancerous (NPNC) Codella et al. (2019). Since trained models tend to learn431

easy-to-learn and useful features, they tend to take a shortcut by learning spurious features instead of432

understanding the desired diagnostic phenomena. Therefore, our goal is to make the model invariant433

to such colorful patches by providing a human specification mask indicating where they are.434

decoy-MNIST dataset The MNIST dataset consists of 70,000 images of handwriting digit from 0 to435

9. Each class has about 7,000 images of 28 by 28 size. We use three-fully connected layers for multi436

classification with 512 hidden dimension and 3 channels.437
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E.5 Computing438

Run time and memory usage Table 3 presents the computation costs, including run time and memory439

usage, for each method using GTX 1080 Ti. It is worth noting that IBP-Ex has significantly less run440

time and memory usage compared to PGD-Ex, with a 10-fold reduction in run time and a 2.5-fold441

reduction in memory usage. Considering that PGD-Ex and IBP-Ex have similar performance in terms442

of worst group accuracy, as shown in Table 4, IBP-Ex+Grad-Reg appears to be comparably effective443

and efficient for model modification. Additionally, the combined method IBP-Ex+Grad-Reg, which444

presents the best performance in terms of averaged and worst group accuracy compared to PGD-Ex,445

also has a 3-fold reduction in run time and a 2-fold reduction in memory usage compared to PGD-Ex.446

Grad-Reg PGD-Ex IBP-Ex IBP-Ex+Grad-Reg PGD-Ex+Grad-Reg
×2.3 ×4.9 ×2.2 ×3.5 × 7.0
Table 3: Running time in comparison to ERM on the ISIC dataset

E.6 Network Architecture447

Model architecture on the decoy-MNIST dataset448

Sequential(449

(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))450

(1): ReLU()451

(2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))452

(3): ReLU()453

(4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))454

(5): ReLU()455

(6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))456

(7): ReLU()457

(8): Flatten(start_dim=1, end_dim=-1)458

(9): Linear(in_features=200704, out_features=1024, bias=True)459

(10): ReLU()460

(11): Linear(in_features=1024, out_features=1024, bias=True)461

(12): ReLU()462

(13): Linear(in_features=1024, out_features=2, bias=True)463

)464

Model architecture on the ISIC dataset465

Sequential(466

(0): Flatten(start_dim=1, end_dim=-1)467

(1): Linear(in_features=2352, out_features=512, bias=True)468

(2): ReLU()469

(3): Linear(in_features=512, out_features=512, bias=True)470

(4): ReLU()471

(5): Linear(in_features=512, out_features=512, bias=True)472

(6): ReLU()473

(7): Linear(in_features=512, out_features=10, bias=True)474

)475

Model architecture on the Plant phenotyping dataset476

Sequential(477

(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))478

(1): ReLU()479

(2): Conv2d(32, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))480

(3): ReLU()481

(4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))482

(5): ReLU()483

(6): Conv2d(64, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))484
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(7): ReLU()485

(8): Flatten(start_dim=1, end_dim=-1)486

(9): Linear(in_features=200704, out_features=1024, bias=True)487

(10): ReLU()488

(11): Linear(in_features=1024, out_features=1024, bias=True)489

(12): ReLU()490

(13): Linear(in_features=1024, out_features=2, bias=True)491

)492

F Addition Results493

Method NPNC PNC C Avg Wg
ERM 55.9 ± 2.3 96.5 ± 2.4 79.6 ± 6.6 77.3 ± 2.4 55.9 ± 2.3
G-DRO 72.4 ± 4.0 63.2 ± 14.8 64.1 ± 5.6 66.6 ± 5.4 58.5 ± 10.7
Grad-Reg 67.1 ± 4.8 99.0 ± 1.0 63.2 ± 11.3 76.4 ± 2.4 60.2 ± 7.4
CDEP 72.1 ± 5.4 98.9 ± 0.7 62.2 ± 4.7 73.4 ± 1.0 60.9 ± 3.0
Avg-Ex 62.3 ± 11.7 97.8 ± 0.8 71.0 ± 16.7 77.1 ± 2.1 55.2 ± 6.6
PGD-Ex 65.4 ± 5.4 99.0 ± 0.3 71.7 ± 6.7 78.7 ± 0.5 64.4 ± 4.3
IBP-Ex 68.4 ± 3.4 98.5 ± 1.0 67.7 ± 4.8 75.1 ± 1.2 64.2 ± 1.2
P+G 69.6 ± 2.8 98.84 ± 0.6 70.4 ± 4.1 79.6 ± 0.5 67.5 ± 1.1
I+G 66.6 ± 3.1 99.6 ± 0.2 68.9 ± 4.7 78.4 ± 0.5 65.2 ± 1.8

Table 4: Macro-averaged (Avg) accuracy and worst group (Wg) accuracy on ISIC dataset. Also
shown are the average precision scores for each of the three groups. All the results are averaged over
three runs and their standard deviation is shown after ±. Note that the worst group for each run can
be different

F.1 Decoy-MNIST494

Decoy-MNIST dataset is similar to MNIST-CIFAR dataset of Shah et al. (2020) where a very simple495

label-revealing color based feature (decoy) is juxtaposed with a more complex feature (MNIST496

image) as shown in Figure 1. We also randomly swap the position of decoy and MNIST parts, which497

makes ignoring the decoy part more challenging. We then validate and test on images where decoy498

part is set to correspond with random other label.499

We make the following observations from Decoy-MNIST results presented in Table 1. ERM is only500

slightly better than a random classifier confirming the simplicity bias observed in the past (Shah et al.,501

2020). Grad-Reg, PGD-Ex and IBP-Ex perform comprably and better than ERM, but when combined502

(IBP-Ex+Grad-Reg,PGD-Ex+Grad-Reg) they far exceed their individual performances.503

In order to understand the surprising gains when combining regularization and robust-504

ness methods, we draw insights from gradient explanations on images from train split505

for Grad-Reg and IBP-Ex. We looked at s1 = M
[∥∥∥m(n) × ∂f(x(n))

∂x(n)

∥∥∥] and s2 =506

M
[∥∥∥m(n) × ∂f(x(n))

∂x(n)

∥∥∥/∥∥∥(1−m(n))× ∂f(x(n))
∂x(n)

∥∥∥], where M[•] is the median function. For an507

effective algorithm, we expect both s1, s2 to be close to zero. However, the values of s1, s2 is 2.3e-3,508

0.26 for the best model fitted using Grad-Reg and 6.7, 0.05 for IBP-Ex. We observe that Grad-Reg509

has lower s1 while IBP-Ex has lower s2, which shows that Grad-Reg is good at dampening the510

contribution of decoy part but also dampened contribution of non-decoy likely due to over-smoothing.511

IBP-Ex improves the contribution of the non-decoy part but did not fully dampen the decoy part512

likely because high dimensional space of irrelevant features, i.e. half the image is irrelevant and each513

pixel is indicative of the label. When combined, IBP-Ex+Grad-Reg has low s1, s2, which explains514

the increased performance when they are combined.515

F.2 Plant Phenotyping516

Plant phenotyping is a real-world task of classifying images of a plant leaf as healthy or unhealthy.517

About half of leaf images are infected with a Cercospora Leaf Spot (CLS), which are the black518

spots on leaves as shown in the first image in the second row of Figure 2. Schramowski et al.519
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(2020) discovered that standard models exploited unrelated features from the nutritional solution520

in the background in which the leaf is placed, thereby performing poorly when evaluated outside521

of the laboratory setting. Thus, we aim to regulate the model not to focus on the background of522

the leaf using binary specification masks indicating where the background is located. Due to lack523

of out-of-distribution test set, we evaluate with in-domain test images but with background pixels524

replaced by a constant pixel value, which is obtained by averaging over all pixels and images in the525

training set. We replace with an average pixel value in order to avoid any undesired confounding from526

shifts in pixel value distribution. More detailed analysis of the dataset can be found in Schramowski527

et al. (2020).528

Table 1 contrasts different algorithms on the plant dataset. All the algorithms except CDEP improve529

over ERM, which is unsurprising given our test data construction; any algorithm that can divert530

focus from the background pixels can perform well. Wg accuracy of robustness (except Avg-Ex) and531

combined methods far exceed any other method by 5-12% over the next best baseline and by 19-26%532

accuracy point over ERM. Surprisingly, even Avg-Ex has significantly improved the performance533

over ERM likely because spurious features in the background are spiky or unstable, which vanish534

under normal perturbation.535

We visualize the interpretations of models obtained using SmoothGrad (Smilkov et al., 2017) trained536

with five different methods for three sample images from the train split in Figure 3. As expected, ERM537

has strong dependence on non-leaf background features. Although Grad-Reg features are all on the538

leaf, they appear to be localized to a small region on the leaf, which is likely due to over-smoothing539

effect of its loss. IBP-Ex, IBP-Ex+Grad-Reg on the other hand draws features from a wider region540

and has more diverse pattern of active pixels.541

F.3 ISIC skin cancer dataset542

ISIC is a dataset of skin lesion images, which are to be classified cancerous or non-cancerous. Since543

half the non-cancerous images in the dataset contains a colorful patch as shown in Figure 2, standard544

DNN models depend on the presence of a patch for classification while compromising the accuracy545

on non-cancerous images without a patch (Codella et al., 2019; Tschandl et al., 2018). We follow the546

standard setup and dataset released by Rieger et al. (2020), which include masks highlighting the547

patch.548

We identify three groups in the dataset, non-cancerous images without patch (NCNP) and with549

patch (NCP), and cancerous images (C). In Table 2, we report on per-group accuracies for different550

algorithms. Detailed results with error bars are shown in Table 4 of Appendix F. The Wg accuracy551

(of Table 1) may not match with the worst of the average group accuracies in Table 2 because we552

report average of worst accuracies. We now make the following observations. ERM performs the553

worst on the NPNC group confirming that predictions made by a standard model depend on the patch.554

The accuracy on the PNC group is high overall perhaps because PNC group images are at a lower555

scale (see middle column of Figure 2 for an example) are systematically more easier to classify even556

when the patch is not used for classification. Although human-explanations for this dataset, which557

only identifies the patch if present, do not full specify all spurious correlations, we still saw gains558

when learning from them. Grad-Reg and CDEP improved NPNC accuracy at the expense of C’s559

accuracy while still performing relatively poor on Wg accuracy. Avg-Ex performed no better than560

ERM whereas PGD-Ex, IBP-Ex, IBP-Ex+Grad-Reg, and PGD-Ex+Grad-Reg significantly improved561

Wg accuracy over other baselines. The reduced accuracy gap between NPNC and C when using562

combined methods is indicative of reduced dependence on patch.563

F.4 Overall results564

Among the regularization-based methods, Grad-Reg performed the best while also being simple565

and intuitive. CDEP surprisingly performed worse than ERM on Decoy-MNIST and Plant datasets566

despite our best efforts, which are elaborated in Appendix H.567

Robustness-based methods except Avg-Ex are consistently and effortlessly better or comparable to568

regularization-based methods on all the benchmarks with an improvement to Wg accuracy by 3-10%569

on the two real-world datasets. Combined methods are better than their constituents on all the datasets570

readily without much hyperparameter tuning.571
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Comparison of PGD-Ex and IBP-Ex It is difficult to compare the worst group accuracy of IBP-Ex572

(64.2) and PGD-Ex (64.4) due to the comparably high standard deviation of PGD-Ex (4.3). Therefore,573

we additionally compare the accuracy drop when colorful patches are removed from images in the574

PNC group in Table 5. We replace the colorful patch of the image with its mean value, making it looks575

like a background skin color. Note that we evaluate the robustness to concept-level perturbations576

rather than pixel-level perturbations, as our focus is on avoiding spurious concept features rather than577

robustness to adversarial attacks. Interestingly, the accuracy drops about 17% and 37% in IBP-Ex578

and PGD-Ex, respectively, showing that IBP-Ex is more robust to concept perturbations. This can be579

explained by the effectiveness of robustness methods in covering the epsilon ball with the center of580

each input point defined in a low-dimensional manifold annotated in the human specification mask.581

IBP guarantees robustness on any possible pixel combination within the epsilon ball while PGD only582

considers the worst case in the epsilon ball. When the inner maximization to find the PGD attack583

is non-convex, an inappropriate local worst case is found instead of the global one. Thus, IBP-Ex584

shows better robustness when spurious concepts are removed, which involves large perturbations on585

irrelevant parts within the defined epsilon ball. The combined method IBP-Ex+Grad-Reg, where586

Grad-Reg compensates for the practical limitations of the training procedure of IBP-Ex, shows about587

1% higher worst group accuracy than IBP-Ex alone.588

Method PNC PNC (Remove patch)
PGD-Ex 99.0 ± 0.3 62.2 ± 17.0
IBP-Ex 98.5 ± 1.0 81.6 ± 16.5
IBP-Ex+Grad-Reg 99.6 ± 0.2 82.5 ± 9.5

Table 5: Comparison between robustness based methods. Macro-averaged accuracy and regval loss
before and after removing color patch part of images in PNC group on ISIC dataset.

Results of PGD-Ex with different epsilon and iteration number. We experimented with different589

values of epsilon and iteration numbers on the ISIC and Plant phenotyping datasets. The epsilon590

values tested were 0.03, 0.3, 1, 3, and 5, and the iteration numbers were 7 and 25. In Figure 4, the591

results on the ISIC dataset showed that using an iteration of 7 with different epsilon values resulted in592

stable results, but using an iteration of 25 resulted in unstable worst group accuracy. However, in593

the Plant phenotyping dataset, we found that both average and worst group accuracy were similar594

regardless of the epsilon and iteration values used.595

(a) PGD-Ex on the ISIC data (b) PGD-Ex on the Plant phenotying data

Figure 4: PGD-Ex results on the ISIC and Plant phenotyping dataset with different epsilon and
iteration numbers in (a) and (b), respectively.

G Drawbacks of Robustness-based methods596

Although robust training is appealing in low dimensions, their merits do not transfer well when the597

space of irrelevant features is high-dimensional owing to difficulty in solving the inner maximization598

of Eqn. 2. Sub-par estimation of the maximization term may learn parameters that still depend on the599

irrelevant features. We demonstrate this below with a simple exercise.600

Proposition 2. Consider a regression task with D + 1-dimensional inputs x where the first D601

dimensions are irrelevant, and assume they are xd = y, d ∈ [1, D] while xD+1 ∼ N (y, 1/K). The602
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MAP estimate of linear regression parameters f(x) =
∑D+1

d=1 wdxd when fitted using Avg-Ex are as603

follows: wd = 1/(D +K), d ∈ [1, D] and wD+1 = K/(K +D).604

We present the proof in Appendix C. We observe that as D increases, the weight of the only relevant605

feature (xD+1) diminishes. On the other hand, the weight of the average feature: 1
D

∑D
d=1 xd ,606

which is D/(D + K) approaches 1 as D increases. This simple exercise demonstrates curse of607

dimensionality for robustness-based methods. For this reason, we saw major empirical gains when608

combining robustness methods with a regularization method especially when the number of irrelevant609

features is large such as in the case of Decoy-MNIST dataset, which is described in the next section.610

Further remarks on sources of over-smoothing in regularization-based methods. We empiri-611

cally observed that the term R(θ) (of Eqn. 1), which supervises explanations, also has a smoothing612

effect on the model when the importance scores (IS) are not well normalized, which is often the case.613

This is because reducing IS(x) everywhere will also reduce saliency of irrelevant features.614

H Discussion on poor CDEP performance615

In Table 4, CDEP demonstrates better performance in worst group accuracy compared to ERM on616

the ISIC dataset. However, it fails to surpass RRR, which contradicts results from previous research617

in Rieger et al. (2020) where CDEP was found to perform better than RRR. This discrepancy may618

be attributed to the fact that Rieger et al. (2020) used different metrics (F1 and AUC) and employed619

a pretrained VGG model to estimate the contribution of mask features, whereas in our study we620

used worst group accuracy and employed a four-layer CNN followed by three fully connected layers621

without any pretraining. We do not use a pre-trained model for CDEP in order to make a fair622

comparison to other methods. As a result, CDEP also fails to improve worst group accuracy over623

ERM on the Plant Phenotyping and Decoy-MNIST datasets. We further illustrate the interpretations624

of CDEP on the Plant Phenotyping dataset using Smooth Gradient in Figure 5. In comparison to625

the interpretations of other methods shown in Figure 3 in the main paper, CDEP appears to focus626

primarily on the spurious agar part instead of the main leaf part.627

Figure 5: Visual heatmap of salient features for CDEP on three sample images from the train split
of Plant phenotyping data. Importance score from SmoothGrad Smilkov et al. (2017) method is
normalized between 0 to 1 and visualized with a threshold 0.6.
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