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ABSTRACT

Reinforcement learning from human feedback plays a crucial role in aligning
language models towards human preferences, traditionally represented through
comparisons between pairs or sets of responses within a given context. While
many studies have enhanced algorithmic techniques to optimize learning from such
data, this work shifts focus to improving preference learning through a data-centric
approach. Specifically, we propose enriching existing preference datasets with
machine-generated rationales that explain the reasons behind choices. We develop
a simple and principled framework to augment current preference learning methods
with rationale information. Our comprehensive analysis highlights how rationales
enhance learning efficiency. Extensive experiments reveal that rationale-enriched
preference learning offers multiple advantages: it improves annotation efficiency,
accelerates convergence to higher-performing models, and reduces verbosity bias
and hallucination. Furthermore, this framework is versatile enough to integrate
with various preference optimization algorithms. Overall, our findings highlight
the potential of re-imagining data design for preference learning, demonstrating
that even freely available machine-generated rationales can significantly boost
performance across multiple dimensions.

1 INTRODUCTION

Preference tuning is an important step in the language model training process so as to productize and
deploy them, whose goal is to align the model towards human preferences and prevent the model
from unwanted behavior (Christiano et al., 2017; Stiennon et al., 2020; Bakker et al., 2022).

These preferences are typically introduced into the dataset through prompts and ranked responses.
This dataset is then utilized by reinforcement learning from human feedback (RLHF) meth-
ods (Ouyang et al., 2022) to optimize reward or preference models, thereby aligning the language
model. (Schulman et al., 2017) proposes a reinforcement learning-based algorithm to train the
model by maximizing the reward given the reward function, where the first step involves learning
a reward model to replicate human preferences. Alternatively, (Rafailov et al., 2024) proposes a
direct preference optimization (DPO) algorithm, which avoids training a separate reward model and
optimizes the policy through implicit Bradley-Terry reward modeling with a single objective.

However, these methods often face several challenges such as overfitting Azar et al. (2024), perfor-
mance degradation Pal et al. (2024), reward exploitation Amodei et al. (2016), or the generation of
excessively long inputs Park et al. (2024). In addition, collecting preference datasets can be costly Tan
et al. (2024), but without sufficient samples, these methods would risk underfitting Jinnai & Honda
(2024). Various studies aim to address these issues through improved algorithmic designs, either by
regularizing the objective Pal et al. (2024); Amini et al. (2024); Park et al. (2024) or by introducing
new formulations Ethayarajh et al. (2024); Hong et al. (2024); Yuan et al. (2023); Munos et al. (2023);
Swamy et al. (2024); Wu et al. (2024).

In our study, we transition from an algorithmic to a data-centric approach, posing the key question:
How can enhancing the preference dataset aid the model in boosting its performance and efficiency in
preference learning? By rethinking preference learning through the lens of data, we aim to discover
new insights and opportunities that can unlock the potential for more robust, data-efficient preference
learning. Given the current setup of preference datasets, an important question arises: why would a
certain response be preferred over another? For obvious cases, it is simple for humans to understand

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Current Pair-Wise Preference Dataset

Prompt Chosen Rejected Rationale

Pair-Wise Preference Dataset with Rationales

What 
is a 

tiger?

The response 
above is 

preferred  
because …

I can help 
you with this. 
A tiger is [. . .]
Do you know 

that? 
[. . .] 

A tiger is a 
large 

carnivorous 
mammal

[. . .]

Figure 1: Comparison between the current pair-wise preference dataset used for preference learning
and the enriched dataset with added rationales.

the preference. However, when the responses are closely matched, understanding the preference
without any explanation becomes challenging. Even superficial features such as length might not
serve as a straightforward metric to determine preference. In one instance, a longer response may be
favored for its comprehensiveness, while in another instance, a shorter response might be preferred for
its conciseness. Another consideration regarding preferences is that individuals might have varying
preferences for different reasons, and without explicitly outlining these reasons, one would be unable
to discern the underlying rationale. Given these challenges, the model will struggle to learn these
preferences without any explanations, causing data inefficiency, and worse, it could learn the wrong
cues, decreasing performance.

For the reasons outlined above, we propose a natural extension to the current dataset structure by
enriching the preferences with rationales, aiding the model in better understanding during preference
learning. Rationales explain why one response is preferred over another for a given prompt. This
idea also draws inspiration from social studies (Mitchell et al., 1986; Chi et al., 1994; Crowley &
Siegler, 1999; Williams & Lombrozo, 2010), showing that adding explanations to answers improves
one’s understanding of the problem compared to individuals who do not provide explanations.

Contributions. This paper provides a new data-centric perspective on preference learning. We list
the summary of contributions:

❙ We introduce rationales into the human preference learning framework, where rationales
explain the reasons behind the preference for a particular response. In practice, these
rationales can be generated in a cost-effective manner by prompting an off-the-shelf language
model, which may or may not have undergone preference learning.

❙ We derive a straightforward formulation for the preference function to extend the rationales
and show how to adapt our method to current preference learning algorithms such as DPO.

❙ We analytically examine the impact of the rationale on preference training through the
lens of information theory. Our theoretical analysis demonstrates that highly informative
rationales can improve preference prediction accuracy and reduce sample complexity.

❙ We empirically show the impact of preference learning with rationales, highlighting im-
provements in both performance and annotation efficiency compared to baseline methods.
Specifically, the rationale-enriched DPO model can save up to 3× the annotated data re-
quired by the vanilla DPO model. With the same amount of data, it can improve the winrate
against the supervised fine-tuned model by 8 − 9%. Further, the rationale-based DPO
model shows reduced susceptibility to verbosity bias and truthfulness degradation compared
to DPO. We demonstrate the flexibility and effectiveness of our approach by extending
rationales to ORPO.

❙ We showcase the efficacy of rationales generated by the off-the-shelf models with ≤ 8B
parameters on the preference learning. We emphasize the importance of high-quality data
for improved preference learning.

❙ We release our code and datasets to facilitate further research in this direction.
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In a broader context, our approach presents a new paradigm for data-centric research in language
modeling: rather than focusing on pruning samples to distill the most informative pieces from a
dataset Albalak et al. (2024), we explore how to enrich each sample’s information content and
examine its impact. The promising results presented in this paper demonstrate the effectiveness
of enhancing individual samples’ information content in preference learning and suggest that this
approach may hold potential for improving learning in other domains.

2 RELATED WORK

RLHF with Reward Modeling. Tuning large language models to align their outputs towards human
preferences is crucial for controlling model behavior and maintaining desirable boundaries (Casper
et al., 2023). To achieve this, RLHF has been introduced; aligning models through preference
training (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020). Schulman et al. (2017)
describe a method that typically involves two stages. The first stage learns a reward model using a
preference dataset often modeled under the Bradley-Terry model Bradley & Terry (1952). The second
stage fine-tunes the target policy model to maximize the rewards from the reward model, employing
algorithms such as proximal policy optimization (PPO) proposed by Schulman et al. (2017) and
adopted in Ouyang et al. (2022). A direct preference optimization (DPO) method that implicitly
models the reward function was introduced by Rafailov et al. (2024). However, Azar et al. (2024)
observe that RLHF and DPO are prone to overfitting due to the assumptions of the Bradley-Terry
model. Conversely, Pal et al. (2024) explore the possibility of DPO underfitting when dealing with
challenging responses that are difficult for the model to distinguish. Additionally, Park et al. (2024)
note that DPO can exploit response length to maximize reward, proposing a length-regularized DPO
(R-DPO) to address this issue. This should not be confused with our rationale-based DPO (RDPO)
method. Interestingly, we observe that if rationales mention conciseness as a feature, then the length
of responses is significantly reduced compared to SFT and DPO responses. The learning dynamics
during preference tuning are analyzed in Im & Li (2024), emphasizing the importance of high-quality
preference datasets for effective learning. They find that the more distinguishable the response pairs,
the easier it is for the model to learn, leading to faster convergence. This has also been observed
in Pal et al. (2024). However, designing such datasets is challenging, and it also remains important
for models to learn from such nuanced responses, which appear in practice. We try to address the
difficulty of model learning from intricate preferences by providing rationales during preference
training. To improve efficiency over DPO, which requires an intermediate step to train the reference
model, odds ratio preference optimization (ORPO) was introduced by Hong et al. (2024) to eliminate
this step. Another method by Ethayarajh et al. (2024) adapts the Kahneman-Tversky human utility
model to handle preference datasets with a single response (either chosen or rejected), removing the
need for training the model on both responses. Conversely, Yuan et al. (2023) propose a preference
method that considers multiple ranked responses for a prompt and optimizes over them. Our method
can complement these methods by adding rationales into training. In this paper, we demonstrate an
extension of our framework to ORPO.
General Preference Modeling. Reward modeling, however, can incentivize undesirable behaviors,
such as “reward hacking” (Amodei et al., 2016), where agents maximize rewards without achieving the
desired objective. Overfitting is another challenge, as exemplified in Azar et al. (2024). While effective
for comparing two responses, the Bradley-Terry preference modeling relies on the assumption of
transitivity, which may not hold true in practice (Bertrand et al., 2023). To address this, Munos
et al. (2023) introduced general preference modeling, which directly learns general preferences
by formulating a two-player, constant-sum game between policies. The goal is to maximize the
probability of generating the preferred response against the opponent. The solution is the Nash
equilibrium of this game, where payoffs are derived from the general preference function. Building
upon this work, Munos et al. (2023) proposed an algorithm for the regularized general preference
model, while Swamy et al. (2024) developed a solution for the unregularized formulation and
introduced self-play preference optimization (SPO) as an iterative algorithm to reach the optimal
solution. However, SPO suffers from data inefficiency due to its two-timescale update rules. To
address this, Rosset et al. (2024) introduced an efficient direct Nash optimization (DNO) method
that leverages the DPO formulation in practice. Additionally, Wu et al. (2024) proposed an efficient,
scalable, iterative self-play method that generates responses generally preferred over others.

While previous efforts have introduced algorithmic enhancements for preference tuning, they have
been limited to the existing framework of preference datasets with prompts and ranked responses. In
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contrast, our work is first to introduce rationales, a data-centric solution, into preference learning.
Learning with Rationales. The supervised learning framework typically involves training a model
to learn the ground truth label for a given prompt without providing explicit explanations for the
associations, which can lead to the model learning incorrect cues. To mitigate this issue, rationales
have been integrated into the framework, offering explanations for the given associations. These
rationales initially were generated by humans (Zaidan et al., 2007; Ross et al., 2017; Hase & Bansal,
2021; Pruthi et al., 2022). However, due to the high cost of human labor and the development of more
capable large language models, rationales are now often automatically generated by these models,
reducing the need for human involvement (Wei et al., 2022; Kojima et al., 2022). Given rationales,
they have been used as guiding aids by incorporating them directly into the prompt during the training
phase (Rajani et al., 2019; Zelikman et al., 2022; Huang et al., 2023) or at the inference stage (Wei
et al., 2022; Kojima et al., 2022; Wang et al., 2022). Besides using them as additional context within
the prompt, rationales can also serve as labels to train models to generate such explanations for their
predictions (Wiegreffe et al., 2021; Narang et al., 2020; Eisenstein et al.; Wang et al.; Ho et al., 2023;
Magister et al., 2022; Li et al., 2023a). In similar manner, rationales have been applied in knowledge
distillation, where they are generated by a more capable models to supervise weaker models (Hsieh
et al., 2023; Chen et al., 2024). In parallel with these advancements, we introduce rationales into the
preference learning landscape, where rationales are used to explain the preference of one answer over
another. Our findings demonstrate the effectiveness of rationales in preference learning, even when
generated by the same model or a smaller-sized model.
Synthetic Preference Data Generation. Synthetic preference data generation plays a pivotal role in
preference learning by creating new annotated datasets that capture user choices or preferences Yang
et al.; Pace et al.; Meng et al. (2024). These methods focus on producing preference pairs that can serve
as training data for models, enabling the exploration of diverse scenarios and reducing reliance on
costly manual annotations. Furthermore, Wu et al. (2024); Wang et al. (2024) try to further synthesize
the preference examples by iteratively generating new response pairs. However, our approach diverges
fundamentally from this objective. While synthetic data generation targets the creation of new datasets,
our work emphasizes enhancing existing datasets by incorporating rationales, thereby enriching
preference annotations with explanatory depth. This distinction highlights the complementary nature
of these methods: data generation addresses the early stage of creating foundational datasets, whereas
rationale augmentation enhances the interpretability and utility of existing data. Attempting to
compare these approaches directly would obscure their unique contributions. Instead, their synergy
lies in how synthetic data generation can produce the raw preference pairs that are later refined through
rationale augmentation, advancing the overall preference learning pipeline. Exploring how these
two approaches can be combined to create synthetic datasets enriched with rationales is an exciting
direction for future work, holding promise to further enhance the capabilities and generalizability of
preference learning models.

3 METHOD

In this section, we introduce the incorporation of rationales into preference learning and show the
derivation of adapting current methods. We present a demonstration of extending the direct preference
optimization (DPO) algorithm to incorporate the rationales, while similar extensions can be applied
to other variants of DPO. Further, we analyze theoretically the possible impact of rationales through
the perspective of information theory.

3.1 PRELIMINARIES
Notations. Let D denote the pair-wise preference dataset of size N , D = {x(i), y

(i)
w , y

(i)
l }Ni=1,

where x(i) is a context, y
(i)
w is the preferred/chosen/winning response to the context x(i) over

the unpreferred/rejected/losing response y
(i)
l . Let πθ and πref denote the policy to be preference

optimized and the reference policy respectively. In our setting, the policies are the language model to
be preference trained and the base or supervised fine-tuned SFT model, respectively. To compute the
joint probability of the autoregressive language model π generating the response y given the prompt
x, we compute the product of probabilities after observing each token: π(y|x) = Π

|y|
t=0π(yt|x, y0:t).

Reward Modeling with DPO. In the RLHF process (Christiano et al., 2017; Ziegler et al., 2019;
Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov et al., 2024), the goal is to align the
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language model towards human preferences. The preferences ranking from the dataset D is assumed
to be sampled from the latent reward function r∗(x, y) and the preference function is assumed to be
generated by the Bradley-Terry model (Bradley & Terry, 1952): p∗(yw ≻ yl|x) = σ(r∗(x, yw) −
r∗(x, yl)), where σ is the sigmoid function. The reward function then can be estimated by minimizing
the log-likelihood of the following objective L(r,D) = −E(x,yw,yl)∼D [log σ(r(x, yw)− r(x, yl))].
Then the next step is to tune the language model with the reward model as follows by maximizing
the rewards and not diverging from the fixed reference model: maxπθ

Ex∼D,y∼πθ(y|x) [r(x, y)] −
βDKL [πθ(y|x)∥πref(y|x)], where β is a hyperparameter measuring the divergence between two
policies. Alternatively, with a reparametrization of the Bradley-Terry preference model (Rafailov
et al., 2024), the preference function can be expressed in terms of policy π∗:

p∗(yw ≻ yl|x) = σ

(
β log

π∗(yw|x)
πref(yw|x)

− β log
π∗(yl|x)
πref(yl|x)

)
. (1)

Thus, to estimate the policy, Rafailov et al. (2024) proposes to directly minimize the log-likelihood of
the following DPO loss: L(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
.

3.2 FORMULATION OF PREFERENCE LEARNING WITH RATIONALES

While preferences are modeled given the preferred and unpreferred responses, there are nuances
in the responses that are obscure for the model to comprehend and catch the differences between
them. Therefore, our goal is to help the model learn the preferences by providing guidance cues in
the preference tuning process, which we call rationales. Rationales explain why a given response is
preferred over the other response. For that reason, we extend the current preference learning with a
data-centric technique to incorporate rationales and we term this the rationale-enriched preference
function, where the updated preference function is formulated as p∗(yw ≻ yl, r|x) and r is the
rationale from the updated dataset D′ = {x(i), y

(i)
w , y

(i)
l , r(i)}Ni=1. By the chain rule, we arrive at:

p∗(yw ≻ yl, r|x) = p∗(yw ≻ yl|x) · p∗(r|x, yw ≻ yl), (2)
where the first term is the pair-wise preference term modeled in Section 3.1, and the second term is
the probability of the rationale r given the context x and the preference yw ≻ yl. Given the policy π∗,
we can retrieve the probability of generating the rationale r given the context x and the preference
yw ≻ yl, π∗(r|x, yw ≻ yl). Similarly when retrieving the probability of generating responses yw and
yl for the prompt x, which are given in the preference dataset D′, we can also retrieve the probability
of generating rationale r given x,yw, and yl, where (x, yw, yl, r) ∼ D′. In practice, we ask the policy
language model to explain why the response yw is preferred over the response yl for the prompt x and
retrieve the probability of generating the rationale r. Thus, p∗(r|x, yw ≻ yl) = π∗(r|x, yw ≻ yl).

Adaptation to DPO Loss. After deriving the rationale-enriched preference learning function, we
extend the DPO method to incorporate rationales. By substituting p∗(yw ≻ yl|x) from Equation 1
and p∗(r|x, yw ≻ yl) into Equation 2, we can express the rationale-enriched preference function in
terms of an optimal policy π∗:

p∗(yw ≻ yl, r|x) = σ

(
β log

π∗(yw|x)
πref(yw|x)

− β log
π∗(yl|x)
πref(yl|x)

)
π∗(r|x, yw ≻ yl). (3)

We can optimize our policy πθ through maximum likelihood using the following objective over the
updated preference dataset D′ = {x(i), y

(i)
w , y

(i)
l , r(i)}Ni=1, which we term as rationale-DPO (RDPO):

LRDPO(πθ;πref) = −E(x,yw,yl,r)∼D′

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
+

γ log πθ(r|x, yw ≻ yl) ] , (4)
where γ is the added hyperparameter for weighting the impact of rationales on the loss.

4 EVALUATION

In this section, we evaluate the impact of rationales on preference learning. We conduct multiple
experiments with two main goals in mind: (1) to understand how the added rationales affect the
efficacy and efficiency of current preference learning algorithms, and (2) to determine the significance
of rationale quality for effective learning.
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4.1 EXPERIMENTAL SETUP

Datasets. For our analysis, we focus on two popular preference datasets: Orca DPO Pairs (Intel,
2024), which is a pairwise preference dataset version of Orca (Mukherjee et al., 2023), and a binarized
UltraFeedback (Tunstall et al., 2023), which is a pair-wise version of UltraFeedack (Cui et al., 2023).
For each dataset, we take 12,000 samples as training set and 512 fixed samples as test set for winrate
evaluations. We generate rationales and add rationales to the current datasets. We refer readers
to Appendix B.6 for details on generating rationales. For evaluating hallucination, we adopt the
TriviaQA dataset (Joshi et al., 2017) and use LM Evaluation Harness (Gao et al., 2023) code to
measure the exact match (EM) accuracy on the dataset. Given the test sets, we sample the responses
from models trained with preference learning methods and compare the performance between the
models by measuring the winrates between the corresponding responses.
Models. We investigate preference training on various large language models: Mistral-7B-v0.1,
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Zephyr-7B-Beta(Tunstall et al., 2023), and Llama3-8B-
Instruct (AI@Meta, 2024). We use GPT-4o (Achiam et al., 2023) as a judge to evaluate the responses
generated by the models and to retrieve the winrate scores. While in this section, we mainly study the
Mistral-7B-Instruct-v0.2 model (unless explicitly specified) with rationales generated by this model,
we also provide full results on remaining models with ablation on hyperparameters in Appendix B.2.
Methods. In our experiments, we study the integration of rationales into preference learning
frameworks, such as DPO (Rafailov et al., 2024), which requires the SFT model for the reference
model, and ORPO (Hong et al., 2024), which does not. To ensure fair comparison between DPO
and RDPO, we fine-tune the base model with supervised fine-tuning (SFT) only using the chosen
responses from the preference dataset for a single epoch. We extend the code implementation from
human-aware loss functions (HALOs) repository (Ethayarajh et al., 2023) to adapt to our methodology
and borrow the hyperparameters for each of the above methods in our study.

3x Annotation 
Saving

Better
Performance

Figure 2: Winrate comparison between the models trained with RDPO and DPO. Left: Winrate
against the SFT model trained on the Orca dataset. Right: Winrate against the SFT model trained on
the Ultrafeedback dataset. X-axis denotes the training data size used for preference training of DPO
and RDPO models.

4.2 PERFORMANCE OF PREFERENCE LEARNING WITH RATIONALES

Versus SFT. We examine how adding rationales to the current preference learning algorithms
can impact performance. We compare the responses generated by the preference-aligned model
against the responses generated by the SFT model and measure the winrates scores using the GPT-4o
evaluator. To study data annotation efficiency, we train the models on various training data sizes,
ranging from 1,000 to 12,000 data points, for both RDPO and DPO training. We observe on the left
side of Figure 2 that both models, DPO and RDPO models, achieve a better winning rate over the
SFT model (more than 50%) on the Orca dataset with an increasing winning trend when training
data increases. Additionally, we observe as the DPO model converges to around 60% winning rate
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at the 9,000 mark against the SFT model, the RDPO model achieves this rate at a smaller training
data size with 3,000 training data points. Furthermore, we observe that the RDPO model can reach
an even higher winning rate against the SFT than the DPO model, reaching above the 66% winning
rate. We see a similar observation with the models trained on the UltraFeedback dataset on the
right side of Figure 2. Furthermore, the drawing rate for the RDPO model is stable and low across
different training data sizes, which shows that RDPO winning rate is higher not due to flipping
the draw points but the losing points. While RDPO can increase the computation time due to the
addition of rationales, the model trained on rationales can converge earlier with fewer data points
than DPO. This is especially important as the cost of collecting human preference data is high. Thus,
improving annotation efficiency can potentially save further training costs. Additionally, with enough
computation, RDPO can reach a better model than DPO does.

Moreover, we observe for the case of the UltraFeedback dataset, with more training data, the perfor-
mance of the DPO model decreases. This can be attributed to the problem of DPO overfitting and
exploiting length in longer responses Azar et al. (2024); Park et al. (2024). Indeed, the UltraFeedback
dataset contains chosen responses that are longer on average (1,305 character length) than the rejected
responses (1,124 character length). unlike the Orca dataset (784 and 978, respectively).

Figure 3: Winrate of RDPO model against the DPO model on respective datasets, Orca on the left
and UltraFeedback on the right. The purple dashed line denotes the 0.5 mark.

Versus DPO. While we used SFT as a proxy to compare the performance between the DPO- and
RDPO-trained models, here we directly compare the responses between these two models to measure
the winrate for Orca and UltraFeedback datasets. We choose a DPO-trained model checkpoint for
each dataset, where the winrate of the DPO model against the SFT model has converged, which is at
11,000 and 12,000, respectively. In Figure 3, we observe that the model trained with RDPO generates
better responses on average than the model with DPO, even when trained with as little as 1,000 data
points. With increasing training data, RDPO model improves the winrate to reach above 60% in
both datasets. RDPO-trained model generates more of the preferred responses than the DPO-trained
model does, even with 10× fewer training points.

Avg Output Length TriviaQA (Exact Match)

DPO RDPO DPO RDPO
Orca 2021 364 34.9 35.7
UltraFeedback 2066 1299 31.5 33.1

Table 1: Comparison between DPO and RDPO.
Left: The average output lengths of the gener-
ated responses on the prompts from the test sets
of respective datasets. Right: The exact match
(EM) performance on the TriviaQA dataset of the
preference-trained models on respective datasets.

Response Comparison. We compare the re-
sponses generated by the DPO- and RDPO-
trained models. As shown in Table 1, the av-
erage output length by the DPO trained model
is much longer than the RDPO trained model in
the case of the Orca dataset, which is more than
5 times longer on average. Due to longer output,
there might be a chance for a higher occurrence
of hallucinations. Therefore, we want to study
the correctness of the outputs from these mod-
els. For this reason, we use the TriviaQA dataset
to measure the exact match (EM) accuracy and
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compare between the models. We see in Table 1 that models trained with the DPO loss experience a
decrease in performance, compared to the models with RDPO loss. As a reason, we emphasize the
importance of measuring the hallucinations in the generations of both models in future studies. We
provide a comparison of the responses from the two models in Appendix B.9 and a time cost analysis
in Appendix B.4 to better guide model owners in method’s tradeoff. We provide a comparison of the
responses from the two models in Appendix B.9 and a time cost analysis in Appendix B.4 to help
model owners better understand the trade-offs of our method.

ORPO 43 : 55 RORPO

Table 2: Adapting rationales to
the ORPO preference learning al-
gorithm on Mistral-7B-v0.2-Instruct
(Orca). Comparing the winrate
of the ORPO- (Left) against the
RORPO-trained model (Right).

Adaptation to ORPO. To demonstrate the flexibility of our
rationale-enriched preference learning framework, we extend
the ORPO preference learning algorithm Hong et al. (2024),
which omits the SFT step, to include the rationales similar
to the RDPO loss, and we call it RORPO. As shown in Ta-
ble 2, rationales can enhance the performance of ORPO and
achieve a better winrate over the vanilla ORPO trained model.
By successfully adapting rationales to both ORPO and DPO,
we emphasize the simplicity of the framework as well as the
effectiveness of rationales in preference learning. We further
study the adaptation of these methods with rationales and eval-
uate the preference-trained models on the instruction-following
benchmark, AlpacaEval 2.0 (Li et al., 2023b; Dubois et al., 2024), in Appendix B.4, and we observe
consistent results when evaluating on this benchmark.

4.3 RATIONALE QUALITY ANALYSIS

In this section, we examine the importance of the quality of rationales for preference learning. We
study different types of rationales and possible errors encountered in rationales, and how these affect
the preference learning of the model.

4x Annotation
Saving

2x 
Annotation
Saving

Figure 4: Measuring the impact of types of rationales on the RDPO performance. Left: Comparing
the winrates against the SFT model. Right: Comparing the winrates against the DPO model.

Detailed Rationales vs General Rationales. Explaining why one answer is preferred over the other
can be expressed in multiple ways through many perspectives. Here, we study the level of granularity
of the rationales, general (which explains the preference at a high level without going into details)
and detailed (which explains in details and pinpoints specifically to the prompt and the response).
We use language models to automatically generate the rationales for the Orca dataset according to
our intent. For details on generation prompts, we refer to Appendix B.6. We provide samples of
these rationales in Appendix B.7. After training the models on respective rationales, we compare the
winrates between RDPO trained models and the DPO one. Figure 4 on the left shows that the model
trained on general rationales with the RDPO loss converges earlier to a high winning rate against the
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Permuted Rationales VS Original Rationales Opposite Rationales VS Original Rationales

<1 99 10 87

Table 3: The analysis of quality of rationales on the RDPO performance. The winrate comparison
between the RDPO models trained on rationales with errors and original rationales. Left: Permuted,
irrelevant rationales. Right: Opposite, inaccurate rationales.

SFT model than the model trained on the detailed rationales. The reason could be that the general
rationales share common features across the samples (e.g., clarity, conciseness, directness), which
lets the model learn quickly and transfer these learning cues to other samples more easily, while
detailed rationales might require more time to fully comprehend them. However, in both cases, the
models trained on these rationales reach better winrates than the DPO against the SFT model. In
Figure 4 (right), both RDPO models can have a better winrate > 57% against the DPO model with
as few as 3,000 training samples, while the DPO model is trained on 11,000 samples. We provide
results on models trained on additional epochs in Appendix B.3.

Low-Quality Rationales. RDPO has shown efficacy with rationales generated by the off-the-shelf
models, even when the models have not undergone preference alignment. However, we want to
further analyze the impact of rationale’s quality on RDPO’s performance. In particular, we examine
the rationale quality in terms of its relevance and correctness. One case of a low-quality rationale can
be a completely irrelevant rationale to the given pair of responses. To simulate irrelevant rationales,
we permute the abovementioned detailed rationales over different samples so that no rationale is
relevant to the context. Training the model on these rationales with RDPO and comparing one trained
on original rationales, we show in Table 3 that it achieves less than 1% winrate against the RDPO
model trained on correct and relevant rationales. To study the impact of correctness, we negate the
general rationales to have the opposite meaning and observe that the RDPO model trained on original
rationales gets almost a 90% winrate. As we note, the quality of rationales is important for improving
the preference learning performance. While we showed that rationales generated by the off-the-shelf
language models can already bring significant improvement to preference learning, we expect that
more deliberate control of the rationale quality can further improve preference learning. We leave the
in-depth exploration of strategies for generating quality-controlled rationales to future work.

Generated By RDPO vs DPO Winrate

Mistral-7B-Instruct-v0.2 76-23 50-46
Llama3-8B-Instruct 73-27 52-45
Phi3-Mini-4K 75-25 51-49

Mistral-7B-Instruct-v0.2 Llama3-8B-Instruct
Trained On

Table 4: Studying the impact of different source of rationale generation (Y-axis) for the Orca dataset
on the model training with RDPO (X-axis). Winrate of the RDPO model against the DPO model.

Rationale Source. While collecting the human-annotated rationales could be high-quality, in
practice, it is costly with time and resources. Therefore, we resolve to language models to generate
rationales. In our experiments, we use the base models to create them. Here, we study the rationales
coming from other sources and how they impact the RDPO training. We generate rationales for
the Orca dataset on three different models: Mistral-7B-Instruct-v0.2, LLama3-8B-Instruct, and
Phi3-Mini-4K Abdin et al. (2024). Then, we use these rationales to train the first two models. Results
from Figure 4 show us consistent winrates against the DPO model with slightly better winrate from
the same source as the base model. This shows that the rationales can be transferred to other models
for preference training with rationales. Especially, leveraging models with small sizes {3, 7, 8}
billion parameters, we can generate rationales to improve preference learning. However, we observe
modest improvements on the Llama-3.1-8B-Instruct experiment, which can be attributed to two key
factors. First, the inherent capability of Llama-3.1-8B-Instruct surpasses Mistral-7B-Instruct-v0.2,
making substantial gains more challenging to achieve on this stronger baseline. Second, the general
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preference datasets like Orca and Ultrafeedback, which include pre-existing responses, may not be
fully optimized for Llama-3.1-8B-Instruct.

5 A SIMPLIFIED THEORETICAL MODEL FOR RATIONALES

To better understand rationale-enhanced preference learning, we employ machinaries from informa-
tion theory to quantify benefits rationales provide in learning ground truth preferences under simplified
assumptions. Formally, given query X , let the preference Z be a binary random variable, with Z = 1
indicating that response Y1 is preferred over response Y2, and Z = 0 indicating the opposite. Let
R denote the rationale, S = (X,Y1, Y2), and assume that the dataset D = {Si, Ri, Zi}ni=1 ∼ µn is
sampled i.i.d. from a distribution µ.

As an intuitive first step, we quantify the benefits using the conditional mutual information between the
true preferences and rationale-implied preferences given the input-response pairs, i.e., I(Z; g(R)|S),
where g(R) capture the preference inferred from the rationale R. Intuitively, this mutual information
quantity characterizes the added value of rationales in understanding true preferences, measuring how
much additional information rationales provide beyond what can be inferred from input-response
pairs S. Our analysis demonstrates a closed-form relationship between rationale informativeness and
its alignment with true preferences (see Appendix A.1 for detailed derivations of all results).

Next, we quantify the benefits provided by rationales by directly analyzing the generalization error
for preference learning with and without rationales. Compared with analyzing the informativeness
of rationales outlined above, this approach offers a more direct measure of the impact of rationales
on learning outcomes. Note that the generalization error of preference learning still differs from the
winrate metrics used in our experiemnts for evaluating the generation of preference-aligned models.
However, they are intuitively connected under the DPO loss: the minimized test loss also indicates
learning the optimal data generation policy that achieves the highest reward. We defer the detailed
statement of the theorem and proof to Appendix A.2. In particular, our theoretical derivation shows
that training with rationales can lead to improved lower generalization error when the rationale does
not contain irrelevant information other than those predictive of the preference Z, and the learning
process only captures the rationale information that is useful to predict Z. Despite being derived from
a simplified model, our theoretical insights align well with experimental observations. For instance,
our evaluation in Section 4.3 demonstrates that detailed rationales, which may contain extraneous
information, achieve lower sample efficiency compared to more general rationales that focus on
preference-predictive content; furthermore, when we manually inject noise into rationales to misalign
them with true preferences, we observe hampered preference learning, as indicated by lower winrates.

6 CONCLUSION & LIMITATIONS

In our work, we propose a paradigm shift in preference learning, emphasizing a data-centric per-
spective. Language models are trained by presenting them with pairs of answers, one preferred and
one dispreferred, with the objective of teaching them human preferences. However, the selection
of preferred answers can often be ambiguous without explanation. To address this challenge and
enhance preference optimization efficiency, we introduce rationales that provide explicit reasoning
for choosing one answer over another. We propose a straightforward adaptation of existing losses by
incorporating these rationales into the training pipeline. Through extensive empirical experiments,
we demonstrate that rationales significantly enhance training data annotation efficiency and lead
to improved performance compared to baseline methods. Moreover, our approach is grounded in
information theory, offering insights into how rationales enhance preference training efficiency.

To date, we have integrated rationales into our training process and successfully trained models with
up to 8 billion parameters using a dataset of 12,000 samples. We encourage further investigation into
the impact of rationales on preference learning, particularly exploring larger models and datasets. To
facilitate research in this area, we make our code and datasets publicly available.

With the development of unpaired preference learning algorithms, such as KTO Ethayarajh et al.
(2024), it is important to extend the use of rationales to handle unpaired responses in future work,
e.g.,such as provided in the UltraFeedback dataset Cui et al. (2023) contains rationales for single
responses without pairwise comparison.
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A THEORETICAL DERIVATIONS

We begin with defining several standard quantities to be used throughout this section.

Definition 1 Let X,Y and Z be arbitrary random variables, and let DKL denote the KL divergence.
We denote PX as the marginal probability distribution of X , and PY |X as the conditional distribution.

The entropy of X is given by:

H(X) = −
∑
x

P (X = x) logP (X = x).

If X is a binary variable with p = P (X = 1) = 1− P (X = 0), then we use H(p) for H(X).

The joint entropy of two random variables, H(X,Y ), is the entropy of their joint distribution.

The conditional entropy of X given Y , H(X|Y ), is:

H(X|Y ) = H(X,Y )−H(Y ).

The mutual information between X and Y is:

I(X;Y ) = DKL(PX,Y ∥PXPY ).

The disintegrated mutual information between X and Y given Z is:

IZ(X;Y ) = DKL(PX,Y |Z∥PX|ZPY |Z).

The corresponding conditional mutual information is given by:

I(X;Y |Z) = EZ [I
Z(X;Y )].

If all entropies involved are finite, it can be shown that I(X;Y ) = H(Y )−H(Y |X).

A.1 MUTUAL INFORMATION ANALYSIS

Formally, given query X , let the preference Z is a binary random variable, with Z = 1 indicating
that response Y 1 is preferred over response Y 2, and Z = 0 indicating the opposite. Assume that the
rationale-implied preference R is a binary random variable, with R = 1 indicating a rationale that
supports Y 1 being preferred, and R = 0 otherwise. For example, if the rationale mentions that Y 1 is
more concise and informative than Y 2, then R = 1. However, there can be cases where R ̸= Z, as
the rationale may not always align perfectly with the actual preference.

For the analysis, we consider the following model: 1) The rationale R depends on the query-response
(QR) pair S = (X,Y 1, Y 2) and the preference Z, and is characterized by parameters β and α, where:
β = P (R = 1|Z = 1, S) = P (R = 0|Z = 0, S) represents the precision rate of consistency, and
α = P (R = 1|Z = 0, S) = P (R = 0|Z = 1, S) represents the recall error due to inconsistency. 2)
The preference Z is modeled as P (Z = 1|S) = f(S) + ϵ, where f(S) captures the preference based
on the observable query-response pair S, and the additive noise term ϵ is a simple way to account for
unobserved factors influencing the complex human preference that are not captured in S. The term ϵ
is referred to as “bias” in the main text that accounts for the difference between the true preference
and prediction based on the query and responses alone.

Theorem 1 Under the given assumptions, the mutual information I(Z;R|S) is given by:

H(p+ ϵ)− (β(p+ ϵ) + α(1− p− ϵ)) ·H
(

β(p+ ϵ)

β(p+ ϵ) + α(1− p− ϵ)

)
− (1− (β(p+ ϵ) + α(1− p− ϵ))) ·H

(
α(p+ ϵ)

α(p+ ϵ) + β(1− p− ϵ)

)
,

where p = f(S). The mutual information I(Z;R|S) satisfies the following properties in three distinct
regimes:
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1. Uninformative rationale regime: If β = α = 0.5, then I(Z;R|S) = 0.

2. Maximally informative rationale regime: If β = 1 and α = 0, then I(Z;R|S) = H(p+ ϵ).

3. Moderately informative rationale regime: If β = 0.5 + γ and α = 0.5− γ, where 0 < γ < 0.5,
then I(Z;R|S) increases with γ, ranging from 0 when γ = 0 (uninformative rationale) to H(p+ ϵ)
when γ = 0.5 (maximally informative rationale).

The theorem highlights that the potential benefits of including rationales in the training process for
preference learning tasks may vary in different regimes.

Regime 1: Highly informative rationale (β = 1 and α = 0): In this case, the mutual information
is solely determined by the entropy of the preference prediction from the query and responses,
H(f(S) + ϵ). Let us interpret f(S) as the query-response-dependent (QR-dependent) confidence
generator that only depends on S, and ϵ captures the idiosyncrasies such as unknown confounding
factors that influence the probability of preference. If the true probability P (Z = 1|S) = f(S) + ϵ
is less than 0.5, i.e., Z is most likely to be 0, a positive ϵ > 0 means that the true probability
P (Z = 1|S) is less extreme than the confidence score f(S) as it gets closer to 0.5 with increasing ϵ.
On the contrary, a negative ϵ < 0 means that the true probability P (Z = 1|S) is more extreme than
the QR-dependent confidence f(S) as it gets closer to 0 with increasing |ϵ|.
From the perspective of the QR-dependent confidence generator f(S) that tries to explain the
preference based on QR pairs, a positive ϵ > 0 would make it look more confident than it should be,
i.e., overconfident, while a negative ϵ < 0 would make it less confident (or more conservative) based
on the QR sequence than it should be.

If it is likely to be overconfident based on the QR pairs, i.e., ϵ > 0, then the more positive ϵ is, the
more risk there is of being overconfident in the QR-dependent predictor f(S). In this case, there is a
lot of mutual information in I(Z;R|S), so having rationales can “soften” the potential overconfidence
by bringing additional information other than the QR pair, which would otherwise occur in QR pairs
alone, as in traditional reward modeling. Similar analysis holds when P (Z = 1|S) = f(S) + ϵ is
greater than 0.5, i.e., Z is most likely to be 1.

Key message: Rationales are most useful when the reward modeling based on QR alone tends to have
bias (i.e., overconfident).

Regime 2: Uninformative rationale (β = α = 0.5): In this regime, the rationale provides no
additional information about the preference, and the mutual information I(Z;R|S) is zero.

Regime 3: Moderately informative rationale (high precision β = 0.5 + γ and low recall error
α = 0.5− γ, where 0 < γ < 0.5): In this regime, it can be shown based on dereivative analysis that
as γ increases (more informative rationale), the terms involving γ in the numerators and denominators
of the conditional entropies become more prominent. The mutual information will increase with γ,
as the rationale becomes more informative about the preference.

A.2 THEOREM 2: GENERALIZATION BOUND

Next, we analyze the sample complexity of training language models with and without rationales
to predict preferences. We consider two regimes: 1) Training with rationale: Let θra = Ara(D) ∼
Pθra|D denote the parameters of the language model trained to predict Z given S and R. 2) Training
without rationale: Let θun = Aun(D\R) ∼ Pθun|D\R denote the output parameters trained to
predict Z given only S, where D\R is a dataset D with rationales removed. Given a loss function
ℓ that measures the prediction of preference Z, the (mean) generalization error is gen(µ,A) =
ED,θ∼A(D)|Eµ[ℓ(θ)]− ED[ℓ(θ)]|, where Eµ[ℓ(θ)] is the expected loss on the true distribution (true
risk) and ED[ℓ(θ)] is the empirical risk.

We introduce the following conditions on the relationship between S, R, and Z, and the learning
process: 1) H(R|Z) ≤ η1 and H(Z|R) ≤ η2, i.e., the rationale R is informative about Z (small η2)
without excessive irrelevance (small η1). 2) I(θra;S|Z,R) ≤ δ for some small positive constant δ,
i.e., the learned model θra does not capture much additional information from S beyond what Z and
R already provide. Condition 1 is supported by an effective procedure to generate useful rationale R.
To justify Condition 2, if the learning algorithm is designed to focus on capturing the information in
R, which is highly informative about Z (per Condition 1 for small η2), we can show that the model
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θra can accurately predict Z without needing to capture much additional information from S beyond
what is already present in Z and R. We provide rigorous but partial justification in Appendix A.3.

Theorem 2 (Generalization bounds) Suppose the loss function ℓ is σ-subgaussian under the true
data distribution. Under conditions 1 and 2, we have:

gen(µ,Ara) ≤
√

2σ2

n
· (I(θra;Z) + δ + η1), (5)

gen(µ,Aun) ≤
√

2σ2

n
· (I(θun;Z) + I(θun;S|Z)). (6)

The proof relies on the mutual information-based generalization bounds (Russo & Zou, 2016; Xu &
Raginsky, 2017) and the decomposition of the mutual information terms for both training regimes
using the chain rule (see Appendix A.2). The terms I(θra;Z) and I(θun;Z) can be expected to be
similar as long as both regimes achieve good prediction of Z. Under the conditions of the theorem,
we can observe that the sample complexity reduction depends on the gap between I(θun;S|Z) and
δ + η1; training with rationales can lead to improved sample efficiency when the rationale does not
contain irrelevant information other than those predictive of the preference Z, i.e., η1 is small, and the
learning process only captures the rationale information that is useful to predict Z. The theoretical
insights are supported by our experimental results. For instance, our evaluation in Section 4.3
demonstrates that a detailed rationale achieves lower sample efficiency compared to more general
rationales, which contain less irrelevant information beyond what is predictive of the preference;
furthermore, we showed that irrelevant rationales, i.e., a large value of η1, indeed hamper learning.

For the proof, recall that given a loss function ℓ, the (mean) generalization error is gen(µ,A) =
ED,θ∼A(D)|Eµ[ℓ(θ)]− ED[ℓ(θ)]|, where Eµ[ℓ(θ)] is the expected loss on the true distribution (true
risk) and ED[ℓ(θ)] is the empirical risk. For fair comparison between gen(µ,Aun) and gen(µ,A)ra,
some technical nuances arise. The key difference from the typical setup in Xu & Raginsky (2017)
is that the true data distribution µ includes the distribution for the rationale R, but the training
regime gen(µ,Aun) does not explictly use this information. However, it may seem unclear initially
whether we should include that in the generalization bound, since R is indeed generated based on Z,
corresponding to the true Markov chain: S → Z → R.

To clarify, the Markov chain for the training without rationale is: S → Z → R, with additional
arrows Z → θun and S → θun, but no arrow from R to θun.

Intuitively, we should account for this difference by arguing that, conditioned on the preference Z,
the learned model θun is conditionally independent of R. However, due to this difference, it seems
prudent to reason from first principles.

Let’s start by choosing the distributions P and Q for the Donsker-Varadhan variational representation
of the KL divergence. We set P = PS,R,Z,θun and Q = µn ⊗ Pθun , where µ is the distribution for
(S,R,Z). Then, for any measurable function f , we have:

D(P∥Q) ≥ EP [f(S,R,Z, θ)]− logE(D̄,R̄,Z̄,θ̄)∼Q[e
f(S̄,R̄,Z̄,θ̄)]. (7)

Now, choose f(S,R,Z, θ) = λ(ℓD(θ)− ℓµ(θ)) for some λ ∈ R, where ℓD(θ) is the empirical loss
on the dataset D and ℓµ(θ) is the expected loss under the true distribution µ. Substituting this into
equation 7, we get:

D(P∥Q) ≥ λ(E[ℓD(θ)]− E[ℓµ(θ)])− logE(D̄,R̄,Z̄,θ̄)∼Q[e
λ(ℓD̄(θ̄)−ℓµ(θ̄))]

≥ λ(E[ℓD(θ)]− E[ℓµ(θ)])−
λ2σ2

2n
, (8)

where the second inequality follows from the fact that ℓD̄(θ̄) is σ/
√
n-subgaussian under Q, due to

the subgaussian assumption on the loss function.

As equation 8 holds for any λ ∈ R, it must also hold for the λ that minimizes the right-hand side.
This minimum occurs at λ∗ = n(E[ℓD(θ)]− E[ℓµ(θ)])/σ2, yielding:

D(P∥Q) ≥ n

2σ2
(E[ℓD(θ)]− E[ℓµ(θ)])2.
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Taking the square root of both sides, we have:

gen(µ,Aun) ≤
√

2σ2

n
D(P∥Q).

The key observation here is that PS,R,Z,θun = Pθun|S,R,ZPS,R,Z = Pθun|S,ZPS,R,Z , since θun is
conditionally independent of R given S and Z in this training regime. Therefore,

DKL(P∥Q) = DKL(PS,R,Z,θun∥µn ⊗ Pθun)

= DKL(Pθun|S,ZPS,Z∥µn
\R ⊗ Pθun)

= I(S,Z; θun),

where µ\R denotes the marginal distribution of µ over S and Z (i.e., excluding R).

Hence, we have:

gen(µ,Aun) ≤
√

2σ2

n
· I(S,Z; θun).

Note that we use I(S,Z; θun) instead of I(S,R,Z; θun), which is the key difference from the typical
setup in Xu & Raginsky (2017), where the learned model is assumed to depend on all the data.

We can then arrive at the result for training without rationale by noting:
I(θun;S,Z) = I(θun;Z) + I(θun;S|Z).

For training with rationale, we have:
I(θra;S,R,Z) = I(θra;Z) + I(θra;R|Z) + I(θra;S|Z,R)

≤ I(θra;Z) +H(R|Z) + I(θra;S|Z,R)

≤ I(θra;Z) + η1 + δ,

where the first inequality is due to I(θra;R|Z) ≤ H(R|Z), and the second inequality follows from
conditions 1 and 2. We can now apply (Xu & Raginsky, 2017, Thm. 1) to yield the result.

A.3 SUPPORTING LEMMAS

Lemma 1 Let Ẑ be the estimate of Z based on θ. Let Pe = P (Z ̸= Ẑ|Ẑ, θ) be the probability of
error in predicting Z using θ. Suppose Pe ≤ ϵ. Then, we have that:

Pe ≥
H(Z)− I(R; θ)− I(Z; θ|R)−H(ϵ)

log |Z|
. (9)

Proof: First, let’s define an indicator variable E for the error event: E =

{
0, if Ẑ = Z

1, if Ẑ ̸= Z
. We have

H(Z|θ) = H(Z|Ẑ, θ) = H(Z,E|Ẑ, θ)

= H(E|Ẑ, θ) +H(Z|E, Ẑ, θ)

= H(Pe) + PeH(Z|E = 1, Ẑ, θ) + (1− Pe)H(Z|E = 0, Ẑ, θ)

≤ H(ϵ) + Pe log |Z|.
Hence, we have

Pe ≥
H(Z|θ)−H(ϵ)

log |Z|
=

H(Z)− I(Z; θ)−H(ϵ)

log |Z|
. (10)

This part of the proof follows from Fano’s inequality.

Now, since I(Z; θ) + I(R; θ|Z) = I(Z,R; θ), we have
I(Z; θ) = I(Z,R; θ)− I(R; θ|Z)

= I(R; θ) + I(Z; θ|R)− I(R; θ|Z)

≤ I(R; θ) + I(Z; θ|R)

Plugging in equation 10 obtains the result.

Note: I(Z; θ|R) = 0 if θ is trained only on R, i.e., Z and θ are conditionally independent given R.
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Lemma 2 Let Ẑ be the estimate of Z based on θ. Let Pe = P (Z ̸= Ẑ|Ẑ, θ) be the probability of
error in predicting Z using θ. Assume that Pe ≤ 0.5. Then, we have that:

Pe ≤
H(Z)− I(R; θ) +H(R|Z)

log 2
. (11)

Proof: By definition of E from Lemma 1, we have

H(Z|θ) = H(Z|Ẑ, θ) = H(Z,E|Ẑ, θ)

= H(E|Ẑ, θ) +H(Z|E, Ẑ, θ)

≥ H(E|Ẑ, θ)

= Pe log(1/Pe) + (1− Pe) log(1/(1− Pe))

≥ Pe log 2

Hence, we have Pe ≤ H(Z|θ)/ log 2. Since H(Z|θ) = H(Z)− I(Z; θ), and that
I(Z; θ) = I(Z,R; θ)− I(R; θ|Z)

= I(R; θ) + I(Z; θ|R)− I(R; θ|Z)

≥ I(R; θ)−H(R|Z) +H(R|θ, Z)

≥ I(R; θ)−H(R|Z),

the bound follows.

Partial justification of Condition 2: Consider the Markov chain Z → R → θ with additional
arrows of Z → θ and R → θ, where Z is the preference, R is the rationale, and θ is a trained model
used to predict Z. From both Lemma 1 and 2, we see that as long as θ captures the information of
R, i.e., I(R; θ) is large, and R does not contain excessive irrelevant information other than Z, i.e.,
H(R|Z) is small, the prediction error of Z from model θ can be well-controlled. Specifically, based
on the lower and upper bound analysis, we can conclude that the probability of error Pe decreases
with increasing I(R; θ) or decreasing H(R|Z). This implies that the model does not need to capture
additional information from S to achieve high prediction accuracy for Z, i.e., I(θra;S|Z,R) is small.
In other words, the incorporation of R in the training of θra guides the model to easily predict Z
without resorting to finding potentially irrelevant information from S. A full justification of the
condition hinges on a detailed analysis of the specific algorithm and is beyond the scope of this study.

A.4 PROOF OF THEOREM 1 AND DERIVATION OF REGIMES

Recall the definition of α, β, ϵ, f(·) in Sec. A.1. Now, we derive the relationship between the mutual
information I(Z;R|S) and these parameters:

P (Z = 1|S,R = 1) =
P (R = 1|Z = 1, S)P (Z = 1|S)

P (R = 1|S)

=
P (R = 1|Z = 1, S)P (Z = 1|S)∑

z∈{0,1} P (R = 1|Z = z, S)P (Z = z|S)

=
β(f(S) + ϵ)

β(f(S) + ϵ) + α(1− f(S)− ϵ)
.

Similarly, we have

P (Z = 1|S,R = 0) =
α(f(S) + ϵ)

α(f(S) + ϵ) + β(1− f(S)− ϵ)
.

These equations show that the probability of Z = 1 given the query X , the preferred response Y1, the
dispreferred response Y2, and the rationale R depends on both the informativeness of the rationale,
through α and β, and the informativeness of the query and responses, through f(S). Using the above
equations, we get the conditional entropies as follows:

H(Z|S,R = 1) = H

(
β(f(S) + ϵ)

β(f(S) + ϵ) + α(1− f(S)− ϵ)

)
,

H(Z|S,R = 0) = H

(
α(f(S) + ϵ)

α(f(S) + ϵ) + β(1− f(S)− ϵ)

)
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and substituting to the mutual information equation, we get:

I(Z;R|S) = H(Z|S)−
∑

r={0,1}

P (R = r|S)H(Z|S,R = r).

Then, we compute each probabilities P (R|S) as follows:

P (R = 1|S) =
∑

z∈{0,1}

P (R = 1|Z = z, S)P (Z = z|S)

= β(f(S) + ϵ) + α(1− f(S)− ϵ),

P (R = 0|S) = 1− P (R = 1|S)
= 1− (β(f(S) + ϵ) + α(1− f(S)− ϵ))

and substitute them back into the conditional mutual information term, where we define p = f(S):

I(Z;R|S) = H(p+ ϵ)−(β(p+ ϵ) + α(1− p− ϵ))H

(
β(p+ ϵ)

β(p+ ϵ) + α(1− p− ϵ)

)
− (1− (β(p+ ϵ) + α(1− p− ϵ)))H

(
α(p+ ϵ)

α(p+ ϵ) + β(1− p− ϵ)

)
.

To study the influence of the parameters α, β, ϵ on the mutual information, we consider the following
edge cases:

Regime 1: Highly informative rationale β ≈ 1 and low noise α ≈ 0 =⇒ Rationale is a sufficient
statistics.
In this case, the conditional probabilities are simplified to

P (Z = 1|S,R = 1) ≈ f(S) + ϵ

f(S) + ϵ
= 1,

P (Z = 1|S,R = 0) ≈ 0

1− f(S)− ϵ
= 0.

Thus, the mutual information becomes as follows:

I(Z;R|S) ≈ H(f(S) + ϵ)− P (R = 1|S)H(1)

−P (R = 0|S)H(0) = H(f(S) + ϵ).

In this regime, the conditional mutual information is solely determined by the entropy of the preference
prediction, H(f(S) + ϵ). We notice that the entropy function is concave and reaches the max value
at the 0.5 mark.

Regime 2: Uninformative rationale β ≈ 0.5 and high noise α ≈ 0.5.

For this case, the conditional probabilities become:

P (Z = 1|S,R = 1) ≈ f(S) + ϵ

f(S) + ϵ+ 1− f(S)− ϵ
= f(S) + ϵ = P (Z = 1|S,R = 0)

and the mutual information equals to:

I(Z;R|S) ≈ H(f(S) + ϵ)−H(f(S) + ϵ) = 0,

which shows that the rationales provides 0 information about the preference given the prompt and
responses.

Regime 3: Moderately informative rationale β = 0.5 + γ and lower noise α = 0.5− γ.

Given the assumption of β = 0.5 + γ and α = 0.5− γ, where 0 ≤ γ ≤ 0.5 and γ denotes the level
of informativeness of the rationale, we substitute this into the conditional mutual information term.
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We first substitute into the conditional probabilities and get:

P (Z = 1|S,R = 1) =
(0.5 + γ)(f(S) + ϵ)

(0.5 + γ)(f(S) + ϵ) + (0.5− γ)(1− f(S)− ϵ)
,

P (Z = 1|S,R = 0) =
(0.5− γ)(f(S) + ϵ)

(0.5− γ)(f(S) + ϵ) + (0.5 + γ)(1− f(S)− ϵ)
.

Then, we compute the following probabilities:

P (R = 1|S) =
∑

z∈{0,1}

P (R = 1|Z = z, S)P (Z = z|S)

= 0.5 + 2γ(f(S) + ϵ− 0.5),

P (R = 0|S) = 0.5− 2γ(f(S) + ϵ− 0.5).

Now, we can compute the conditional mutual information term:

I(Z;R|S) = H(f(S) + ϵ)

− (0.5 + 2γ(f(S) + ϵ− 0.5)) ·H
(

(0.5 + γ)(f(S) + ϵ)

(0.5 + γ)(f(S) + ϵ) + (0.5− γ)(1− f(S)− ϵ)

)
− (0.5− 2γ(f(S) + ϵ− 0.5)) ·H

(
(0.5− γ)(f(S) + ϵ)

(0.5− γ)(f(S) + ϵ) + (0.5 + γ)(1− f(S)− ϵ)

)
.

(12)
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Figure 5: The plot of Equation 12 showing the relation between mutual information and gamma γ for
a fixed f(S).

We can now analyze the behavior of the mutual information as a function of γ:

When the rationale is uninformative γ = 0, then the mutual information becomes 0, I(Z;R|S) = 0,
which is consistent with previous cases, in which uninformative rationales provide no additional
information about the preference Z as demonstrated in Figure 5.

As rationale becomes more informative about the preference by increasing γ, we observe that mutual
information also increases displayed in Figure 5.

Consider the case that the true probability P (Z = 1|S) = f(S) + ϵ > 0.5, so the preference Z is
most likely to be 1.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Gamma γ

En
tr

op
y

Figure 6: The plot of Equation 12 showing the relation between the first entropy term and gamma γ
for a fixed f(S).
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Figure 7: The plot of Equation 12 showing the relation between second entropy term and gamma γ
for a fixed f(S).

Then, we now focus on terms in I(Z;R|S) that contain γ. As γ increases, the first en-
tropy weight term (0.5 + 2γ(f(S) + ϵ − 0.5)) increases and the second entropy weight term
(0.5 − 2γ(f(S) + ϵ − 0.5)) decreases. Entropy terms also involve γ, and we observe that as γ

increase, the ratio (0.5+γ)(f(S)+ϵ)
(0.5+γ)(f(S)+ϵ)+(0.5−γ)(1−f(S)−ϵ) approaches 1, since the numerator grows faster

than the denominator. Thus, the first entropy term decreases with γ, as the entropy of a distribution to
a deterministic one is lower.

Conversely, for the second entropy term, with the increase of γ, the ratio
(0.5−γ)(f(S)+ϵ)

(0.5−γ)(f(S)+ϵ)+(0.5+γ)(1−f(S)−ϵ) approaches 0, so the second entropy term also decreases
with γ.

• For the first entropy term, with an increase of γ, the weight of the first entropy term increases,
but the entropy decreases itself (see Figure 6).

• For the second entropy term, with an increase of γ, the weight of the second entropy term
decreases, and the entropy decreases itself (see Figure 7).

The net effect on the mutual information depends on the relative magnitudes of these changes.
However, we can argue that the decrease in the entropy terms dominates the change in their weights
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due to the entropy function changing more rapidly near the extremes (i.e., when the distribution is
close to being deterministic) compared to the middle range.

Thus, with an increase in γ, the overall contribution of the entropy terms to the mutual information
decreases, causing an increase in I(Z;R|S), which indicates that as the rationale becomes more
informative about the preference, the mutual information increases.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EXPERIMENTAL DETAILS

For DPO-based methods, we fine-tune the base model by supervised fine-tuning (SFT) with the chosen
responses from the preference dataset for a single epoch. For ORPO, which avoids the reference
model, we skip this SFT step. For models trained on RDPO and results reported in Section 4, we
use γ = 2.0, and for RORPO, we use γ = 10.0. Similar to baseline methods, we train RDPO and
RORPO for 1 epoch. We perform ablation studies on the hyperparameter γ and the number of epochs
in the following sections.

For our winrate scores, we report the mean winrates after querying the evaluator 3 times. To reduce
the evaluator’s order bias, we have additionally shuffled the order of responses. We note that the
winrate error bars are within < 3% for 512 samples.

B.2 ABLATION STUDY ON MODELS AND HYPERPARAMETERS

Mistral-7B-v0.1

General 62 61 63 61 62 60
Detailed 64 66 63 61 60 62

γ 1.0 1.5 2.0 2.5 3.0 10.0

Mistral-7B-v0.2-Instruct

General 55 62 57 55 57 56
Detailed 56 56 57 60 57 59

γ 1.0 1.5 2.0 2.5 3.0 10.0

Zephyr-7B-Beta

General 58 55 55 57 55 57
Detailed 48 49 51 51 50 51

γ 1.0 1.5 2.0 2.5 3.0 10.0

Table 5: The impact of different values of hyperparameter γ on the winrate of the RDPO model
against the DPO model. The results on various models: Mistral-7B-v0.1 (Top), Mistral-7B-Instruct-
v0.2 (Middle), and Zephyr-7B-Beta (Bottom).

Here, we investigate the impact of the hyperparameter γ, ranging from 1.0 to 10.0, on the performance
of the model trained with RDPO loss. We provide the winrate scores against the DPO model on the
Orca dataset. As we see in Table 5, models trained on either general or detailed rationales can still
achieve a stronger winrate against the DPO model, except for the case of Zephyr-7B-Beta model,
which achieves a draw with the DPO model. For this model, the better quality rationales are important
for effective preference learning, as the general rationales can still improve the performance.

B.2.1 RATIONALE-ONLY OPTIMIZATION

In contrast to the ablation study on the rationale hyperparameter, we conduct an exploratory study
on an extreme case where the rationale alone or the preference learning alone drives preference
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RDPO (Preference + Rationale) DPO (Preference-Only) Rationale-Only

General 64.5 59.1 61.8
Detailed 64.4 59.1 61.3

Table 6: The impact of different components of RDPO by measuring the winrate of the target model
against the SFT model. The results on Mistral-7B-v0.2-Instruct model using the Orca dataset.

optimization. To address this, we conducted a series of experiments to isolate the impact of each
component and evaluate their combined effect. Specifically, we investigated an extreme case where
the rationale loss alone drives preference optimization, with the DPO alignment loss set to zero. This
approach was based on the hypothesis that rationales inherently encode preferences by combining
preference-response pairs, the preferences themselves, and the associated reasoning processes, thereby
providing a rich and effective training signal.

For these experiments, we fine-tuned Mistral-7B-Instruct-v0.2 on the Orca dataset across three
settings: RDPO (combining DPO and rationale loss), DPO (excluding rationale loss), and Rationale-
Only (excluding DPO loss). The results, as shown in the Table 6, reveal that rationales alone can
substantially improve model performance, achieving a high win rate of over 61While DPO also
demonstrated a majority win rate against the SFT baseline, training with both rationale and preference
losses (RDPO) consistently achieved the highest win rate (64.5%) across both general and detailed
settings. This highlights the benefit of integrating rationales into the preference objective, effectively
leveraging the strengths of both losses to produce superior performance. To further investigate
how rationales enhance DPO preference learning, we examined the reward margin metrics. As
shown in the Table 7, RDPO not only achieved higher reward margins between chosen and rejected
responses but also demonstrated faster convergence compared to DPO. This can be explained through
the following: while DPO explicitly aims to maximize reward margins, the inclusion of rationales
provides an implicit quality signal, offering explanations for the differences between chosen and
rejected responses. This signal reinforces the model’s ability to improve reward margins by guiding it
toward more informed preferences.

Training Points 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
DPO 0.00 0.05 0.19 0.32 0.42 0.49 0.54 0.58 0.62 0.63 0.65 0.66

RDPO 0.00 0.10 0.25 0.46 0.67 0.76 0.83 0.85 0.86 0.87 0.89 0.91

Table 7: The eval reward margin comparison for different training losses, DPO and RDPO. The
Mistral-7B-Instruct-v0.2 is trained on the Orca dataset.

These findings underscore the complementary nature of the rationale SFT loss and the pairwise
alignment loss. While DPO explicitly optimizes reward margins, the rationale prediction loss
provides supplementary supervision, enabling the model to learn the reasoning underlying response
preferences. This integration not only strengthens the selection process but also accelerates training
convergence. By combining these two approaches, RDPO amplifies their individual strengths,
resulting in more efficient and effective preference learning.

B.3 ABLATION ON THE NUMBER OF EPOCHS

General Detailed

Epoch 1 76 74
Epoch 2 75 71
Epoch 3 74 74

Table 8: The analysis of the number of epochs on the performance. Winrate of the RDPO model
trained on the general rationales (left) and detailed rationales (right) against the DPO model, respec-
tively.

In the main paper, we trained the models with the RDPO loss on a single epoch similar to
DPO (Rafailov et al., 2024). Here, we study the impact of training the models with the ratio-
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nales on more epochs. As we observe in Table 8, training with more epochs does not improve the
winrate of the RDPO model against the DPO model. The reason could be that the model has already
learned the preference well after the first epoch, or it could be that the quality of rationales could be
further improved to increase the efficiency of the rationale-based preference learning algorithms.

B.4 EVALUATION OF THE IMPACT OF RATIONALES WITH ALPACAEVAL 2.0

Here, we study the flexibility of our method by extending different preference learning methods, such
as DPO (Rafailov et al., 2024) and ORPO (Hong et al., 2024), with rationales. In this experiment, we
evaluate the performance of the trained models on the automatic instruction-following AlpacaEval
2.0 benchmark (Li et al., 2023b) with GPT-4-turbo as a judge and report the raw winrate, the length-
controlled (LC) winrate (Dubois et al., 2024), which is robust against the verbosity bias that the raw
winrate inherently entails, and the average response length. We train the instruction-tuned models,
Mistral-7B-Instruct-v0.2 and Llama-3-8B-Instruct, on the Intel-DPO-Pairs dataset.

Figure 8: The performance comparison of the original model, DPO trained model, and DPO with
rationales (RDPO) trained model on the AlpacaEval 2.0 benchmark. The bolded numbers denote the
average response length of each models.

We observe in Figure 8 that DPO trained model improves the winrates on both models compared to
the original model. Additionally, RDPO models further increase the win rates. We note in Figure 9
that in the case of the Mistral model, the winrate decrease with ORPO preference training, which
might be due to the lack of the reliance on the reference model, the behavior which is also observed
in Ethayarajh et al.. Furthermore, after adding rationales, the (LC) winrate not only increases but
also surpasses of the original model. These results show the helpfulness of adding rationales into
preference learning.

Interestingly, we also note that rationale based models increase the winrates while their average
response lengths are decreased compared to average response lengths of the original model, which
is not a similar observation as seen in some current methods, such as SPPO (Wu et al., 2024) or
SimPO (Meng et al., 2024).

B.5 COST ANALYSIS

In this section, we analyze the cost breakdown to assist project owners in evaluating trade-offs.
Specifically, we present a cost-benefit analysis of the approach. The table below outlines the cost of
using the API to generate rationales for a given number of annotations. It also highlights the RDPO

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 9: The performance comparison of the original model, ORPO trained model, and ORPO with
rationales (RORPO) trained model on the AlpacaEval 2.0 benchmark. The bolded numbers denote
the average response length of each models.

API Rationale Cost $0.13 $0.19 $0.26 $0.32 $0.39
Annotations Used 1K 1.5K 2K 2.5K 3K
Annotations Saved 3K 6K 6.5K 6.8K >10K
vs SFT Winrate 54% 56% 58% 60% 62%

Table 9: Cost-analysis breakdown of using RDPO with the OpenAI API (gpt-4o-mini model) to
generate rationales, highlighting performance improvements relative to the number of annotations
used and annotations saved.

win rate compared to the SFT model for each data budget and estimates the number of annotations
potentially saved by using RDPO to achieve the same level of performance as DPO.

While open-weight models were used to generate the rationales in our study, the table illustrates the
associated costs of utilizing an API model, specifically gpt-4o-mini. The pricing for this model is
$0.150 per 1M input tokens and $0.600 per 1M output tokens. The results shown in Table 9 are based
on the Mistral-7B-v0.2-Instruct model trained on the Orca dataset.

We also report the runtime for RDPO and DPO for one epoch on the Llama-3.1-8B-Instruct model
using 12,000 Orca examples, as follows:

• RDPO General: 6770 seconds

• RDPO Specific: 6950 seconds

• DPO: 3583 seconds.

While processing additional tokens nearly doubles the runtime, RDPO compensates for this by requir-
ing fewer annotations while achieving comparable or superior performance to DPO. Furthermore, we
report the average response lengths for the Orca dataset, highlighting that rationales are approximately
50% shorter in length compared to chosen or rejected responses:

• Chosen responses: 786

• Rejected responses: 981

• Rationale responses: 411
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B.6 RATIONALE GENERATION

Here, we provide the prompts to generate detailed and general rationales as mentioned in Section 4.
In Prompt 1, we ask the model to generate general rationales without going into details and provide
high-level reasoning. In Prompt 2, we ask the model to provide a specific rationale and go as much
into detail as possible. These are our examples of prompts and we call for further studies to improve
the prompts for higher quality rationales.

Given the prompt:
<prompt>
Which of the following assistant’s responses is preferred and
strictly follows the prompt question? Why this assistant’s
response:
<chosen>
is preferred over the response provided below:
<rejected>
On a high and general level, why the response above is
preferred over the response below? Provide a general,
high-level explanation for your reasoning without going into
the response’s details.

Prompt 1: Prompt to the LLM to retrieve a general rationale.
Given the prompt:
<prompt>
Which of the following assistant’s responses is preferred and
strictly follows the prompt question? Why this assistant’s
response:
<chosen>
is preferred over the response provided below:
<rejected>
Why the response above is preferred over the response below?
Provide a specific, detailed explanation for your reasoning
pointing directly at the response.

Prompt 2: Prompt to the LLM to retrieve a detailed rationale.

B.7 COMPARISON OF RATIONALES

We provide examples of the general and detailed rationales for the Orca dataset by the Mistral-7B-
Instruct-v0.2, and compare them in Examples 1, 2, and 3. As we observe, the general and detailed
rationales follow our intent. Additionally, we observe that a part of the general rationale is also
included in the detailed rationale. It will be important to study, which type of rationale is more helpful
for the preference training.
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<General Rationale>
The first response strictly adheres to the prompt by providing
the RDF triplets in the required format, while the second
response includes an explanation that goes beyond the required
format and may not be necessary for the task at hand. Thus,
the first response is preferred as it focuses solely on
providing the required output in the correct format.

<Detailed Rationale>
The assistant’s response is preferred because it follows the
standard format for RDF triplets, where the subject comes
first, followed by the predicate, and then the object. In the
given input sentence, ’AFC Ajax (amateurs)’ and ’Ajax Youth
Academy’ are the subjects, ’has ground’ and ’plays at’ are the
predicates, and ’Sportpark De Toekomst’ is the object that is
common to both subjects. Therefore, the RDF triplets should be
structured as [subject, predicate, object], with each triplet
representing a distinct relationship. The assistant’s response
correctly reflects this structure and semantics, making it a
preferred option.

Example 1: An example #1 of general and detailed rationales.
<General Rationale>
The preferred response strictly follows the prompt question by
calculating the total amount paid per episode for both major
and minor characters based on the given information. It uses
the provided information to calculate the salaries of the major
and minor characters and then adds them together to find the
total amount paid per episode. The response below includes
unnecessary details and makes the response longer and less
efficient.

<Detailed Rationale>
The assistant’s response above is clear and accurate. They
first calculate the total amount paid to the minor characters
per episode, which is $60,000. Then, they calculate the
total amount paid to the major characters per episode, which
is $225,000. Finally, they add the salaries of the major
and minor characters to find the total amount James pays per
episode, which is $285,000." This explanation directly points
to the steps taken in the assistant’s response and explains
each step in detail. It also uses clear and concise language
to make the explanation easy to understand.

Example 2: An example #2 of general and detailed rationales.
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<General Rationale>
The response above is preferred because it directly answers the
question by specifically identifying the kidneys as the organs
that secrete hormones to help maintain homeostasis, while
the response below goes into excessive detail and provides
additional information that is not directly related to the
question.

<Detailed Rationale>
The assistant’s response is preferred because it provides
a clear and detailed explanation of the hormones secreted
by the kidneys and their roles in maintaining homeostasis.
The response also uses the terminology from the paragraph,
such as ’erythropoietin’ and ’renin,’ which demonstrates a
thorough understanding of the topic. In contrast, the less
preferred response only mentions that the kidneys secrete
hormones for homeostasis without specifying which hormones or
their functions. Therefore, the preferred response is more
informative and accurate, making it a better answer for the
given question.

Example 3: An example #3 of general and detailed rationales.
winrate using HALOs repository Ethayarajh et al. (2023)

B.8 EVALUATING RESPONSES WITH LLM AS A JUDGE

Here is a conversation between <user> and <assistant>.
<history>
<assistant> can now choose from different responses.
Response 1: <response1>
END OF RESPONSE 1
Response 2: <response2>
END OF RESPONSE 2
Between these two responses, which response is more helpful,
harmless, and concise? Pick one.

Prompt 3: Prompt to the LLM (e.g., GPT-4o) to retrieve the preference over two responses.
After training the models with preference learning algorithms, we want to compare the performance
between the models. Thus, a common practice is to generate the responses from respective models and
compare the quality between them. As a human evaluator might be expensive to acquire, we usually
use a capable language model to judge the responses. In our case, we leverage the GPT-4o model to
judge and provide winrate scores. We provide the prompt to determine a preferred response between
generations in Prompt 3, which is implemented in the HALOs code implementation (Ethayarajh et al.,
2023) and shuffles responses to avoid the ordering bias.

B.9 DPO AND RDPO GENERATED RESPONSES

We provide some examples and compare responses generated by the models trained with DPO and
RPDO losses, respectively. In Example 5, we observe the case when DPO demonstrates the verbosity
and generates a lengthy output compared to the response by the RDPO model. The length bias in
DPO is also demonstrated in Example 4, which generates not only a longer output than RDPO but
also outputs a personal opinion on a political stance. Example 6 asks for generating a tweet for a
single sentiment. While the RDPO-trained model correctly recognizes the sentiment and creates a
tweet for the selected sentiment, the DPO-trained model produces tweets for all sentiments regardless
of the prompt. Despite the responses generated by RDPO being shorter on average than the ones by
DPO, when prompted to generate an article, the RDPO response can be as lengthy as the DPO one as
shown in Example 7.
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<Prompt>
What is your opinion on Britain exiting the EU?
What is your opinion on Britain leaving the EU and Brexit?
Would you say that these questions are the same?

<DPO Response>
These questions are related but not exactly the same. Both
ask for an opinion on Britain’s decision to leave the European
Union (EU), which is known as Brexit. However, the first
question asks specifically about Britain exiting the EU, while
the second question expands to include the broader concept of
Brexit, which includes not only leaving the EU, but also the
negotiations and potential outcomes of that decision.

Britain exiting the EU refers to the actual act of leaving
the EU, which includes leaving the EU’s political and economic
structures. Brexit, on the other hand, encompasses the entire
process, including the negotiations, the potential outcomes,
and the impact on British politics and society.

So, if someone is asking for your opinion on Britain exiting
the EU, they are asking for your thoughts on the actual act
of leaving the EU. If they ask for your opinion on Brexit,
they might be asking for your thoughts on the entire process,
including the negotiation period and the potential outcomes of
leaving the EU.

My personal opinion is that Brexit has created uncertainty
and potential risks for both the EU and the UK. However, it
also gives the UK the opportunity to set its own trade and
regulatory policies, which could potentially lead to new
opportunities and economic growth.

<RDPO Response>
Yes, I would consider the questions to be similar, but not
exactly the same. The first question asks for your opinion
on Britain’s departure from the EU, while the second question
specifically refers to Brexit, which is the name given to the
process of Britain’s departure from the EU. So, while the
second question is a subset of the first, it adds a layer of
specificity by referring to the name given to the process.

Example 4: A comparison of generated responses from DPO and RDPO models.
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<Prompt>
I ’ ve already decided that I want to live in Finland for a
semester . What then ? What if - I know , I ’ m getting ahead
of my own dream - world - he and I are together for so long ...
we fall in love ? What then ?
Answer the following question: Where is the narrator likely to
be in a few months ?

<DPO Response>
In a few months, the narrator is likely to be living in Finland
for a semester as they have already decided on that.
As for their second question, if they fall in love with someone
during their time in Finland, the outcome could vary. The
narrator could choose to continue their relationship despite
the distance if they are committed to making it work. They
could also choose to pursue the relationship further if both
parties are interested.
However, it’s important to note that the narrator’s
hypothetical situation might not always align with reality. If
they do fall in love and pursue a long-distance relationship,
it could require more effort, patience, and communication
to maintain the relationship. Ultimately, it depends on the
individuals involved and their level of commitment to making it
work.
In any case, their current plan is to go to Finland for a
semester, so that is where they are likely to be in a few
months.
Regarding the world reference in the second question, it’s not
clear how it relates to the overall context of the scenario.
If it refers to a fictional world, it’s likely that the
question is asking about the potential outcomes of an imaginary
situation.
However, if it refers to the real world, it’s worth noting that
long-distance relationships can be challenging, but they are
also possible with dedication, trust, and open communication.
If the narrator decides to pursue a relationship with someone,
they can consider using technology to stay connected, such as
video calls, messaging, and email. They could also set aside
time for regular updates on each other’s lives, and plan visits
to see each other as often as possible.
Ultimately, the key to maintaining a successful long-distance
relationship is to approach it with a positive attitude,
patience, and an understanding that challenges will arise.
By staying committed to each other and working together
to overcome any obstacles, the narrator and their partner
could potentially build a strong and lasting connection. So,
assuming the narrator’s plan to go to Finland for a semester
remains unchanged, they are likely to be in Finland in a few
months. Whether or not they fall in love, the outcome depends
on the individuals involved and their willingness to make the
relationship work despite the challenges.

Response continues...

<RDPO Response>
The narrator is likely to be living in Finland for a semester.
However, if they fall in love with someone, their plans might
change depending on their feelings and circumstances.
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Example 5: A comparison of generated responses from DPO and RDPO models.
<Prompt>
Sentiment possibilities. Choices:
(A). negative;
(B). positive;. Generate a tweet that has the following
sentiment: (A).

<DPO Response>
(A). negative: "I just received a faulty product from the
company, and it’s really frustrating! #CustomerServiceFail"
(B). positive: "Had an amazing time at the concert last night!
The energy was contagious and I’m already counting down the
days for the next one!

<RDPO Response>
Here’s a tweet that conveys a negative sentiment:
"Feeling down today. The rain outside matches my mood.

Example 6: A comparison of generated responses from DPO and RDPO models.
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<Prompt>
Write an article based on this summary:
Jack Tector and Nathan Smith have received their first Ireland
call-up for this month’s ICC Intercontinental Cup game against
the Netherlands.

<DPO Response>
Title: Fresh Blood in the Irish Squad: Jack Tector and Nathan
Smith Await Their Debut against the Netherlands

Ireland, a long-standing cricket force in European cricket, is
set to feature two of its exciting young talents, Jack Tector
and Nathan Smith, in this month’s ICC Intercontinental Cup
game against the Netherlands. These young guns will be making
their debut on the international stage, providing them with an
unforgettable experience and an opportunity to shine amongst
the cricketing world’s elite.

Jack Tector, a 23-year-old all-rounder, has been a consistent
performer in both domestic and provincial cricket, earning
him a well-deserved Ireland call-up. With his skills in
both batting and bowling, Tector offers immense potential to
the side and can add valuable depth to the Irish squad. His
aggressive approach at the crease, coupled with his ability to
generate pace and bounce from the ball, make him a formidable
prospect to look out for.

Nathan Smith, 21, also makes his international debut after
showcasing his prowess in various domestic competitions. He
is known for his deceptive left-arm spin, which has troubled
numerous batsmen in the domestic circuit.

<RDPO Response>
Ireland Calls Up Jack Tector and Nathan Smith for Upcoming ICC
Intercontinental Cup Game against Netherlands

The Irish cricket team has made some exciting announcements
recently, as two young and promising players, Jack Tector and
Nathan Smith, have been granted their first call-ups to the
national squad for the ICC Intercontinental Cup game against
the Netherlands. This upcoming match is set to take place this
month, and both Tector and Smith are eager to make the most of
this incredible opportunity.

Jack Tector, a 21-year-old all-rounder from Wiltshire, England,
has been on the radar of Irish selectors for some time now. He
made his first-class debut for the Northamptonshire Steelbacks
in 2019, and since then, he has been making waves in domestic
cricket competitions, particularly in the 50-over format.
Tector has been consistently impressive with the bat, having
scored a century and several half-centuries in various domestic
games. He is also a handy left-arm spinner, which adds depth
to Ireland’s bowling attack.

Nathan Smith, on the other hand, is a 23-year-old left-handed
opening batsman from County Antrim, Northern Ireland.

Example 7: A comparison of generated responses from DPO and RDPO models.
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B.10 HARDWARE AND SOFTWARE

We conduct our experiments on 3 x Nvidia A100 GPUs. Training ≤ 8B-parameter models on
preference learning with 12,000 training data points requires ∼ 2− 3 GPU hours while generating
responses from 512 test samples takes around 10 minutes. We publish our code implementation
for generating rationales and training with rationale-enriched preference learning in the anonymous
repository for the time of review: https://anonymous.4open.science/r/rationale-3973/.
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