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Abstract

Understanding sources of a model’s uncertainty001
regarding its predictions is crucial for effec-002
tive human-AI collaboration. Prior work pro-003
poses to use numerical uncertainty or hedges004
(“I’m not sure, but. . . ”), which do not explain005
uncertainty arising from conflicting evidence,006
leaving users unable to resolve disagreements007
or rely on the output. We introduce CLUE008
(Conflict-&Agreement-aware Language-model009
Uncertainty Explanations), the first framework010
to generate natural language explanations of011
model uncertainty by: (i) identifying rela-012
tionships between spans of text that expose013
claim-evidence or inter-evidence conflicts/a-014
greements driving the model’s predictive un-015
certainty in an unsupervised way; and (ii) gen-016
erating explanations via prompting and atten-017
tion steering to verbalize these critical interac-018
tions. Across three language models and two019
fact-checking datasets, we demonstrate that020
CLUE generates explanations that are more021
faithful to model uncertainty and more consis-022
tent with fact-checking decisions than prompt-023
ing for explanation of uncertainty without span-024
interaction guidance. Human evaluators find025
our explanations more helpful, more informa-026
tive, less redundant, and better logically aligned027
with the input than this prompting baseline.028
CLUE requires no fine-tuning or architectural029
changes, making it plug-and-play for any white-030
box language model. By explicitly linking un-031
certainty to evidence conflicts, it offers practi-032
cal support for fact-checking and readily gener-033
alizes to other tasks that require reasoning over034
complex information.035

1 Introduction036

Large Language Models (LLMs) are increasingly037

prevalent in high-stakes tasks that involve rea-038

soning about information reliability, such as fact-039

checking (Wang et al., 2024; Fontana et al., 2025).040

To foster effective use of such models in fact-041

checking tasks, these models must explain the ra-042

Claim: Scientific data has 
shown that cats can be 
infected with SARS-CoV-2 
and can spread it to other 
cats.

Model Output: Supports ✅   
Model Certainty: 73%

[...] there is a 
possibility of 
spreading 

SARS-CoV-2 
through 

domestic pets

Evidence 1

[...] no further 
transmission 

events to other 
animals or 
persons 

Evidence 2

Automated claim verification Span interactions for model uncertainty
Claim: Scientific data has shown that cats 
can be infected with SARS-CoV-2 and can 
spread it to other cats.

Evidence 1: Cellular angiotensin 
converting enzyme 2 (ACE2) is the 
receptor of SARS-CoV-2 which is identical 
or similar in different species of animals 
such as pigs, ferrets, cats, and humans. 
[...] Therefore, there is a possibility of 
spreading SARS-CoV-2 through domestic 
pets.

Evidence 2: Notification of presumptive 
positive animal test results triggered a One 
Health* investigation by state and federal 
partners, who determined that no further 
transmission events to other animals or 
persons had occurred.

The evidence in Evidence 1 that "SARS-CoV-2" aligns with the statement in the 
Claim "SARS-CoV-2", confirming the virus's identity. This agreement slightly 
reduces uncertainty due to the exact match.

The evidence in Evidence 2, "which is identical or similar in different species of 
animals such as pigs, ferrets, cats," aligns with the claim "cats can be infected 
with". This agreement strengthens the claim by indicating that cats are among the 
susceptible species, reducing uncertainty.

However, the statement in Evidence 1, "through domestic pets." conflicts with the 
statement in Evidence 2, "Notification of presumptive positive animal test results 
triggered a One Health* investigation by state and federal partners, who 
determined that no further transmission events to other animals or persons had 
occurred." This disagreement introduces significant uncertainty, as it suggests 
that while cats can be infected, there is no evidence of them spreading the virus 
further, contrary to the claim.

Natural language explanations of model uncertainty

conflicting 

evidence

entity match relevant 

to claim

Figure 1: Example of claim and evidence documents,
alongside span interactions for uncertainty and gener-
ated natural language explanations.

tionale for their predictions (Atanasova et al., 2020; 043

Kotonya and Toni, 2020). 044

However, current methods in automated fact- 045

checking have been criticised for their failure to ad- 046

dress practical explainability needs of fact-checkers 047

(Warren et al., 2025) and for their disconnect from 048

the tasks typically performed by fact-checkers 049

(Schlichtkrull et al., 2023). For example, although 050

fact-checking involves complex reasoning about 051

the reliability of evidence, which may be conflict- 052

ing, existing automatic fact-checking techniques 053

focus only on justifying the verdict (Atanasova 054

et al., 2020; Stammbach and Ash, 2020; Zeng and 055

Gao, 2024). Such methods do not explain the un- 056

certainty associated with their predictions, which 057

is crucial for their users to determine whether some 058
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of the uncertainty is resolvable, and if so, which059

aspects of this uncertainty within the evidence to060

address (e.g., by retrieving additional information)061

(Warren et al., 2025).062

Uncertainty in model predictions is often com-063

municated through numerical scores (e.g., “I am064

73% confident”), however, metrics can be hard065

to contextualize and lack actionable insights for066

end-users (Zimmer, 1983; Wallsten et al., 1993;067

van der Waa et al., 2020; Liu et al., 2020). Recent068

efforts have instead used natural language expres-069

sions (e.g., “I’m not sure”) to convey uncertainty070

(Steyvers et al., 2025; Yona et al., 2024; Kim et al.,071

2024), but these approaches have limitations: users072

may overestimate model confidence (Steyvers et al.,073

2025) and such expressions often fail to faithfully074

reflect model uncertainty (Yona et al., 2024). Exist-075

ing explainable fact-checking systems exhibit two076

critical limitations: they focus solely on justifying077

veracity predictions through generic reasoning sum-078

maries of the input sequence (see Figure 2), while079

failing to (1) communicate model uncertainty or (2)080

explicitly surface evidentiary conflicts and agree-081

ments that relate to it. This constitutes a fundamen-082

tal methodological gap, as effective fact-checking083

requires precisely identifying the sources of uncer-084

tainty, for example from conflicting evidence, to085

guide targeted verification.086

We propose CLUE, a pipeline that generates087

natural language explanations (NLEs) of model un-088

certainty by explicitly capturing conflicts and agree-089

ments in the input (e.g., a claim and its supporting090

or refuting evidence). The pipeline first identifies091

the salient span-level interactions that matter to the092

prediction of the model through an unsupervised ap-093

proach, providing an input-feature explanation that094

highlights key relationships between separate input095

segments (e.g., claim and evidence) (Ray Choud-096

hury et al., 2023). These interactions have been097

shown to be both faithful to the model and plau-098

sible to humans (Sun et al., 2025). CLUE then099

converts these signals into uncertainty-aware ex-100

planations by explicitly discussing the interactions101

and the conflict/agreement relations they express.102

CLUE does not require gold-label explanations,103

avoids fine-tuning, and operates entirely at infer-104

ence time.105

Across three language models (§4.2) and two106

fact-checking datasets (§4.1), we evaluate two vari-107

ants of CLUE. Automatic metrics show that both108

variants generate explanations that are more faith-109

ful to each model’s uncertainty and agree more110

closely with the gold fact-checking labels than a 111

prompting baseline that lacks conflict-/agreement- 112

span guidance(§5.5). Human judgements likewise 113

rate the CLUE explanations as more helpful, more 114

informative, less redundant, and better logically 115

aligned with the input. We also observe a trade-off 116

between two variants of our CLUE framework, one 117

attains higher faithfulness, the other higher plausi- 118

bility, highlighting a promising avenue for future 119

work to achieve both simultaneously(§5.5). 120

2 Related Work 121

2.1 Uncertainty Quantification in LLMs 122

Recent work on LLM uncertainty quantification 123

primarily relies on logit-based methods such as an- 124

swer distribution entropy (Kadavath et al., 2022), 125

summing predictive entropies across generations 126

(Malinin and Gales, 2021), and applying predic- 127

tive entropy to multi-answer question-answering 128

(Yang et al., 2025), while estimating uncertainty 129

in long-form tasks involves measuring semantic 130

similarity between responses (Duan et al., 2024; 131

Kuhn et al., 2023; Nikitin et al., 2024). Quantify- 132

ing uncertainty in black-box models often relies on 133

verbalizing confidence directly (Lin et al., 2022; 134

Mielke et al., 2022b), though these measures are 135

overconfident and unreliable (Yona et al., 2024; 136

Tanneru et al., 2024). Alternative approaches mea- 137

sure output diversity across paraphrased prompts 138

(Zhang et al., 2024a; Chen and Mueller, 2024), 139

but this method can introduce significant compu- 140

tational overhead and conflate model uncertainty 141

with prompt-induced noise, obscuring interpretabil- 142

ity. Accordingly, in this work, we focus on the 143

uncertainty of open-source models, which are read- 144

ily accessible and widely used. We adopt predictive 145

entropy, a straightforward white-box metric com- 146

puted from the model’s answer logits, as our uncer- 147

tainty measure for fact-checking tasks. This choice 148

balances interpretability and computational effi- 149

ciency while avoiding potential noise introduced 150

by multiple prompts. 151

2.2 Linguistic Expressions of Uncertainty 152

Numerical uncertainty estimates do not address the 153

sources of uncertainty, and are therefore difficult 154

for end-users, such as fact-checkers, to interpret 155

and act upon (Warren et al., 2025). Linguistic ex- 156

pressions of uncertainty may be more intuitive for 157

people to understand than numerical ones, (Zim- 158

mer, 1983; Wallsten et al., 1993; Windschitl and 159
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Our frameworke-Fever Explain-MT JustiLM

Quote specific evidence
Multiple evidence documents
Reflect conflicts & agreement
Faithful to model reasoning
Explain uncertainty

✅

❌

❌

❌

❌

Claim: Ancient civilizations once inhabited Antarctica, 
but the continent’s position and climate rapidly changed
due to... 

Evidence: 
Evidence 1: Factually inaccurate: There is no evidence 
of ancient civilizations...
Evidence 2: Antarctica slowly drifted to...

Claim: Colin Kaepernick is a poker
player.

Evidence: Colin Kaepernick + Colin
Rand Kaepernick is an American football
quarterback who is currently a free
agent.

Claim: Biden: Gun manufacturers are
"the only industry in the country" that
have immunity from lawsuits

Evidence: 
Evidence 1: No, you can't sue Pfizer ...
Evidence 2: Remarks by President Biden
 on Gun Violence Prevention ...

InputInput

Verdict: False

Explanation: Colin Kaepernick is a
 football player, not a poker player.

Input

Verdict: Half-True

Explanation: Rubio also said ”Over 1.3
million temporary work-outs, over half
have now defaulted”  

Output

Input

Verdict: False

Explanation: Biden said that gun
manufacturers represent the only
industry  in America that is exempt from
being sued.

Claim: Of the more than 1.3 million
temporary mortgage modifications, over
half have defaulted.

Evidence: Rubio said “over half have
now defaulted,” referring to a temporary
mortgage modification program.

Quote specific evidence
Multiple evidence documents
Reflect conflicts & agreement
Faithful to model reasoning
Explain uncertainty

❌

❌

❌

❌

❌

Output

Verdict: False Certainty: 44%

Explanation: Evidence 1, "There is no evidence of 
ancient civilizations..." disagrees with Claim 
"civilizations once inhabited...". This undermines ... The 
agreement between Evidence 1 and Evidence 2, 
specifically the phrases "plate movement" and "slowly", 
reinforces the consensus that...

Quote specific evidence
Multiple evidence documents
Reflect conflicts & agreement
Faithful to model reasoning
Explain uncertainty

✅
✅
✅
✅
✅

Quote specific evidence
Multiple evidence documents
Reflect conflicts & agreement
Faithful to model reasoning
Explain uncertainty

✅
✅
❌

❌

❌

OutputOutput

Figure 2: Explanations produced by earlier systems, e-FEVER (Stammbach and Ash, 2020), Explain-MT (Atanasova
et al., 2020), and JustiLM (Zeng and Gao, 2024), compared with those from our CLUE framework. CLUE is
the only approach that explicitly traces model uncertainty to the conflicts and agreements between the claim and
multiple evidence passages.

Wells, 1996), and recent work has proposed mod-160

els that communicate uncertainty through hedging161

phrases such as “I am sure” or “I doubt” (Mielke162

et al., 2022b,a; Lin et al., 2022; Zhou et al., 2023;163

Tian et al., 2023; Xiong et al., 2023; Ji et al., 2025;164

Zheng et al., 2023; Farquhar et al., 2024). However,165

these expressions are not necessarily faithful reflec-166

tions of the model’s uncertainty (Yona et al., 2024)167

and tend to overestimate the model’s confidence168

(Tanneru et al., 2024), risking misleading users169

(Steyvers et al., 2025). Moreover, they do not ex-170

plain why the model is uncertain. In this paper, we171

propose a method that explains sources of model172

uncertainty by referring to specific conflicting or173

concordant parts of the input that contribute to the174

model’s confidence in the output. This approach175

ensures a more faithful reflection of model uncer-176

tainty and provides users with a more intuitive and177

actionable understanding of model confidence.178

2.3 Generating Natural Language179

Explanations for Fact-Checking180

Natural language explanations provide justifica-181

tions for model predictions designed to be under-182

stood by laypeople (Wei Jie et al., 2024). NLEs183

have typically been evaluated by measuring the184

similarity between generated NLEs and human-185

written reference explanations using surface-level186

metrics such as ROUGE-1 (Lin, 2004) and BLEU187

(Papineni et al., 2002). In fact-checking, supervised188

methods have been proposed that involve extracting189

key sentences from existing fact-checking articles190

and using them as explanations (Atanasova et al.,191

2020). Later work proposed a post-editing mech- 192

anism to enhance the explanation coherence and 193

fluency (Jolly et al., 2022), while others have fine- 194

tuned models on data collected from fact-checking 195

websites to generate explanations (Feher et al., 196

2025; Raffel et al., 2020; Beltagy et al., 2020). 197

Recent work has shifted towards few-shot meth- 198

ods requiring no fine-tuning, for example, using 199

few-shot prompting with GPT-3 (Brown et al., 200

2020) to produce evidence summaries as explana- 201

tions (Stammbach and Ash, 2020) and incorporat- 202

ing a planning step before explanation generation 203

(Zhao et al., 2024) to outperform standard prompt- 204

ing approaches. Zeng and Gao (2024) focuses on 205

generating fact-checking justifications based on 206

retrieval-augmented language models. However, 207

existing methods are often not faithful to model 208

reasoning (Atanasova et al., 2023; Siegel et al., 209

2024, 2025), have limited utility in fact-checking 210

(Schmitt et al., 2024), and fail to address model 211

uncertainty, which has been identified as a key cri- 212

terion for fact-checking (Warren et al., 2025). 213

To this end, we introduce the first framework de- 214

signed for the task of explaining sources of uncer- 215

tainty in multi-evidence fact-checking. Our method 216

analyzes span-level agreements and conflicts corre- 217

lated with uncertainty scores. Unlike conventional 218

approaches that align with human NLEs (reflecting 219

human perspectives rather than model reasoning), 220

our method generates explanations that are both 221

faithful to model uncertainty and helpful to people 222

in a fact-checking context. 223
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3 Method224

3.1 Preliminaries and Overall Framework225

Our objective is to explain why a LLM is uncertain226

about a multi-evidence fact-checking instance by227

grounding that uncertainty in specific agreements228

or conflicts within the input.229

Problem setup. Each input instance is a triple230

X = (C,E1, E2) consisting of a claim C and231

two evidence pieces E1, E2. Note that, in this232

work, we set the number of evidence pieces to233

two for simplicity. For clarity, we denote their234

concatenation as X = [x1, . . . , x|C|+|E1|+|E2|].235

The task label comes from the set Y =236

{SUPPORTS, REFUTES, NEUTRAL}.237

Pipeline overview. Our framework proceeds in238

three stages:239

1. Uncertainty scoring. We compute predictive240

entropy from the model’s answer logits to obtain241

a scalar uncertainty score u(X) (Section 3.2).242

This logit-based measure is model-agnostic.243

2. Conflicts/Agreement extraction. We capture244

the agreements and conflicts most relevant to245

the model’s reasoning by identifying the text-246

span interactions between C, E1, and E2 that247

embody these relations (Section 3.3).248

3. Explanation generation. The model receives249

the extracted spans as soft constraints and250

produces a natural-language rationale YR =251

[y′1, . . . , y
′
r] along with its predicted label ŷ to252

the identified interactions (Section 3.4).253

Outputs. For each instance X , the framework254

returns the predicted task label ŷ ∈ Y ; the numeric255

uncertainty score u(X); and the textual explana-256

tion YR = [y′1, . . . , y
′
r] that grounds the source of257

uncertainty in the specific agreements or conflicts258

between C,E1, E2.259

3.2 Predictive Uncertainty Score Generation260

To get the uncertainty of the model towards gener-261

ating an answer label on a specific input sequence,262

we follow the previous work and get the predictive263

uncertainty with the entropy theory, which does264

not require multiple runs and is widely used in265

open-source models.266

Specifically, we define the numeric uncertainty267

score u as the entropy of the softmax distribution268

over the model’s output logits for a set of candidate269

answers Y = {SUPPORTS, REFUTES, NEUTRAL}.270

For each candidate label yi ∈ Y:271

P (yi | X) =
exp(logit(yi))∑|Y|
j=1 exp(logit(yj))

(1) 272

where logit(yi) is the model’s output logit towards 273

candidate answer yi given input X . P (yi | X) is 274

the confidence score of model for selecting yi as 275

the final answer across all candidate answers within 276

Y . And finally, the model’s uncertainty towards the 277

input sequence X is: 278

u(X) = −
∑
yi∈Y

P (yi | X) logP (yi | X) (2) 279

3.3 Conflict and Agreement Span Interaction 280

Identification for Answer Uncertainty 281

To surface the conflicts and agreements that drive 282

a model’s uncertainty, we extract and then label 283

salient span interactions among the claim C and 284

two evidence passages, E1 and E2. 285

Span interaction extraction. For
each ordered input part pair (F, T ) ∈
{(C,E1), (C,E2), (E1, E2)}, we follow pre-
vious work (Ray Choudhury et al., 2023; Sun et al.,
2025) to extract the important span interactions
and their importance score to model’s answer
by (i) identifying the most important attention
head to the model’s answer prediction from its
final layer, (ii) obtaining its attention matrix
A ∈ R(|F |+|T |)×(|F |+|T |), and (iii) symmetrizing
the cross-part scores:

a′p,q =
1
2

(
Ap,q +Aq,p

)
, xp∈F, xq∈T.

Treating a′p,q as edge weights yields a bipartite 286

token graph, which we partition into contiguous 287

spans with the Louvain algorithm (Blondel et al., 288

2008). Given a spanw ⊂ F and a spanv ⊂ T , their 289

interaction importance is 290

awv =
1

|spanw| |spanv|
∑

xp∈spanw

∑
xq∈spanv

a′p,q. (3) 291

The scored interactions for (S, T ) form S(S,T ) = 292

{((spanw, spanv), awv)}. 293

Relation labeling. To tag each span pair as 294

an agreement, disagreement, or unrelated, we 295

prompt GPT-4o (Team, 2024)1 to assign a label 296

rwv ∈ {agree, disagree, unrelated},balancing scal- 297

ability and accuracy (See templates in App. H.6). 298

1https://openai.com/index/hello-gpt-4o/
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After labeling all three pairs, the complete inter-299

action set for instance X is300

SR = SR(C,E1) ∪ SR(C,E2) ∪ SR(E1, E2),
(4)301

where, for example, SR(C,E1) =302

{((spanw, spanv), awv, rwv)}. Each element303

links two spans with an importance score and a304

relation label, thereby supplying the conflict- or305

agreement-span interactions used in later stages.306

3.4 Uncertainty Natural Language307

Explanation Generation308

To turn the extracted conflict- and agreement309

spans into rationales towards model uncertainty,310

we rely on two complementary mechanisms. (i)311

Instruction-driven prompting embeds the spans312

directly in the input so the model is told which313

segments to reference. (ii) Intrinsic attention314

steering guides the model’s own attention toward315

those same segments while it is generating the ra-316

tionale. Both mechanisms use self-rationalization:317

the model first states its verdict ŷ and then explains318

YR, a sequencing shown to improve faithfulness319

over pipeline approaches (Wiegreffe et al., 2021;320

Marasovic et al., 2022; Siegel et al., 2025).321

Instruction-based NLE. For each instance X ,322

we rank all labelled interactions by importance and323

keep the top K = 3, denoted S
(K)
R , to avoid too324

long explanations. These three span pairs are slot-325

ted into a three-shot prompt (See App.F.1), which326

instructs the model to explain how the highlighted327

agreements or conflicts influence its confidence. Fi-328

nally, the standard transformer decoding process329

emits both the predicted label ŷ and the accompa-330

nying explanation YR.331

Attention steering. Instead of explicit instruc-332

tions, we can guide generation by modifying atten-333

tion on the fly with PASTA (Zhang et al., 2024b).334

Starting from the same S
(K)
R , we collect all token335

indices that fall inside any selected span,336

I =
{
p : (spanw, spanv)∈S

(K)
R , p∈spanw∪spanv

}
. (5)337

For each attention head (ℓ, h) deemed relevant to338

model uncertainty, let A be its attention matrix. We339

down-weight non-target tokens by β:340

Ãij =
Aij

Zi

{
1 if j ∈ I,
β otherwise,

(6)341

Zi =
∑
j∈I

Aij + β
∑
j /∈I

Aij . (7)342

All other heads remain unchanged. Following 343

Zhang et al. (2024b), we steer |H| = 100 heads 344

and set β = 0.01 to balance steering efficacy and 345

prevent degeneration; see App. B for the head- 346

selection procedure. With the steered attention in 347

place, the transformer generates ŷ followed by the 348

rationale YR, now naturally centered on the conflict- 349

or agreement spans that drive its uncertainty. 350

4 Experimental Setup 351

4.1 Datasets 352

We select two fact-checking datasets, one spe- 353

cific to the health domain, HealthVer (Sarrouti 354

et al., 2021), and one closer to a real-world fact- 355

checking scenario, DRUID (Hagström et al., 2024). 356

These datasets were chosen because they pro- 357

vide multiple evidence pieces per claim, making 358

them well-suited to our goal of explaining model 359

uncertainty arising from the inter-evidence con- 360

flicts and agreements. For experiments, we se- 361

lect six hundred instances that consist of a claim 362

and multiple pieces of evidence, and a golden la- 363

bel y ∈ {SUPPORTS, REFUTES, NEUTRAL} from 364

each dataset.2 365

4.2 Models 366

We compare three generation strategies for NLEs 367

towards model uncertainty: 368

• PromptBaseline: A three-shot prompt baseline ex- 369

tending the prior few-shot NLE work (Stamm- 370

bach and Ash, 2020; Zeng and Gao, 2024; Zhao 371

et al., 2024) by explicitly asking the model to 372

highlight conflicting or supporting spans that 373

shape its uncertainty (See prompt template in 374

App.F.1). 375

• CLUE-Span: The instruction-based variant of our 376

CLUE where the extracted span interactions are 377

filled into a three-shot prompt to guide the ex- 378

planation generation ( §3.4; prompt template in 379

App.F.2). 380

• CLUE-Span+Steering: The attention steering 381

variant of our CLUE where the same prompt 382

as CLUE-Span is used. Additionally, attention 383

steering is applied to instinctively guide the 384

model’s explanation generation toward the iden- 385

tified spans ( §3.4; prompt template in App.F.2). 386

Experiments are run on three recent, open- 387

weight, instruction-tuned LLMs of comparable 388

2While DRUID has six fine-grained fact-checking labels,
we merge the labels into the above three categories to balance
the label categories.
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size: Qwen2.5-14B-Instruct3 (Qwen Team, 2024),389

Gemma-2 9B-IT4 (Gemma Team, 2024), and390

OLMo-2-1124-13B-Instruct5 (Team OLMo et al.,391

2024). Each backbone is used consistently across392

our pipeline for span-interaction extraction, answer393

prediction, and NLE generation on four NVIDIA394

A100-SXMS-40GB GPUs. We chose these models395

to balance capability (reasoning and instruction-396

following quality) with practical constraints on in-397

ference latency and GPU memory.398

5 Automatic Evaluation399

5.1 Faithfulness400

To assess whether the NLEs produced by our401

CLUE are faithful to the model’s uncertainty, we402

adapt the Correlational Counterfactual Test (CCT)403

(Siegel et al., 2024) and propose an Entropy-CCT404

metric.405

Following Siegel et al. (2024), we start by insert-406

ing a random adjective or noun into the original407

instance X to obtain a perturbed input X ′ (See408

App. D for details). Let u(X) denote the model’s409

uncertainty score defined by Eq. 2, unlike CCT(See410

details of original CCT in App.E), we measure the411

impact of the perturbation on the model’s uncer-412

tainty with Absolute Entropy Change (AEC):413

∆u(X) =
∣∣u(X)− u(X ′)

∣∣ (8)414

For each perturbation, we record whether the415

inserted word appears in the generated NLE, using416

its presence as a proxy for importance. This yields417

a binary mention flag m ∈ {0, 1}, following Siegel418

et al. (2024); Atanasova et al. (2023).419

Let Dm denote the set of perturbed examples420

where the NLE mentions the inserted word and421

D¬m is the complementary set where it does not,422

we correlate the continuous variable ∆u with the423

binary mention flag m via the point-biserial corre-424

lation rpb (Tate, 1954). The Entropy-CCT statistic425

is:426

CCTentropy=rpb=
Em[∆u]−E¬m[∆u]

Std(∆u)
·
√

|Dm|·|D¬m|
(|Dm|+|D¬m|)2

(9)427

where Em[∆u] and E¬m[∆u] are the mean ab-428

solute entropy changes for these two groups, re-429

spectively. Std(∆u) is the standard deviation of430

absolute entropy changes across the full dataset.431

3https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

4https://huggingface.co/google/gemma-2-9b-it
5https://huggingface.co/allenai/

OLMo-2-1124-13B-Instruct

Ultimately, this metric quantifies the alignment 432

between changes in model uncertainty and explana- 433

tory references to input perturbations, thereby mea- 434

suring how faithfully the NLEs reflect the model’s 435

uncertainty. 436

5.2 Span-Coverage 437

An uncertainty explanation should surface all in- 438

formation conveyed by the selected span interac- 439

tions. We therefore compute Span-Coverage: the 440

fraction of reference interactions that are explicitly 441

mentioned in the generated NLE. Let SNLE be the 442

set of span interactions extracted from the explana- 443

tion, and let SR(k) be the reference set supplied in 444

the prompt (see §3.4). Then 445

Span-Coverage =
|SNLE ∩ SR(k)|

|SR(k)|
. (10) 446

A higher value indicates the NLE covers a higher 447

proportion of the information supplied by the ex- 448

tracted span interactions. 449

5.3 Span-Extraneous 450

Ideally, the explanation should mention only the 451

provided interactions. We measure the proportion 452

of mentioned interactions that do not belong to the 453

reference set, denoted Span-Extraneous: 454

Span-Extraneous =
|SNLE \ SR(k)|

|SNLE|
. (11) 455

A lower value indicates closer alignment with the 456

intended span interactions. 457

5.4 Label-Explanation Entailment 458

We evaluate how well the uncertainty explanation 459

agrees with the model’s predicted label by treating 460

the task as a natural-language inference (NLI) prob- 461

lem. First, we convert the predicted label into a hy- 462

pothesis using the template “The claim is supported 463

by / refuted by / neutral to the evidence.” The gener- 464

ated explanation serves as the premise. The result- 465

ing premise–hypothesis pair is fed to a widely used 466

off-the-shelf language-inference model, DeBERTa- 467

v36 (He et al., 2023). The Label-Explanation En- 468

tailment (LEE) score is the proportion of examples 469

for which the NLI model predicts ENTAILMENT. 470

5.5 Results 471

For brevity, we refer to Qwen2.5-14B-Instruct, 472

OLMo-2-1124-13B-Instruct, and Gemma-2-9B-it 473

simply as Qwen, OLMo, and Gemma, respectively. 474

6https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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HealthVer DRUID

Approach Faith. (↑) Span-Cov. (↑) Span-Ext. (↓) LEE (↑) Faith. (↑) Span-Cov. (↑) Span-Ext. (↓) LEE (↑)

Qwen2.5-14B-Instruct
PromptBaseline -0.028 – – 0.74 -0.08 – – 0.60
CLUE-Span 0.006 0.33 0.68 0.75 0.089 0.20 0.38 0.78
CLUE-Span+Steering 0.033 0.44 0.53 0.80 0.102 0.28 0.20 0.77

OLMo-2-1124-13B-Instruct
PromptBaseline -0.10 – – 0.55 -0.13 – – 0.53
CLUE-Span 0.005 0.10 0.83 0.61 0.014 0.08 0.79 0.65
CLUE-Span+Steering 0.020 0.23 0.77 0.68 0.099 0.15 0.70 0.69

Gemma-2-9B-It
PromptBaseline -0.105 – – 0.66 -0.12 – – 0.57
CLUE-Span 0.007 0.34 0.59 0.82 0.043 0.23 0.43 0.76
CLUE-Span+Steering 0.021 0.39 0.50 0.85 0.098 0.30 0.47 0.81

Table 1: Uncertainty NLE evaluation results across the HealthVer and DRUID datasets (§4.1). For each model
(§4.2) we compare PromptBaseline, CLUE-Span, and CLUE-Span+Steering on four metrics: Faith. (§5.1), Span-Cov.
(§5.2), Span-Ext. (§5.3), and LEE (§5.4). Bold values mark the best result per metric for each dataset–model pair;
“–” indicates inapplicable metrics for PromptBaseline , as it is not supplied with extracted span interactions.

Faithfulness. We use Entropy-CCT, a point–475

biserial correlation bounded by −1 ≤ rpb ≤ 1476

(Eq. 9), to measure the faithfulness of the NLEs477

to the model’s uncertainty (§5.1). When rpb = 0,478

the explanation mentions high- and low-impact per-479

turbation words equally often; every +0.01 adds480

roughly one percentage point (pp) to the chance481

that the explanation names a token that is truly482

influential for the model’s predictive uncertainty483

(App. G).484

Table 1 shows that PromptBaseline is non-485

faithful in all six settings with rpb are all nega-486

tive values ranging from −0.03 to −0.13. Thus487

its NLEs mention truly influential tokens 3–13 pp488

less often than uninfluential ones—the opposite of489

faithful behaviour. Both variants of our CLUE490

reverse this trend. Presenting span interactions491

in the prompt (CLUE-Span) raises every correlation492

to non-negative values and peaks at rpb = 0.089493

on the DRUID–Qwen setting. This means the ex-494

planation now mentions about 17 pp more often495

than PromptBaseline(rpb = −0.080). Adding at-496

tention steering (CLUE-Span+Steering) lifts the497

rbp scores to 0.033 on HEALTHVER and 0.102498

on DRUID with Qwen model, i.e., net gains of499

+6 pp and +18 pp over PromptBaseline. Moreover,500

four of the six positive correlations produced by501

CLUE-Span+Steering are significant at p < 0.01502

(Table 3), confirming that the improvements are503

both substantial and statistically reliable. Particu-504

larly large jumps of OLMo on Druid dataset (up505

to ∆rpb = +0.23 ≈ +23pp) suggest that span-506

interaction guidance from our CLUE framework is507

most beneficial for models that initially struggle to508

align explanations with predictive uncertainty. 509

Other Properties We also evaluate three proper- 510

ties of the generated NLEs: (i) Span-Coverage 511

of extracted conflict-/agreement- span interac- 512

tions(§5.2) and (ii) Span-Extraneous: men- 513

tion of non-extracted spans(§5.3), (iii) Label- 514

Explanation Entailment with the generated 515

fact-checking label(§5.4). As Table 1 shows, 516

CLUE-Span+Steering outperforms CLUE-Span 517

in both span-coverage and span-extraneous, con- 518

sistent with the attention steering method’s effec- 519

tiveness in helping the model better focus on pro- 520

vided highlights during generation (Zhang et al., 521

2024b). Absolute numbers, however, remain mod- 522

est (peak span-coverage: .44, span-extraneous: .20 523

with Qwen). A span-coverage of 1 means the 524

NLE cites every extracted interaction, while a span- 525

extraneous of 0 means it adds none beyond them. 526

This gap highlights considerable headroom for bet- 527

ter integrating critical span interactions into the 528

explanations. Among the three backbones, Qwen 529

attains the highest span-coverage and the low- 530

est span-extraneous scores, a trend that likely 531

reflects its stronger instruction-following ability 532

(see benchmark scores in Appendix A), and thus 533

larger or more capable models might narrow the 534

gap further. Both variants of our framework 535

achieve stronger label-explanation entailment 536

scores than the baseline, yielding explanations 537

that stay logically aligned with the predicted labels 538

while remaining faithful to the model’s uncertainty 539

patterns (as demonstrated in our faithfulness analy- 540

sis). 541
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6 Human Evaluation542

6.1 Method543

We recruited N=12 participants from Prolific.com544

(https://www.prolific.com/) to rank explana-545

tions generated by PromptBaseline, CLUE-Span,546

CLUE-Span+Steering for 40 instances (20 from547

DRUID, 20 from HealthVer) (See details in548

App.H.1). Adapting Atanasova et al. (2020), partic-549

ipants ranked explanations in descending order (1st,550

2nd, 3rd) according to five criteria, complementary551

to our automatic evaluation metrics:552

• Helpfulness. The explanation offers informa-553

tion that aids readers to judge the claim and fact-554

check.555

• Coverage. The explanation captures all salient556

information in the input that matters for the557

fact check. This differs from automatic Span-558

Coverage (§5.2), which counts overlap with pre-559

extracted spans.560

• Non-redundancy. The explanation does not561

offer irrelevant or repetitive information to562

the input. This differs from automatic Span-563

Extraneous (§5.3) which counts mentions outside564

the extracted spans.565

• Consistency. The explanation contains logically566

contradictory statements to the input. This differs567

from automatic Label-Explanation Entailment568

(§5.4), which tests label–explanation alignment.569

• Overall Quality. Overall ranking of explana-570

tions by their overall quality, considering all cri-571

teria above.572

6.2 Results573

Table 4 in App. H.2 shows the study partici-574

pant evaluation results. Annotator agreement was575

moderate-low, which we attribute to the relative576

complexity of the task and individual differences in577

how the information was perceived (see App. H.7).578

The explanations generated by CLUE were pre-579

ferred by our evaluators to those generated us-580

ing PromptBaseline: the explanations generated581

by CLUE-Span+Steering were rated as most582

helpful, highest coverage, and containing the583

least amount of redundant information, while584

those from CLUE-Span were judged to have the585

highest consistency and overall quality. Al-586

though CLUE-Span+Steering achieves the high-587

est faithfulness (see §5.5), our participants judged588

its overall quality slightly lower than that of589

CLUE-Span. A possible reason for this is that al-590

though CLUE-Span+Steering adheres closely to591

the top-K=3 extracted span interactions (as re- 592

flected in its higher Span-Coverage and lower Span- 593

Extraneous scores), it may produce explanations 594

that are slightly less internally consistent or fluent. 595

In contrast, CLUE-Span is less faithful to those ex- 596

tracted spans, but may capture additional points 597

that study participants deemed important, likely be- 598

cause the spans identified as important for model 599

do not fully overlap with those identified by hu- 600

mans (Ray Choudhury et al., 2023), highlighting 601

the well-documented trade-off between faithful- 602

ness and plausibility (Agarwal et al., 2024). Future 603

work on improving the plausibility of the span in- 604

teractions while retaining their faithfulness may 605

therefore improve the human evaluation scores for 606

CLUE-Span+Steering. 607

Finally, we observed slight variation between 608

datasets: CLUE-Span+Steering tended to be rated 609

higher than CLUE-Span for DRUID, and vice versa 610

for HealthVer. This may arise from differences in 611

length and complexity of the input: DRUID ev- 612

idence documents, retrieved from heterogeneous 613

online sources, may have benefited from the atten- 614

tion steering more than HealthVer evidence docu- 615

ments, consisting of focused, shorter extracts from 616

scientific abstracts. 617

7 Conclusion 618

We present the first framework, CLUE, for gen- 619

erating NLEs of model uncertainty by referring 620

to the conflicts and agreements between claims 621

and multiple pieces of evidence in a fact-checking 622

task. Our method, evaluated across three language 623

models and two datasets, demonstrates significant 624

improvements in both faithfulness to model uncer- 625

tainty and label consistency compared to standard 626

prompting. Evaluations by human participants fur- 627

ther demonstrate that the explanations generated by 628

CLUE are more helpful, more informative, less re- 629

dundant, and better logically aligned with the input. 630

This work establishes a foundation for explainable 631

fact-checking systems, providing end users (e.g., 632

fact-checkers) with grounded, faithful explanations 633

that reflect the model’s uncertainty. 634

Limitations 635

Our paper proposes a novel framework for gen- 636

erating NLEs towards the model’s uncertainty 637

by explicitly pointing to the conflicts or agree- 638

ments within the claim and multi-evidence inter- 639

actions. While our framework demonstrates im- 640
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proved explanation quality through rigorous evalua-641

tion across three language models and two datasets,642

we acknowledge several limitations that present643

opportunities for future research.644

Regarding the model selection, our experiments645

are constrained to medium-sized models (Qwen2.5-646

14B-Instruct, Gemma2-9B-it, and OLMo2-13B-647

Instruct) due to computational limitations. Al-648

though these models show significant improve-649

ments over baseline performance, our results sug-650

gest that larger models (e.g., 70B parameter scale)651

with enhanced instruction-following and reason-652

ing capabilities might further improve explanation653

quality — particularly for coverage and redundancy654

metrics. Our framework’s modular design readily655

accommodates such scaling.656

In this study we focus on HealthVer and DRUID657

datasets, where claims are paired with discrete658

pieces of evidence, ideal for studying evidence-659

conflict scenarios. Future work could investigate660

more complex evidence structures (e.g., long-form661

documents), diverse fact-checking sources, and sce-662

narios with more than two pieces of evidence per663

claim to better reflect real-world fact-checking chal-664

lenges.665

While our evaluation with laypeople confirms666

that our framework produces explanations of higher667

quality than prompting, expert evaluations (e.g.,668

with professional fact-checkers) are needed to as-669

sess practical utility in high-stakes settings.670

Regarding the scope of the uncertainty sources,671

our work specifically explains model uncertainty672

arising from evidence conflicts. While this captures673

a critical subset of cases, real-world uncertainty674

may also stem from other sources, including in-675

sufficient evidence, knowledge gaps in the model,676

and context-memory conflicts. We view this work677

as a foundational step toward broader research on678

model uncertainty explanation.679

Ethical Considerations680

Our work is limited to examining claims, evidence,681

and explanations in English, and so our results may682

not be generalisable to other languages. As the683

task involved complex reasoning about technical684

subjects, we screened our participants to be native685

English speakers to ensure that they could fully686

understand the material and increase the chances of687

high-quality responses (see H.1 for details). How-688

ever, this criteria may also introduce or reinforce689

existing biases and limit the generalisability of our690

findings. Participants were informed about the 691

study and its aims before agreeing to provide in- 692

formed consent. No personal data was collected 693

from participants and they received fair payment 694

for their work (approximately 9 GBP/hour). 695

This work concerns automated fact-checking, 696

which aims to reduce the harm and spread of mis- 697

information, but nevertheless has the potential for 698

harm or misuse through model inaccuracy, halluci- 699

nation, or deployment for censorship. Our current 700

work aims to provide explanation that allow users 701

to examine the outputs of these systems more crit- 702

ically, and so we do not see any immediate risks 703

associated with it. 704
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Table 2 summarises the publicly reported five-shot 1064
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figures are taken verbatim from the official model 1066

cards or accompanying technical reports. Figures 1067

are copied from the official model cards. 1068

These numbers corroborate our claim that 1069

Qwen2.5-14B-Instruct is the strongest of the three 1070

for instruction-following and reasoning. 1071

B Method: Selecting attention heads to 1072

steer 1073

Following Zhang et al. (2024b), we steer only a 1074

selected subset of attention heads rather than all of 1075
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Model Params MMLU GSM8K

Qwen2.5-14B-Instruct (Qwen Team, 2024) 14.7 B 79.7 90.2
Gemma-2-9B-IT (Gemma Team, 2024) 9.0 B 71.3 68.6
OLMo-2-1124-13B-Instruct (Team OLMo et al., 2024) 13 B 67.5 54.2

Table 2: Benchmark scores on MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021) are used to
characterize instruction-following and reasoning strength.

them, because targeted steering yields larger gains1076

in output quality. Our selection criterion, however,1077

differs from theirs: instead of ranking heads by1078

their impact on task accuracy, we rank them by1079

how strongly they affect the model’s predictive1080

uncertainty during fact-checking.1081

Concretely, for each fact-checking dataset cho-
sen in this work(see details in §4.1), D, we draw
a validation subset Dd with |Dd| = 300 examples.
For every input X ∈ Dd, we compute the model’s
baseline uncertainty score u(X) when it predicts
the fact-checking label as stated in §3.2. Then, for
each attention head identified by layer ℓ and index
h, we zero out that head, re-run the model, and
measure the absolute change in uncertainty

∆u(X, ℓ, h) =
∣∣u(X) − u/o(l,h)(X)

∣∣.
Averaging ∆u(X, l, h) over all X ∈ Dd yields a1082

single importance score for head (ℓ, h). We rank1083

the heads by this score and keep the top t heads1084

for each dataset and each model. Note that we set1085

t = 100 in line with the recommendation of Zhang1086

et al. (2024b) and to balance steering effectiveness1087

against the risk of degeneration.1088

C Prompt Example for Assigning1089

Relation Labels to Captured Span1090

Interactions1091

To identify agreements and conflicts between the1092

claim and the two evidence passages, we use the1093

prompt in Figure 3 to label each extracted span1094

interaction (see §3.3).1095

D Perturbation details for faithfulness1096

measurement1097

To evaluate how faithfully each NLE reflects model1098

uncertainty, we generate multiple counterfactuals1099

per instance, following Atanasova et al. (2020) and1100

Siegel et al. (2024) (see §5.1). For every input,1101

comprising one claim and two evidence passages,1102

we first tag part-of-speech with spaCy, then choose1103

You are a helpful assistant. Your task:

1. Read the claim and its two evidence passages (E1,
E2).

2. For each supplied span interaction , decide
whether the two spans

AGREE , DISAGREE , or are UNRELATED , taking the
full context into account.

3. Output the span pairs exactly as given , followed
by

"relation: agree|disagree|unrelated ".

Return format:
1. "SPAN A" - "SPAN B" relation: <agree|disagree|

unrelated >
2. ...
3. ...

### SHOT 1 (annotated example)
Claim: [...]
Evidence 1: [...]
Evidence 2: [...]

Span interactions (to be labelled):
1. "[...]" - "[...]"
2. "[...]" - "[...]"
3. "[...]" - "[...]"

Expected output:
1. "[...]" - "[...]" relation: ...
2. "[...]" - "[...]" relation: ...
3. "[...]" - "[...]" relation: ...

### SHOT 2 % omitted for brevity
### SHOT 3 % omitted for brevity

### NEW INSTANCE (pre -filled for each new example)
Claim: {CLAIM}
Evidence 1: {E1}
Evidence 2: {E2}
Span interactions:

1. "{SPAN1 -A}" - "{SPAN1 -B}"
2. "{SPAN2 -A}" - "{SPAN2 -B}"
3. "{SPAN3 -A}" - "{SPAN3 -B}"

Figure 3: Prompt template for span interaction relation
labelling.

seven random insertion sites. At each site we in- 1104

sert either (i) a random adjective before a noun or 1105

(ii) a random adverb before a verb. The candidate 1106

modifiers are drawn uniformly from the full Word- 1107

Net lists of adjectives and adverbs. Because we 1108

sample three random candidates for each of the 1109

four positions, this procedure yields 4 × 3 = 12 1110

perturbations per instance, providing a sufficient 1111

set for the subsequent Entropy-CCT evaluation, in 1112

which we check whether the NLE mentions the 1113

inserted word and correlate that mention with the 1114

uncertainty change induced by each perturbation. 1115
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E Differences Between Entropy-CCT and1116

CCT1117

In CCT test, Total Variation Distance (TVD) is1118

computed between two probability distributions1119

P and Q as TVD(P,Q) = 1
2

∑
i |Pi − Qi|, mea-1120

suring the absolute change in class-wise probabili-1121

ties. We instead operate on the entropies of those1122

distributions, yielding a single-valued measure of1123

uncertainty shift.1124

F Prompt template for PromptBaseline,1125

CLUE-Span and CLUE-Span+Steering1126

on Healthver and Druid dataset1127

We designed two prompt templates for our exper-1128

iments. The baseline prompt (Figure 4) gives the1129

model no span interactions; instead, it must first1130

identify the relevant agreements or conflicts and1131

then discuss them in its explanation. In contrast,1132

the prompt used by our CLUE framework (Figure1133

5) supplies the three pre-extracted span interactions1134

(§3.3). The model is explicitly instructed to base1135

its explanation on these spans, ensuring that the ra-1136

tionale remains grounded in the provided evidence.1137

F.1 Prompt template for PromptBaseline1138

To generate NLEs about model uncertainty with-1139

out span-interaction guidance, we craft a three-shot1140

prompt that instructs the model to identify the in-1141

teractions most likely to affect its uncertainty and1142

to explain how these relations they represent affect1143

it. (See Figure 4).1144

F.2 Prompt template for CLUE-Span and1145

CLUE-Span+Steering1146

To generate NLEs about model uncertainty with1147

the span-interaction guidance, we craft a three-shot1148

prompt that instructs the model to discuss how1149

these interactions, along with the relations they1150

represent, affect its uncertainty. (See Figure 5).1151

G Extended Statistical Analysis of1152

Faithfulness Scores1153

This section elaborates on the statistical evaluation1154

of faithfulness regarding (i) recalling the definition1155

and intuitive interpretation of the point–biserial co-1156

efficient rpb(E.q. 9), (ii) outlining the t-test used to1157

assess significance, (iii) reporting the faithfulness1158

results (§5.1) along with statistical results. Note1159

that, each dataset is evaluated on n = 600× 12 =1160

You are a helpful assistant. Your tasks:
1. Determine the relationship between the claim and

the two evidence passages.
2. Explain your prediction ’s uncertainty by

identifying the three most
influential span interactions from Claim -Evidence

1, Claim -Evidence 2,
and Evidence 1-Evidence 2, and describing how

each interaction ’s relation
(agree , disagree , or unrelated) affects your

overall confidence.
Return format: [Prediction] [Explanation]

### SHOT 1
Input

Claim: [...]
Evidence 1: [...]
Evidence 2: [...]

Output
[Prediction: ...] [Explanation: ...]

### SHOT 2 % omitted for brevity
### SHOT 3 % omitted for brevity

### NEW INSTANCE
Claim: {CLAIM}
Evidence 1: {E1}
Evidence 2: {E2}
Your answer:

Figure 4: Three-shot prompt for PromptBaseline (Shots
2–3 omitted) on the HealthVer and DRuiD datasets.

7,200 perturbations with 600 instances with 12 per- 1161

turbations each (see App. D). and (iv) demonstrat- 1162

ing through concise numerical summaries that both 1163

CLUE-Span and CLUE-Span+Steering are signifi- 1164

cantly more faithful than the PromptBaseline. 1165

G.1 Interpreting rpb and ∆rpb 1166

The Entropy-CCT score is the point-biserial corre- 1167

lation (Tate, 1954) between the absolute entropy 1168

change |∆u| and the binary mention flag m. Be- 1169

cause it is mathematically identical to a Pearson r 1170

computed between one continuous and one binary 1171

variable, it obeys −1 ≤ rpb ≤ 1. When rpb = 0, 1172

it means the high- and low-impact perturbations 1173

are mentioned equally often. If the two strata are 1174

roughly balanced, every +0.01 in rpb increases the 1175

probability that a truly uncertainty-influential token 1176

is mentioned by about one percentage point (pp). 1177

A gain ∆rpb therefore translates to an absolute im- 1178

provement of ≈ |∆rpb| × 100,pp in mention rate. 1179

For instance, moving from −0.08 to +0.06 is a 1180

swing of 0.14, corresponding to, 14,pp. 1181

G.2 Significance testing 1182

Because the point-biserial is a Pearson correlation, 1183

the familiar t–test applies: 1184
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You are a helpful assistant. Your tasks:
1. Determine the relationship between the claim and

the two evidence passages.
2. Explain your prediction ’s uncertainty by

referring to the three span
interactions provided below (Claim -Evidence 1,

Claim -Evidence 2,
Evidence 1-Evidence 2) and describing how each

interaction ’s relation
(agree , disagree , or unrelated) affects your

overall confidence.
Return format: [Prediction] [Explanation]

### SHOT 1
Input:

Claim: [...]
Evidence 1: [...]
Evidence 2: [...]
Span interactions:

1. ’’[...]’’ - ’’[...]’’ (C-E1) relation:
[...]

2. ’’[...]’’ - ’’[...]’’ (C-E2) relation:
[...]

3. ’’[...]’’ - ’’[...]’’ (E1-E2) relation:
[...]

Output:
[Prediction: ...] [Explanation: ...]

### SHOT 2 % omitted for brevity
### SHOT 3 % omitted for brevity

### NEW INSTANCE
Claim: {CLAIM}
Evidence 1: {E1}
Evidence 2: {E2}
Span interactions (pre -filled):

1. ’’{SPAN1 -A}’’ - ’’{SPAN1 -B}’’ (C-E1)
relation: {REL1}

2. ’’{SPAN2 -A}’’ - ’’{SPAN2 -B}’’ (C-E2)
relation: {REL2}

3. ’’{SPAN3 -A}’’ - ’’{SPAN3 -B}’’ (E1-E2)
relation: {REL3}

Your answer:

Figure 5: Three-shot prompt for CLUE-Span and
CLUE-Span+Steering (Shots 2–3 omitted) on the
HEALTHVER and DRUID datasets.

t = rpb

√
n− 2

1− r2pb
, (12)1185

t ∼ t(n−2) under H0 : rpb = 0. (13)1186

With n = 7, 200 we have df = 7, 198; the crit-1187

ical two-sided values are |t| > 1.96 for p < 0.051188

and |t| > 2.58 for p < 0.01.1189

G.3 Faithfulness with significance results1190

Table 3 shows the point-biserial coefficients rpb,1191

which is our faithfulness measurement for model1192

uncertainty(See, E.q.9), the associated t statistics,1193

and two-sided p values for every model–method1194

pair. Values that meet the stricter p < 0.01 criterion1195

are highlighted in bold.1196

Across both datasets and all three backbones,1197

the PromptBaseline exhibits negative correlations,1198

implying an non-faithful tendency to highlight low-1199

impact tokens within the generation NLEs, with1200

mean = −0.094. The prompt-only variant of our 1201

CLUE framework CLUE-Span neutralises this bias 1202

and turns the average into +0.027; three of its six 1203

coefficients are clear p < 0.01, indicating a modest 1204

but significant improvement regarding faithfulness. 1205

The full CLUE-Span+Steering variant pushes 1206

the mean to +0.062 and achieves p < 0.01 in 1207

four of six settings. Interpreting these numbers via 1208

§G.1, the switch from −0.094 to +0.062 yields a 1209

absolute increase of (0.062− (−0.094))× 100! ≈ 1210

!16, pp in the probability that a truly influential 1211

token of uncertainty is named in the NLE, which is 1212

easily noticeable in qualitative inspection. 1213

The consistently positive, statistically signifi- 1214

cant gains therefore substantiate the claim made 1215

in the main text: CLUE produces markedly more 1216

faithful NLEs towards model uncertainty than the 1217

PromptBaseline, and the steer variant is particularly 1218

beneficial for models that initially struggle with 1219

uncertainty attribution. 1220

H Human Evaluation Details 1221

H.1 Participants and Materials 1222

Participants We recruited N=12 participants 1223

from Prolific.com (https://www.prolific. 1224

com/), screened to be native English speakers 1225

from Australia, Canada, Ireland, New Zealand, the 1226

United Kingdom, and the United States. The study 1227

was approved by our institution’s Research Ethics 1228

Committee (reference number to be added after 1229

anonymous review period). 1230

Materials Explanations for 40 instances (20 1231

from DRUID, 20 from HealthVer, selected at ran- 1232

dom) were evaluated in total. Each participant 1233

annotated explanations for 10 instances (5 labelled 1234

‘True’, 5 labelled ‘False’), in addition to two at- 1235

tention check instances which were used to screen 1236

responses for quality. For each instance, partici- 1237

pants were provided with a claim, two evidence 1238

documents, model verdict, model numerical cer- 1239

tainty, and three alternative explanations (see Fig- 1240

ure 6 in H.6). Explanations were generated using 1241

Qwen2.5-14b-instruct (Qwen Team, 2024) based 1242

on its automatic evaluation performance. 1243

Procedure Participants read information about 1244

the study (see H.3) and provided informed consent 1245

(see H.4) before reading detailed task instructions 1246

and completing a practice example of the task (see 1247

H.5). The task took approximately 20 minutues, 1248

and participants were paid £3 for their work. 1249
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Model Method rpb t p

HealthVer

Qwen2.5-14B-Instruct PromptBaseline −0.028 −2.38 1.7× 10−2

CLUE-Span +0.006 +0.51 6.1× 10−1

CLUE-Span+Steering +0.033 +2.80 5.1× 10−3

OLMo-2-1124-13B-Instruct PromptBaseline −0.100 −8.53 < 10−15

CLUE-Span +0.005 +0.42 6.7× 10−1

CLUE-Span+Steering +0.020 +1.70 9.0× 10−2

Gemma-2-9B-IT PromptBaseline −0.105 −8.96 < 10−15

CLUE-Span +0.007 +0.59 5.5× 10−1

CLUE-Span+Steering +0.021 +1.78 7.5× 10−2

DRUID

Qwen2.5-14B-Instruct PromptBaseline −0.080 −6.81 9.8× 10−12

CLUE-Span +0.089 +7.58 3.4× 10−14

CLUE-Span+Steering +0.102 +8.70 < 10−15

OLMo-2-1124-13B-Instruct PromptBaseline −0.130 −11.12 < 10−15

CLUE-Span +0.014 +1.19 2.3× 10−1

CLUE-Span+Steering +0.099 +8.44 < 10−15

Gemma-2-9B-IT PromptBaseline −0.120 −10.26 < 10−15

CLUE-Span +0.043 +3.65 2.6× 10−4

CLUE-Span+Steering +0.098 +8.35 < 10−15

Table 3: Detailed faithfulness evaluation results for baseline method PromptBaseline, and two variants of our
CLUE framework CLUE-Span and CLUE-Span+Steering on Healthver and Druid dataset based on Qwen2.5-14B-
Instruct(Qwen Team (2024)), OLMo-2-1124-13B-Instruct(Team OLMo et al. (2024))and Gemma-2-9B-IT(Gemma
Team (2024)). Point-biserial correlation rpb is our Entropy-CCT measurement(§5.1), along with t statistic and
two-sided p-value for each model–method pair (n = 7,200, df = 7,198). Entries with p < 0.01 are bold.

H.2 Human evaluation results1250

Due to space limitations, we present the human1251

evaluation results in Table 4.1252

H.3 Human evaluation information screen1253

Thank you for volunteering to participate in this1254

study! Before you decide whether you wish to take1255

part, please read this information screen carefully.1256

1. What is the project about?1257

Our goal is to make sure that AI fact-checking1258

systems can explain the decisions they produce in1259

ways that are understandable and useful to people.1260

This survey is part of a project to help us understand1261

what kinds of explanations are helpful and why.1262

2. What does participation entail?1263

You are invited to help us explore what kinds of1264

explanations work better in fact-checking. In this1265

task you will see claims, an AI system’s prediction1266

about whether this claim is true or false and cor-1267

responding evidence used to make the prediction.1268

You will also see an explanation for why the AI1269

system is certain or uncertain about its prediction1270

to help you decide how to interpret the true/false1271

prediction. We ask you to evaluate the explanations1272

along 5 different dimensions (the detailed explana-1273

tion of the task is on the next page). All participants1274

who complete the survey will receive a payment 1275

of £3. There is no cost to you for participating. 1276

You may refuse to participate or discontinue your 1277

involvement at any time without penalty. 1278

3. Source of funding 1279

This project has received funding from <redacted 1280

for anonymous review> 1281

4. Consenting to participate in the project and 1282

withdrawing from the research 1283

You can consent to participating in this study by 1284

ticking the box on the next page of the study. Partic- 1285

ipation in the study is completely voluntary. Your 1286

decision not to consent will have no adverse con- 1287

sequences. Should you wish to withdraw during 1288

the experiment you can simply quit the webpage. 1289

All incomplete responses will be deleted. After 1290

you have completed the study and submitted your 1291

responses, it will no longer be possible to withdraw 1292

from the study, as your data will not be identifiable 1293

and able to linked to you. 1294

5. Possible benefits and risks to participants 1295

By participating in this study you will be contribut- 1296

ing to research related to understanding what kinds 1297

of explanations are useful to people who use or who 1298

are impacted by automated fact checking systems. 1299

This is a long-term research project, so the benefits 1300
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PromptBase CLUE-S CLUE-SS

Helpfulness
Overall 2.025 1.892 1.867
DRUID 1.9 1.917 1.767
HealthVer 2.15 1.867 1.967

Consistency
Overall 1.875 1.783 1.817
DRUID 1.717 1.75 1.617
HealthVer 2.033 1.817 2.017

Non-redundancy
Overall 2.05 1.908 1.833
DRUID 1.983 1.983 1.683
HealthVer 2.117 1.833 1.983

Coverage
Overall 1.967 1.775 1.758
DRUID 1.767 1.75 1.617
HealthVer 2.167 1.8 1.9

Overall Quality
Overall 1.967 1.908 1.925
DRUID 1.9 1.9 1.817
HealthVer 2.033 1.917 2.033

Table 4: Mean Average Rank (MAR) for the five
human-evaluation criteria applied to explanations
from Qwen2.5-14B-Instruct on the HEALTHVER and
DRUID datasets (chosen for its high faithfulness;
see §5.5). PromptBaseline, CLUE-Span (CLUE-S), and
CLUE-Span+Steering (CLUE-SS) are compared. Lower
MAR means a better (higher) average rank; the best
score in each row is boldfaced.

of the research may not be seen for several years. It1301

is not expected that taking part will cause any risk,1302

inconvenience or discomfort to you or others.1303

6. What personal data does the project process?1304

The project does not process any personal data.1305

7. Participants’ rights under the <data regula-1306

tion redacted for anonymous review>1307

As a participant in a research project, you have a1308

number of rights under <data regulation redacted1309

for anonymous review>. Your rights are specified1310

in the <institution redacted for anonymous review>1311

privacy policy. <link redacted for anonymous re-1312

view>1313

8. Person responsible for storing and processing1314

of data1315

<redacted for anonymous review>1316

Please click ’Next’ to read more about consenting1317

to participate in the study.1318

H.4 Human Evaluation Consent Form 1319

We hereby request your consent for processing your 1320

data. We do so in compliance with <data regulation 1321

redacted for anonymous review>. See the informa- 1322

tion sheet on the previous screen for more details 1323

about the project and the processing of your data. 1324

• I confirm that I have read the information sheet 1325

and that this forms the basis on which I consent 1326

to the processing of my data by the project. 1327

• I hereby give my consent that <institution> may 1328

register and process my data as part of the 1329

<redacted for anonymous review> project. 1330

• I understand that any data I provide will be anony- 1331

mous and not identifiable to me. 1332

• I understand that my anonymous response data 1333

will be retained by the study team. 1334

• I understand that after I submit my responses at 1335

the end of the study, they cannot be destroyed, 1336

withdrawn, or recalled, because they cannot be 1337

linked with me. 1338

• I understand that there are no direct benefits to 1339

me from participating in this study 1340

• I understand that anonymous data shared through 1341

publications or presentations will be accessible to 1342

researchers and members of the public anywhere 1343

in the world, not just the <location redacted for 1344

anonymous review>. 1345

• I give my consent that the anonymous data I pro- 1346

vided may be stored in a database for new re- 1347

search projects after the end of this project. 1348

• I give permission for my anonymous data to be 1349

stored for possible future research related to the 1350

current study without further consent being re- 1351

quired. 1352

• I understand I will not be paid for any future use 1353

of my data or products derived from it. 1354

By checking this box, I confirm that I agree to the 1355

above and consent to take part in this study. 1356

2 I consent 1357

H.5 Evaluation Task Instructions 1358

What do I have to do? 1359

In this study you will see claims, an AI system’s 1360

prediction about whether this claim is true or 1361
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false, how certain the system is about its label,1362

and the corresponding evidence used to make1363

the prediction. You will also see three different1364

explanations for why the AI system is certain or1365

uncertain about its prediction. These explanations1366

are intended help you decide how to interpret the1367

true/false prediction.1368

Your task is to evaluate the quality of the1369

explanations provided, not the credibility of the1370

claims and evidence.1371

1372

What information will I be shown?1373

You will be shown examples of claims, evidence1374

document, verdicts and explanations.1375

• A claim is some statement about the world. It1376

may be true, false, or somewhere in between.1377

• Additional information is typically necessary to1378

verify the truthfulness of a claim - this is referred1379

to as evidence or evidence document. An evi-1380

dence document consists of one or several sen-1381

tences extracted from an external source for the1382

particular claim. In this study, you will see two1383

evidence documents that have been retrieved for1384

a claim. These evidence documents may or may1385

not agree with each other.1386

• Based on the available evidence, a verdict is1387

reached regarding whether a claim is true or false.1388

• Uncertainty often arises when evaluating the1389

claim and evidence to reach a verdict. Each ver-1390

dict is accompanied by a numerical uncertainty1391

score which represents the AI system’s confi-1392

dence that its predicted verdict is correct.1393

• You will see 3 alternative explanations for where1394

uncertainty arises with regard to the verdict. Note1395

that these explanations focus on the AI system’s1396

uncertainty, not the verdict itself.1397

• You are asked to evaluate the explanations ac-1398

cording to 5 different properties. The properties1399

are as follows:1400

Helpfulness. The explanation contains informa-1401

tion that is helpful for evaluating the claim and1402

the fact check.1403

Coverage. The explanation contains important,1404

salient information and does not miss any impor-1405

tant points that contribute to the fact check.1406

Non-redundancy. The explanation does not1407

contain any information that is redundant/repeat-1408

ed/not relevant to the claim and the fact check.1409

Consistency. The explanation does not contain 1410

any pieces of information that are contradictory 1411

to the claim and the fact check. 1412

Overall Quality. Rank the explanations by their 1413

overall quality. 1414

• Please rank the explanations in descending order. 1415

For example, you should rank the explanation 1416

that you think is most helpful as ‘1’, and the ex- 1417

planation that you think is least helpful as ‘3’. 1418

If two explanations appear almost identical, you 1419

can assign them the same ranking, but as a gen- 1420

eral rule, you should try rank them in hierarchical 1421

order. 1422

• The three explanations, Explanation A, Expla- 1423

nation B, and Explanation C, will appear in a 1424

different order throughout the study, so you may 1425

need to pay some attention to which is which. 1426

Important: Please only consider the provided 1427

information (claim, evidence documents, and expla- 1428

nations) when evaluating explanations. Sometimes 1429

you will be familiar with the claim, but we ask you 1430

to approach each claim as new, whether or not you 1431

have seen it before. It doesn’t matter whether you 1432

personally agree or disagree with the claim or evi- 1433

dence – we are asking you to evaluate what the AI 1434

produces: if you were to see this claim for the first 1435

time, would you find the explanation provided by 1436

the AI useful? On the next page, you will see an 1437

example of the task. 1438

H.6 Example of human evaluation set-up 1439

Here is an example of what you will see during 1440

the study. First, you will see a Claim, and two 1441

pieces of Evidence, along with an AI system’s 1442

predicted Verdict and the system’s Certainty that 1443

its prediction is correct. 1444

The parts of the claim and evidence that are 1445

most important to the AI system’s certainty are 1446

highlighted. Parts of the Claim are Red, parts of 1447

Evidence 1 are Blue, and parts of Evidence 2 are 1448

Green. 1449

Underneath, you will see three alternative ex- 1450

planations for the AI system’s certainty, Expla- 1451

nation A, Explanation B, and Explanation C. The 1452

parts of each explanation that refer to the claim and 1453

evidence are colour coded in the same way (Claim 1454

= Red, Evidence 1 = Blue, Evidence 3 = Green). 1455
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Figure 6: Example of human evaluation set-up

DRUID HealthVer
Set A Set B Set A Set B

Helpfulness .016 .079 .003 .013
Consistency .44 .058 .017 .016
Non-redundancy .005 .084 .005 .019
Coverage .494 .113 .018 .027
Overall Quality .005 .158 .01 .002

Table 5: Inter-rater agreement (Kendall’s W) for human
evaluation

Your task is to read the claim, evidence, and1456

explanations, and rank each explanation based on1457

five properties.1458

Now, you can try this example below!1459

H.7 Inter-rater agreement1460

In line with similar NLE evaluations carried out1461

by previous studies (e.g., (Atanasova et al., 2020)),1462

interrater agreement (Kendall’s W (Kendall and1463

Smith, 1939)) was moderate to low (see Table 5),1464

which we attribute to the relative complexity of the1465

task and individual differences in how the informa-1466

tion was perceived.1467
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