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Abstract

Understanding sources of a model’s uncertainty
regarding its predictions is crucial for effec-
tive human-Al collaboration. Prior work pro-
poses to use numerical uncertainty or hedges
(“T'm not sure, but...”), which do not explain
uncertainty arising from conflicting evidence,
leaving users unable to resolve disagreements
or rely on the output. We introduce CLUE
(Conflict-&Agreement-aware Language-model
Uncertainty Explanations), the first framework
to generate natural language explanations of
model uncertainty by: (i) identifying rela-
tionships between spans of text that expose
claim-evidence or inter-evidence conflicts/a-
greements driving the model’s predictive un-
certainty in an unsupervised way; and (ii) gen-
erating explanations via prompting and atten-
tion steering to verbalize these critical interac-
tions. Across three language models and two
fact-checking datasets, we demonstrate that
CLUE generates explanations that are more
faithful to model uncertainty and more consis-
tent with fact-checking decisions than prompt-
ing for explanation of uncertainty without span-
interaction guidance. Human evaluators find
our explanations more helpful, more informa-
tive, less redundant, and better logically aligned
with the input than this prompting baseline.
CLUE requires no fine-tuning or architectural
changes, making it plug-and-play for any white-
box language model. By explicitly linking un-
certainty to evidence conflicts, it offers practi-
cal support for fact-checking and readily gener-
alizes to other tasks that require reasoning over
complex information.

1 Introduction

Large Language Models (LLMs) are increasingly
prevalent in high-stakes tasks that involve rea-
soning about information reliability, such as fact-
checking (Wang et al., 2024; Fontana et al., 2025).
To foster effective use of such models in fact-
checking tasks, these models must explain the ra-
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Figure 1: Example of claim and evidence documents,
alongside span interactions for uncertainty and gener-
ated natural language explanations.

tionale for their predictions (Atanasova et al., 2020;
Kotonya and Toni, 2020).

However, current methods in automated fact-
checking have been criticised for their failure to ad-
dress practical explainability needs of fact-checkers
(Warren et al., 2025) and for their disconnect from
the tasks typically performed by fact-checkers
(Schlichtkrull et al., 2023). For example, although
fact-checking involves complex reasoning about
the reliability of evidence, which may be conflict-
ing, existing automatic fact-checking techniques
focus only on justifying the verdict (Atanasova
et al., 2020; Stammbach and Ash, 2020; Zeng and
Gao, 2024). Such methods do not explain the un-
certainty associated with their predictions, which
is crucial for their users to determine whether some



of the uncertainty is resolvable, and if so, which
aspects of this uncertainty within the evidence to
address (e.g., by retrieving additional information)
(Warren et al., 2025).

Uncertainty in model predictions is often com-
municated through numerical scores (e.g., “I am
73% confident”), however, metrics can be hard
to contextualize and lack actionable insights for
end-users (Zimmer, 1983; Wallsten et al., 1993;
van der Waa et al., 2020; Liu et al., 2020). Recent
efforts have instead used natural language expres-
sions (e.g., “I’m not sure™) to convey uncertainty
(Steyvers et al., 2025; Yona et al., 2024; Kim et al.,
2024), but these approaches have limitations: users
may overestimate model confidence (Steyvers et al.,
2025) and such expressions often fail to faithfully
reflect model uncertainty (Yona et al., 2024). Exist-
ing explainable fact-checking systems exhibit two
critical limitations: they focus solely on justifying
veracity predictions through generic reasoning sum-
maries of the input sequence (see Figure 2), while
failing to (1) communicate model uncertainty or (2)
explicitly surface evidentiary conflicts and agree-
ments that relate to it. This constitutes a fundamen-
tal methodological gap, as effective fact-checking
requires precisely identifying the sources of uncer-
tainty, for example from conflicting evidence, to
guide targeted verification.

We propose CLUE, a pipeline that generates
natural language explanations (NLEs) of model un-
certainty by explicitly capturing conflicts and agree-
ments in the input (e.g., a claim and its supporting
or refuting evidence). The pipeline first identifies
the salient span-level interactions that matter to the
prediction of the model through an unsupervised ap-
proach, providing an input-feature explanation that
highlights key relationships between separate input
segments (e.g., claim and evidence) (Ray Choud-
hury et al., 2023). These interactions have been
shown to be both faithful to the model and plau-
sible to humans (Sun et al., 2025). CLUE then
converts these signals into uncertainty-aware ex-
planations by explicitly discussing the interactions
and the conflict/agreement relations they express.
CLUE does not require gold-label explanations,
avoids fine-tuning, and operates entirely at infer-
ence time.

Across three language models (§4.2) and two
fact-checking datasets (§4.1), we evaluate two vari-
ants of CLUE. Automatic metrics show that both
variants generate explanations that are more faith-
ful to each model’s uncertainty and agree more

closely with the gold fact-checking labels than a
prompting baseline that lacks conflict-/agreement-
span guidance(§5.5). Human judgements likewise
rate the CLUE explanations as more helpful, more
informative, less redundant, and better logically
aligned with the input. We also observe a trade-off
between two variants of our CLUE framework, one
attains higher faithfulness, the other higher plausi-
bility, highlighting a promising avenue for future
work to achieve both simultaneously(§5.5).

2 Related Work

2.1 Uncertainty Quantification in LLMs

Recent work on LLLM uncertainty quantification
primarily relies on logit-based methods such as an-
swer distribution entropy (Kadavath et al., 2022),
summing predictive entropies across generations
(Malinin and Gales, 2021), and applying predic-
tive entropy to multi-answer question-answering
(Yang et al., 2025), while estimating uncertainty
in long-form tasks involves measuring semantic
similarity between responses (Duan et al., 2024;
Kuhn et al., 2023; Nikitin et al., 2024). Quantify-
ing uncertainty in black-box models often relies on
verbalizing confidence directly (Lin et al., 2022;
Mielke et al., 2022b), though these measures are
overconfident and unreliable (Yona et al., 2024,
Tanneru et al., 2024). Alternative approaches mea-
sure output diversity across paraphrased prompts
(Zhang et al., 2024a; Chen and Mueller, 2024),
but this method can introduce significant compu-
tational overhead and conflate model uncertainty
with prompt-induced noise, obscuring interpretabil-
ity. Accordingly, in this work, we focus on the
uncertainty of open-source models, which are read-
ily accessible and widely used. We adopt predictive
entropy, a straightforward white-box metric com-
puted from the model’s answer logits, as our uncer-
tainty measure for fact-checking tasks. This choice
balances interpretability and computational effi-
ciency while avoiding potential noise introduced
by multiple prompts.

2.2 Linguistic Expressions of Uncertainty

Numerical uncertainty estimates do not address the
sources of uncertainty, and are therefore difficult
for end-users, such as fact-checkers, to interpret
and act upon (Warren et al., 2025). Linguistic ex-
pressions of uncertainty may be more intuitive for
people to understand than numerical ones, (Zim-
mer, 1983; Wallsten et al., 1993; Windschitl and
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Figure 2: Explanations produced by earlier systems, e-FEVER (Stammbach and Ash, 2020), Explain-MT (Atanasova
et al., 2020), and JustiLM (Zeng and Gao, 2024), compared with those from our CLUE framework. CLUE is
the only approach that explicitly traces model uncertainty to the conflicts and agreements between the claim and

multiple evidence passages.

Wells, 1996), and recent work has proposed mod-
els that communicate uncertainty through hedging
phrases such as “I am sure” or “I doubt” (Mielke
et al., 2022b,a; Lin et al., 2022; Zhou et al., 2023;
Tian et al., 2023; Xiong et al., 2023; Ji et al., 2025;
Zheng et al., 2023; Farquhar et al., 2024). However,
these expressions are not necessarily faithful reflec-
tions of the model’s uncertainty (Yona et al., 2024)
and tend to overestimate the model’s confidence
(Tanneru et al., 2024), risking misleading users
(Steyvers et al., 2025). Moreover, they do not ex-
plain why the model is uncertain. In this paper, we
propose a method that explains sources of model
uncertainty by referring to specific conflicting or
concordant parts of the input that contribute to the
model’s confidence in the output. This approach
ensures a more faithful reflection of model uncer-
tainty and provides users with a more intuitive and
actionable understanding of model confidence.

2.3 Generating Natural Language
Explanations for Fact-Checking

Natural language explanations provide justifica-
tions for model predictions designed to be under-
stood by laypeople (Wei Jie et al., 2024). NLEs
have typically been evaluated by measuring the
similarity between generated NLEs and human-
written reference explanations using surface-level
metrics such as ROUGE-1 (Lin, 2004) and BLEU
(Papineni et al., 2002). In fact-checking, supervised
methods have been proposed that involve extracting
key sentences from existing fact-checking articles
and using them as explanations (Atanasova et al.,

2020). Later work proposed a post-editing mech-
anism to enhance the explanation coherence and
fluency (Jolly et al., 2022), while others have fine-
tuned models on data collected from fact-checking
websites to generate explanations (Feher et al.,
2025; Raffel et al., 2020; Beltagy et al., 2020).
Recent work has shifted towards few-shot meth-
ods requiring no fine-tuning, for example, using
few-shot prompting with GPT-3 (Brown et al.,
2020) to produce evidence summaries as explana-
tions (Stammbach and Ash, 2020) and incorporat-
ing a planning step before explanation generation
(Zhao et al., 2024) to outperform standard prompt-
ing approaches. Zeng and Gao (2024) focuses on
generating fact-checking justifications based on
retrieval-augmented language models. However,
existing methods are often not faithful to model
reasoning (Atanasova et al., 2023; Siegel et al.,
2024, 2025), have limited utility in fact-checking
(Schmitt et al., 2024), and fail to address model
uncertainty, which has been identified as a key cri-
terion for fact-checking (Warren et al., 2025).

To this end, we introduce the first framework de-
signed for the task of explaining sources of uncer-
tainty in multi-evidence fact-checking. Our method
analyzes span-level agreements and conflicts corre-
lated with uncertainty scores. Unlike conventional
approaches that align with human NLEs (reflecting
human perspectives rather than model reasoning),
our method generates explanations that are both
faithful to model uncertainty and helpful to people
in a fact-checking context.



3 Method

3.1 Preliminaries and Overall Framework

Our objective is to explain why a LLM is uncertain
about a multi-evidence fact-checking instance by
grounding that uncertainty in specific agreements
or conflicts within the input.

Problem setup. Each input instance is a triple
X = (C,E1, Es) consisting of a claim C' and
two evidence pieces E7, Eo. Note that, in this
work, we set the number of evidence pieces to
two for simplicity. For clarity, we denote their
concatenation as X = [T1,...,T|0|+|Ey|+|Es|)-
The task label comes from the set )V =
{SUPPORTS, REFUTES, NEUTRAL}.

Pipeline overview. Our framework proceeds in
three stages:

1. Uncertainty scoring. We compute predictive
entropy from the model’s answer logits to obtain
a scalar uncertainty score u(X) (Section 3.2).
This logit-based measure is model-agnostic.

2. Conflicts/Agreement extraction. We capture
the agreements and conflicts most relevant to
the model’s reasoning by identifying the text-
span interactions between C, E1, and E5 that
embody these relations (Section 3.3).

3. Explanation generation. The model receives
the extracted spans as soft constraints and
produces a natural-language rationale Yp =
[y],-..,y.] along with its predicted label § to
the identified interactions (Section 3.4).

Outputs. For each instance X, the framework
returns the predicted task label ¢ € ); the numeric
uncertainty score u(X); and the textual explana-
tion Yr = [y}, ..., y,] that grounds the source of
uncertainty in the specific agreements or conflicts
between C, F1, F».

3.2 Predictive Uncertainty Score Generation

To get the uncertainty of the model towards gener-
ating an answer label on a specific input sequence,
we follow the previous work and get the predictive
uncertainty with the entropy theory, which does
not require multiple runs and is widely used in
open-source models.

Specifically, we define the numeric uncertainty
score u as the entropy of the softmax distribution
over the model’s output logits for a set of candidate
answers )) = {SUPPORTS, REFUTES, NEUTRAL}.
For each candidate label y; € V:

exp(logit (1))
> exp(logit(y;))

where logit(y;) is the model’s output logit towards
candidate answer y; given input X. P(y; | X) is
the confidence score of model for selecting y; as
the final answer across all candidate answers within
Y. And finally, the model’s uncertainty towards the
input sequence X is:

Py | X) =

ey

w(X) ==Y Plyi| X)log P(y; | X) (2
yi€Y

3.3 Conflict and Agreement Span Interaction
Identification for Answer Uncertainty

To surface the conflicts and agreements that drive
a model’s uncertainty, we extract and then label
salient span interactions among the claim C' and
two evidence passages, F and Ejs.

Span interaction extraction. For
each ordered input part pair (F,7) €
{(C, E1),(C, E2),(E1, E2)}, we follow pre-
vious work (Ray Choudhury et al., 2023; Sun et al.,
2025) to extract the important span interactions
and their importance score to model’s answer
by (i) identifying the most important attention
head to the model’s answer prediction from its
final layer, (ii) obtaining its attention matrix
A e RUFIHTDXAUFIHIT) and (iii) symmetrizing
the cross-part scores:

apq = %(Ap,q +Agp);

p.q zp€F, x4eT.

Treating a;,q as edge weights yields a bipartite
token graph, which we partition into contiguous
spans with the Louvain algorithm (Blondel et al.,
2008). Given a span,, C F'and a span,, C 7', their
interaction importance is

YD e B

ZpEspan,, TqEspan,,

1
“wv = Jspan,, | [span, |

The scored interactions for (S,T') form S(g ) =
{((span,,, span, ), @uy)}.

Relation labeling. To tag each span pair as
an agreement, disagreement, or unrelated, we
prompt GPT-40 (Team, 2024)! to assign a label

rwe € {agree, disagree, unrelated},balancing scal-
ability and accuracy (See templates in App. H.6).

"https://openai.com/index/hello-gpt-40/


https://openai.com/index/hello-gpt-4o/

After labeling all three pairs, the complete inter-
action set for instance X is

Sr = Sgr(C,E1) U Sg(C,E2) U Sgr(E1, Es),
C))
where, for example, Sgr(C,E) =
{((span,,, span,), Guwy, Twv)} Each element
links two spans with an importance score and a
relation label, thereby supplying the conflict- or
agreement-span interactions used in later stages.

3.4 Uncertainty Natural Language
Explanation Generation

To turn the extracted conflict- and agreement
spans into rationales towards model uncertainty,
we rely on two complementary mechanisms. (i)
Instruction-driven prompting embeds the spans
directly in the input so the model is told which
segments to reference. (ii) Intrinsic attention
steering guides the model’s own attention toward
those same segments while it is generating the ra-
tionale. Both mechanisms use self-rationalization:
the model first states its verdict ¢ and then explains
YR, a sequencing shown to improve faithfulness
over pipeline approaches (Wiegreffe et al., 2021;
Marasovic et al., 2022; Siegel et al., 2025).

Instruction-based NLE. For each instance X,
we rank all labelled interactions by importance and
keep the top K = 3, denoted S](%K), to avoid too
long explanations. These three span pairs are slot-
ted into a three-shot prompt (See App.F.1), which
instructs the model to explain how the highlighted
agreements or conflicts influence its confidence. Fi-
nally, the standard transformer decoding process
emits both the predicted label § and the accompa-
nying explanation Y.

Attention steering. Instead of explicit instruc-
tions, we can guide generation by modifying atten-
tion on the fly with PASTA (Zhang et al., 2024b).
Starting from the same S%K), we collect all token
indices that fall inside any selected span,

Z={p : (span,,span,) GSgQ, pEspan,,Uspan, }. (5)
For each attention head (¢, h) deemed relevant to
model uncertainty, let A be its attention matrix. We
down-weight non-target tokens by :

i Ay )1 ifjel,
v Z B otherwise,

Zi=Y A+B8Y Ay (7)

JET j¢z

(6)

All other heads remain unchanged. Following
Zhang et al. (2024b), we steer | H| = 100 heads
and set 5 = 0.01 to balance steering efficacy and
prevent degeneration; see App. B for the head-
selection procedure. With the steered attention in
place, the transformer generates ¢ followed by the
rationale Yr, now naturally centered on the conflict-
or agreement spans that drive its uncertainty.

4 Experimental Setup
4.1 Datasets

We select two fact-checking datasets, one spe-
cific to the health domain, HealthVer (Sarrouti
et al., 2021), and one closer to a real-world fact-
checking scenario, DRUID (Hagstrom et al., 2024).
These datasets were chosen because they pro-
vide multiple evidence pieces per claim, making
them well-suited to our goal of explaining model
uncertainty arising from the inter-evidence con-
flicts and agreements. For experiments, we se-
lect six hundred instances that consist of a claim
and multiple pieces of evidence, and a golden la-
bel y € {SUPPORTS, REFUTES, NEUTRAL} from
each dataset.’

4.2 Models

We compare three generation strategies for NLEs
towards model uncertainty:

* Promptgaseline: A three-shot prompt baseline ex-
tending the prior few-shot NLE work (Stamm-
bach and Ash, 2020; Zeng and Gao, 2024; Zhao
et al., 2024) by explicitly asking the model to
highlight conflicting or supporting spans that
shape its uncertainty (See prompt template in
App.F.1).

¢ CLUE-Span: The instruction-based variant of our
CLUE where the extracted span interactions are
filled into a three-shot prompt to guide the ex-
planation generation ( §3.4; prompt template in
App.E2).

* CLUE-Span+Steering: The attention steering
variant of our CLUE where the same prompt
as CLUE-Span is used. Additionally, attention
steering is applied to instinctively guide the
model’s explanation generation toward the iden-
tified spans ( §3.4; prompt template in App.F.2).

Experiments are run on three recent, open-
weight, instruction-tuned LLMs of comparable
*While DRUID has six fine-grained fact-checking labels,

we merge the labels into the above three categories to balance
the label categories.



size: Qwen2.5-14B-Instruct® (Qwen Team, 2024),
Gemma-2 9B-IT* (Gemma Team, 2024), and
OLMo-2-1124-13B-Instruct’ (Team OLMo et al.,
2024). Each backbone is used consistently across
our pipeline for span-interaction extraction, answer
prediction, and NLE generation on four NVIDIA
A100-SXMS-40GB GPUs. We chose these models
to balance capability (reasoning and instruction-
following quality) with practical constraints on in-
ference latency and GPU memory.

5 Automatic Evaluation

5.1 Faithfulness

To assess whether the NLEs produced by our
CLUE are faithful to the model’s uncertainty, we
adapt the Correlational Counterfactual Test (CCT)
(Siegel et al., 2024) and propose an Entropy-CCT
metric.

Following Siegel et al. (2024), we start by insert-
ing a random adjective or noun into the original
instance X to obtain a perturbed input X’ (See
App. D for details). Let u(X) denote the model’s
uncertainty score defined by Eq. 2, unlike CCT(See
details of original CCT in App.E), we measure the
impact of the perturbation on the model’s uncer-
tainty with Absolute Entropy Change (AEC):

Au(X) = |u(X) —u(X")] ®)

For each perturbation, we record whether the
inserted word appears in the generated NLE, using
its presence as a proxy for importance. This yields
a binary mention flag m € {0, 1}, following Siegel
et al. (2024); Atanasova et al. (2023).

Let D,, denote the set of perturbed examples
where the NLE mentions the inserted word and
D, is the complementary set where it does not,
we correlate the continuous variable Awu with the
binary mention flag m via the point-biserial corre-
lation rpy, (Tate, 1954). The Entropy-CCT statistic
is:

—p —Em[Au]-E-m[Au] [ |Dm|-|D-m|
CCTemropy—"’pb— m Std(Au”)n : (\me|l+|Dﬁ:LL\)2 (9)

where E,,[Au| and E_,,[Au] are the mean ab-
solute entropy changes for these two groups, re-
spectively. Std(Au) is the standard deviation of
absolute entropy changes across the full dataset.

3https://huggingface.co/Qwen/QwenZ.
5-14B-Instruct

*https://huggingface.co/google/gemma-2-9b-it

5https://huggingface.co/allenai/
OLMo-2-1124-13B-Instruct

Ultimately, this metric quantifies the alignment
between changes in model uncertainty and explana-
tory references to input perturbations, thereby mea-
suring how faithfully the NLEs reflect the model’s
uncertainty.

5.2 Span-Coverage

An uncertainty explanation should surface all in-
formation conveyed by the selected span interac-
tions. We therefore compute Span-Coverage: the
fraction of reference interactions that are explicitly
mentioned in the generated NLE. Let Sy be the
set of span interactions extracted from the explana-
tion, and let Sr(k) be the reference set supplied in
the prompt (see §3.4). Then

|Snie N Sr(K)]
|Sr(k)|
A higher value indicates the NLE covers a higher

proportion of the information supplied by the ex-
tracted span interactions.

Span-Coverage = (10)

5.3 Span-Extraneous

Ideally, the explanation should mention only the
provided interactions. We measure the proportion
of mentioned interactions that do not belong to the
reference set, denoted Span-Extraneous:

|SnLE \ Sr(K)]
| SNLE] '

(11)

Span-Extraneous =

A lower value indicates closer alignment with the
intended span interactions.

5.4 Label-Explanation Entailment

We evaluate how well the uncertainty explanation
agrees with the model’s predicted label by treating
the task as a natural-language inference (NLI) prob-
lem. First, we convert the predicted label into a hy-
pothesis using the template “The claim is supported
by / refuted by / neutral to the evidence.” The gener-
ated explanation serves as the premise. The result-
ing premise—hypothesis pair is fed to a widely used
off-the-shelf language-inference model, DeBERTa-
v3° (He et al., 2023). The Label-Explanation En-
tailment (LEE) score is the proportion of examples
for which the NLI model predicts ENTAILMENT.

5.5 Results

For brevity, we refer to Qwen2.5-14B-Instruct,
OLMo-2-1124-13B-Instruct, and Gemma-2-9B-it
simply as Qwen, OLMo, and Gemma, respectively.

6https://huggingface.co/Mor‘itzLaurer‘/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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| HealthVer | DRUID
Approach ‘ Faith. (1) Span-Cov. (1) Span-Ext. (}) LEE (1) ‘ Faith. (1) Span-Cov. (1) Span-Ext. (}) LEE (1)
Qwen2.5-14B-Instruct
Promptgaseline -0.028 - - 0.74 -0.08 - - 0.60
CLUE-Span 0.006 0.33 0.68 0.75 0.089 0.20 0.38 0.78
CLUE-Span+Steering 0.033 0.44 0.53 0.80 0.102 0.28 0.20 0.77
OLMo-2-1124-13B-Instruct
Promptgaseline -0.10 - - 0.55 -0.13 - - 0.53
CLUE-Span 0.005 0.10 0.83 0.61 0.014 0.08 0.79 0.65
CLUE-Span+Steering 0.020 0.23 0.77 0.68 0.099 0.15 0.70 0.69
Gemma-2-9B-It
Promptgaseline -0.105 - - 0.66 -0.12 - - 0.57
CLUE-Span 0.007 0.34 0.59 0.82 0.043 0.23 0.43 0.76
CLUE-Span+Steering 0.021 0.39 0.50 0.85 0.098 0.30 0.47 0.81

Table 1: Uncertainty NLE evaluation results across the HealthVer and DRUID datasets (§4.1). For each model
(§4.2) we compare Promptgase1ine; CLUE-Span, and CLUE-Span+Steering on four metrics: Faith. (§5.1), Span-Cov.
(§5.2), Span-Ext. (§5.3), and LEE (§5.4). Bold values mark the best result per metric for each dataset-model pair;
“~" indicates inapplicable metrics for Promptg,se1ine 5 as it is not supplied with extracted span interactions.

Faithfulness. We use Entropy-CCT, a point—
biserial correlation bounded by —1 < 75, < 1
(Eq. 9), to measure the faithfulness of the NLEs
to the model’s uncertainty (§5.1). When r,, = 0,
the explanation mentions high- and low-impact per-
turbation words equally often; every +0.01 adds
roughly one percentage point (pp) to the chance
that the explanation names a token that is truly
influential for the model’s predictive uncertainty

(App. G).

Table 1 shows that Promptgaseline IS noR-
Jaithful in all six settings with 7, are all nega-
tive values ranging from —0.03 to —0.13. Thus
its NLEs mention truly influential tokens 3—13 pp
less often than uninfluential ones—the opposite of
faithful behaviour. Both variants of our CLUE
reverse this trend. Presenting span interactions
in the prompt (CLUE-Span) raises every correlation
to non-negative values and peaks at rp, = 0.089
on the DRUID-Qwen setting. This means the ex-
planation now mentions about 17 pp more often
than Promptgaseline(7pp = —0.080). Adding at-
tention steering (CLUE-Span+Steering) lifts the
Tpp scores to 0.033 on HEALTHVER and 0.102
on DRUID with Qwen model, i.e., net gains of
+6 pp and +18 pp over Promptgase1ine. Moreover,
four of the six positive correlations produced by
CLUE-Span+Steering are significant at p < 0.01
(Table 3), confirming that the improvements are
both substantial and statistically reliable. Particu-
larly large jumps of OLMo on Druid dataset (up
to Arpp, = +0.23 = 423 pp) suggest that span-
interaction guidance from our CLUE framework is
most beneficial for models that initially struggle to

align explanations with predictive uncertainty.

Other Properties We also evaluate three proper-
ties of the generated NLEs: (i) Span-Coverage
of extracted conflict-/agreement- span interac-
tions(§5.2) and (ii) Span-Extraneous: men-
tion of non-extracted spans(§5.3), (iii) Label-
Explanation Entailment with the generated
fact-checking label(§5.4). As Table 1 shows,
CLUE-SpantSteering outperforms CLUE-Span
in both span-coverage and span-extraneous, con-
sistent with the attention steering method’s effec-
tiveness in helping the model better focus on pro-
vided highlights during generation (Zhang et al.,
2024b). Absolute numbers, however, remain mod-
est (peak span-coverage: .44, span-extraneous: .20
with Qwen). A span-coverage of 1 means the
NLE cites every extracted interaction, while a span-
extraneous of 0 means it adds none beyond them.
This gap highlights considerable headroom for bet-
ter integrating critical span interactions into the
explanations. Among the three backbones, Qwen
attains the highest span-coverage and the low-
est span-extraneous scores, a trend that likely
reflects its stronger instruction-following ability
(see benchmark scores in Appendix A), and thus
larger or more capable models might narrow the
gap further. Both variants of our framework
achieve stronger label-explanation entailment
scores than the baseline, yielding explanations
that stay logically aligned with the predicted labels
while remaining faithful to the model’s uncertainty
patterns (as demonstrated in our faithfulness analy-
sis).



6 Human Evaluation

6.1 Method

We recruited N=12 participants from Prolific.com
(https://www.prolific.com/) to rank explana-
tions generated by Promptgaseline, CLUE-Span,
CLUE-Span+Steering for 40 instances (20 from
DRUID, 20 from HealthVer) (See details in
App.H.1). Adapting Atanasova et al. (2020), partic-
ipants ranked explanations in descending order (1st,
2nd, 3rd) according to five criteria, complementary
to our automatic evaluation metrics:

* Helpfulness. The explanation offers informa-
tion that aids readers to judge the claim and fact-
check.

* Coverage. The explanation captures all salient
information in the input that matters for the
fact check. This differs from automatic Span-
Coverage (§5.2), which counts overlap with pre-
extracted spans.

* Non-redundancy. The explanation does not
offer irrelevant or repetitive information to
the input. This differs from automatic Span-
Extraneous (§5.3) which counts mentions outside
the extracted spans.

* Consistency. The explanation contains logically
contradictory statements to the input. This differs
from automatic Label-Explanation Entailment
(8§5.4), which tests label-explanation alignment.

* Overall Quality. Overall ranking of explana-
tions by their overall quality, considering all cri-
teria above.

6.2 Results

Table 4 in App. H.2 shows the study partici-
pant evaluation results. Annotator agreement was
moderate-low, which we attribute to the relative
complexity of the task and individual differences in
how the information was perceived (see App. H.7).

The explanations generated by CLUE were pre-
ferred by our evaluators to those generated us-
ing Promptgaseline: the explanations generated
by CLUE-Span+Steering were rated as most
helpful, highest coverage, and containing the
least amount of redundant information, while
those from CLUE-Span were judged to have the
highest consistency and overall quality. Al-
though CLUE-Span+Steering achieves the high-
est faithfulness (see §5.5), our participants judged
its overall quality slightly lower than that of
CLUE-Span. A possible reason for this is that al-
though CLUE-Span+Steering adheres closely to

the top-K'=3 extracted span interactions (as re-
flected in its higher Span-Coverage and lower Span-
Extraneous scores), it may produce explanations
that are slightly less internally consistent or fluent.
In contrast, CLUE-Span is less faithful to those ex-
tracted spans, but may capture additional points
that study participants deemed important, likely be-
cause the spans identified as important for model
do not fully overlap with those identified by hu-
mans (Ray Choudhury et al., 2023), highlighting
the well-documented trade-off between faithful-
ness and plausibility (Agarwal et al., 2024). Future
work on improving the plausibility of the span in-
teractions while retaining their faithfulness may
therefore improve the human evaluation scores for
CLUE-Span+Steering.

Finally, we observed slight variation between
datasets: CLUE-Span+Steering tended to be rated
higher than CLUE-Span for DRUID, and vice versa
for HealthVer. This may arise from differences in
length and complexity of the input: DRUID ev-
idence documents, retrieved from heterogeneous
online sources, may have benefited from the atten-
tion steering more than HealthVer evidence docu-
ments, consisting of focused, shorter extracts from
scientific abstracts.

7 Conclusion

We present the first framework, CLUE, for gen-
erating NLEs of model uncertainty by referring
to the conflicts and agreements between claims
and multiple pieces of evidence in a fact-checking
task. Our method, evaluated across three language
models and two datasets, demonstrates significant
improvements in both faithfulness to model uncer-
tainty and label consistency compared to standard
prompting. Evaluations by human participants fur-
ther demonstrate that the explanations generated by
CLUE are more helpful, more informative, less re-
dundant, and better logically aligned with the input.
This work establishes a foundation for explainable
fact-checking systems, providing end users (e.g.,
fact-checkers) with grounded, faithful explanations
that reflect the model’s uncertainty.

Limitations

Our paper proposes a novel framework for gen-
erating NLEs towards the model’s uncertainty
by explicitly pointing to the conflicts or agree-
ments within the claim and multi-evidence inter-
actions. While our framework demonstrates im-
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proved explanation quality through rigorous evalua-
tion across three language models and two datasets,
we acknowledge several limitations that present
opportunities for future research.

Regarding the model selection, our experiments
are constrained to medium-sized models (Qwen2.5-
14B-Instruct, Gemma2-9B-it, and OLMo2-13B-
Instruct) due to computational limitations. Al-
though these models show significant improve-
ments over baseline performance, our results sug-
gest that larger models (e.g., 70B parameter scale)
with enhanced instruction-following and reason-
ing capabilities might further improve explanation
quality — particularly for coverage and redundancy
metrics. Our framework’s modular design readily
accommodates such scaling.

In this study we focus on HealthVer and DRUID
datasets, where claims are paired with discrete
pieces of evidence, ideal for studying evidence-
conflict scenarios. Future work could investigate
more complex evidence structures (e.g., long-form
documents), diverse fact-checking sources, and sce-
narios with more than two pieces of evidence per
claim to better reflect real-world fact-checking chal-
lenges.

While our evaluation with laypeople confirms
that our framework produces explanations of higher
quality than prompting, expert evaluations (e.g.,
with professional fact-checkers) are needed to as-
sess practical utility in high-stakes settings.

Regarding the scope of the uncertainty sources,
our work specifically explains model uncertainty
arising from evidence conflicts. While this captures
a critical subset of cases, real-world uncertainty
may also stem from other sources, including in-
sufficient evidence, knowledge gaps in the model,
and context-memory conflicts. We view this work
as a foundational step toward broader research on
model uncertainty explanation.

Ethical Considerations

Our work is limited to examining claims, evidence,
and explanations in English, and so our results may
not be generalisable to other languages. As the
task involved complex reasoning about technical
subjects, we screened our participants to be native
English speakers to ensure that they could fully
understand the material and increase the chances of
high-quality responses (see H.1 for details). How-
ever, this criteria may also introduce or reinforce
existing biases and limit the generalisability of our

findings. Participants were informed about the
study and its aims before agreeing to provide in-
formed consent. No personal data was collected
from participants and they received fair payment
for their work (approximately 9 GBP/hour).

This work concerns automated fact-checking,
which aims to reduce the harm and spread of mis-
information, but nevertheless has the potential for
harm or misuse through model inaccuracy, halluci-
nation, or deployment for censorship. Our current
work aims to provide explanation that allow users
to examine the outputs of these systems more crit-
ically, and so we do not see any immediate risks
associated with it.
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A Backbone model performance on
public benchmarks

Table 2 summarises the publicly reported five-shot
results on two standard reasoning benchmarks. All
figures are taken verbatim from the official model
cards or accompanying technical reports. Figures
are copied from the official model cards.

These numbers corroborate our claim that
Qwen2.5-14B-Instruct is the strongest of the three
for instruction-following and reasoning.

B Method: Selecting attention heads to
steer

Following Zhang et al. (2024b), we steer only a
selected subset of attention heads rather than all of


https://doi.org/10.18653/v1/2024.findings-emnlp.830
https://doi.org/10.18653/v1/2024.findings-emnlp.830
https://doi.org/10.18653/v1/2024.findings-emnlp.830
https://doi.org/10.48550/arXiv.2502.09083
https://doi.org/10.48550/arXiv.2502.09083
https://doi.org/10.48550/arXiv.2502.09083
https://doi.org/10.18653/v1/2024.findings-naacl.138
https://doi.org/10.18653/v1/2024.findings-naacl.138
https://doi.org/10.18653/v1/2024.findings-naacl.138
https://doi.org/10.18653/v1/2021.emnlp-main.804
https://doi.org/10.18653/v1/2021.emnlp-main.804
https://doi.org/10.18653/v1/2021.emnlp-main.804
https://aclanthology.org/2025.findings-naacl.325/
https://aclanthology.org/2025.findings-naacl.325/
https://aclanthology.org/2025.findings-naacl.325/
https://doi.org/10.18653/v1/2024.emnlp-main.443
https://doi.org/10.18653/v1/2024.emnlp-main.443
https://doi.org/10.18653/v1/2024.emnlp-main.443
https://doi.org/10.18653/v1/2024.emnlp-main.443
https://doi.org/10.18653/v1/2024.emnlp-main.443
https://doi.org/10.1162/tacl_a_00649
https://doi.org/10.1162/tacl_a_00649
https://doi.org/10.1162/tacl_a_00649
https://doi.org/10.1162/tacl_a_00649
https://doi.org/10.1162/tacl_a_00649
https://doi.org/10.18653/v1/2024.emnlp-main.299
https://doi.org/10.18653/v1/2024.emnlp-main.299
https://doi.org/10.18653/v1/2024.emnlp-main.299
https://openreview.net/forum?id=xZDWO0oejD
https://openreview.net/forum?id=xZDWO0oejD
https://openreview.net/forum?id=xZDWO0oejD

Model Params MMLU GSMSK
Qwen2.5-14B-Instruct (Qwen Team, 2024) 147 B 79.7 90.2
Gemma-2-9B-IT (Gemma Team, 2024) 9.0B 71.3 68.6
OLMo-2-1124-13B-Instruct (Team OLMo et al., 2024) 13B 67.5 54.2

Table 2: Benchmark scores on MMLU (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021) are used to
characterize instruction-following and reasoning strength.

them, because targeted steering yields larger gains
in output quality. Our selection criterion, however,
differs from theirs: instead of ranking heads by
their impact on task accuracy, we rank them by
how strongly they affect the model’s predictive
uncertainty during fact-checking.

Concretely, for each fact-checking dataset cho-
sen in this work(see details in §4.1), D, we draw
a validation subset Dy with |D,| = 300 examples.
For every input X € Dy, we compute the model’s
baseline uncertainty score u(X ) when it predicts
the fact-checking label as stated in §3.2. Then, for
each attention head identified by layer £ and index
h, we zero out that head, re-run the model, and
measure the absolute change in uncertainty

Au(X, 4, h)

| u(X) — w/pun(X)].

Averaging Au(X, [, h) over all X € Dy yields a
single importance score for head (¢, h). We rank
the heads by this score and keep the top ¢ heads
for each dataset and each model. Note that we set
t = 100 in line with the recommendation of Zhang
et al. (2024b) and to balance steering effectiveness
against the risk of degeneration.

C Prompt Example for Assigning
Relation Labels to Captured Span
Interactions

To identify agreements and conflicts between the
claim and the two evidence passages, we use the
prompt in Figure 3 to label each extracted span
interaction (see §3.3).

D Perturbation details for faithfulness
measurement

To evaluate how faithfully each NLE reflects model
uncertainty, we generate multiple counterfactuals
per instance, following Atanasova et al. (2020) and
Siegel et al. (2024) (see §5.1). For every input,
comprising one claim and two evidence passages,
we first tag part-of-speech with spaCy, then choose

You are a helpful assistant. Your task:

1. Read the claim and its two evidence passages (E1,
E2).

2. For each supplied span interaction, decide
whether the two spans
AGREE, DISAGREE, or are UNRELATED, taking the

full context into account.
. Output the span pairs exactly as given,
by
"relation:

followed
agree|disagree|unrelated”.

Return format:
1. "SPAN A" "SPAN B"
unrelated>
2. ...
3. ...

relation: <agree|disagree]|

### SHOT 1 (annotated example)
Claim: [...]
Evidence 1: [...]

Evidence 2: [...]

Span interactions (to be labelled):

P R LA T
2. L. 1" - "[L.n
e e R P
Expected output:
1. "C[...1" - "[...]" vrelation: ...
2. "[...1" - "[...1" vrelation: ...
3. "[...1" - "[...1" relation: ...
### SHOT 2 % omitted for brevity
### SHOT 3 % omitted for brevity

### NEW INSTANCE
Claim: {CLAIM}
Evidence 1: {E1}
Evidence 2: {E2}
Span interactions:

(pre-filled for each new example)

1. "{SPANT-A}" - "{SPAN1-B}"
2. "{SPAN2-A}" - "{SPAN2-B}"
3. "{SPAN3-A}" - "{SPAN3-B}"
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Figure 3: Prompt template for span interaction relation
labelling.

seven random insertion sites. At each site we in-
sert either (i) a random adjective before a noun or
(i1) a random adverb before a verb. The candidate
modifiers are drawn uniformly from the full Word-
Net lists of adjectives and adverbs. Because we
sample three random candidates for each of the
four positions, this procedure yields 4 x 3 = 12
perturbations per instance, providing a sufficient
set for the subsequent Entropy-CCT evaluation, in
which we check whether the NLE mentions the
inserted word and correlate that mention with the
uncertainty change induced by each perturbation.




E Differences Between Entropy-CCT and
CCT

In CCT test, Total Variation Distance (TVD) is
computed between two probability distributions
P and Q as TVD(P,Q) = >, |P; — Q;, mea-
suring the absolute change in class-wise probabili-
ties. We instead operate on the entropies of those
distributions, yielding a single-valued measure of
uncertainty shift.

F Prompt template for Promptg,seiines
CLUE-Span and CLUE-Span+Steering
on Healthver and Druid dataset

We designed two prompt templates for our exper-
iments. The baseline prompt (Figure 4) gives the
model no span interactions; instead, it must first
identify the relevant agreements or conflicts and
then discuss them in its explanation. In contrast,
the prompt used by our CLUE framework (Figure
5) supplies the three pre-extracted span interactions
(§3.3). The model is explicitly instructed to base
its explanation on these spans, ensuring that the ra-
tionale remains grounded in the provided evidence.

F.1 Prompt template for Promptgaseline

To generate NLEs about model uncertainty with-
out span-interaction guidance, we craft a three-shot
prompt that instructs the model to identify the in-
teractions most likely to affect its uncertainty and
to explain how these relations they represent affect
it. (See Figure 4).

F.2 Prompt template for CLUE-Span and
CLUE-Span+Steering

To generate NLEs about model uncertainty with
the span-interaction guidance, we craft a three-shot
prompt that instructs the model to discuss how
these interactions, along with the relations they
represent, affect its uncertainty. (See Figure 5).

G Extended Statistical Analysis of
Faithfulness Scores

This section elaborates on the statistical evaluation
of faithfulness regarding (i) recalling the definition
and intuitive interpretation of the point-biserial co-
efficient r,p(E.q. 9), (ii) outlining the ¢-test used to
assess significance, (iii) reporting the faithfulness
results (§5.1) along with statistical results. Note
that, each dataset is evaluated on n = 600 x 12 =

You are a helpful assistant. Your tasks:
1. Determine the relationship between the claim and
the two evidence passages.
2. Explain your prediction’s uncertainty by
identifying the three most
influential span interactions from Claim-Evidence
1, Claim-Evidence 2,
and Evidence 1-Evidence 2, and describing how
each interaction’s relation
(agree, disagree, or unrelated) affects your
overall confidence.
Return format: [Prediction] [Explanation]

### SHOT 1
Input
Claim: [...]
Evidence 1: [...]
Evidence 2: [...]
Output
[Prediction: ...] [Explanation: ...]
### SHOT 2
### SHOT 3

% omitted for brevity
% omitted for brevity

### NEW INSTANCE
Claim: {CLAIM}
Evidence 1: {E1}
Evidence 2: {E2}
Your answer:
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Figure 4: Three-shot prompt for Promptgase1ine (Shots
2-3 omitted) on the HealthVer and DRuiD datasets.

7,200 perturbations with 600 instances with 12 per-
turbations each (see App. D). and (iv) demonstrat-
ing through concise numerical summaries that both
CLUE-Span and CLUE-Span+Steering are signifi-
cantly more faithful than the Promptgaseline-

G.1 Interpreting rpp, and Arpy

The Entropy-CCT score is the point-biserial corre-
lation (Tate, 1954) between the absolute entropy
change |Au| and the binary mention flag m. Be-
cause it is mathematically identical to a Pearson r
computed between one continuous and one binary
variable, it obeys —1 < 7, < 1. When 7y, = 0,
it means the high- and low-impact perturbations
are mentioned equally often. If the two strata are
roughly balanced, every +0.01 in 7y, increases the
probability that a truly uncertainty-influential token
is mentioned by about one percentage point (pp).
A gain Arpy, therefore translates to an absolute im-
provement of ~ |Arp,| x 100,pp in mention rate.
For instance, moving from —0.08 to +0.06 is a
swing of 0.14, corresponding to, 14,pp.

G.2 Significance testing

Because the point-biserial is a Pearson correlation,
the familiar t—test applies:




You are a helpful assistant. Your tasks:
1. Determine the relationship between the claim and
the two evidence passages.
2. Explain your prediction’s uncertainty by
referring to the three span
interactions provided below (Claim-Evidence 1,
Claim-Evidence 2,
Evidence 1-Evidence 2) and describing how each
interaction’s relation
(agree, disagree, or unrelated) affects your
overall confidence.
Return format: [Prediction] [Explanation]

### SHOT 1

Input:
Claim: [...]
Evidence 1: [...]
Evidence 2: [...]
Span interactions:

1. 1’7 - ’[...1’” (C-E1) relation:

N I
[...]
2. >’[...17’ - >’[...1’" (C-E2) relation:
L...1
3. ’[...177" - 7’[...1’” (E1-E2) relation:
[...]
Output:

[Prediction: ...] [Explanation: ...]

### SHOT 2
### SHOT 3

% omitted for brevity
% omitted for brevity

### NEW INSTANCE

Claim: {CLAIM}

Evidence 1: {E1}

Evidence 2: {E2}

Span interactions (pre-filled):

1. "?{SPANT-A}’’ - ’’{SPAN1-B}’’ (C-E1)
relation: {REL1}

2. "’{SPAN2-A}’’ - ’’{SPAN2-B}’’ (C-E2)
relation: {REL2}

3. ’’{SPAN3-A}’’ - ’’{SPAN3-B}’’ (E1-E2)
relation: {REL3}

Your answer:

Figure 5: Three-shot prompt for CLUE-Span and
CLUE-Span+Steering (Shots 2-3 omitted) on the
HEALTHVER and DRUID datasets.

n—2

(12)

t = Tpp — 5
p 2
l—rpb

t~ t(nf2) under HQZ Tpb = 0. (13)

With n = 7,200 we have df = 7, 198; the crit-
ical two-sided values are |t| > 1.96 for p < 0.05
and || > 2.58 for p < 0.01.

G.3 Faithfulness with significance results

Table 3 shows the point-biserial coefficients rpp,
which is our faithfulness measurement for model
uncertainty(See, E.q.9), the associated ¢ statistics,
and two-sided p values for every model-method
pair. Values that meet the stricter p < 0.01 criterion
are highlighted in bold.

Across both datasets and all three backbones,
the Promptg,se1ine €xhibits negative correlations,
implying an non-faithful tendency to highlight low-
impact tokens within the generation NLEs, with
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mean = —0.094. The prompt-only variant of our
CLUE framework CLUE-Span neutralises this bias
and turns the average into +0.027; three of its six
coefficients are clear p < 0.01, indicating a modest
but significant improvement regarding faithfulness.

The full CLUE-Span+Steering variant pushes
the mean to +0.062 and achieves p < 0.01 in
four of six settings. Interpreting these numbers via
§G.1, the switch from —0.094 to +0.062 yields a
absolute increase of (0.062 — (—0.094)) x 100! ~
116, pp in the probability that a truly influential
token of uncertainty is named in the NLE, which is
easily noticeable in qualitative inspection.

The consistently positive, statistically signifi-
cant gains therefore substantiate the claim made
in the main text: CLUE produces markedly more
faithful NLEs towards model uncertainty than the
Promptg,seline, and the steer variant is particularly
beneficial for models that initially struggle with
uncertainty attribution.

H Human Evaluation Details

H.1 Participants and Materials

Participants We recruited N=12 participants
from Prolific.com (https://www.prolific.
com/), screened to be native English speakers
from Australia, Canada, Ireland, New Zealand, the
United Kingdom, and the United States. The study
was approved by our institution’s Research Ethics
Committee (reference number to be added after
anonymous review period).

Materials Explanations for 40 instances (20
from DRUID, 20 from HealthVer, selected at ran-
dom) were evaluated in total. Each participant
annotated explanations for 10 instances (5 labelled
‘True’, 5 labelled ‘False’), in addition to two at-
tention check instances which were used to screen
responses for quality. For each instance, partici-
pants were provided with a claim, two evidence
documents, model verdict, model numerical cer-
tainty, and three alternative explanations (see Fig-
ure 6 in H.6). Explanations were generated using
Qwen?2.5-14b-instruct (Qwen Team, 2024) based
on its automatic evaluation performance.

Procedure Participants read information about
the study (see H.3) and provided informed consent
(see H.4) before reading detailed task instructions
and completing a practice example of the task (see
H.5). The task took approximately 20 minutues,
and participants were paid £3 for their work.


https://www.prolific.com/
https://www.prolific.com/
https://www.prolific.com/

Model Method Tpb t D
HealthVer
Qwen?2.5-14B-Instruct Promptaaseline —0.028 —2.38 1.7 x 1072
CLUE-Span +0.006  +0.51 6.1 x 107!
CLUE-Span+Steering +0.033 +2.80 5.1 x107°2
OLMo-2-1124-13B-Instruct  Promptsaseline —0.100  —8.53 < 10715
CLUE-Span +0.005  40.42 6.7 x 107!
CLUE-Span+Steering +0.020 +1.70 9.0 x 1072
Gemma-2-9B-IT Promptaaseline —0.105  —8.96 <1071®
CLUE-Span +0.007  40.59 5.5 x 107!
CLUE-Span+Steering +0.021 +1.78 7.5 x 1072
DRUID
Qwen2.5-14B-Instruct Promptaaseline —0.080 —6.81 9.8x10°'?
CLUE-Span +0.089 4758 34x10° 14
CLUE-Span+Steering +0.102  +8.70 < 10718
OLMo-2-1124-13B-Instruct  Promptaaseline —0.130 —11.12 < 10715
CLUE-Span +0.014  +1.19 2.3x 107!
CLUE-Span+Steering +0.099 +8.44 < 10715
Gemma-2-9B-IT Promptaaseline —0.120 —10.26 <1071®
CLUE-Span +0.043  +365 2.6x10°4
CLUE-Span+Steering +0.098  +8.35 < 10718

Table 3: Detailed faithfulness evaluation results for baseline method Promptgase1ine, and two variants of our
CLUE framework CLUE-Span and CLUE-Span+Steering on Healthver and Druid dataset based on Qwen2.5-14B-
Instruct(Qwen Team (2024)), OLMo-2-1124-13B-Instruct(Team OLMo et al. (2024))and Gemma-2-9B-IT(Gemma
Team (2024)). Point-biserial correlation 7y, is our Entropy-CCT measurement(§5.1), along with ¢ statistic and
two-sided p-value for each model-method pair (n = 7,200, df = 7,198). Entries with p < 0.01 are bold.

H.2

Due to space limitations, we present the human
evaluation results in Table 4.

Human evaluation results

H.3 Human evaluation information screen

Thank you for volunteering to participate in this
study! Before you decide whether you wish to take
part, please read this information screen carefully.
1. What is the project about?

Our goal is to make sure that Al fact-checking
systems can explain the decisions they produce in
ways that are understandable and useful to people.
This survey is part of a project to help us understand
what kinds of explanations are helpful and why.

2. What does participation entail?

You are invited to help us explore what kinds of
explanations work better in fact-checking. In this
task you will see claims, an Al system’s prediction
about whether this claim is true or false and cor-
responding evidence used to make the prediction.
You will also see an explanation for why the Al
system is certain or uncertain about its prediction
to help you decide how to interpret the true/false
prediction. We ask you to evaluate the explanations
along 5 different dimensions (the detailed explana-
tion of the task is on the next page). All participants
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who complete the survey will receive a payment
of £3. There is no cost to you for participating.
You may refuse to participate or discontinue your
involvement at any time without penalty.

3. Source of funding

This project has received funding from <redacted
for anonymous review>

4. Consenting to participate in the project and
withdrawing from the research

You can consent to participating in this study by
ticking the box on the next page of the study. Partic-
ipation in the study is completely voluntary. Your
decision not to consent will have no adverse con-
sequences. Should you wish to withdraw during
the experiment you can simply quit the webpage.
All incomplete responses will be deleted. After
you have completed the study and submitted your
responses, it will no longer be possible to withdraw
from the study, as your data will not be identifiable
and able to linked to you.

5. Possible benefits and risks to participants

By participating in this study you will be contribut-
ing to research related to understanding what kinds
of explanations are useful to people who use or who
are impacted by automated fact checking systems.
This is a long-term research project, so the benefits



Promptgsse CLUE-S CLUE-SS
Helpfulness
Overall 2.025 1.892 1.867
DRUID 1.9 1.917 1.767
HealthVer 2.15 1.867 1.967
Consistency
Overall 1.875 1.783 1.817
DRUID 1.717 1.75 1.617
HealthVer 2.033 1.817 2.017
Non-redundancy
Overall 2.05 1.908 1.833
DRUID 1.983 1.983 1.683
HealthVer 2.117 1.833 1.983
Coverage
Overall 1.967 1.775 1.758
DRUID 1.767 1.75 1.617
HealthVer 2.167 1.8 1.9
Overall Quality
Overall 1.967 1.908 1.925
DRUID 1.9 1.9 1.817
HealthVer 2.033 1.917 2.033

Table 4: Mean Average Rank (MAR) for the five
human-evaluation criteria applied to explanations
from Qwen2.5-14B-Instruct on the HEALTHVER and
DRUID datasets (chosen for its high faithfulness;
see §5.5). Promptgaseiine, CLUE-Span (CLUE-S), and
CLUE-Span+Steering (CLUE-SS) are compared. Lower
MAR means a better (higher) average rank; the best
score in each row is boldfaced.

of the research may not be seen for several years. It
is not expected that taking part will cause any risk,
inconvenience or discomfort to you or others.

6. What personal data does the project process?
The project does not process any personal data.

7. Participants’ rights under the <data regula-
tion redacted for anonymous review>

As a participant in a research project, you have a
number of rights under <data regulation redacted
for anonymous review>. Your rights are specified
in the <institution redacted for anonymous review>
privacy policy. <link redacted for anonymous re-
view>

8. Person responsible for storing and processing
of data

<redacted for anonymous review>

Please click *Next’ to read more about consenting
to participate in the study.
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H.4 Human Evaluation Consent Form

We hereby request your consent for processing your
data. We do so in compliance with <data regulation
redacted for anonymous review>. See the informa-
tion sheet on the previous screen for more details
about the project and the processing of your data.

I confirm that I have read the information sheet
and that this forms the basis on which I consent
to the processing of my data by the project.

I hereby give my consent that <institution> may
register and process my data as part of the
<redacted for anonymous review> project.

I'understand that any data I provide will be anony-
mous and not identifiable to me.

I understand that my anonymous response data
will be retained by the study team.

I understand that after I submit my responses at
the end of the study, they cannot be destroyed,
withdrawn, or recalled, because they cannot be
linked with me.

I understand that there are no direct benefits to
me from participating in this study

I understand that anonymous data shared through
publications or presentations will be accessible to
researchers and members of the public anywhere
in the world, not just the <location redacted for
anonymous review>.

I give my consent that the anonymous data I pro-
vided may be stored in a database for new re-
search projects after the end of this project.

I give permission for my anonymous data to be
stored for possible future research related to the
current study without further consent being re-
quired.

I understand I will not be paid for any future use
of my data or products derived from it.

By checking this box, I confirm that I agree to the
above and consent to take part in this study.
O I consent

H.5 Evaluation Task Instructions

What do I have to do?
In this study you will see claims, an Al system’s
prediction about whether this claim is true or



false, how certain the system is about its label,
and the corresponding evidence used to make
the prediction. You will also see three different
explanations for why the Al system is certain or
uncertain about its prediction. These explanations
are intended help you decide how to interpret the
true/false prediction.

Your task is to evaluate the quality of the
explanations provided, not the credibility of the
claims and evidence.

What information will I be shown?
You will be shown examples of claims, evidence
document, verdicts and explanations.

¢ A claim is some statement about the world. It
may be true, false, or somewhere in between.

* Additional information is typically necessary to
verify the truthfulness of a claim - this is referred
to as evidence or evidence document. An evi-
dence document consists of one or several sen-
tences extracted from an external source for the
particular claim. In this study, you will see two
evidence documents that have been retrieved for
a claim. These evidence documents may or may
not agree with each other.

¢ Based on the available evidence, a verdict is
reached regarding whether a claim is true or false.

* Uncertainty often arises when evaluating the
claim and evidence to reach a verdict. Each ver-
dict is accompanied by a numerical uncertainty
score which represents the Al system’s confi-
dence that its predicted verdict is correct.

* You will see 3 alternative explanations for where
uncertainty arises with regard to the verdict. Note
that these explanations focus on the Al system’s
uncertainty, not the verdict itself.

* You are asked to evaluate the explanations ac-
cording to 5 different properties. The properties
are as follows:

Helpfulness. The explanation contains informa-
tion that is helpful for evaluating the claim and
the fact check.

Coverage. The explanation contains important,
salient information and does not miss any impor-
tant points that contribute to the fact check.

Non-redundancy. The explanation does not
contain any information that is redundant/repeat-
ed/not relevant to the claim and the fact check.
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Consistency. The explanation does not contain
any pieces of information that are contradictory
to the claim and the fact check.

Overall Quality. Rank the explanations by their
overall quality.

* Please rank the explanations in descending order.
For example, you should rank the explanation
that you think is most helpful as ‘1’, and the ex-
planation that you think is least helpful as ‘3’.
If two explanations appear almost identical, you
can assign them the same ranking, but as a gen-
eral rule, you should try rank them in hierarchical
order.

* The three explanations, Explanation A, Expla-
nation B, and Explanation C, will appear in a
different order throughout the study, so you may
need to pay some attention to which is which.

Important: Please only consider the provided
information (claim, evidence documents, and expla-
nations) when evaluating explanations. Sometimes
you will be familiar with the claim, but we ask you
to approach each claim as new, whether or not you
have seen it before. It doesn’t matter whether you
personally agree or disagree with the claim or evi-
dence — we are asking you to evaluate what the Al
produces: if you were to see this claim for the first
time, would you find the explanation provided by
the Al useful? On the next page, you will see an
example of the task.

H.6 Example of human evaluation set-up

Here is an example of what you will see during
the study. First, you will see a Claim, and two
pieces of Evidence, along with an Al system’s
predicted Verdict and the system’s Certainty that
its prediction is correct.

The parts of the claim and evidence that are
most important to the Al system’s certainty are
highlighted. Parts of the Claim are Red, parts of
Evidence 1 are Blue, and parts of Evidence 2 are
Green.

Underneath, you will see three alternative ex-
planations for the Al system’s certainty, Expla-
nation A, Explanation B, and Explanation C. The
parts of each explanation that refer to the claim and
evidence are colour coded in the same way (Claim
= Red, Evidence 1 = Blue, Evidence 3 = Green).



Claim: Ancient civilizations once inhabited Antarclica, as shown by the pyramids there, but the continent's
position and climate rapidly changed due to tectonics and pole shift’

Verdict: False Certainty: 44%

Evidence 1 Evidence 2

“Factually inaccurate: There s no evidence of ancient
The

“The rocky pyramicshaped featurs in Antarctica is a natural
civiizations of pyramids in Antarctica, The ci : .

hom’ or These peaks form

Iandform shown in recent social media videos is called a horn when three o fout intersecting glaciers carve out mountain
of ‘pyramidal peak and forms nalurally as glaciers carve (1. faces in differer a hor midal
rode) differont rock facos. Ther is also no evidence for a rapid shape. They are com

shiftin the ciimate or position of Antarctica on Earth; studies. other places on Earth.

show thal Antarcica siowly drfted over millons of years ihiough | Antarctica siowly dified to its current position over millons of
fectonic plate movements. On 20 March 2024, a video on yearsithiough tecionic (IEIS movement: nota sudden shift of
YouTube claimed thalAntarctica has pyramids from an ancient the poles or crust
', and that nl's su froze as it
ified on Earth’ ore is. no evidence of an ancient
n, nor any pyr Antarctica, contrary to claims
s

“pyramidal poaks,
peaks are well-documented in Antarctica and many olher
glacialed areas around the world, such as Switzerland and
Peru. Contrary o ofher claims made in these videos, Antarctica
did not experience a sudden change in climate dus to a sudden
Shiftin the poies or Antarctica’s position on Earth. Seientiic
evidence shows that Antarcica slowly drifted 10 its curent
position over millions of years through tectonic plate movement.”

Explanations

Explanation A Explanation B Explanation C

, Thersis o

stent wih the part of e
lons once inhabite
ity

The avi vidence 2, Tocky
pyramic.shapod eaturw in Antarica s:3 aura
{andiorm called  hom o pyramidal peak™

w © claim’ oo are

Both Evidence 1.and Evidence 2 stals that
“Aniarciica sionly drifted 1o s current position

over milions of

Figure 6: Example of human evaluation set-up

DRUID HealthVer
SetA SetB SetA SetB
Helpfulness 016 .079 .003 .013
Consistency 44 058 .017 .016
Non-redundancy .005 .084 .005 .019
Coverage 494 113 018  .027
Overall Quality 005  .158 .01 .002

Table 5: Inter-rater agreement (Kendall’s W) for human
evaluation

Your task is to read the claim, evidence, and
explanations, and rank each explanation based on
five properties.

Now, you can try this example below!

H.7 Inter-rater agreement

In line with similar NLE evaluations carried out
by previous studies (e.g., (Atanasova et al., 2020)),
interrater agreement (Kendall’s W (Kendall and
Smith, 1939)) was moderate to low (see Table 5),
which we attribute to the relative complexity of the
task and individual differences in how the informa-
tion was perceived.
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