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Abstract

Federated Learning is highly susceptible to back-
door and targeted attacks as participants can ma-
nipulate their data and models locally without
any oversight on whether they follow the correct
process. There are a number of server-side de-
fenses that mitigate the attacks by modifying or
rejecting local updates submitted by clients. How-
ever, we find that bursty adversarial patterns with
a high variance in the number of malicious clients
can circumvent the existing defenses. We pro-
pose a client-self defense, LeadFL, that is com-
bined with existing server-side defenses to thwart
backdoor and targeted attacks. The core idea of
LeadFL is a novel regularization term in local
model training such that the Hessian matrix of
local gradients is nullified. We provide the con-
vergence analysis of LeadFL and its robustness
guarantee in terms of certified radius. Our empiri-
cal evaluation shows that LeadFL is able to mit-
igate bursty adversarial patterns for both iid and
non-iid data distributions. It frequently reduces
the backdoor accuracy from more than 75% for
state-of-the-art defenses to less than 10% while
its impact on the main task accuracy is always
less than for other client-side defenses.

1. Introduction
Federated Learning (FL) realizes collaborative learning
without the need to share possibly sensitive raw data. Clients
submit intermediate local models to a server, the federator,
who aggregates these models. In order to achieve models
of high accuracy, high-quality local models and effective
aggregation algorithms are needed. Adversarial clients can
reduce the accuracy, either overall or on specific tasks, by
manipulating their local data and the submitted model. For
instance, malicious clients can launch backdoor attacks,
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which mislead the model to make inaccurate inferences on
images with certain triggers.

The attack severity is closely related to the number of mali-
cious clients that are chosen over time. Federated learning
proceeds in rounds. Usually, in each round, a certain num-
ber of clients are selected from a large pool. If the selection
is random and by the server, the number of malicious clients
chosen varies greatly even if the overall fraction of mali-
cious clients in the pool stays constant. Figure 1 displays
an example for 5 selected clients over 5 rounds. As a con-
sequence, in some rounds, the fraction, malicious clients
make up the majority of the clients, which allows them to
launch a strong attack.
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Figure 1: Bursty adversarial patterns with the number of
malicious clients chosen varying greatly between rounds

Defense mechanisms (Blanchard et al., 2017; Fung et al.,
2020; Muñoz-González et al., 2019; Xia et al., 2019;
Mhamdi et al., 2018; Ozdayi et al., 2021; Panda et al., 2022;
Yin et al., 2018; Nguyen et al., 2022; Rieger et al., 2022;
Gupta et al., 2022; Xu et al., 2022) have been designed to
mitigate the attacks. The majority of these attacks are server-
side, meaning the federator assigns updates that appear to
be malicious a low weight during aggregation or completely
excludes them from the aggregation. These defenses have
been shown to be effective against sophisticated attacks
when the number of malicious selected clients is constant
and low (Nguyen et al., 2022; Panda et al., 2022; Rieger
et al., 2022). In addition to demonstrating the empirical ef-
fectiveness, theoretical frameworks, such as certified radius
on models (Panda et al., 2022) and inference samples (Xie
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et al., 2021) provide theoretical guarantees of the defense
effectiveness.

In contrast, client-side defenses (Sun et al., 2021) have the
client modify the training process. The most notable client-
side defense is FL-WBC (Sun et al., 2021), which can deal
with bursty attack patterns. The authors find that a strong
bursty attack in one round has a lingering effect on the
model and the duration and severity of that effect depends
on the sparsity of the Hessian matrix of gradients: the higher
the sparsity, the longer the attack effect. FL-WBC perturbs
the Hessian matrix of gradients by adding random noise into
clients’ local models to reduce sparsity. Such uncalibrated
random noise unfortunately leads to the degradation in the
global model accuracy. Moreover, there is no theoretical
guarantee that FL-WBC is robust against backdoor attacks.

In this paper, we design LeadFL, a client-side defense that
enhances server-side defenses to deal with bursty adver-
sarial patterns while not affecting global model accuracy
significantly. The core of LeadFL is an optimization frame-
work that optimally perturbs the Hessian matrix of local
gradients and local models using a regularisation term such
that their Hessian matrix is close to the identity matrix.We
verify the effectiveness of the proposed regularized Hessian
optimization by deriving the convergence analysis and certi-
fied radius analysis, which quantifies the distances between
benign and poisoned models. Specifically, we make the
following technical contributions:

• We design LeadFL, a novel client-side defense based
on Hessian matrix optimization, to mitigate the impact
of bursty adversarial patterns for backdoor and targeted
attacks.

• We derive the convergence analysis and certified radius
analysis, proving LeadFL that is effective.

• We empirically combine LeadFLwith different server-
side defenses and find that the combination can effec-
tively defend against strong attacks while other com-
binations of server-side and client-side defenses fail.
We reduce the backdoor accuracy by up to 65% and
achieve a lower impact on main task accuracy than
other combined defenses.

2. Background and Prior Art
We first introduce necessary concepts and then analyze the
state-of-the-art defenses against model poisoning.

2.1. Model Poisoning Attacks in Federated Learning

Federated Learning In Federated Learning (FL) (Konečný
et al., 2016), K clients indexed by k = {1 · · ·K} are se-
lected from a total of N clients at global round t to train a
learning model by using the local data to minimize the loss
function L(θk) with model weights of θk). Specifically,

at its local round of i, the client k uses stochastic gradient
descent to update weights as follows:

θk
t,i+1 ← θk

t,i − ηt,i∇L
(
θk
t,i

)
where ηt,i is the learning rate and each local round is com-
puted on a mini-batch of data samples uniformly chosen
from client k’s local data set.

Periodically, namely, at every global round t, the federator
selects a subset of clients and updates the global model
weights. The most common aggregation method is Fe-
dAvg (McMahan et al., 2017), which averages the selected
local models with weights proportional to their sample sizes.

Poisoning Attacks Malicious clients may join the training
process. We assume them to have the similar computa-
tional capability as benign clients and they cannot access
the weights or data of other clients. Their objectives are to
reduce the model accuracy on certain tasks, termed targeted
attacks (Chen et al., 2017; Bhagoji et al., 2019), or to mis-
lead the global model to make wrong inferences on data sets
with certain triggers, termed backdoor attacks (Xie et al.,
2019; Bagdasaryan & Shmatikov, 2021), without degrad-
ing the overall model accuracy. To obtain such a poisoned
model, malicious clients train their local models on mali-
cious data to minimize the malicious loss functions LM as
follows:

θk
t,i+1 ← θk

t,i − ηt,i
[
π∇L

(
θk
t,i

)
+ (1− π)∇LM

(
θk
t,i

)]
Note that data samples in the malicious data set are assumed
have the same distribution as the benign training data. The
only difference is that for targeted attacks, the labels are
altered to belong to a certain target class whereas for back-
door attacks, data samples with certain patterns are inserted
into the dataset.

Model poisoning attacks are typically stealthy and difficult
to detect, as the malicious dataset is usually small and does
not affect the accuracy of the global model(Fung et al., 2020;
Steinhardt et al., 2017; Tolpegin et al., 2020; Bagdasaryan
& Shmatikov, 2021).

2.2. Prior Art on Defenses

Server-side defenses To defend against the adversarial par-
ties, the federator may employ (i) robust aggregation by
computing the median (Yin et al., 2018) of all or subset
of client updates, e.g., Trimmed-mean (Yin et al., 2018),
or (ii) filtering by removing outliers in the set of updates
based on pair-wise distance, e.g., MultiKrum (Blanchard
et al., 2017). Bulyan (Mhamdi et al., 2018) combines both
approaches by first filtering the outliners using MultiKrum
and then applying robust aggregation using Trimmed Mean.
These defenses are designed for general adversarial attacks
where the number of malicious clients is strictly less than
the benign clients.
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Figure 2: The lingering impact of bursty backdoor attack on
federated learning for FashionMNIST.

Defenses for poisonous model attacks. Recognizing the
increasing threat from poisoning attacks, the prior art de-
signs attack-specific defenses by bounding the norms of
updates or adding noise. SparseFed (Panda et al., 2022)
mitigates model poisoning attacks in FL by only updating
the most relevant weights of the aggregated models. Deep-
Sight (Rieger et al., 2022) mitigates backdoor attacks in
FL through clustering the last layer of deep models to fil-
ter outliers. CRFL (Xie et al., 2021) exploits clipping and
smoothing methods to provide certified robustness against
backdoor attacks.

Aforementioned defenses mainly take place at the federa-
tor, under an implicit assumption that the number of ma-
licious clients selected in each global round is lower than
the number of benign clients. To the best of our knowledge,
FL-WBC (Sun et al., 2021) and Local Differential Privacy
(LDP) (Naseri et al., 2022) are the only client-side defenses
against model poisoning attacks in federated learning. In
LDP, benign clients add noise to updates before sending
updates to the server.

3. Hessian Matrix
We first demonstrate the long-term impact of bursty adver-
sarial patterns on state-of-the-art defenses that we already
discussed in Section 2.2. Details about the framework used
can be found in Section 5. Using a total of 100 clients with
25 of them being malicious, we selected 5 clients per round.
Fig. 2a shows the number of malicious clients selected. The
learning task is image classification on FashionMNIST and
the malicious clients execute a 9-pixel attack (Bagdasaryan
& Shmatikov, 2021). As displayed in Figure 2b, none of the
defenses can defend against the attack, i.e., the final back-
door accuracy is around 90%, though Bulyan and Multikrum
are able to filter out the malicious updates occasionally. This
example highlights the ineffectiveness of existing defenses
against bursty adversarial patterns. While the attack only
directly affects some rounds, the effect lingers.

Attack Effect and Hessian Matrix The effect of attacks
taking place at round t, δt, can be formalized (Sun et al.,
2021) as follows δt ≜ θt − θM

t where θt represents the
global model weights at round t without the presence of
malicious updates and θM

t is the model weights from the
malicious clients.

Based on (Sun et al., 2021), the estimated attack effect, δ̂t,
can be written as the function of Hessian matrix

δ̂t =
N

K

[∑
k∈St

pk
I−1∏
i=0

(
I − ηtH

k
t,i

)]
δ̂t−1, (1)

where pk is aggregation weight for client k, Hk
t,i ≜

∇2L
(
θk
t,i

)
is the Hessian matrix at local iteration i of global

round t and I is the identify matrix.

The Hessian matrix Hk
t,i is observed to be highly sparse

during the training process, for both benign and malicious
clients. Therefore, the weights of δ̂t−1 in Eq. 1 are close to∑

k∈St p
k
∏I−1

i=0 (I). As a consequence, δt causes notable
changes and due to the relation between δ̂t−1 and δ̂t, the
effect lingers.

Insight To mitigate the effect of poisoned weights, benign
clients can perturb the Hessian matrix such that that co-
efficient of δt−1 is minimized, i.e.,

∏I−1
i=0 (I). As noted

earlier, the Hessian matrix here is sparse, FL-WBC (Sun
et al., 2021) proposes to add random noise to the benign
clients’ model weights such that their Hessian matrix is
no longer sparse and the impact of δt−1 is thus reduced.
However, as the noise is randomly added, the coefficient
may not necessarily be reduced, unfortunately enhance the
attacking effects, and further degrade the model accuracy,
shown by extensive experiments in Appendix C. We are thus
motivated to find alternatives to perturb the Hessian Matrix
more effectively to reduce coefficients without degrading
the model’s accuracy.

4. LeadFL
In this section, we describe LeadFL, a novel client-side de-
fense and can be agilely combined with any existing server-
side defense.

4.1. Algorithm Design

The core idea of LeadFL is to mitigate the attack effect by
minimizing the coefficient term

(
I − ηtH

k
t,i

)
in Equation 1.

Essentially, we aim to add perturbation to the Hessian matrix
such that this coefficient term vanishes. We show that this
is equivalent to adding the same amount of perturbation
in model updates θk

t,i+1, which motivates our proposed
novel regularization term. We first summarize the proposed
regularized model update protocol before conducting an
analysis:
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θ̃k
t,i+1 ← θk

t,i − ηt∇L
(
θk
t,i

)
(2)

θk
t,i+1 ← θ̃k

t,i+1 − ηtα clip
(
∇
(
I − ηtH̃

k
t,i

)
, q
)

(3)

where θ̃k
t,i+1 is the intermediate model weights in local iter-

ation t+ 1 of client k. H̃t,i is the estimation of the Hessian
matrix of the local model before adding the regularization
term in this local iteration, α is a hyper-parameter to control
the magnitude of the regularization term, and clip is the
operation of bounding the regularization term to a threshold
q to ensure convergence.

Hessian Matrix Estimation As the Hessian matrix is the
second-order derivative of the loss function, we resort to
the estimation of the Hessian matrix proposed in (LeCun
et al., 1989). We only focus on the diagonal terms due to the
intractability of estimating non-diagonal terms. Specifically,
the diagonal elements in Hk

t,i can be estimated from the
change of the gradient between local iteration i and i+ 1:
∇L

(
θk
t,i+1

)
− ∇L

(
θk
t,i

)
. In this term, the change of the

gradient can be approximated by the change of the model
parameters during the local iterations, i.e.,

Ĥk
t,i =

(
∆θk

t,i+1 −∆θk
t,i

)
/ηt.

where ∆θk
t,i+1 = θk

t,i+1 − θk
t,i+1 and ∆θk

t,i = θk
t,i − θk

t,i.

The estimation of the Hessian Matrix before adding the reg-
ularization term in Equation 3 can be rewritten as a function
of model parameter changes.

H̃k
t,i =

(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

)
/ηt (4)

Adding Perturbation Our objective now is to perturb the
estimated Hessian matrix such that the coefficient term(
I − ηtH

k
t,i

)
is minimized, i.e.,

Ĥk
t,i ← argmin

H̃k
t,i

(
I − ηtH̃

k
t,i

)
Combining it with Equation 4, optimizing H̃ is then equiv-
alent to

θk
t,i+1 ← argminθ̃k

t,i+1

(
I −

(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

))
(5)

Gradient Clipping To ensure that the model can converge
after the regularization term is added, the gradients are
clipped with the threshold q during the local training. The
clipping function is defined as:

clip
(
∇
(
I− ηt,iH̃

k
t,i

)
, q
)
r,c

=
∇
(
I− ηt,iH̃

k
t,i

)
r,c
,

∣∣∣∣∇(I− ηt,iH̃
k
t,i

)
r,c

∣∣∣∣ ≤ q

q,

∣∣∣∣∇(I− ηt,iH̃
k
t,i

)
r,c

∣∣∣∣ > q

Algorithm 1 LeadFL and robust aggregation

Input: number of global rounds T , local learning rate
ηt, regularization rate α, clipping bound q, # of clients
selected in a round K
for communication round t = 0, 1, · · · , T − 1 do

Server randomly chooses K clients
parallel on clients k = 1, 2, · · · ,K do

Update model weights as global weights from the
last round θk

t ← θt;
for local iteration i = 0, 1, ... do

Compute gradients and update weights
θ̃k
t,i+1 ← θk

t,i − ηt∇L
(
θk
t,i

)
;

Estimate Hessian matrix
H̃k

t,i =
(
θ̃k
t,i+1 − θk

t,i −∆θk
t,i

)
/ηt

Compute and Clip gradients of the regularization
term Rk

t,i = clip
(
∇

(
I − ηtH̃

k
t,i

)
, q
)

;

Update weights θk
t,i+1 ← θ̃k

t,i+1 − ηtαR
k
t,i;

end for
Compute updates uk

t = θk
t − θt;

end parallel
Aggregate updates using server-side defense:
ut = Aggregation

(
{uk

t }Kk=1

)
Update θt+1 ← θt + ut

end for
Output: {θt}T−1

t=0

where r and c are the indexes of rows and columns of the
Matrix.

Algorithm To compute the model updates as shown in Equa-
tions 2 and 3, we adopt a two-step backpropagation process.
We first allow the losses to backpropagate and then esti-
mate the diagonal values of the Hessian matrix. Our second
step is to use the estimated Hessian Matrix to compute the
proposed regularization term and to allow the regulariza-
tion loss to backpropagate. We summarize the key steps of
LeadFL in Algorithm 1 and includes option of combining
it with a server-side defense.

4.2. Convergence Analysis

In this part, we show that LeadFL converges under the
same assumptions as other methods when there are no mali-
cious clients attacking the FL system.We summarize these
common assumptions in Appendix A.1.

In our defense, we add a new backpropagation process to
perturb the Hessian matrix as shown in Equation 3. This
extra backpropagation can be seen as a modification of
gradients ∇L:

∇L′ (θk
t,i

)
= ∇L

(
θk
t,i

)
+clip

(
∇

(
I − ηtH̃

k
t,i

)
, q
)

(6)

4



LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Based on Assumption A.1 to A.5, we can derive the conver-
gence guarantee of our defense on FedAvg as follows.

Theorem 4.1 (Convergence Guarantee). Let Assump-
tions A.1 to A.5 hold and l, µ, σk, G,K,N,Γ,L∗ be as
defined therein and in Definition A.6 . Choose κ = l

µ ,
γ = max{8κ,E} and the learning rate ηt =

2
µ(γ+t) . Then

we have the following bound for LeadFL:

E [L (θT )]− L∗ ≤ κ

γ + T − 1

(
2(B + C)

µ
+

µγ

2
E ∥θ0 − θ∗∥2

)
where

C =
N −K

N − 1

4

K
E2(d2q2 +G2)

B =

N∑
k=1

p2k(d
2q2 + σ2

k) + 6lΓ + 8(E − 1)2(d2q2 +G2)

The proof is shown in Appendix A.2

4.3. Robustness Analysis

In this subsection, we use the certified radius framework
proposed by (Panda et al., 2022) to analyze the robustness of
LeadFL. We consider two types of threat models: periodic
poisoned model submissions and bursty poisoned model
submissions. Due to the space limitation, we provide the
definitions and assumptions in Appendix A.1.

The certified radius is the upper bound on the distance be-
tween a poisoned model and a benign model. From (Xie
et al., 2021), minimizing the certified radius improves ro-
bustness because close models are likely to have the same
predictions. Based on the aforementioned assumptions and
definitions, the certified radius for general protocols is pro-
posed by (Panda et al., 2022).

Theorem 4.2. Let f be a c-coordinatewise-Lipschitz pro-
tocol on a dataset D. Then R(ρ) = Λ(T )(1 + dc)Λ(T )ρ
is a certified radius for f , where Λ(t) is the cumulative
learning rate Λ(t) =

∑T−1
t=0 ηt, d is the dimension of model

parameters.

4.3.1. SCENARIO I

Scenario I assumes a simplified model of bursty adversarial
patterns, namely the most extreme pattern where periodi-
cally, a large number of clients is malicious and there are no
malicious clients in the other rounds. Concretely, malicious
clients submit poisoned updates in global round TA. After-
wards, there are no malicious updates submitted between
round TA and round T − 1.

Theorem 4.3 (Certified Radius in Scenario I). Let Assump-
tions A.9 hold and TA,c be as defined therein. We assume

that LeadFL with FedAv aggregation is used. The certified
radius satisfies:

R(ρ) =

(
N

K

)T−TA

∣∣∣∣∣
T∏

t=TA

[∑
k∈St

pk
I−1∏
i=0

(
I − ηtH

k
t,i

)]∣∣∣∣∣
·
TA−1∑
t=0

ηt(1 + dc)
∑TA−1

t=0 ηtρ

The proof is in Appendix A.3. As LeadFL aims to min-
imize

(
I − ηtH

k
t,i

)
in the local training as by Equation 6.

Hence, LeadFL achieves a low certified radius.

4.3.2. SCENARIO II

Here, we consider a more general threat model, the number
of malicious clients varies between rounds with resulting
bursty adversarial patterns. Concretely, we assume that the
clients are selected randomly. We furthermore assume the
presence of a server-side defense that filters out updates.

The probability of a server-side defense filtering out all mali-
cious updates is correlated to the number of malicious clients
selected in a communication round. For an attack atk, we
use gatk(·) to represent the above correlation. The probabil-
ity of a server-side defense filtering out all malicious updates
in global round t can be presented as ϕt

atk = gatk(K
t
m),

where Kt
m is the number of malicious clients selected in

round t. We then can derive the certified radius of LeadFL
combined with any given server-side defense under bursty
adversarial patterns as:

Theorem 4.4 (Certified Radius in Scenario II). Let Assump-
tion A.9 hold. The certified radius of the threat model is

R(ρ) = (1 + dc)

∑
t∈ΦT

ηt

ρ·∣∣∣∣∣∣
∏
t∈ΓT

 N

|S∗
t |

∑
k∈S∗

t

pk
I−1∏
i=0

(
I − ηtH

k
t,i

)∣∣∣∣∣∣+ |ΦT |
∑
t∈ΦT

ηt


where ΦT is the set of communication rounds that server-
side defenses cannot filter out all malicious updates. ΓT is
the set of communication rounds that server-side defenses
filter out all malicious updates. S∗

t is a set of clients whose
updates are not filtered out by the server-side defense in
round t. |ΦT | and |S∗

t | are the cardinality of the set ΦT and
S∗
t , where E [|ΦT |] =

∑T−1
t=0 gatk(K

t
m).

Note that the value |ΦT | depends entirely on the server-side
defense. In the absence of a server-side defense, the certified
radius is hence large, so we need the server-side defense to
lower it.
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Table 1: Comparison of defenses under 9-pixel pattern backdoor attack on IID and non-IID FashionMNIST dataset.

Distribution IID Non-IID
Server-side Defense SparseFed Multi-Krum Bulyan SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 85.9 89.3 87.0 87.2 87.9 89.2 86.0 86.0 86.3 84.9 85.6 76.7 77.2 79.1 77.4 73.4 71.7 74.0
BA Avg 97.9 82.6 76.0 77.5 32.9 78.8 74.1 70.6 21.6 99.8 88.7 80.4 74.0 39.5 92.5 71.9 73.7 32.3
BA Final 99.9 93.2 79.6 80.6 0.0 90.6 62.2 86.5 0.3 99.9 93.3 86.7 70.3 1.2 88.6 94.7 69.0 2.0

Table 2: Comparison of defenses under 9-pixel pattern backdoor attack on IID and non-IID CIFAR10 dataset.

Distribution IID Non-IID
Server-side Defense SparseFed Multi-Krum Bulyan SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 50.9 76.3 48.0 43.3 56.9 76.2 41.5 42.2 54.8 55.3 70.7 43.2 42.9 55.3 61.7 36.7 36.2 51.4
BA Avg 95.8 77.5 53.1 56.9 35.6 79.1 46.7 51.3 43.9 45.2 85.8 55.4 54.4 45.2 87.5 48.8 48.1 46.8
BA Final 98.5 80.5 43.8 40.5 25.6 87.0 23.4 35.5 21.4 34.4 96.2 52.4 35.4 34.4 95.2 29.8 47.7 27.3

5. Evaluation
In this section, we demonstrate the effectiveness of LeadFL
for multiple server-side defenses. We consider heteroge-
neous data distributions and compare against state-of-the-art
client-side defense mechanisms. Furthermore, our ablation
study confirms that a combination of server-side and client-
side defenses succeeds in mitigating attacks that are highly
effective in the presence of either of the two.

We perform all experiments using PyTorch’s deep learning
framework (Paszke et al., 2019) in combination with the
FLTK Testbed 1. We reimplemented FL-WBC, LDP, and the
targeted attacks based on the source code of FL-WBC 2 to
compare them with our defense. Additionally, we reimple-
ment SparseFed and backdoor attacks based on the source
code provided by (Panda et al., 2022) 3 and (Bagdasaryan &
Shmatikov, 2021) 4, respectively. Our code can be found at
https://github.com/CarlosChu-c/LeadFL.

5.1. Evaluation Metrics

Our goal is to achieve high accuracy for the main task but
mitigate the backdoor. Thus, we primarily focus on the
following three metrics:

• Main Task Accuracy (MA): The main task accuracy
is the fraction of correctly classified samples of the
model on test data without the trigger. As other works,
we consider the maximum accuracy achieved during
training.

• Backdoor Accuracy (BA): The backdoor accuracy
qualifies how successful the attacker is in integrating
a backdoor into the model. We measure backdoor
accuracy as the percentage of samples with the trigger
that are classified as intended by the attacker. We found

1https://github.com/JMGaljaard/
fltk-testbed

2https://github.com/jeremy313/FL-WBC
3https://github.com/sparsefed/sparsefed
4https://github.com/ebagdasa/backdoors101

that the backdoor accuracy does not converge during
our experiments, hence we consider both the average
and the final backdoor accuracy. The final backdoor
accuracy is the one of the model that is later used but it
does not give a full picture due to the high variance in
backdoor accuracy over rounds, which is why we also
include the average backdoor accuracy.

• Mitigation rounds: Our attacks do not have the same
strength in every round due to the fact that the number
of malicious clients selected varies between rounds.
When a lot of malicious clients are involved, the back-
door accuracy spikes and then decreases again. After
a strong attack that achieves a temporary backdoor ac-
curacy of more than 50%, we define the mitigation
rounds as the number of communication rounds until
the backdoor accuracy drops below 50%.

5.2. Evaluation Setup

In each simulation run, we have a set of clients. During
each round, the server selects clients. The clients train and
apply the client-side defense during training. Afterwards,
the server aggregates the local updates submitted by the
clients, applying the server-side defense during aggregation.

Client Selection and Rounds There are 100 clients in total,
of which 25 are malicious. There are 80 global rounds and
10 local rounds. The server selects 10 clients per global
round. For most experiments, the selection is random but
consistent over experiments, i.e., for two experiments, the
clients selected in round t are the same to enable comparison
between the different settings. Figure 2a displays the num-
ber of malicious clients per round. In order to ensure that our
results are not an artifact of this one specific client selection,
we present results for other selections in the Appendix D.1

In previous work, periodic attacks alternating between a
large number of malicious selected clients and no malicious
selected clients have been evaluated. In addition to random
selecting, we hence also use a selection corresponding to
such a periodic attack: For every 10 global rounds, 6 of

6

https://github.com/CarlosChu-c/LeadFL
https://github.com/JMGaljaard/fltk-testbed
https://github.com/JMGaljaard/fltk-testbed
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https://github.com/ebagdasa/backdoors101


LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Table 3: Comparison of defenses under 9-pixel pattern backdoor attack on IID CIFAR100 dataset.

Distribution IID
Server-side Defense SparseFed Multi-Krum Bulyan
Client-side Defense None None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 32.3 38.4 28.3 28.8 30.6 37.4 25.6 25.8 27.2
BA Avg 85.1 58.0 57.3 53.8 29.3 56.1 49.3 48.3 29.0
BA Final 68.3 52.2 34.5 29.2 6.4 32.8 21.7 20.4 3.5
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Figure 3: Comparison of 9-pixel back door attack on FashionMNIST and CIFAR10 when the attack is periodic.

10 clients are malicious in the first two rounds while the
remaining 8 rounds only have honest clients.

Datasets and Model Architecture We conduct experiments
on FashionMNIST, CIFAR10 and CIFAR100, which are
both benchmark tasks in image classification. For Fashion-
MNIST, each of the 100 clients receives 600 images out of
60.000. For CIFAR10 and CIFAR100, each client gets 500
out of 50.000.

In the IID setting, samples are uniformly distributed to
clients. In the non-IID setting, we deploy the limited la-
bel strategy (McMahan et al., 2017) that is also used for the
evaluation of FL-WBC in FashionMNIST and CIFAR10:
Of the 10 classes in each of the two datasets, each client is
assigned 5 random classes. They are then assigned an equal
number of randomly selected samples from each of their
classes. The clients’ datasets are selected independently.

We adopt the same model architectures as FL-WBC (Sun
et al., 2021) on FahionMNIST and CIFAR10. On Fash-
ionMNIST, we employ two convolutional layers and one
fully-connected layer. Our CIFAR10 model consists of two
convolutional layers and three fully-connected layers. And
on CIFAR100, we employ ResNet9 (He et al., 2016), which
is a more complicated model. The detail of the model archi-
tecture and hyperparameters can be found in Appendix B.

Attacks and Defenses For attacks, we evaluate both state-
of-the-art backdoor and targeted attacks. In terms of back-
door attacks, we use the 9-pixel pattern backdoor attacks
and the single-pixel backdoor attacks from (Bagdasaryan
& Shmatikov, 2021). As a targeted attack, we evaluate the
single-image targeted attacks from (Bhagoji et al., 2019):
All malicious clients add one incorrectly classified image
to their otherwise clean dataset; it is the same image for all

clients. We use the settings that achieved the best results in
the original papers.

Here, we use Multi-Krum (Blanchard et al., 2017) and
Bulyan (Mhamdi et al., 2018) as server-side defenses. We
also compare SparseFed (Panda et al., 2022), one of the state-
of-the-art defenses against poisoning attacks in FL. More-
over, we considered CMA (Yin et al., 2018) and CTMA (Yin
et al., 2018) but they had very little effect in comparison
to the other defenses, so we only include the correspond-
ing results in the Appendix D.3.Note that our protocol can
enhance any other server-side defense as well.

For client-side defenses, we choose FL-WBC and LDP as
the baseline. For these two defenses, we apply Laplace
noise with mean = 0 and std = 0.2 as in the original
papers. For our defense, we set the clipping norm q = 0.2.
For the regularization term, we use hyperparameter tuning to
choose α = 0.4 for FashionMNIST, α = 0.25 for CIFAR10,
and α = 0.15 for CIFAR100.

5.3. Results

Table 1, 2 and 3 show the results for the 9-pixel backdoor
attack. In our threat model, SparseFed presents limited
effectiveness in defending against poisoning attacks, achiev-
ing higher Backdoor accuracy than Multi-Krum and Bulyan
across all three datasets. And it can be seen that our defense
achieves the highest main task accuracy and lowest backdoor
accuracy. In comparison to the case without a client-side
defense, the main task accuracy is reduced by less than 10%
whereas the final backdoor accuracy is 0 or close to 0 for
FashionMNIST. For CIFAR10, the main task accuracy of
our defense is between 50% and 60% and the final backdoor
accuracy is between 20% and 35%. The average backdoor
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Figure 4: Comparison of 9-pixel pattern backdoor accuracy on FashionMNIST and CIFAR10. The server-side defense here
is Multi-Krum. Black hollow circles indicate that the system is attacked very strongly in that round.
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Figure 5: Various defenses’ tradeoffs between main task accuracy and mitigation rounds on FashionMNIST and CIFAR10.

accuracy for our defense is higher than the final accuracy but
always below 50% and lower than the backdoor accuracy
of the state-of-the-art defenses. For CIFAR100, the main
task accuracy is about 30% and the final backdoor accuracy
is only between 3% and 7%. Indeed, without a client-side
defense, the final and average backdoor accuracy is always
above 75% in FashionMNIST and CIFAR10, and 55% in
CIFAR100, meaning that the server-side defense on its own
is ineffective. The other client-side defenses are consider-
ably less effective than ours: For FashionMNIST, they have
a final and average backdoor accuracy of above 69%, a stark
contrast to our defense, especially for the final backdoor
accuracy. For CIFAR10, the difference is less pronounced,
with backdoor accuracies that are only about 10% higher
than for our defense. However, the main task accuracy of
the other defenses falls below 50% for CIFAR10. For CI-
FAR100, although the main task accuracy of our defense is
only about 2% higher than other client-side defenses, the
average backdoor accuracy and final backdoor accuracy of
our defense is about 20% lower than other defenses.

While our defense is hence an improvement over existing de-
fenses, there are notable differences between settings. Non-
IID distributions of data reduce the main task accuracy and
increase the backdoor accuracy for all defenses. The result
is unsurprising: The more uniform benign clients are, the
easier it is to detect malicious clients whose model updates
differ. However, if client data and hence models already
differ between benign clients, it becomes more difficult to
identify and mitigate malicious behavior.

In order to analyze how the backdoor accuracy is affected by
the number of attackers, we consider the backdoor accuracy
over the duration of the experiment. Figure 4 displays the
backdoor accuracy. We can see that whenever the number of
malicious clients exceeds the number of benign clients, i.e.,
if there are at least 6 malicious clients selected in a round,
the backdoor is successfully embedded into the model, as
shown by a high backdoor accuracy of close to 100%. In
subsequent rounds with a lower amount of malicious clients,
the backdoor accuracy decreases. Our defense exhibits a
faster decrease in backdoor accuracy than the other defenses,
which results in the lower final and average backdoor ac-
curacy seen above. The same pattern is observed for both
datasets and levels of data heterogeneity, although the speed
of recovery is faster for iid data distributions.

We compare this behavior for random client selection with
the periodic attack described in Section 5.2. We observe
the same pattern, displayed in Figure 3, as when selecting
clients randomly, only that it is now periodic. For the peri-
odic setting, we derive the number of mitigation rounds, as
defined in Section 5.1. As the delay between two attacks is
always the same and the attacks are of the same severity, the
periodic setting enables use to compare recovery in a fair
manner. We can then analyze whether there is a trade-off
between mitigation rounds, i.e., strength of the defense, and
main task accuracy.

Concretely, for each experiment and each attack, we com-
pute the number of mitigation rounds. If the backdoor ac-
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curacy does not recover during the 8 rounds between two
attacks, we use ≥ 8 for the number of mitigation rounds.
For a defense d, we then compute MAr,d, the average main
task accuracy over all experiments for d that have r miti-
gation rounds5. Figure 5 shows the results. Our defense
achieves a better trade-off between main task accuracy and
recovery, i.e., for the same number of mitigation rounds, it
has a higher main task accuracy. An exception is the case
≥ 8 with no client-side defense having a higher main task
accuracy, which makes sense as if our defense does not lead
to recovery, not applying a defense is the better option. How-
ever, usually our defense successfully mitigates the attack
and if it does so, it has a higher main task accuracy than
other defenses.

All the presented results are for the 9-pixel attack. The
results for the 1-pixel attack and the single-image targeted
attack are similar (see Appendix D.4 and D.5).

6. Conclusion
To defend against model poisoning attacks with bursty adver-
sarial patterns, we propose a novel client-side self defense,
LeadFL, which perturbs the local model updates by adding
a novel regularization term based on the Hessian matrix
of the gradients. Thanks to the optimized regularization,
LeadFL effectively thwarts backdoor and targeted attacks
with a low degradation of the main task accuracy, proven
theoretically and empirically. Evaluated on FashionMNIST,
CIFAR10 and CIFAR100, LeadFL combined with a server-
side defense can reduce the backdoor accuracy by up to 65
% in comparison only using a server-side defense.
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Nomenclature
α weights of regularization term in loss function

θ model weights

θ∗ poisoned model weights

H Hessian Matrix

I Attack Effect on Parameter

I Identity Matrix

M mask matrix in FL-WBC

u model updates

δ Attack Effect on Parameter

ℓ parameter in smoothness assumption

η learning rate

ΓT Set of communication rounds that server-side defenses filter out all malicious updates before round T

δ̂ estimate of Attack Effect on Parameter

S set of clients selected in a round

G Gradient oracle

L loss function of benign clients

LM loss function of malicious clients

ΦT Set of communication rounds that server-side defenses cannot filter out all malicious updates before round T

π portion of benign loss in malicious clients

ρ Bound of poisoning Attacks

σ bound of variance of stochastic gradients

c index of columns in the Matrix

G bound of norm of stochastic gradients

I total number of local iterations

i local iteration index

K total number of clients selected in a round

k index of clients selected in a round

Km the number of malicious clients selected in a round

N number of clients in a system

Nm number of malicious clients in a system

p Weights in aggregation

pX probability mass function of the number of malicious clients selected in a round

q clipping bounds in our method

r index of rows in the Matrix

T total number of communication rounds

t communication round index

11



LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

A. Proofs
A.1. Assumptions and Definitions

Assumption A.1 (Smoothness). L is ℓ-smooth if ∀x,y ∈ Rd

L(x)− L(y) + (x− y)TL(x) ≤ ℓ

2
∥x− y∥22

Assumption A.2 (Convex). L is µ-strongly convex if ∀x,y ∈ Rd,

L(x)− L(y) + (x− y)T∇L(y) ≥ µ

2
∥x− y∥22

Assumption A.3 (Bound of Variance). Let ξkt be sampled from the k-th device’s local data uniformly at random. The
variance of stochastic gradients in each device is bounded: E

∥∥∇Lk
(
θk
t , ξ

k
t

)
−∇Lk

(
θk
t

)∥∥2 ≤ σ2
k for k = 1, · · · , N .

Assumption A.4 (Bound of Norm). The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E
∥∥∇Lk

(
θk
t,i, ξ

k
t,i

)∥∥2 ≤ G2 for all k = 1, . . . , N, i = 0, . . . , I − 1 and t = 0, . . . , T − 1

In our FL system, K clients are randomly selected among N clients each round. Then we adapt the following assumption
from (Li et al., 2019).

Assumption A.5 (Selection of Clients). Assume St contains a subset of K indices uniformly sampled from [N ] without
replacement. Assume the data is balanced in the sense that p1 = · · · = pN = 1

N . The aggregation step of FedAvg performs
θt ←− N

K

∑
k∈St

pkθ
k
t .

Definition A.6 (Loss of clients). Denote L∗ and L∗
k as the minimum value of L and Lk, where L is the loss of a model

trained on the combination of datasets from all the clients and Lk is the loss of a model trained on the dataset of client k.
We can set Γ = L∗ −∑N

k=1 pkL∗
k which can quantify the degree of noniid. If the data are iid, then Γ goes to zero as the

number of samples grows. If the data are noniid, then Γ is nonzero, and its magnitude reflects the heterogeneity of the data
distribution.

Definition A.7 (Poisoning Attack). For a protocol f = (G,A, η) we define the set of poisoned protocols F (ρ) to be all
protocols f∗ = (G∗,A, η) that are exactly the same as f except that the gradient oracle G∗ is a ρ-corrupted version of G.
That is, for any round t and any model θt and any dataset D we have we have G∗ (θt, D) = G (θt, D) + ϵ for some ϵ with
∥ϵ∥1 ≤ ρ

Definition A.8 (Certified Radius). Let f be a protocol and f∗ ∈ F (ρ) be a poisoned version of the same protocol. Let θT , θ∗T
be the benign and poisoned final outputs of the above protocols. We call R a certified radius for f if ∀f∗ ∈ F (ρ);R(ρ) ≥
|θT − θ∗T |1
Assumption A.9 (Coordinate-wise Lipschitz). The protocol f(G,A, η) is c-coordinate-wise Lipschitz if for any round
t ∈ [T ], models θt, θ∗t ∈M, and a dataset D we have that the outputs of the gradient oracle on any coordinate cannot drift
too much farther apart. Specifically, for any coordinate index i ∈ [d]

|G (θ∗t , D) [i]− G (θt, D) [i]| ≤ c · |θ∗t − θt|1

A.2. Proof of Theorem 4.1

Theorem 4.1 (Convergence Guarantee). Let Assumptions A.1 to A.5 hold and l, µ, σk, G,K,N,Γ,L∗ be as defined therein
and in Definition A.6 . Choose κ = l

µ , γ = max{8κ,E} and the learning rate ηt =
2

µ(γ+t) . Then we have the following
bound for LeadFL:

E [L (θT )]− L∗ ≤ κ

γ + T − 1

(
2(B + C)

µ
+

µγ

2
E ∥θ0 − θ∗∥2

)
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where
C =

N −K

N − 1

4

K
E2(d2q2 +G2)

B =

N∑
k=1

p2k(d
2q2 + σ2

k) + 6lΓ + 8(E − 1)2(d2q2 +G2)

Proof : The expected distance between the gradients before and after regularization can be bounded.

E
∥∥∇L′

k

(
θk
t,i, ξ

k
t,i

)
−∇Lk

(
θk
t,i, ξ

k
t,i

)∥∥2
2

=E
∥∥∥clip(∇(

I− ηtĤ
k
t,i

)
, q
)∥∥∥2

2

≤E∥q∥22 = d2q2

(7)

Using the bounds above and Assumption A.3, we can derive new bounds for the variance of modified gradients
E
∥∥∇L′

k

(
θk
t,i, ξ

k
t,i

)
−∇Lk

(
θk
t,i

)∥∥2
E
∥∥∇L′

k
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where we use the triangle inequality.

Similarly, we can also derive bounds the expected squared norm of modified gradients using Assumption A.4.
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Applying the bounds for the variance and the expected squared norm of modified gradients after applying LeadFL, we can
derive our convergence guarantee from Theorem 3 in (Li et al., 2019) by replacing these bounds.

A.3. Proof of Theorem 4.3

Theorem 4.3 (Certified Radius in Scenario I). Let Assumptions A.9 hold and TA,c be as defined therein. We assume that
LeadFL with FedAv aggregation is used. The certified radius satisfies:

R(ρ) =

(
N

K

)T−TA
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Proof. Equation 1 can be rewritten as follows:
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N
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k
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)] (
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)
(8)

This equation can be used iteratively to get:

θT − θ∗
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pk
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) (9)
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Apply the Theorem 4.2, we can get:

∣∣θTA
− θ∗

TA

∣∣ ≤ · TA−1∑
t=0

ηt(1 + dc)
∑TA−1

t=0 ηtρ (10)

Combine Equations 9 and 10, the certified radius can be derived:

|θT − θ∗
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(11)

A.4. Proof of Theorem 4.4

Theorem 4.4 (Certified Radius in Scenario II). Let Assumption A.9 hold. The certified radius of the threat model is

R(ρ) = (1 + dc)

∑
t∈ΦT

ηt
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where ΦT is the set of communication rounds that server-side defenses cannot filter out all malicious updates. ΓT is the set
of communication rounds that server-side defenses filter out all malicious updates. S∗

t is a set of clients whose updates
are not filtered out by the server-side defense in round t. |ΦT | and |S∗

t | are the cardinality of the set ΦT and S∗
t , where

E [|ΦT |] =
∑T−1

t=0 gatk(K
t
m).

Proof. Denote f∗ = (G∗,A, η) ∈ f(ρ) as an arbitrary ρ-poisoned version of f in Definition A.7. And let u1, . . . ,uT

and u∗
1, . . . ,u

∗
T be the model updates that the benign oracle G would produce on models θ0, . . . ,θT−1 and θ∗

0 , . . . ,θ
∗
T−1,

respectively. We also define û1, . . . , ûT to be the output of the adversarial gradient oracle G∗ on models θ0, . . . ,θT−1. By
the definition of ρ-poisoning in Definition A.7, we have |ût − u∗

t |1 ≤ ρ.

Based on the definition of model updates, we use the triangle inequality to get the following inequality between |θt − θ∗
t |

and
∣∣θt−1 − θ∗

t−1

∣∣ when the system is attacked in round t− 1

|θt − θ∗
t | =

∣∣θt−1 − ηtut − θ∗
t−1 + ηtût

∣∣ ≤ ∣∣θt−1 − θ∗
t−1

∣∣+ ηt |ut − ût| (12)

Using the triangle inequality again, we can get

|ut − ût| = |ut − u∗
t + u∗

t − ût| ≤ |ut − u∗
t |+ |u∗

t − ût| (13)

According to Definition A.7 and coordinate-wise Lipshitz in Assumption A.9:

|ut − ût| ≤ |ut − u∗
t |+ |u∗

t − ût| = dc
∣∣θt−1 − θ∗

t−1

∣∣+ ρ (14)

By plugging the above equation into Equation 12, we get

|θt − θ∗
t | ≤

∣∣θt−1 − θ∗
t−1

∣∣+ ηt
(
dc

∣∣θt−1 − θ∗
t−1

∣∣+ ρ
)
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∣∣θt−1 − θ∗
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According to Bernoulli’s inequality, we have

|θt − θ∗
t | ≤ (1 + dc)

ηt
∣∣θt−1 − θ∗

t−1

∣∣+ ρηt (16)

14



LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Table 4: Model Architectures for FashionMNIST and CIFAR10 dataset

FashionMNIST CIFAR10

5×5 Conv2d 1-16 3×3 Conv2d 3-32
5×5 Conv2d 16-32 3×3 Conv2d 32-32

FC-10 2×2 MaxPool
3×3 Conv2d 32-64
3×3 Conv2d 64-64

2×2 MaxPool
3×3 Conv2d 64-128
3×3 Conv2d 128-128

2×2 MaxPool
FC-128
FC-10

Now we get the inequality between |θt − θ∗
t | and

∣∣θt−1 − θ∗
t−1

∣∣ when the system is attacked in round t− 1.

Since we introduced server-side defense, we rewrite Equation 8
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t |
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)
(17)

Then we get the following relationship between |θt − θ∗
t | and

∣∣θt−1 − θ∗
t−1

∣∣ when server-side defense filters out all
malicious updates in round t− 1.
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Finally, we can use Equation 16 and 18 to prove the Theorem by induction hypothesis
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T | = (1 + dc)
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 (19)

B. Experiments Detail
For all datasets, we choose the learning rate η = 0.01 and batch size Ba = 32 for all clients. The model architectures for
two datasets are shown in Table 4.

C. Comparison Between FL-WBC and LDP
The only difference between FL-WBC and LDP (Local Differential Privacy) is that FL-WBC adds noise to only the smaller
elements in Hessian Matrix by estimating the matrix, whereas LDP includes noise for all elements. Therefore, LDP can also
be used to perturb the null space of the Hessian Matrix. We, therefore, believe that a detailed comparison between the two is
necessary.

The experiment compares the FL-WBC given std of Laplace noise s = 0.4 with LDP s = 0.4 on both FashionMNIST and
CIFAR10 datasets with IID settings under single-image targeted attack. The threat model is the same as the paper (Sun et al.,
2021). The results in Figure 6 show a slight difference between FL-WBC and LDP in all settings. The FashionMNIST-IID
dataset shows almost no difference between the two defenses approach. Both FL-WBC and LDP successfully defend the
attack and maintain almost the same benign accuracy in the first 100 communication rounds. With the CIFAR10-IID setup,
the FL-WBC and LDP successfully defend the attack for the first 80 communication rounds. However, both defenses lead to
a loss of model accuracy. The benign accuracy of FL-WBC and LDP have the same distribution, and both results are below
50%. In other words, there is no significant difference between the results of FL-WBC and LDP in this experiment.
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Figure 6: Comparison between FL-WBC and LDP on different datasets. The black circles represent the communication
round that malicious clients conduct the attack.
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Figure 7: Results of different random client selections. The backdoor attack here is the 9-pixel-pattern backdoor attack. The
server-side defense here is Multi-Krum. Black hollow circles indicate that the system is attacked very strongly in that round.

D. Additional Results
D.1. Results of different client selections

In the main part, only one client selection result is shown. In order to ensure that our results are not an artifact of this one
specific client selection, we present results for another selection result shown in Figure 7. We can observe that, the backdoor
accuracy is still very high at the round when the extreme attack is conducted. Our defense still exhibits a faster decrease in
backdoor accuracy than the other defenses.

D.2. Results of the larger scale setting

In the main part, the number of clients in our system is 100. In this subsection, we present the results of experiments with an
increased number of clients, totaling 1000, while maintaining 25% of malicious clients. The dataset is evenly distributed
among all clients, and each round involves the selection of 100 clients, with other settings remaining consistent with Table 1
in the main part. As shown in Table 5, our method still achieves the highest MA and lowest BA compared to other client-side
defenses in the larger-scale experiments.
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Table 5: Comparison of defenses under 9-pixel pattern backdoor attack on IID FashionMNIST dataset. The number of
clients is 1000

Distribution IID
Server-side Defense Multi-Krum Bulyan
Client-side Defense None LDP FL-WBC Ours None LDP FL-WBC Ours

MA 86.7 84.1 83.7 84.4 85.2 83.9 84.0 84.2
BA Avg 77.2 73.5 67.9 52.8 82.8 76.1 72.9 45.7
BA Final 71.0 65.1 62.3 35.7 79.9 53.2 46.9 26.9
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Figure 8: Comparison of backdoor accuracy on FashionMNIST and CIFAR10 with both IID and non-IID settings. The
backdoor attack here is single pixel backdoor attack. The server-side defense here is Multi-Krum. Black hollow circles
indicate that the system is attacked very strongly in that round.

D.3. Results of CMA and CTMA under 9-pixel backdoor attack

In the main part, we only show the results of MultiKurm and Bulyan server-side defenses. Table 6 and 7 contain the results
of CMA and CTMA.

D.4. Results of single-pixel backdoor attack

Table 8, 9 and Figure 8 show the performance of defenses under single-pixel backdoor attacks.

D.5. Results of single image targeted attack

We also measure Malicious Confidence (MC): In (Bhagoji et al., 2019), the authors present a single-image attack where a
malicious client inserts exactly one image with the wrong label in their dataset. The malicious confidence is the confidence
of the global model in their classification of the malicious image. We consider both average and final confidence. Note that
this metric is only relevant for single-image attacks. Table 10, 11 and Figure 9 show the performance of defenses under
single image targeted attacks.
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Figure 9: Comparison of backdoor accuracy on FashionMNIST and CIFAR10 with both IID and non-IID settings. The
attack here is single image targeted attack. The server-side defense here is Multi-Krum. Black hollow circles indicate that
the system is attacked very strongly in that round.
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Table 6: Comparison of defenses under 9-pixel pattern backdoor attack on FashionMNIST dataset with both IID and non-IID
settings.

Distribution
Server-side

Defense
Client-side

Defense MA
BA
Avg

BA
Final

IID

None

None 89.8 98.4 100.0
LDP 88.7 90.7 98.8

FL-WBC 88.1 90.2 99.5
Ours 89.0 95.0 95.7

CMA

None 90.0 93.8 100.0
LDP 87.1 95.8 99.3

FL-WBC 87.2 96.7 99.2
Ours 87.6 96.7 99.6

CTMA

None 89.7 96.6 100.0
LDP 88.4 97.8 99.9

FL-WBC 90.0 98.9 99.6
Ours 87.5 91.9 96.8

Multi-Krum

None 89.3 82.6 93.2
LDP 87.0 76.0 79.6

FL-WBC 87.2 77.5 80.6
Ours 87.9 32.9 0.0

Bulyan

None 89.2 78.8 90.6
LDP 86.0 74.1 62.2

FL-WBC 86.0 70.6 86.5
Ours 86.3 21.6 0.3

Non-IID

None

None 87.6 99.7 100.0
LDP 82.2 94.9 99.4

FL-WBC 84.0 94.7 96.6
Ours 84.9 97.5 97.1

CMA

None 85.6 98.9 100.0
LDP 78.5 97.6 99.9

FL-WBC 78.5 97.6 99.9
Ours 80.2 98.2 92.5

CTMA

None 85.3 99.2 100.0
LDP 81.9 99.6 99.9

FL-WBC 82.4 99.3 99.9
Ours 80.8 95.1 67.3

Multi-Krum

None 85.6 88.7 93.3
LDP 76.7 80.4 86.7

FL-WBC 77.2 74.0 70.3
Ours 79.1 39.5 1.2

Bulyan

None 77.4 92.5 88.6
LDP 73.4 71.9 94.7

FL-WBC 71.7 73.7 69.0
Ours 74.0 32.3 2.0
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Table 7: Comparison of defenses under 9-pixel pattern backdoor attack on CIFAR10 dataset with both IID and non-IID
settings.

Distribution
Server-side

Defense
Client-side

Defense MA
BA
Avg

BA
Final

IID

None

None 71.3 93.5 99.6
LDP 55.1 77.0 79.7

FL-WBC 56.2 77.1 89.5
Ours 60.4 70.2 58.7

CMA

None 74.1 93.3 99.2
LDP 12.8 67.6 70.6

FL-WBC 12.6 62.3 69.9
Ours 64.6 82.3 79.0

CTMA

None 75.8 95.2 99.7
LDP 56.6 95.1 96.4

FL-WBC 56.4 94.8 97.1
Ours 61.3 79.4 49.4

Multi-Krum

None 76.3 77.5 80.5
LDP 48.0 53.1 43.8

FL-WBC 43.3 56.9 40.5
Ours 56.9 35.6 25.6

Bulyan

None 76.2 79.1 87.0
LDP 41.5 46.7 23.4

FL-WBC 42.2 51.3 35.5
Ours 54.8 43.9 21.4

Non-IID

None

None 73.7 97.0 100.0
LDP 50.8 86.3 92.5

FL-WBC 52.6 83.2 89.6
Ours 60.5 76.3 67.7

CMA

None 69.6 97.3 99.9
LDP 13.5 58.4 69.2

FL-WBC 13.2 63.9 69.7
Ours 60.3 87.5 90.1

CTMA

None 73.0 98.3 100.0
LDP 54.2 97.5 99.1

FL-WBC 51.1 97.2 99.8
Ours 56.9 90.1 84.5

Multi-Krum

None 70.7 85.8 96.2
LDP 43.2 55.4 52.4

FL-WBC 42.9 54.4 35.4
Ours 55.3 45.2 34.4

Bulyan

None 61.7 87.5 95.2
LDP 36.7 48.8 29.8

FL-WBC 36.2 48.1 47.7
Ours 51.4 46.8 27.3
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Table 8: Comparison of defenses under single pixel backdoor attack on FashionMNIST dataset with both IID and non-IID
settings.

Distribution
Server-side

Defense
Client-side

Defense MA
BA
Avg

BA
Final

IID

None

None 90.1 96.2 99.7
LDP 88.0 88.0 95.1

FL-WBC 87.8 85.2 97.7
Ours 88.1 91.2 95.7

CMA

None 89.9 89.1 99.8
LDP 87.0 96.0 97.9

FL-WBC 87.0 96.7 99.3
Ours 87.7 91.2 98.0

CTMA

None 89.8 92.0 99.7
LDP 88.2 96.3 99.6

FL-WBC 87.6 96.0 99.2
Ours 88.2 84.4 92.1

Multi-Krum

None 89.4 28.1 39.7
LDP 87.0 70.7 90.7

FL-WBC 86.9 71.4 76.8
Ours 87.5 70.3 43.4

Bulyan

None 89.1 72.2 89.7
LDP 85.9 68.8 79.4

FL-WBC 85.3 72.4 78.3
Ours 86.7 67.6 85.8

Non-IID

None

None 88.0 98.8 99.9
LDP 83.4 90.9 97.8

FL-WBC 82.2 91.0 98.1
Ours 82.8 93.9 97.0

CMA

None 85.7 95.4 99.9
LDP 76.4 96.3 99.2

FL-WBC 79.3 96.6 99.6
Ours 79.5 93.4 93.7

CTMA

None 85.5 97.4 99.9
LDP 81.0 98.2 99.7

FL-WBC 81.7 98.6 99.9
Ours 81.5 94.5 92.8

Multi-Krum

None 86.5 79.2 85.1
LDP 80.5 72.7 64.5

FL-WBC 78.2 73.8 82.6
Ours 81.7 54.4 87.9

Bulyan

None 85.2 83.9 85.9
LDP 73.7 66.9 85.2

FL-WBC 70.1 72.5 71.4
Ours 75.0 62.6 46.2
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Table 9: Comparison of defenses under single pixel backdoor attack on CIFAR10 dataset with both IID and non-IID settings.

Distribution
Server-side

Defense
Client-side

Defense MA
BA
Avg

BA
Final

IID

None

None 71.3 93.5 99.6
LDP 55.1 77.0 79.7

FL-WBC 56.2 77.1 89.5
Ours 62.1 70.2 58.7

CMA

None 74.1 93.3 99.2
LDP 12.8 67.6 70.6

FL-WBC 12.6 62.3 69.9
Ours 64.6 82.3 79.0

CTMA

None 75.8 95.2 99.7
LDP 56.6 95.1 96.4

FL-WBC 56.4 94.8 97.1
Ours 61.3 79.4 49.4

Multi-Krum

None 76.3 77.5 80.5
LDP 48.0 53.1 43.8

FL-WBC 43.3 56.9 40.5
Ours 56.9 35.6 25.6

Bulyan

None 76.2 79.1 87.0
LDP 41.5 46.7 23.4

FL-WBC 42.2 51.3 35.5
Ours 55.8 43.9 26.4

Non-IID

None

None 74.5 92.3 99.8
LDP 52.7 73.0 81.2

FL-WBC 51.4 70.2 85.0
Ours 62.3 62.8 55.5

CMA

None 67.8 89.5 98.4
LDP 13.1 67.5 69.5

FL-WBC 13.7 66.3 68.5
Ours 59.2 82.7 74.1

CTMA

None 73.6 92.6 99.8
LDP 54.8 93.6 94.2

FL-WBC 48.7 94.0 95.2
Ours 58.1 77.7 78.7

Multi-Krum

None 71.0 68.7 78.5
LDP 40.7 34.8 19.3

FL-WBC 39.6 35.9 20.0
Ours 51.5 26.6 31.9

Bulyan

None 62.7 69.8 78.3
LDP 33.6 25.4 16.6

FL-WBC 37.5 22.1 15.5
Ours 49.1 17.6 10.3

21



LeadFL: Client Self-Defense against Model Poisoning in Federated Learning

Table 10: Comparison of defenses under single image targeted attack on FashionMNIST dataset with both IID and non-IID
settings.

Distribution
Server-side

Defense
Client-side

Defense MA
MC
Avg

MC
Final

IID

None

None 89.9 94.6 98.9
LDP 87.4 79.7 95.8

FL-WBC 88.3 82.7 75.5
Ours 88.2 82.0 95.8

CMA

None 89.3 98.1 99.9
LDP 86.1 88.6 77.9

FL-WBC 86.7 86.1 83.6
Ours 87.6 93.6 91.0

CTMA

None 89.0 94.2 99.4
LDP 87.3 95.2 93.9

FL-WBC 87.4 95.2 98.8
Ours 87.5 89.4 99.9

Multi-Krum

None 89.1 89.5 99.5
LDP 86.5 57.9 88.7

FL-WBC 86.4 58.1 1.3
Ours 86.8 44.9 7.4

Bulyan

None 89.1 92.0 100.0
LDP 85.0 34.0 0.1

FL-WBC 85.5 86.2 84.1
Ours 86.7 33.9 14.0

Non-IID

None

None 87.7 97.2 99.6
LDP 83.3 86.1 99.2

FL-WBC 83.7 92.9 95.7
Ours 83.9 78.9 96.7

CMA

None 87.1 94.6 99.9
LDP 81.2 87.5 92.6

FL-WBC 79.4 81.8 94.5
Ours 82.2 81.5 83.1

CTMA

None 86.7 95.4 99.8
LDP 84.8 93.3 87.1

FL-WBC 84.8 92.9 93.7
Ours 84.4 78.4 84.0

Multi-Krum

None 86.3 87.6 99.6
LDP 81.6 55.2 92.1

FL-WBC 80.6 59.4 77.0
Ours 84.5 46.1 5.7

Bulyan

None 76.8 86.8 99.9
LDP 71.8 54.2 77.1

FL-WBC 73.9 83.5 99.8
Ours 77.2 39.8 0.0
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Table 11: Comparison of defenses under single image targeted attack on FashionMNIST dataset with both IID and non-IID
settings.

Distribution
Server-side

Defense
Client-side

Defense MA
MC
Avg

MC
Final

IID

None

None 70.5 98.9 99.9
LDP 51.1 97.2 97.2

FL-WBC 50.8 95.5 100.0
Ours 60.4 89.1 100.0

CMA

None 71.0 99.8 99.9
LDP 13.9 96.2 100.0

FL-WBC 13.9 99.6 100.0
Ours 60.6 97.0 100.0

CTMA

None 68.4 99.8 99.9
LDP 47.0 98.9 100.0

FL-WBC 47.4 98.4 100.0
Ours 60.8 96.1 99.9

Multi-Krum

None 75.4 94.7 100.0
LDP 46.3 86.6 99.9

FL-WBC 46.7 82.5 99.9
Ours 56.6 47.7 2.4

Bulyan

None 73.6 84.1 93.8
LDP 41.6 49.0 0.0

FL-WBC 41.9 6.5 0.0
Ours 53.6 1.7 0.0

Non-IID

None

None 72.6 99.0 100.0
LDP 48.6 83.3 100.0

FL-WBC 50.6 86.0 97.7
Ours 60.3 90.2 100.0

CMA

None 65.9 99.6 99.6
LDP 13.0 98.0 100.0

FL-WBC 15.1 96.0 100.0
Ours 61.5 98.4 100.0

CTMA

None 70.5 98.9 99.9
LDP 47.3 97.3 99.1

FL-WBC 47.8 96.9 100.0
Ours 55.0 95.5 100.0

Multi-Krum

None 70.5 92.4 100.0
LDP 43.8 60.6 100.0

FL-WBC 43.3 65.0 100.0
Ours 51.7 55.3 0.0

Bulyan

None 68.1 84.7 100.0
LDP 39.8 63.9 100.0

FL-WBC 38.4 62.9 100.0
Ours 49.1 25.1 3.5
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