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ABSTRACT

We introduce Skip-Window, a method to allow recurrent neural networks (RNNs)
to trade off accuracy for computational cost during the analysis of a sequence.
Similarly to existing approaches, Skip-Window extends existing RNN cells by
adding a mechanism to encourage the model to process fewer inputs. Unlike ex-
isting approaches, Skip-Window is able to respect a strict computational budget,
making this model more suitable for limited hardware like edge devices. We eval-
uate this approach on four datasets: a human activity recognition task, sequential
MNIST, IMDB and adding task. Our results show that Skip-Window is often able
to exceed the accuracy of existing approaches for a lower computational cost while
strictly limiting said cost.
Keywords: Recurrent neural networks, Flexibility, Computational resources.

1 INTRODUCTION

Since Recurrent Neural Networks (RNN) have been introduced Williams et al. (1986), they have
become one of the reference methods to process sequences. A typical architecture is the Long-Short-
Term-Memory neural network (LSTM) which allowed improvement in natural language processing
such as large-vocabulary speech recognition (Sak et al., 2014; Li & Wu, 2015). Used with CNNs
they have also reached state of the art in automatic image captioning (Vinyals et al., 2015).

Deep learning models are now brought closer to the user rather than running in a distant cloud,
helping to reduce latency, network congestion, and improving data security and privacy. However,
smartphones and user devices impose additional constraints such as limited computation or energy.
Handling these constraints has become an active research topic (Zhang et al., 2017; 2018; Howard
et al., 2019; Wu et al., 2019; Cai et al., 2020). User devices can also host multiple processes running
at the same time and starting or stopping abruptly, modifying the constraints affecting the processes.
Few works have considered models that can be modified at run time to adapt to an evolving compu-
tational limit (Yu et al., 2019; Yu & Huang, 2019; Guerra et al., 2020; Jin et al., 2020). However,
none of these focus on sequences and therefore none address the problem of adapting the model in
the middle of a sequence.

In this context, this paper introduces Skip-Window (SkipW), a flexible recurrent neural network ar-
chitecture: its computational cost can be dynamically adapted during a sequence analysis to meet
real time constraints changes. The proposed architecture can be combined with any RNN cell and
allows to strictly limit the computational resources used to avoid exceeding a given budget. Further-
more, empirical experiments on four data sets (Adding Task, MNIST, IMDB and HAR-2D-POSE)
demonstrate that this subsampling architecture is interesting in itself. Skip-Window matches or ex-
ceed the accuracy of existing approaches for a given computational cost. In addition, measurements
on specific processors highlight that SkipW produces real computational and energy savings.

2 RELATED WORK

Typically, RNNs maintain a “state”, a vector of variables, over time. This state is supposed to
accumulate relevant information and is updated recursively. Each input of the sequence is typically
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a) processed by some deep layers and b) then combined with the previous state through some other
deep layers to compute the new state. Hence, the RNN can be seen as a function taking a sequence
of inputs x = (x1, . . . , xT ) and recursively computing a set of states s = (s1, . . . , sT ). Each state
st is computed from st−1 and xt by a cell S of the RNN. As neural networks are increasingly run
on limited hardware, recent research has focused on controlling their computational cost.

2.1 FLEXIBLE NEURAL NETWORKS

A few architectures have recently been designed to adapt the computational complexity of a Deep
Neural Network (DNN) without reloading the whole model. This can be achieved by remov-
ing/adding neurons (Yu et al., 2019; Yu & Huang, 2019) or by modifying the quantization of the
weights (Guerra et al., 2020; Jin et al., 2020). An efficient embedding of a mixture of Convolu-
tional Neural Network (CNNs) also allows to add or remove several models at the same time, hence
changing the computational cost (Ruiz & Verbeek, 2019).

2.1.1 THRRNN

For RNNs specifically, ThrRNN (Lambert et al., 2020) aims to control computation time by not
processing some inputs. This is controlled by an update gate ut. The tradeoff between the average
accuracy and the average number of updates can be modified during inference by changing a single
parameter thr. ThrRNN can wrap any RNN cell S:

ut = fbinarize(ũt, thr) =

{
0 if ũt < thr
1 otherwise

(1)

∆ũt = σ(Wst + b) (2)
ũt+1 = ut∆ũt + (1− ut)(ũt +min(∆ũt, 1− ũt)) (3)
st = utS(st−1, xt) + (1− ut)st−1 . (4)

When an input is processed, an update gate computes the quantity ∆ũt that determines how many
inputs will be skipped. In practice the ∆ũt are accumulated in ũt until ũt ≥ thr.

2.2 RECURRENT NEURAL NETWORK WITH LOW COMPUTATIONAL COMPLEXITY

Several architectures have been proposed to limit or reduce the computational cost of RNNs, but this
cost cannot be adapted at inference. A first class of architectures dynamically reduces computation
based on the input. SkipRNN (Campos et al., 2018) predates and is similar to ThrRNN, except that
the binarization function does not change. A similar mechanism has been proposed by Zhang et al.
(2019). Other architectures directly select the next input to process (Yeung et al., 2016; Yu et al.,
2017; Hansen et al., 2019; Song et al., 2018). Early exit has also been investigated by Dennis et al.
(2019). Tao et al. (2019) also use xt as input to an update gate. So do Seo et al. (2018); Jernite et al.
(2017); Li et al. (2020). However, they do not skip any input but perform partial state updates.

A second class of architectures focuses on reducing the overal cost of the RNN. FastRNN is an
RNN augmented with a residual connection with two extra scalar parameters and FastGRNN is an
improved FastRNN: the residual connection is extended to a gate and RNN matrices are low rank,
sparse and quantized (Kusupati et al., 2018). Other architectures reduce the RNN length. Chan et al.
(2016) train an encoder to reduce the input length. Yeung et al. (2016); Shan et al. (2018); Chen
et al. (2018) propose various mechanisms to summarize subsequences of windows of inputs.

2.3 RECURRENT NEURAL NETWORK WITH HIERARCHICAL-DEPENDENT COMPLEXITY

A class of architectures focuses on hierarchy level concept to reduce the complexity. These methods
are mainly used in the context of multi-layer RNNs where each layer is supposed to model a different
level in the hierarchy (e.g. for a corpus the levels could be documents, paragraphs, sentences,
words, letters). These approaches are based on the fact that a hierarchical separation exists within a
sequence of inputs, which might not always be the case.

In (Koutnik et al., 2014), the hidden state is partitioned into different modules, each module has its
own clock period, meaning that they will be updated at different times. Skipping updates of part of
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Figure 1: Skip-window computes update gates at the beginning of each window of inputs.

the hidden state decreases the computational cost. In (Koutnik et al., 2014), the update periods are
chosen arbitrarily, for example using an exponential series.

For stacked-RNNs, Chung et al. (2017); Chang et al. (2017) conditionally update each layer based
on a feature level criterion, or by dilating a skip connection. Layers close to the inputs would
model lower feature levels and be updated more frequently. Further layers would model higher level
features. In (Chung et al., 2017), a layer modeling sentences would be updated only when a word is
processed entirely (in a model fed character by character), from the layer modeling words. Before
the end of a word is reached, the state of the former layer is copied across input steps.

2.4 RELATIONSHIP TO OUR WORK

ThrRNN is the closest model to SkipW. Both are flexible RNNs and skip some inputs. However,
ThrRNN optimizes computational cost on average over sequences. This induces two variabilities:
a) inter-sequence variability: the model will not use the same number of updates for every sequence;
and b) intra-sequence variability: the number of updates will not be uniform across time steps,
updates may be concentrated in a certain part of the sequence. These two variabilities can cause
the model to exceed its computational budget and, therefore, to either shut down or delay the out-
put. SkipW does not have this problem as it strictly enforces a computational constraint over each
window of inputs.

Other strategies for flexible models are not straightforward to apply to RNN. They require special-
ized training algorithms. They have never been applied to models processing inputs of an RNN or
to make an RNN flexible and it is not clear how they would need to be modified. Furthermore, these
models adapt between independent inputs whereas, for sequences, adaptation is necessary between
time steps. RNN architectures with low complexity are orthogonal to our approach. They do not
offer flexibility. They could be combined with and benefit from our approach. However, SkipRNN
(which we are based on) and related methods have one big advantage over others: by skipping inputs,
they also skip any modification of an input, such as processing by an expensive CNN for images.
As SkipW makes decision over a window of inputs, it has some superficial similarity to methods
summarizing windows or hierarchical RNNs. However, SkipW a) does not summarize windows and
b) does not even look at these inputs before deciding what to skip.

3 SKIP-WINDOWS ARCHITECTURE

Skip-Windows (SkipW) is a wrapper for a RNN cell S. It uses a conditional computation mechanism
to skip some updates. Rather than at each input xt, update gates are computed at the beginning of
windows of inputs, that is, every L time steps (Figure 1). In other words, before any new L-size
window of inputs, a L-size vector ũW is computed. ũW [i] can be seen as the importance of input i
in the window.

Then, the architecture includes a selectK mechanism. This function takes as input the vector ũW
and outputs the vector ũKW , setting L − K elements to a value that ensures the associated inputs
are not processed (0 in Figure 2). Therefore, it ensures that at most K out of every L inputs will
be processed. In other words, it forces the RNN cell to skip (L − K) out of every L inputs. This
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Figure 2: TopK-based Skip-Window cell implementation example.

ensures a strict upper bound on the computational cost of the model for a sequence and for each
window, therefore alleviating the inter-sequence variability and intra-sequence variability issues.

Similarly to other works, the binary state update L-size vector, uW , is then obtained by binarizing
the remaining values as in equation 1. For example, by setting all values below a threshold to a value
that ensures the associated inputs are not processed (0 in Figure 2).

An example of the Skip-Window cell implementation is represented in Figure 2. In this case,
selectK is implemented as a topK function. This enforces the strict constraint on the number of
updates. The topK operation keeps unchanged the K highest value in ũW,t, and sets the (L −K)
others to 0.

The corresponding architecture can be characterized as follows:
st = ut · S(st−1, xt) + (1− ut) · st−1 (5)

ũW,t+1 = γ · σ(Ww(st−1, t) + bw) + (1− γ) · ũW,t (6)

γ =

{
1 if i == 0
0 otherwise

(7)

i = t mod L (8)

ũKW,t = topK(ũW,t) (9)

ut = fbinarize(ũ
K
W,t[i], thr) =

{
0 if ũKW,t[i] < thr
1 otherwise

(10)

where Ww is a weight matrix of size (N + 1) × L, N is the number of hidden units as defined by
the RNN cell S, bW is a L-vector bias, σ is the sigmoid function and mod is the modulo operation.
Instead of a topK function for selectK , it is also possible to use a stochastic sampling mechanism
that randomly selects (without replacement) K out of L elements of ũW where the probability of
selecting each element of index i is proportional to ũW [i]. Some selectK alternatives are discussed
and evaluated in Appendix H.

Including the time step t in equation 6 is also optional and can be replaced by a value ensuring the
state is not static if no update is made in a window. For example, the number of inputs since the last
update or the number of windows already processed.

Training the model The model is trained to minimize a two-part loss, similarly to Campos et al.
(2018). The first term measures the accuracy of the task, and the second one penalizes inputs used:

Lbudget = λ

T∑
t=1

ut , (11)

where λ is the cost associated to the use of a single input. More experimental details are provided in
Appendix B.
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Error gradients The model is differentiable except for the fbinarize and topK function. To train
the model using standard backpropagation the straight-through estimator is used as done in Campos
et al. (2018) for fbinarize.

Other alternatives might involve reinforcement learning such as REINFORCE (Williams, 1992) or,
in the case of the topK function, the usage of a differentiable topK as proposed in Xie et al. (2020).
Early experiments using a differentiable topK (Xie et al., 2020) have shown worse results than
the straight-through estimator. This suggests that constraining computation may be an interesting
approximation for a topK operation.

Adapting computational cost at inference During inference, adapting the tradeoff between
model performance and computational cost can be done using two factors : the K in equation 9 and
the thr in equation 10. These two parameters can be modified together or one at a time. Increas-
ing/lowering thr parameter in [0, 1] encourages the model to process fewer/more inputs. Changing
K in {0 . . . L} forces the model to process at most K/L of the window.

Choice of the window size hyper-parameter By the nature of the model, the task can influence
the choice of L. It can be hand tuned or computed using typical hyper-parameter search methods
such as grid search. Choosing small L allows the model to make update decisions for the near future
only but offers less choice in operating points. Similarly a bigger L requires the model to predict its
update decisions for a bigger time span but offers more flexibility. At the extreme when L = 1, each
window consists of a single input.

4 EXPERIMENTS

We empirically show that SkipW a) learns accuracy / computational tradeoffs on par with or, surpris-
ingly, sometimes better than our baselines SkipRNN and ThrRNN on all data sets; b) upper bounds
computational cost with gradual impact on accuracy except on sequential MNIST; c) enables chang-
ing the tradeoff in the middle of a sequence. To evaluate the computational benefit induced by
skipping part of the input sequence we use the number of inputs processed by the model, as this
measure is independent from the hardware and the framework used to implement the models. In ad-
dition, we also show how a reduction of the number of inputs processed translate into computational
and energy savings on tiny devices.

We evaluate our approach on four data sets. Human Activity Recognition (HAR) (Ofli et al., 2013)
consists of 2D-position sequences of 18 joints across a 32-frames videos recorded at 22Hz (≈1.5
seconds). Each sequence is labeled by one of the 6 actions performed by 12 subjects filmed from 4
angles. Sequential MNIST (Lecun et al., 1998), the handwritten digits data set, consists of digital
picture made of 28 × 28 pixels. Each image is flattened into a 784-sequence of one pixel. Adding
Task Hochreiter & Schmidhuber (1997), consists of tuples-sequences (value, marker) ∈ R×{0, 1},
where the expected output is

∑
imarker × value. IMDB (Maas et al., 2011) consists of movie

reviews with a positive/negative annotation. The reviews were padded or cut to a length of 200
words in our experiment. For HAR, two stacked RNNs are used, but only one for Adding Task,
Sequential MNIST and IMDB. More details can be found in Appendix A and experimental results
on Adding Task, HAR and Sequential MNIST are further developed in Appendices D, F and E.

4.1 ACCURACY AND COMPUTATIONAL TRADEOFFS

In Figures 3 to 6, the baselines SkipRNN and ThrRNN are compared to SkipW with various values
for L and K for all data sets. Small L values may not offer good tradeoffs when varying K. See
for example L = 4 in Figure 3. That’s not surprising: often the number of inputs processed can be
significantly reduced without affecting accuracy. For example, SkipRNN on HAR can process as
few as 15% inputs without affecting accuracy. Using L = 4 and K = 1 limits complexity at 20%
only. So, for such a small L, varying K has almost no impact on average. Larger window sizes, on
the other hand, offer more tradeoffs when changing K. For example, on HAR, for L ∈ {8, 16}, K
can take more values, and for smallK computational gains are traded off for accuracy. For example,
for L = 16, reducing K from 4 to 1 more than halves the number of inputs processed for a drop
of 3.6% in accuracy. A similar behavior can be observed on Adding Task and IMDB. On MNIST
(Figure 5), lowering K trades off accuracy for computational cost at a worse ratio. This is the only
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Figure 3: Impact of the parameter K on accuracy/updates tradeoff for HAR. Comparison between
ThrRNN (thr=0.5 to 1.0), SkipW(L=4,8,16; thr=0.5, K=1 to L) and SkipRNN (λ=1e-3 to 3e-1).
For random subsampling, the shaded area corresponds to 3 times the standard deviation on each side
of the mean value (50 evaluations).
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Figure 4: Impact of the parameter K on mean square error and inputs processed for Adding Task.
Comparison between ThrRNN (λ=3e-4, thr=0.5 to 1.0) and SkipW (λ=2e-4, L=10, thr=0.5, K=1
to L). The dotted line corresponds to the performance of individual SkipRNN models trained with
different values of λ (from λ=1e-5 to λ=5e-4) and the red line to a baseline randomly sampling
inputs. The shaded area corresponds to 3 times the standard deviation around the mean (100 evalu-
ations).

data set out of four where SkipW is unable to match the performance of SkipRNN while changing
K. Even in this case, independent SkipW (with fixedK = L) provide comparable or better tradeoffs
than SkipRNN (Appendix E). In addition, SkipW performs as well as ThrRNN on MNIST. Figures 3
to 4 also include a comparison to two naive subsampling strategies selecting a set number of inputs.
Random subsampling samples inputs based on a uniform distribution. Periodic subsampling selects
them at regular interval. On Adding Task, these methods are equivalent. Both naive strategies are
worse than SkipW on both data sets.

SkipW enforces aK/L upper bound on the number of inputs processed in each window. Even when
the average number of updates is not impacted much by a change in K, individual sequences can be
impacted. Figure 7 illustrates this impact with a violin plot of the number of inputs processed per
sequence for various K and L = 8 on HAR. Decreasing K below 3 impacts the maximum observed
number of updates over the whole sequence. However, even changes above K = 3 have an impact.
Even though the observed maximum number of updates does not change, the violin changes as some
sequences have fewer inputs processed. This is due to the fact that the computational constraint is
enforced over each window. So, for K ≤ 5, some sequences are prevented from exceeding the
computational budget in some windows of inputs.

It is perhaps surprising that SkipW can achieve both a higher accuracy and lower computational cost
than SkipRNN and ThrRNN, as the former decides on the next K inputs to process periodically
whereas the baselines decide on the next input whenever it has processed one and so decide more
often and with more information. They can thus adapt the sampling pattern faster. However, we have
observed that these baselines tend to process one input regularly, even if there is no information in
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Figure 5: Impact of the parameter K on accuracy and inputs processed for MNIST. Comparison
between ThrRNN (λ=1e-4, thr=0.5 to 1.0) and SkipW (λ=1e-4 and λ=1e-2, L=28, thr=0.5, K=1
to L). The dotted line corresponds to the performance of individual SkipRNN models trained with
different values of λ (from λ=1e-4 to λ=1e-2). The dashed line represents the trade-off achieved by
different SkipW models (L=28) (from λ=0 to λ=1e-2).
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Figure 6: Impact of the parameter K on accuracy and inputs processed for IMDB. Comparison
between ThrRNN (λ=1e-4, thr=0.5 to 0.9) and SkipW (λ=0, L=10 or 25, thr=0.5, K=1 to L).
The dotted (SkipRNN) and dashed (SkipW L=10) lines correspond to the performance of individual
models trained with different values of λ (from λ=0 to λ=1e-2)

the signal. This increases the computational cost without benefiting accuracy. We believe this is due
to the increment mechanism (Equation 3). To skip C inputs, ∆ũt (Equation 2) must be smaller than
0.5/C. We conjecture that at some point, for large C, the model is unable to differentiate between
these small values and so no more than C skips are performed. So both methods are biased in the
type of skip patterns they can learn, but differently. Please see Appendices D.3 and E for more
details. The best method depends on the task: in our experiments SkipW seems to work better than
SkipRNN on two data sets, similarly in one and slightly worse on IMDB.

SkipW is able to learn where relevant inputs are and tends not to use irrelevant inputs. This is best
illustrated on AddingTask. Let m1 be the index of the first marker, and m2 the index of the second
one. The inputs can be divided into four parts pi, i ∈ {1, 2, 3, 4}:

p1 = (xi | 0 ≤ i ≤ m1) p2 = (xi | m1 < i < 25) (12)
p3 = (xi | 25 ≤ i ≤ m2) p4 = (xi | m2 < i < 50) (13)

Ideally the model should skip all inputs in p2 and p4 where there is no marker, while using all the
inputs in p1 and in p3 where a marker can appear.

Figure 8 illustrates that SkipW skips inputs in different parts of the sequence for various K. For
K = L (training point), almost no inputs are skipped in p1 and p3, where the markers are, but some
are skipped in p2 and p4, where there is no marker. Not all inputs are skipped in p2 and p4. That’s
not surprising: decisions to skip are taken at the start of a window, so even if a marker is present
in the first input of the window, SkipW will not update its decision to process other inputs in the
window. Skips are still mainly made in part p2 and p4 for these K values but start increasing in p3
as the model can no longer process all inputs. Finally, when K < 5, SkipW can no longer process
the first 5 inputs and skips in p1 start happening. Values of K smaller than but close to L force the
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Figure 8: Proportion of inputs processed in Adding Task for different parts pi of the sequence defined
by equations 12 and 13 while changing K with thr=0.5, for a model trained with λ=2e-4 and L=10.
The values at K = L correspond to the training configuration.

model to skip some inputs and to ’fail’ Adding Task. Note that both the binarization function and the
inclusion of t in the inputs of the update gate are necessary for this behavior. Please see the ablation
study in Appendix D.4 for more information.

Modifying thr impacts the accuracy / processing tradeoff as well. Increasing thr gradually reduces
both accuracy and average computational cost. This is similar to ThrRNN. Changing thr does not
affect the upper bound on computational cost but can provide more accuracy / processing tradeoff
points. Some examples are provided in Appendix C.

4.2 MODIFYING THE TRADEOFF DURING INFERENCE

Modifying (thr,K) is also possible during the analysis of a sequence. Results of a change between
two different pairs of (thr,K) values are shown in Figure 9. The average accuracy and compu-
tational cost of the analysis of the test sequences are reported as a function of the position of the
change. The position at the bottom left (resp. top right) of the graph corresponds to the operating
point of tradeoff2 (resp. tradeoff1) when it processes the whole sequence. The accuracy typically
remains between the accuracy of the individual models and increases almost monotonically from
tradeoff2 accuracy to tradeoff1 accuracy. This suggests that SkipW can switch between operating
points during the analysis of a sequence. This behavior was observed on all data sets, for various
training runs and (thr,K) configurations. More details are provided in the supplementary material
(D and F).

4.3 REAL TIME EXPERIMENTS

We evaluate the performance of SkipW on small hardware to showcase its performance in the setting
it is designed for. We implement the full service, from images to activity recognition, on a Nvidia
Jetson Nano platform. In the HAR-2D-POSE data set, OpenPose is used to compute poses on
images, but the embedded GPU is not powerful enough to run this OpenPose. Instead, we choose to
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Figure 9: Modifying (thr, K) during the sequence on HAR for SkipW (λ=1e-2, L=8): from
tradeoff1(thr=0.4, K=8, acc/updates tradeoff = 99.3%/15.5%) to tradeoff2(thr=0.65, K=1,
acc/updates tradeoff=73.8%/4%).
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Figure 10: Boxplots of inference latency time for a HAR Service based on SkipW (λ=1e-2, L=8)
coupled with a Posenet model running on Jetson Nano.

use PoseNet (MobileNetV1 architecture with a 0.75 multiplier) model which is much more efficient
to run on such a small platform. In our implementation, PoseNet model running on the embedded
GPU takes roughly 120 ms to compute a pose on a 640x480 pixel image, while the SkipW model
takes around 30 ms to perform all state updates for a sequence.

Figure 10 presents the individual inference time of 1000 HAR image sequences processed by SkipW
coupled with the PoseNet detection model on a Jetson Nano platform. As expected, when K de-
creases, the run time decreases sharply. This gain is largely due to the lower number of pose detec-
tions that need to be computed. By drastically limiting the number of images used as input, SkipW
saves a large amount of time, computation and energy. Results on Jetson TX2 and Raspberry Pi4
lead to similar conclusions (Appendix G).

5 CONCLUSION

We presented Skip-Window, a novel RNN cell architecture that dynamically controls the number
of inputs processed during the analysis of a sequence. SkipW allows to adapt the computational
cost during and between sequence analysis without reloading any weight. Unlike existing flexible
RNNs, SkipW can enforce a strict upper bound on the number of updates performed over a time
interval. Therefore, SkipW can operate without exceeding a given computational budget across a
time interval. Furthermore, our results show that Skip-Window is able to exceed the accuracy of
existing flexible RNNs for a lower computational cost and to actually reduce computation. This
makes SkipW well suited for shared hardware with real time constraints.
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A EXPERIMENTAL SETTINGS DETAILS

We evaluate our approaches on two data sets:

• Human Activity Recognition (HAR): HAR is an action recognition dataset consisting
of 2D pose estimations extracted from videos (Eiffert, 2018). The 2D pose estimation
was performed on a subset of the Berkeley Multimodal Human Action Database (MHAD)
dataset (Ofli et al., 2013). Six actions (Jumping in place, Jumping jacks, Punching (boxing),
Waving two hands, Waving one hand, Clapping hands) are considered for a total of 1438
videos recorded at 22Hz. Each action must then be identified based on a sequence of 32
frames (≈ 1.5 sec). Each video gives several sequences by applying an overlapping ratio.
A pose is extracted from each frame and estimated by 18 body joints expressed in a 2D
coordinate system. Following the parameter setting defined in (Eiffert, 2018), the dataset is
split into 2 independent partitions : 22625 sequences for training and 5751 for validation.
The model architecture consists of a two-stacked RNN of 60 GRU cells each followed by a
fully connected layer with a RELU activation function. The model is trained with batches
of 512 sequences using a decaying learning rate for 600 epochs. The best performance was
obtained when the model was initialized with a model trained with a smaller λ.
This architecture was selected by performing an optimization over the hyperparameters.
The following parameters were included in the search:

– Batch size: 4096 and 512
– λ ∈ {1e− 4, 1e− 3, 1e− 2}
– Cell type: LSTM or GRU
– Number of cells ∈ {30, 40, 50, 60} per layer (identical number of cells in each layer)
– Window size L ∈ {4, 8, 16} (SkipW only)

The search was performed both for ThrRNN (baseline) and SkipW (our approach). Several
combinations of parameters resulted in models that are Pareto optimal with respect to ac-
curacy and computational cost. To evaluate SkipW and compare it to ThrRNN, we selected
one parameter configuration that led to models that were Pareto optimal (or close to Pareto
optimal) for ThRNN and for several values of L for SkipW.

• Adding Task: This is a synthetic dataset consisting of sequences of (value, marker) tuples,
where the expected output is

∑
imarker × value. This dataset is commonly used to

evaluate the performance of RNN models [(Hochreiter & Schmidhuber, 1997), (Neil et al.,
2016), (Campos et al., 2018)]. The value elements are uniformly sampled in the range
(-0.5, 0.5) and the marker elements are equal to 1 or 0. We reproduced the experimental
setup defined in (Neil et al., 2016) with a sequence of length 50. Two values are marked
for addition with the first marker randomly placed in the first 10% of the sequence and the
second one in the last half of the sequence. The variance of the task is equal to 1/6: the
number of markers times the variance of the value (1/12). The task is considered solved
when the average mean square error is lower than 1/100 the variance of the task.
The model architecture consists of a single layer of 110 LSTM cells and a fully connected
layer regressing the scalar output. We train the model with a batch size of 256 and a learning
rate of 1e − 4. As with HAR dataset, the best performance was obtained when the model
was initialized with a model trained with a smaller λ.

• Sequential MNIST: For this task the MNIST handwritten digits (Lecun et al., 1998) are
flattened to vectors of length 784 and each pixel is presented sequentially to the RNN
network. This becomes a challenging task for RNNs and is useful to test long range de-
pendencies (Le et al., 2015). We follow the standard data split and set aside 5,000 training
samples for validation purposes. The model architecture consists of a single layer of 128
GRU cells followed by a fully connected layer using the last hidden state to predict the
digit. The model is trained for 600 epochs and we report results for the models achieving
the best performance on the validation images.

• IMDB: This is a sentiment analysis task (Maas et al., 2011) using movie reviews extracted
from the IMDB website. It consists in 25000 training and 25000 test reviews annotated
as positive or negative. We set aside about 15% of training data for validation purposes.
For this experiment we use the first 20000 most common words and a review length of
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Figure 11: Validation loss during training for SkipW and SkipRNN on HAR. These two models use
approximately the same number of inputs, respectively 11% and 13%.

200 by cropping or padding sequence accordingly. The model architecture consists in an
embedding layer of size 300 initialized with GloVe embeddings (Pennington et al., 2014)
or uniformly random vectors if unavailable. The embedded sequence are then passed to a
128 cell single layer GRU followed with a dropout (rate 0.2) before using a fully connected
layer for the classification.

B TRAINING SPEED

There does not seem to be major difference between the training speed of SkipW and SkipRNN,
as is illustrated in Figure 11 for two models using approximately the same number of updates.
Convergence speed is however affected by the choice of λ. Higher λ constrain the models more and
therefore lead to slower training.

During training, to process inputs in batch, the model uses the implementation described in Section
3, based on the multiplication by ut and (1 − ut) rather than actually skipping inputs. This allows
the use of matrix operations on mini-batches of inputs, which makes training faster than processing
sequences one by one and skipping inputs.

C MODIFYING THR

Modifying thr impacts the accuracy / processing tradeoff as well. However, changing thr does
not affect the upper bound on computational cost. Increasing thr gradually reduces both accuracy
and average computational cost. This is similar to ThrRNN. Figure 12 illustrates the impact of
changing thr for various L on HAR. While this is less interesting in the context of a strict limit on
computation, it increases the variety of the possible tradeoff points. That being said, the thresholding
mechanism allows the model to skip uninteresting inputs and is therefore necessary. For example, if
this mechanism is removed on adding task, SkipW processes inputs in parts of the sequence where
there is no marker. On the other tasks, removing it similarly increases computational cost without
improving accuracy. This is better highlighted in Appendices D.4 and H.2.

D DETAILED RESULTS FOR ADDING TASK

The Adding task dataset penalizes the model when skipping markers. Therefore, a successful model
will learn to process as many inputs as possible where the makers can be placed and to ignore the
parts of the sequence where the markers are never found.

D.1 ACCURACY AND COMPUTATIONAL TRADEOFFS

As we see in Figure 4, both SkipW and ThrRNN offer operating points that are better than the ones
obtained with individual SkipRNN models (dotted line in the figure). SkipW offers results with a
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Figure 13: Modifying K during the analysis of a sequence on Adding Task for SkipW (λ=2e-4,
L=10): from tradeoff1(thr=0.5, K=10, MSE/updates = 3.56e-5/44.4%) to tradeoff2(thr=0.5, K=5,
MSE/updates=1.66e-2/34.2%).

lower number of updates and lower error than ThrRNN while adapting thr especially forK between
5 and 10. Both models also achieve a lower error than a model randomly sampling inputs.

D.2 MODIFYING TRADEOFF DURING INFERENCE

We test SkipW adaptability during the analysis of a sequence; switching between a model with a
low MSE, high update rate and another model with a higher MSE and lower update rate.

As illustrated by Figure 13, the evolution of the MSE is not as smooth as in the HAR experimentation
due to the nature of the task - skipping a marker greatly penalizes the MSE. We can note that changes
in MSE and number of inputs processed happen when the switch is performed in the last 40% of the
sequence. This is explained by the fact that the distribution of the inputs processed is identical for
K = 5 and K = 10 at the beginning of the sequence. Both models a) process the first 5 inputs, to
find the first marker, b) skip other inputs up to 50% of the sequence, as they never contain a marker
and c) process the last 5 inputs of the window containing the middle of the sequence, as the second
marker may be there. This is illustrated in Figure 16 for K = 10 and Figure 18 for K = 5.

As the loss in MSE stays reasonable proportionally to the number of updates skipped, SkipW can
be used to reduce the number of updates during a sequence to fulfill computational restrictions.

D.3 SKIP PATTERNS AND COMPARISON TO SKIPRNN AND THRRNN

Figure 14 illustrates the ability of SkipW to strictly limit the number of inputs processed. The dotted
lines corresponds to the K/L theoretical limit imposed. It is worth noting that the model uses a
maximum of 60% of inputs for K = L. This can be explained by the nature of the task where 40%
of the sequence does not contain information (no marker) and is also illustrated by the distribution
of inputs processed in Figure 16 (SkipW, top row).
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Figure 14: Impact of theK parameter on the computational cost upper limit (SkipW: λ=2e-4, L=10,
thr=0.5).

During training, there is no restriction on the value of K and no restriction on the patterns SkipW
can explore and therefore it can discover any skipping scheme. Figure 16 illustrates that an uncon-
strained (K = L) SkipW has correctly learned that it must sample the first 10% of the sequence
and then stop (until the second marker can appear). It has also learned that it must resume sampling
when the second marker can appear. SkipW has also learned that it can stop sampling the end of
the sequence when the second marker is detected: the proportion of skips increases in each window
after the third one.

When a computational constraint is enforced and K is set to a lower value, some skip patterns are
forbidden and skipW falls back to other patterns. These restrictions inevitably cause SkipW to miss
some markers and therefore to fail the task. This is illustrated in Figure 15. If failing the task is
not an option, one should not use K < L. Note that SkipW has learned to fall back to interesting
sampling patterns: the first marker starts to be skipped only when K < 5.

Figure 16 also compares the SkipW models with ThrRNN/SkipRNN. This figure highlights the re-
spective advantages of each method when flexibility is put aside (K = L and thr=0.5). Because the
skip mechanisms are different for SkipW and SkipRNN, these methods produce different sampling
patterns. SkipW determines the inputs to process at the beginning of each window whereas ThrRNN
performs a decision whenever an input is processed. ThrRNN is therefore able to stop sampling in-
puts when it has detected a marker. For example, the probability of processing an input gradually
decreases after position 25 for ThrRNN making it more efficient for the second part of the sequence
as shown in Table 1. The same behavior can be observed for SkipW, but only from one window
to another. It is also worth noting that the probability that SkipW processes inputs in a window is
very close to the probability that ThrRNN processes the first input in the window. On the positive
side for SkipW, notice that ThrRNN is unable to stop processing inputs for a long period, as shown
by a non-zero probability of using inputs between position 5 and 25. In addition, ThrRNN some-
times skips the first potential location of the second marker. We believe this explains why SkipW
can achieve both a higher accuracy and a lower computational cost than SkipRNN and ThrRNN.
Because ThrRNN is dragged down by its inability to completely stop sampling where there is no in-
formation, when trying to further reduce the number of inputs processed by increasing λ, skipRNN
stops analyzing interesting inputs.

This can also been seen by looking at sampling patterns, summarized in Figure 18 for some values
of K, or on MNIST in Appendix E.

D.4 IMPACT OF ARCHITECTURE ELEMENTS ON THE DISTRIBUTION OF INPUTS PROCESSED
IN A SEQUENCE

D.4.1 ABLATION OF INDEX IN SEQUENCE (T)

As discussed in Section 3, including the index (t) in the input of the update gate (Equation 6) is
necessary to allow the model to skip all inputs in a window. We show here the impact of removing
it by modifying equation 6: ũW,t+1 = γ · σ(Ww(st−1) + bw) + (1− γ) · ũW,t.
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Figure 15: Impact of theK parameter on the proportion of markers skipped. (SkipW: λ=2e-4, L=10,
thr=0.5).
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Figure 16: Distribution of the inputs processed for Adding Task using different models with thr
= 0.5. From top to bottom: SkipW K = L = 10 and λ=2e-4, SkipW with no index in sequence
K = L = 10 and λ=3e-4, ThrRNN λ=3e-4.

Figure 16 shows that, without t, the model is forced to process an additional input in the second
window even though this part of the sequence contains no marker. Processing this input enables the
model to change its hidden state and therefore to obtain a different activation vector ũW,t+1 in the
third window and to continue processing the second part of the sequence where the second marker
is found. Without this update, the model would stop processing the inputs at the end of the first
window since the state and therefore the activation vector would not change. Including t in the
input of the activation gate ensures that a different activation vector may be computed even without
processing an input in a window.

D.4.2 ABLATION OF THRESHOLD (THR = 0)

A second experiment was done to show the importance of the threshold parameter. When the
threshold is set to 0 the inputs are selected sorely on the basis of the parameter K. There-
fore exactly K inputs are selected in each window using equation 9 and equation 10 becomes
ut = fbinarize(ũ

K
W,t[i]) = 1 if ũKW,t[i] > 0, 0 otherwise.

Figure 17 shows the distribution of the inputs in each window for different values ofK when thr = 0
and Figure 18 when thr = 0.5. The importance of thr is clearly highlighted when comparing the
two figures. For example, for K = 5 and thr = 0 (Figure 17), there is no difference in the first
window and the model finds the first marker. However, as the model is forced to use 5 inputs per
window, it processes inputs in the second window and this impacts the choice made in the third

Table 1: Inputs processed in different part of sequence for Adding Task
Architecture first half second half
SkipW (L = 10, λ = 2e− 4) 20% 69%
ThrRNN (λ = 3e− 4) 31% 54%
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Figure 17: Distribution of the inputs processed for Adding Task using a SkipW model trained with
thr=0.5, L=10 and λ=2e-4; inference performed with thr=0 and different values of K.
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Figure 18: Distribution of the inputs processed for Adding Task using a SkipW model trained with
L=10 and λ=2e-4 with thr=0.5 and different values of K.

window as the model processes inputs at the beginning of this window instead of the last 5 which
could contain the second marker. This behavior is to be compared with Figure 18 (thr = 0.5) where
the inputs processed are effectively located in the second half of the third window. It should be
noted that for K = 1, thr has no discernible effect. The model selects only one input in the first
window and this affects the performance (the model will miss the first marker 80% of the time) but
also which inputs are selected for processing in subsequent windows.

E DETAILED RESULTS FOR SEQUENTIAL MNIST

To better assess the performance of SkipW on long sequences, we apply it to sequential MNIST. In
this data set, pixels of 28×28 images are processed sequentially. We selected L = 28, which means
each window corresponds to a line of the image. Some results are available in Table 2 and Figure 19.
The first part of the table contains methods processing pixels sequentially. The second part reports
recent results from feature selection methods. SkipRNN by Campos et al. (2018) was reported with
an accuracy of 97.6% when processing half the pixels in the original paper. We generated additional
tradeoff results with SkipRNN by gradually increasing λ.

We report results for skipW models using different λ from 1e-4 to 1e-1. ForK = L, skipW achieves
similar tradeoffs to skipRNN models. The number of inputs and accuracy can be modified with
K. However, on this dataset, SkipW accuracy decreases faster with K and the resulting tradeoffs
do not stay above the ones achieved by other SkipRNN models. For example, SkipRNN (λ=1e-
3) achieves both a better accuracy and computational cost than SkipW (L=28, K=9, λ=1e-4). If
reloading the model is an option, selecting another model may be better than modifyingK. However,
doing so with SkipRNN would not enforce any computational constraint while SkipW can enforce
rather tight constraints. For example, using SkipW (L=28, λ=1e-4) K can be decreased to 11
before significantly affecting accuracy. Similarly, SkipW (L=28, λ=1e-2) processes on average only
4.5% inputs to achieve 86.7% accuracy and can be limited to 3 pixels per line without impacting
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Table 2: Comparison of various subsampling methods on MNIST. The first part of the table contains
methods processing pixels sequentially. The second part contains some results from recent feature
selection methods. These are not sequential.

Model Source Accuracy (%) Inputs processed (%)
RNN (pskip = 0.5) Campos et al. (2018) 91.2 50
SkipRNN (λ =1e-4) Campos et al. (2018) 97.6 50
SkipRNN (λ =1e-4) 97.8 32.5
SkipRNN (λ =1e-3) 96.1 15.6
SkipRNN (λ =1e-2) 89.7 9.5
SkipRNN (λ =1e-1) 10.0 0.7
SkipW (L=28, K=28, λ =1e-4) 96.9 26.9
SkipW (L=28, K=11, λ =1e-4) 96.4 26.8
SkipW (L=28, K=10, λ =1e-4) 95.8 26.4
SkipW (L=28, K=9, λ =1e-4) 92.2 25.4
SkipW (L=28, K=8, λ =1e-4) 76.7 23.7
SkipW (L=28, K=7, λ =1e-4) 57.5 21.3
SkipW (L=28, K=28, λ =1e-3) 96.0 15.1
SkipW (L=28, K=28, λ =1e-2) 86.7 4.5
SkipW (L=28, K=3, λ =1e-2) 86.7 4.5
SkipW (L=28, K=2, λ =1e-2) 83.0 4.3
SkipW (L=28, K=28, λ =1e-1) 10.0 0.1
Uniform sampling Huijben et al. (2019) 71.4 3.2
DPS-topK Huijben et al. (2019) 93.4 3.2
LOUPE (Bahadir et al., 2019) Huijben et al. (2019) 80.1 3.2
Concrete Autoencoders Balın et al. (2019) 90.6 6.4

accuracy much. That being said, its operating range is a bit smaller than the first model. To put
the performance of this model in perspective, the second part of Table 2 contains results achieved
by recently published feature selection methods on the MNIST data set. These methods consider
all pixels at the same time for both feature selection and classification. They are therefore not
directly comparable but they offer an interesting point of comparison. The accuracy (86.7%) and
inputs processed (4.5%) achieved by the SkipW model (L=28, λ=1e-2) are not as good as the best
of these methods (DPS-TOPK). They are however much closer to these results than to these based
on uniformly sampled pixels and arguably better or similar to the 80.1% accuracy for 3.2% inputs
processed of LOUPE.

This dataset also further shows that the skip patterns learned by SkipW and SkipRNN can be biased.
Figures 23 to 26 illustrate skip patterns realized by SkipW on some digits. They can be compared
to the results achieved with SkipRNN, displayed in Figures 20 to 22. A few interesting observations
can be made about SkipW. First, most pixels are sampled in the middle of the image, where the digits
are located. No pixels are looked at in the top, left or right of the pictures but several are considered
at the bottom. SkipRNN on the other hand samples a few pixels in the top and bottom of the figures
and a lot on the sides.

Then, SkipW patterns are characterized by vertical lines: the same positions tend to be sampled
in each window. These positions are not all static and vary depending on the particular sequence.
Furthermore, when K is small, the pixels sampled tend to be spread out in the image. Finally,
Figures 25 and 26 further support that SkipW has learned interesting patterns in the data. For
example, for digits 1 and 0, sampling almost exclusively takes place in one column, with some
additional pixels next to the top of that line. We presume these are useful to check for a vertical or
horizontal line there. This would indicate the digit is not a 1 or 0. For other digits, more pixels are
sampled at the left of the main line. This can be compared with the SkipRNN sampling patterns.
They also display a periodic behavior, but that periodicity is at the pixel rather than at the window
level. While this bias seem shared by both methods, we conjecture that SkipW suffers less because
it takes place at a larger scale. This may also explain why this behavior was not present for SkipW
in Adding Task.
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Figure 19: Comparison of SkipRNN and SkipW and impact of theK parameter on accuracy/updates
tradeoff for MNIST. For both SkipW (L=28) and SkipRNN several values of λ were tested: from
λ=1e-4 to λ=1e-2. This figure is the same as Figure 5 and illustrate some results listed in Table 2.

Figure 20: Examples of skip patterns by SkipRNN on MNIST with λ=1e-4. Blue pixels are skipped.
This figure is from (Campos et al., 2018).

Figure 21: Examples of skip patterns by SkipRNN on MNIST with λ=1e-4. Blue pixels are skipped.
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Figure 22: Examples of skip patterns by SkipRNN on MNIST with λ=1e-3. Blue pixels are skipped.

Figure 23: Examples of skip patterns by SkipW (λ=1e-4) on MNIST with L=28 and K=28. This
particular model achieves an accuracy of 96.9% and uses on average 26.9% of inputs. Blue pixels
are skipped. All images are correctly classified.
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Figure 24: Examples of skip patterns by SkipW (λ=1e-4) on MNIST with L=28 and K=7. This
particular model achieves an accuracy of 57.4% and uses on average 21% of inputs. Blue pixels are
skipped. The predicted label is on top of each image.

Figure 25: Examples of skip patterns by SkipW (λ=1e-2) on MNIST with L=28 and K=28. This
particular model achieves an accuracy of 86.7% and uses on average 4.5% of inputs. Blue pixels are
skipped. The predicted label is on top of each image.
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Figure 26: Examples of skip patterns by SkipW (λ=1e-2) on MNIST with L=28 and K=2. This
particular model achieves an accuracy of 83% and uses on average 4.3% of inputs. Blue pixels are
skipped. The predicted label is on top of each image.
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Figure 27: Modifying (thr,K) during the sequence on HAR for SkipW (λ=2e-2, L=16): from
tradeoff1: (thr=0.5, K=16, acc/updates = 98.5%/9.5%) to tradeoff2: (thr=0.5, K=1, acc/updates =
94.4%/5.1%).

F ADDITIONAL RESULTS FOR HAR

F.1 MODIFYING TRADEOFF DURING INFERENCE

Figure 27 and 28 show the adaptability of SkipW during the analysis of a sequence when switching
between different tradeoffs. We present here results for a SkipW wih L = 16 and λ=2e-2 with
different tradeoffs. As with previous experiments (Figure 9 and Figure 13), the performance is
bounded by the individual performance of the two configurations evaluated.

G REAL TIME EXPERIMENTS

G.1 LATENCY EXPERIMENTS

In order to explore the impact of the HW platform on the latency of HAR Services based on
SkipW/PoseNet, we measure the latency of the HAR Service on 2 other small platforms: a Jet-
son TX2 (similar to the Jetson Nano platform (Figure 10), but more powerful) and a Raspberry Pi 4
(better CPU, but lacking a compatible GPU for AI model acceleration). The hardware specification
of these different devices is provided in Table 3. Figure 29 compares the performances of the HAR
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Figure 28: Modifying (thr,K) during the sequence on HAR for SkipW (λ=2e-2, L=16): from
tradeoff1: (thr=0.4, K=3, acc/updates = 99.1%/13.3%) to tradeoff2: (thr=0.504, K=1, acc/updates
= 80.8%/3.1%).

Table 3: Specifications of hardware devices
Jetson TX2 Jetson Nano Raspberry Pi 4

AI performance 1.33 TFLOPs 0.47 TFLOPs 0.0135 TFLOPs
GPU1 256-core NVIDIA PascalTM 128-core NVIDIA MaxwellTM -

CPU 4-core ARM® A57 (@1.2GHz) 4-core ARM® A57 (@1.2GHz) 4-core ARM® A72 (@1.5GHz)
& 2-core NVIDIA Denver (@854MHz)

Memory 4 GB 128-bit LPDDR4 4 GB 64-bit LPDDR4 4 GB LPDDR4-3200
51.2 GB/s 25.6 GB/s

1 Only AI capable GPUs are reported

Services on the 3 selected platforms. It is worth noting that the impact of the different tradeoffs
([K, thr]) on the latency are very similar.

G.2 ENERGY CONSUMPTION

When SkipW coupled with a CNN model is set appropriately, it can enable a huge reduction in the
amount of computation. This can have an immediate impact on the energy consumed to deliver
a Service, an important feature for battery powered systems. As an illustration, we measure the
power consumed by the HAR analysis when running on the Jetson boards. This analysis is designed
to run at 22Hz. The energy consumption is measured by pulling periodically (every 100 ms) the
instantaneous power consumption indicator available at the board level. We report here an average
of these instantaneous values over a 8 minutes period. Figure 30 provides those energy consumption
for the Jetson Nano and the Jetson TX2. Those two platforms display the same behavior: when K
decreases, the consumption decreases significantly. The gain is especially noticeable for the Jetson
Nano platform, where it can reach up to 50% of energy gain.
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Figure 29: Sequence latency for different devices when processing HAR Service using SkipW
(λ=1e-2, L=8) coupled with PoseNet (MobileNetV1 0.75). Individual contribution of models (CNN:
PoseNet, RNN: SkipW) are also reported.
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Figure 30: Average energy consumption for the analysis of a HAR sequence using SkipW (λ=1e-2,
L=8) and PoseNet (MobileNet 0.75) on a Jetson Nano and a Jetson TX2. The dotted line corresponds
to the energy level for no activity and the dashed one to the maximum instantaneous level measured
when models are running.
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Figure 31: Impact of the K parameter on accuracy/updates tradeoff for HAR. Comparison between
ThrRNN (thr=0.5 to 1.0), SkipW(L=4,8,16; thr=0.5, K=1 to L) and SkipRNN (λ=1e-3 to 3e-1).
For random subsampling, the shaded area corresponds to 3 times the standard deviation on each side
of the mean value (50 evaluations).

H WOULD OTHER SAMPLING MECHANISMS WORK JUST AS WELL?

The main purpose of SkipW is to upper bound the computational complexity of the model dynami-
cally during inference. This has been illustrated in the experiments. Here, we study whether naive
approaches would work just as well or whether some parts of the model can be modified. We con-
ducted three sets of experiments on HAR. In the first one, SkipW is compared to naive models
with a set complexity, such as random subsampling. In the second and third ones, we modify the
skip mechanism of SkipW to generate other flexible models. To do so, we replace the sampling
mechanism by random sampling variants and we respectively keep or discard the selection by the
binarization function.

We selected HAR because SkipW works best on this data set. Furthermore, as information is lo-
cated in only some parts of the sequence for Adding Task and MNIST, it seems obvious that naive
sampling strategies would not work well on these data sets.

H.1 NAIVE RANDOM SAMPLING

Figure 31 compares the models presented in the main experimental section to additional baselines.
In addition to ramdomly sampling inputs, we also consider sampling inputs at set locations, such as
the K first inputs of each window or periodic sampling. When the number of inputs subsampled is
small, no variant considered in this section achieves an accuracy similar to SkipW for a set number
of inputs processed. However, they are more accurate than SkipRNN.
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Figure 32: Replacing the sample mechanisms by other variants (without the binarization function)
decreases accuracy on HAR with K=8.

0 5 10 15 20 25 30 35 40
Inputs processed (%)

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SkipW, L=8
random subsampling
first K inputs
last K inputs

Figure 33: Replacing the sample mechanisms by other variants (without the binarization function)
negatively impact the number of inputs processed on HAR with K=8.

H.2 OTHER SAMPLING MECHANISMS, WITHOUT THE BINARIZATION FUNCTION

In this section we compare the SkipW architecture described in Section 3 to variants where the
sampling mechanisms is modified to sampleK inputs within each window at random or by selecting
the first or the last elements of the window. The results are displayed in Figures 32 and 34 for two
different SkipW models (L=16 and λ=2e-2; L=8 and λ=1e-2). No variant matches the accuracy of
the original SkipW over the whole range of K, although taking the first or last element achieves a
similar performance forK=1 and so does random sampling forK between 4 and 6 whenL=16. That
being said, SkipW can process fewer thanK inputs in every window thanks to the importance vector
and the binarization function. Not using these negatively impacts the number of inputs processed, as
shown in Figures 33 and 35. This leads to a big difference between the original SkipW architecture
and the other variants studied here. Even in the most favorable case where L = 16 and K =
1, skipW processes 5.06% of inputs whereas the other variants process 6.25%. We expect this
computational advantage to be even larger on tasks such as Adding Task and sequential MNIST,
where a lot of windows contain no useful information.

The fact that no method matches the accuracy of SkipW for all K, that for some K no method
matches the accuracy of SkipW and that SkipW also process fewer samples than these variants
show the interest of using the weight vector to select future inputs.

H.3 OTHER SAMPLING MECHANISMS, WITH THE BINARIZATION FUNCTION

Finally, in this section we compare the SkipW architecture to an additional variant where the selectK
mechanism is modified to select the first K inputs of the window whose associated value is > thr.
In other words, the main difference with the previous section is that only TopK is replaced but the
binarization function is kept. Figures 36 and 37 illustrate the results for L = 8 and 16 respectively.
The previous section has shown that using the importance vector is necessary. This section suggests
that the method used to select inputs from these that beat the threshold can change without impacting
the accuracy when thr = 0.5. However, one should note that selecting inputs within each window
without using the binarization function (previous section) is equivalent to using thr = 0. As the
alternative selectK variants were less effective than TopK for this configuration, we advice against
not using TopK when modifying thr.
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Figure 34: Replacing the sample mechanisms by other variants (without the binarization function)
decreases accuracy on HAR with K=16.

0 5 10 15 20 25 30 35 40
Inputs processed (%)

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

SkipW, L=16
random subsampling
first K inputs
last K inputs

Figure 35: Replacing the sample mechanisms by other variants (without the binarization function)
negatively impact the number of inputs processed on HAR with K=16.
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Figure 36: Other variants of selectK do not affect accuracy on HAR with L=8.
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Figure 37: Other variants of selectK do not affect accuracy on HAR with L=16.
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