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Abstract

We propose to adapt grammatical error cor-
rection (GEC) systems to the learners’ first
language (L1) by generating artificial errors
that reflect the L1 influence. To this end, we
employ two simple approaches: fine-tuning a
back-translation model on L1-annotated data;
and controlling the output of a back-translation
model and generating artificial errors that fol-
low the L1-dependant error type distribution.
We demonstrate that, despite the simplicity of
the model and the paucity of the L1-annotated
data, our methods succeed in adapting GEC
models to some languages. We also show that
generating L1-adapted artificial errors is or-
thogonal to the existing method that directly
adapts the GEC model to each L1. Lastly, we
present an analysis of the pseudo errors gener-
ated by our models and show that they approx-
imately capture the L1-specific error patterns.

1 Introduction

Grammatical error correction (GEC) is the task of
automatically correcting grammatical errors in sen-
tences, and various methods have been proposed
to date. However, one largely overlooked aspect
of GEC is that grammatical errors are highly in-
fluenced by the writer’s first language (L1) (Jarvis
and Odlin, 2000; Ionin et al., 2008; Yamashita and
Jiang, 2010; Montrul, 2000). For instance, Ionin
et al. (2008) show that Russian speakers make more
errors on article use in English than do Spanish
speakers, likely because Russian is an article-less
language unlike English and Spanish.

The major bottleneck that prevents researchers
from exploring L1-adapted GEC models is the
paucity of L1-annotated data. The largest and clean-
est L1-tagged learner corpus in public (First Cer-
tificate in English Corpus (FCE) (Yannakoudakis
et al., 2011)) contains only a few thousand sen-
tences for each L1, and such data do not even exist
in many languages other than English due to its
expensive nature. Because of this data constraint,

existing studies on L1-adaptation are extremely
limited and not very diverse in terms of methodol-
ogy. For instance, Chollampatt et al. (2016) and
Nadejde and Tetreault (2019)! simply fine-tune
neural models on small L1-specific data, regard-
ing L1-adaptation as a general domain adaptation
problem (Daumé and Marcu, 2006; Yu et al., 2013;
Luong and Manning, 2015). Rozovskaya and Roth
(2010a) adapt classifier models using L1-dependent
confusion sets extracted from the L1-specific data,
but it is only applicable to specific types of errors
(e.g. preposition errors). Therefore, much remains
to be explored regarding how to make the most of
the small L1-annotated data.

In this paper, instead of directly adapting GEC
models, we propose to use a small number of L1-
annotated sentences (e.g. 1,000 sentences) in FCE
to generate a large number of L1-specific pseudo
errors to perform data augmentation. To this end,
we examine two approaches: the first is to fine-
tune a back-translation (BT) model instead of GEC
models on small L1-specific data; and the second is
to control the output of the BT model and generate
pseudo grammatical errors that follow the error-
type distribution on L1-specific data. We demon-
strate that, despite the simplicity and data paucity,
these methods successfully generate pseudo errors
that capture the influence of learners’ first lan-
guages. Further, we show that the generated pseudo
data can lead to better GEC performance overall.

2 Related Work

L1 Adaptation of GEC Models

Nadejde and Tetreault (2019) fine-tune a GEC
model on learner corpora tagged with L1s or
proficiency-levels and show that it improves its
domain-specific performance. Similarly, Chollam-
patt et al. (2016) fine-tune a neural language model

"Notably, Nadejde and Tetreault (2019) use a superset of

FCE in their experiments, i.e. Cambridge Learner Corpus
(CLC) (Nicholls, 2003), which is not publicly available.



with regularization on L1-specific data and use it
as a feature in their SMT-based GEC system. Ro-
zovskaya and Roth (2010a) and Rozovskaya and
Roth (2011) adapt classifier models for preposition
errors by taking into account which prepositions
are often confused by the specific L1 speakers. Ro-
zovskaya et al. (2017) extend this approach and
show that the L.1-adaptation benefits classifier mod-
els for article and verb-agreement errors as well.

Pseudo Error Generation

Many studies employ a back-translation (BT)
model (Sennrich et al., 2016b) to generate artifi-
cial errors, which “translates” grammatical sen-
tences into ungrammatical ones. To make the BT
model generate diverse errors, Xie et al. (2018) and
Edunov et al. (2018) add noise to the beam search
scores or sample tokens from the probability distri-
bution and show that they are more effective than
beam search decoding. Very recently, Stahlberg
and Kumar (2021) have proposed a new BT model
that controls its output and generates targeted types
of errors. They first tag learner corpora with error
types using the automatic annotation tool ERRANT
(Bryant et al., 2017), and train a BT model that
generates pseudo errors conditioned on those error-
type tags. They show that their model generates
more realistic errors and leads to better GEC perfor-
mance. They have also tried adapting their model to
learners’ proficiency levels, and found it effective
for correcting sentences written by native English
speakers but not for those written by different lev-
els of non-native speakers. Another pseudo-error
generation method involves corrupting sentences
with an arbitrary noise function. For instance, Ro-
zovskaya and Roth (2010a) and Rozovskaya and
Roth (2010b) generate pseudo errors by replacing
correct English articles and prepositions with in-
correct ones that are often misused by specific L1
speakers, which is similar in spirit to our work.
However, their methods are applicable to specific
types of errors only wherein the set of replacement
candidates is limited. Zhao et al. (2019) and Kiy-
ono et al. (2019) employ more random and noisy
operations such as masking or shuffling words and
demonstrate the effectiveness of this approach.

3 Method

We examine two simple methods for generating
pseudo errors that incorporate the influence of
learners’ L1s. We apply both methods to a back-

translation (BT) model, which converts grammati-
cal sentences into ungrammatical ones.

Our first approach (“Fine-tuned BT”) pre-trains
a BT model on general learner corpora and fine-
tunes it on small L1-specific data. In this way, we
expect the model to generate pseudo errors that
reflect the L1-specific error patterns, such as lex-
ical choices and error frequency. Our second ap-
proach (“Tagged BT”) controls the output of the
BT model and generates artificial errors that fol-
low the error type distributions on L1-specific data.
This method is inspired by previous work in MT
(Sennrich et al., 2016a; Johnson et al., 2017), which
shows that the politeness or even the language of
translations can be controlled by simply adding spe-
cial tokens to the input. In this study, we control
the outputs of the BT model by prepending error-
type tokens such as <R:PREP> (replace preposi-
tion) to the input. We obtain these tags using the
annotation tool ERRANT (Bryant et al., 2017).2
For instance, the BT model takes “<R:SPELL>
<R:PREP> I always smile at people.” as an input
and generates the corrupted sentence that contains
the specified types of errors, e.g. “I always simle
to people”. Recently, Stahlberg and Kumar (2021)
have also proposed similar yet more complex mod-
els that generate pseudo errors conditioned on the
ERRANT error tags, and shown that they improve
the general GEC model performance.

After training our BT models, we feed gram-
matical sentences into them and generate artificial
errors. For Tagged BT, we sample & error tags inde-
pendently according to the error type frequency dis-
tribution on L1-specific data, and prepend them to
each input sentence.’ We set k to |aN R, |, where
« is a hyper-parameter, [V is the number of tokens
in the input sentence, and Ry is the error-per-token
ratio of the /-specific data.

4 Experiment

4.1 Data and Experimental Setup

In our experiments, we use the learner corpora
provided at BEA2019, namely Lang-8 (Mizu-
moto et al., 2011; Tajiri et al., 2012), FCE (Yan-
nakoudakis et al., 2011), NUCLE (Dahlmeier
etal., 2013), and W&I+LOCNESS (Granger, 1998;
Yannakoudakis et al., 2018; Bryant et al., 2019).

2We discard OTHER tags, as their patterns are inconsistent.

3We also consider the part of speech tags in a sentence
and avoid assigning the types of errors that are not compatible
with the sentence (e.g. <R:PREP> should not be assigned to a
sentence that does not contain any preposition).



Pseudo Errors fr ja ru tr
None 364 3677 404 412
Standard BT | 38.1 42.0 429 42.0
Tagged BT 38.2 404 455 43.7
Fine-tuned BT | 39.1 414 452 42.1

Table 1: Fg.5 scores on FCE-/-test obtained by the
GEC models trained with different pseudo errors. The
best scores are boldfaced.

Among them, FEC is an L1-annotated learner cor-
pus containing a few thousand sentences for each
L1.* We split them into development and test data
for each L1 ¢ € {French (fr), Japanese (ja), Rus-
sian (ru), Turkish (tr)}, which we denote as FCE-¢-
dev/test. We assign 1k sentences to FCE-¢-dev and
use them to adapt our BT models to /, by either fine-
tuning a pre-trained BT model on it, or extracting
the L1-specific error type distribution that Tagged
BT emulates. We use the FCE data of Spanish
speakers as tuning data and use them to determine
the epoch size of fine-tuning the models and the
hyper-parameter o, which we set to 4.0. We use the
other corpora (Lang-8, W&I+LOCNESS and NU-
CLE) as our training data’ for all the GEC and BT
models, and the concatenation of all the sentences
in FEC-{fr/ja/ru/tr}-dev as the development data.
For the inputs of the BT models, we sample 1.4M
sentences from Wikipedia.® To evaluate the effec-
tiveness of our L1-adaptation methods, we compare
the performance of GEC models that are trained
with the training corpora only, or plus artificial er-
rors generated by a standard BT model (“Standard
BT”), Fine-tuned BT or Tagged BT. For all the BT
and GEC models, we use the same Transformer-big
architecture (Vaswani et al., 2017) to ensure fair-
ness.” When we decode pseudo errors using Stan-
dard and Fine-tuned BT, we sample words from
the probability distribution® following Edunov et al.
(2018), but for Tagged BT, we use beam search and
increase the number of errors by setting « to 4.0.
We evaluate the GEC models using ERRANT Fy 5
scores, following recent work.

“Lang-8 also contains L1 information, but the data is very
noisy and hence we do not use it for L1-adaptation.

3 After pre-processing, they amount to 0.54M sentences;
see Appendix A for the details.

®http://data.statmt.org/wmt20/
translation-task/ps—-km/wikipedia.en.lid_
filtered.test_filtered.xz

"See Appendix B for the model hyper-parameters and
implementation details.

80therwise, the generated errors contain very few errors
and lead to much worse performance in GEC.

Pseudo Errors fr ja ru tr
None 40.8 434 448 447
Standard BT | 40.5 44.1 462 454
Tagged BT 41.3 435 483 46.1
Fine-tuned BT | 41.5 44.3 47.2 45.1

Table 2: F 5 scores on FCE-/-test obtained by the fine-
tuned GEC models. The scores are averaged over three
runs of fine-tuning the models on FCE-¢-dev with dif-
ferent random seeds. The best scores are boldfaced.

4.2 Result

Table 1 shows the F 5 scores achieved by the GEC
models trained with or without different types of
artificial errors. It indicates that Tagged BT im-
proves the model performance when learners’ L1 is
Russian or Turkish (4-2.6 and +1.7, respectively).
Fine-tuned BT is also adapted well to French and
Russian speakers, increasing the performance by
1.0 and 2.3. However, both models fail to improve
the performance on FCE-ja-test and perform worse
than Standard BT. This is presumably because the
majority of the sentences in the learner corpora
come from Lang-8, in which the most dominant
L1 is Japanese (Brooke and Hirst, 2013). There-
fore, the GEC model trained on this data would
be adapted to Japanese speakers already, and L1-
adaptation of the pseudo errors would have little
impact on the performance.

Next, we examine whether fine-tuning the GEC
model itself on L1-specific data will bring fur-
ther improvements, as performed by Nadejde and
Tetreault (2019). Table 2 shows the results when
the GEC models are pre-trained with different
pseudo errors and fine-tuned on FEC-/-dev.!? It
demonstrates that our models still outperform the
baselines even though all the models are ¢-adapted
using the same data. This result suggests that the
L1-adaptation of pseudo errors brings different ben-
efits from adapting the GEC model itself, and both
adaptation strategies are orthogonal to each other.

4.3 Analysis

To investigate whether the generated pseudo errors
in fact capture the influence of L1, we compare the
similarity of the error type distributions between

This is because the Lang-8 corpus is scraped from the
website based in Japan (https://lang-8.com).

"We fine-tune the GEC models with three different seeds
and report the average scores. For each GEC model including
the baselines, we individually tune the epoch size of fine-
tuning using the tuning data, i.e. FCE-Spanish.
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L1 fr ja ru tr
Standard BT | — | 322 299 31.6 3456
fr | 129 141 149 136
ja | 230 147 150 142
Tagged BT |0 1160 116 84 126
r | 184 147 137 104
fr | 45.3 43.1 446 43.1
. ja | 492 406 425 433
Fine-tuned BT | "1 506 411 423 444
tr | 570 479 507 497

Table 3: KL divergence of the error tag distributions
between FEC-/-test (column) and pseudo errors (row).
For Tagged and Fine-tuned BT, the lowest values in
each column are boldfaced.

FCE-test FCE-dev Pseudo Errors
fr ja fr ja fr ja -
M:DET 37 1 94 | 26 |98 2.1 57 | 6.3
R:VERB 74 | 57 | 77 |41 29 | 24 | 22
R:OTHER | 11.8 | 11.8 | 11.6 | 9.2 | 34.3 | 33.1 | 29.1
R:NOUN 5.1 36 | 47 |29 | 13.0 | 114 | 8.7

Table 4: Error-type percentages on FCE-/-test/dev and
pseudo errors made by Fine-tuned and Standard BT.

the pseudo errors'! and FEC-/-test. As the similar-
ity metric, we use the Kullback Leibler divergence
(Kullback and Leibler, 1951) KL(P|Q), where P
and () denote the error type distributions on FCE-/-
test and pseudo errors, respectively; and the result
is shown in Table 3. First of all, it clearly shows that
Tagged BT produces the most similar errors of all
the models to those on the test data. It also shows
that Tagged BT can adapt the errors to French, Rus-
sian and Turkish, with the adapted errors being the
closest to the corresponding L1 test data.'> Regard-
ing Fine-tuned BT, its pseudo errors are less similar
to the test data than those made by Standard BT,
but are adapted to French, Japanese and Russian
and capture certain important L1 influences. For
instance, the percentages of the missing-determiner
error found in the {fr/tr/ru/ja}-adapted pseudo er-
rors are 2.1%, 3.7%, 5.2%, and 5.7%,'3 and these
numbers clearly reflect the L1 influence; Spanish
has both definite and indefinite articles like English,
Turkish has an indefinite article only, and Japanese
and Russian have neither of them. We also ana-
lyze other error types in Table 4, which describes
the percentages of four error types on FCE-fr/ja-

"'We use the first 10k sentences to obtain the distributions.
2This implicitly indicates that the error tendency is consis-
tent across FCE-/-dev and -test, and that L1 influence exists.
BIn FCE-{fr/tr/ru/ja}-test, 3.7%, 8.3%, 10.4%, and 9.4%.

Tagged BT Fine-tuned BT

fr ja ru tr fr ja ru tr
fr 382 378 375 383 391 386 384 384
ja 404 404 423 417 409 414 413 417
ru 44.0 427 455 450 441 435 452 427
tr 42.0 41.6 427 43.7 416 428 431 421

Table 5: Fg.5 scores on FCE-/-test obtained by the
GEC models adapted to ¢. The best scores for each
model are boldfaced.

dev/test and pseudo errors made by Fine-tuned and
Standard BT.'* We select those errors that have
the largest absolute differences between Japanese
and French FCE-dev, and the table shows that the
L1-adapted pseudo errors emulate the same magni-
tude relation. However, the relation of R:OTHER
does not represent the L1 influence but rather the
bias on FCE-deyv, as its patterns are not consistent
across FCE-dev and FCE-test. Hence, we expect
our L1-adaptation methods to perform better as we
have larger training and test data that reflect more
accurate L1-specific error patterns.'>

Lastly, to investigate whether the L1 adaptation
is indeed effective, we train GEC models with the
pseudo errors adapted to different languages from
L1, and Table 5 compares their performance. It
shows that Tagged BT is mostly adapted to each L1
except for Japanese, for which the Russian model
performs by far the best. However, as previously
shown in Table 3, the Russian-adapted pseudo er-
rors have the closest error distribution to FCE-ja-
test. This indicates that generating pseudo errors
that predict and mimic the error patterns on test
data can be effective for improving GEC models.

5 Conclusion

We proposed a new approach to adapt GEC models
to learners’ L1 by generating L.1-specific pseudo
errors. We showed that both of the methods we ex-
plored, that is, fine-tuning a back-translation model
and controlling the error types of its output, im-
proved GEC models on L1-specific data overall.
We also demonstrated that our approach brought
additional benefits when combined with an existing
L1-adaptation method. By analysing the generated
errors, we found that our adapted BT models gen-
erated more L1-specific errors.

14See Appendix C for the percentages of other error types.

SWe also speculate that Fine-tuned BT produced much
more R:OTHER errors than Standard BT as a result of the
model being overfitted to the small FCE-dev data.
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Configurations Values

arch Transformer
(Vaswani et al., 2017)

max-tokens 8,192 (training)

update-freq

1,024 (fine-tuning)
1

Corpus # Sentences
Lang-8 1,037,561
NUCLE 57,151
W&I+LOCNESS 38,691
After Preprocessing
lang-8 497,386
NUCLE 21,539
W&I+LOCNESS 25,524
Training Data 544,449
FCE-fr-dev 1,000
FCE-fr-dev (non-identical) 675
FCE-fr-test 2,718
FCE-ja-dev 1,000
FCE-ja-dev (non-identical) 535
FCE-ja-test 1,361
FCE-ru-dev 1,000
FCE-ru-dev (non-identical) 623
FCE-ru-test 1,280
FCE-tr-dev 1,000
FCE-tr-dev (non-identical) 649
FCE-tr-test 1,292
FCE-dev 4,000
FCE-dev (non-identical) 2,482

Table 6: The number of sentences in each corpus

A Corpus Statistics and Preprocessing

Table 6 shows the number of sentences in each cor-
pus we used in our experiments. We applied a few
preprocessing steps to each corpus. First, we re-
moved the sentence pairs in which more than 70%
of the tokens in either the source or target sentence
were composed of capital letters only (e.g. “THIS
IS a PEN”). Then, we extracted the sentences writ-
ten by native speakers of ¢ from the FCE corpus,
and assigned 1,000 sentences to FCE-/-dev and the
rest to FCE-/-test. Lastly, we removed the sentence
pairs from the other corpora where the source and
target sentences were identical, following Chollam-
patt and Ng (2018). When we fine-tuned BT and
GEC models on FCE-/-dev, we also discarded such
sentence pairs, and the numbers of the remaining
sentences are shown as “(non-identical)”. We used
the concatenation of FCE-fr/ja/ru/tr-dev (FCE-dev
and FCE-dev (non-identical)) as the development
data of the GEC and BT models, respectively.

B Implementation Details

Table 7 shows the model hyper-parameters and im-
plementation settings. We used exactly the same

seed 1,024
optimizer Adam (Kingma and Ba, 2015)
Ir 0.0005
0.3 (training)
dropout 0.1 (fine-tuning)
min-Ir le-09
Ir-scheduler inverse_sqrt
warmup-updates 4,000
warmup-init-lr le-07
adam-betas (0.9, 0.98)
max-epoch 20 (training)
Tuned on FCE-Spanish (fine-tuning)
clip-norm 1.0
. label_smoothed_cross_entropy
criterion

(Szegedy et al., 2016)
label-smoothing 0.1
beam size 5 or 1 (sampling)

Table 7: Implementation details.

configurations to train and fine-tune all the GEC
and BT baselines and our models. We used fairseq
version 0.9.0 (Ott et al., 2019) throughout our ex-
periments.

C Error Tendency

Table 8 shows the percentages of the error types
that have the 10 largest absolute differences be-
tween Japanese and French FCE-dev. It shows that
Fine-tuned BT and Tagged BT emulate the same
magnitude relations for the most errors. However,
for some error types such as M:PUNCT, their rela-
tions are not consistent across FCE-dev (fr: 4.6%,
ja: 5.9%) and FCE-test (fr: 4.5%, ja: 4.3%). This
suggests that when we adapt GEC models to L1, it
would be better to focus on the specific error types
that are actually influenced by the native language.

D Output Examples

Table 9 shows examples of the outputs of differ-
ent BT models. It indicates that Fine-tuned BTs
produced noisier pseudo errors. This may be be-
cause the models were overfitted into the small L.1-
specific data on which they were fine-tuned. On the
other hand, Tagged BTs produced more realistic
errors that were specified by the error tags.



Learner Corpora Pseudo Errors
Train | FCE-dev FCE-test Fine-tuned Tagged | Standard
- fr ja fr ja fr ja fr ja -
M:DET 6.7 26 98| 37 | 94 | 21 | 57 |42 114 6.3
R:VERB 4.3 77 |41 74 | 57 | 29 | 24 |36 2.1 22
R:OTHER 177 | 11.6 | 92 | 11.8 | 11.8 | 343 | 33.1 | 8.6 | 7.7 29.1
R:NOUN 2.3 47 129 51 | 3.6 |13.0| 114 | 43| 3.1 8.7
R:PRON 1.3 29 |12 1.8 | 12|03 ] 02 09| 04 0.3
R:VERB:FORM 2.0 32 | 1.8 27 | 22| 08 | 09 |28 24 1.0
R:VERB:TENSE | 4.6 39 |52 42 | 42 | 1.0 | 1.2 | 44| 47 1.6
R:PREP 33 68 |54 69 | 54 | 32 | 28 |91 ]| 638 3.6
M:PUNCT 3.5 46 |59 | 45 | 43 | 2.1 | 25 |92 108 34
M:PREP 29 26 |36 22 | 33|09 | 1.1 |35] 45 1.5
M:OTHER 6.0 23 |32 25|24 | 17 ] 20 |19] 21 2.5

Table 8: Error-type percentages on learner corpora and pseudo errors made by different BT models.

Sentence
ECE Input (Error-Corrected) | At home , we must wash our hands before lunch .
Learner’s Sentence At home , we must wash our hands before the lunch .
beam search At home , we must wash hands before lunch .
Standard BT - — -
sampling At home , we must wash otherwise it ’s lunch time .
Tacoed BT <R:PREP> <R:SPELL> | In home , we must wash our hands befor lunch .
£8 <M:DET> At home , we must wash hands before lunch .
French At home , we must wash jected to eat our hands before lunch .
Fine-tuned BT | Japanese addition , we must wash hands supper .
(sampling) Russian At home , we must wash conditiones before lunch .
Turkish puthome , we must Listes hands before ano our pales .
Input (Error-Corrected) | I would like to choose swimming and painting .
FCE ; - - —— —
Learner’s Sentence I would willingly like to choose swimming and painting .
Standard BT beam §earch I would like .to choose swimming and painting .
sampling I would architecture . . and painting . ally .
Tacoed BT <R:VERB> I would like to choice swimming and painting .
£8 <U:NOUN> I would like to choose swimming color and painting .
French I would concera likes swimming and guy ided painting .
Fine-tuned BT | Japanese I t\lzvould clf.:ver ? orderdbou‘ tq processes ’ like to
(Sampling) CNOOSE swimming an palntlng .
Russian I would spelling to flowers swimming and painting warf .
Turkish I would exhiat Tide swimming , paint .

Table 9: Examples of pseudo errors



