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Abstract
We propose to adapt grammatical error cor-001
rection (GEC) systems to the learners’ first002
language (L1) by generating artificial errors003
that reflect the L1 influence. To this end, we004
employ two simple approaches: fine-tuning a005
back-translation model on L1-annotated data;006
and controlling the output of a back-translation007
model and generating artificial errors that fol-008
low the L1-dependant error type distribution.009
We demonstrate that, despite the simplicity of010
the model and the paucity of the L1-annotated011
data, our methods succeed in adapting GEC012
models to some languages. We also show that013
generating L1-adapted artificial errors is or-014
thogonal to the existing method that directly015
adapts the GEC model to each L1. Lastly, we016
present an analysis of the pseudo errors gener-017
ated by our models and show that they approx-018
imately capture the L1-specific error patterns.019

1 Introduction020

Grammatical error correction (GEC) is the task of021

automatically correcting grammatical errors in sen-022

tences, and various methods have been proposed023

to date. However, one largely overlooked aspect024

of GEC is that grammatical errors are highly in-025

fluenced by the writer’s first language (L1) (Jarvis026

and Odlin, 2000; Ionin et al., 2008; Yamashita and027

Jiang, 2010; Montrul, 2000). For instance, Ionin028

et al. (2008) show that Russian speakers make more029

errors on article use in English than do Spanish030

speakers, likely because Russian is an article-less031

language unlike English and Spanish.032

The major bottleneck that prevents researchers033

from exploring L1-adapted GEC models is the034

paucity of L1-annotated data. The largest and clean-035

est L1-tagged learner corpus in public (First Cer-036

tificate in English Corpus (FCE) (Yannakoudakis037

et al., 2011)) contains only a few thousand sen-038

tences for each L1, and such data do not even exist039

in many languages other than English due to its040

expensive nature. Because of this data constraint,041

existing studies on L1-adaptation are extremely 042

limited and not very diverse in terms of methodol- 043

ogy. For instance, Chollampatt et al. (2016) and 044

Nadejde and Tetreault (2019)1 simply fine-tune 045

neural models on small L1-specific data, regard- 046

ing L1-adaptation as a general domain adaptation 047

problem (Daumé and Marcu, 2006; Yu et al., 2013; 048

Luong and Manning, 2015). Rozovskaya and Roth 049

(2010a) adapt classifier models using L1-dependent 050

confusion sets extracted from the L1-specific data, 051

but it is only applicable to specific types of errors 052

(e.g. preposition errors). Therefore, much remains 053

to be explored regarding how to make the most of 054

the small L1-annotated data. 055

In this paper, instead of directly adapting GEC 056

models, we propose to use a small number of L1- 057

annotated sentences (e.g. 1,000 sentences) in FCE 058

to generate a large number of L1-specific pseudo 059

errors to perform data augmentation. To this end, 060

we examine two approaches: the first is to fine- 061

tune a back-translation (BT) model instead of GEC 062

models on small L1-specific data; and the second is 063

to control the output of the BT model and generate 064

pseudo grammatical errors that follow the error- 065

type distribution on L1-specific data. We demon- 066

strate that, despite the simplicity and data paucity, 067

these methods successfully generate pseudo errors 068

that capture the influence of learners’ first lan- 069

guages. Further, we show that the generated pseudo 070

data can lead to better GEC performance overall. 071

2 Related Work 072

L1 Adaptation of GEC Models 073

Nadejde and Tetreault (2019) fine-tune a GEC 074

model on learner corpora tagged with L1s or 075

proficiency-levels and show that it improves its 076

domain-specific performance. Similarly, Chollam- 077

patt et al. (2016) fine-tune a neural language model 078

1Notably, Nadejde and Tetreault (2019) use a superset of
FCE in their experiments, i.e. Cambridge Learner Corpus
(CLC) (Nicholls, 2003), which is not publicly available.
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with regularization on L1-specific data and use it079

as a feature in their SMT-based GEC system. Ro-080

zovskaya and Roth (2010a) and Rozovskaya and081

Roth (2011) adapt classifier models for preposition082

errors by taking into account which prepositions083

are often confused by the specific L1 speakers. Ro-084

zovskaya et al. (2017) extend this approach and085

show that the L1-adaptation benefits classifier mod-086

els for article and verb-agreement errors as well.087

Pseudo Error Generation088

Many studies employ a back-translation (BT)089

model (Sennrich et al., 2016b) to generate artifi-090

cial errors, which “translates” grammatical sen-091

tences into ungrammatical ones. To make the BT092

model generate diverse errors, Xie et al. (2018) and093

Edunov et al. (2018) add noise to the beam search094

scores or sample tokens from the probability distri-095

bution and show that they are more effective than096

beam search decoding. Very recently, Stahlberg097

and Kumar (2021) have proposed a new BT model098

that controls its output and generates targeted types099

of errors. They first tag learner corpora with error100

types using the automatic annotation tool ERRANT101

(Bryant et al., 2017), and train a BT model that102

generates pseudo errors conditioned on those error-103

type tags. They show that their model generates104

more realistic errors and leads to better GEC perfor-105

mance. They have also tried adapting their model to106

learners’ proficiency levels, and found it effective107

for correcting sentences written by native English108

speakers but not for those written by different lev-109

els of non-native speakers. Another pseudo-error110

generation method involves corrupting sentences111

with an arbitrary noise function. For instance, Ro-112

zovskaya and Roth (2010a) and Rozovskaya and113

Roth (2010b) generate pseudo errors by replacing114

correct English articles and prepositions with in-115

correct ones that are often misused by specific L1116

speakers, which is similar in spirit to our work.117

However, their methods are applicable to specific118

types of errors only wherein the set of replacement119

candidates is limited. Zhao et al. (2019) and Kiy-120

ono et al. (2019) employ more random and noisy121

operations such as masking or shuffling words and122

demonstrate the effectiveness of this approach.123

3 Method124

We examine two simple methods for generating125

pseudo errors that incorporate the influence of126

learners’ L1s. We apply both methods to a back-127

translation (BT) model, which converts grammati- 128

cal sentences into ungrammatical ones. 129

Our first approach (“Fine-tuned BT”) pre-trains 130

a BT model on general learner corpora and fine- 131

tunes it on small L1-specific data. In this way, we 132

expect the model to generate pseudo errors that 133

reflect the L1-specific error patterns, such as lex- 134

ical choices and error frequency. Our second ap- 135

proach (“Tagged BT”) controls the output of the 136

BT model and generates artificial errors that fol- 137

low the error type distributions on L1-specific data. 138

This method is inspired by previous work in MT 139

(Sennrich et al., 2016a; Johnson et al., 2017), which 140

shows that the politeness or even the language of 141

translations can be controlled by simply adding spe- 142

cial tokens to the input. In this study, we control 143

the outputs of the BT model by prepending error- 144

type tokens such as <R:PREP> (replace preposi- 145

tion) to the input. We obtain these tags using the 146

annotation tool ERRANT (Bryant et al., 2017).2 147

For instance, the BT model takes “<R:SPELL> 148

<R:PREP> I always smile at people.” as an input 149

and generates the corrupted sentence that contains 150

the specified types of errors, e.g. “I always simle 151

to people”. Recently, Stahlberg and Kumar (2021) 152

have also proposed similar yet more complex mod- 153

els that generate pseudo errors conditioned on the 154

ERRANT error tags, and shown that they improve 155

the general GEC model performance. 156

After training our BT models, we feed gram- 157

matical sentences into them and generate artificial 158

errors. For Tagged BT, we sample k error tags inde- 159

pendently according to the error type frequency dis- 160

tribution on L1-specific data, and prepend them to 161

each input sentence.3 We set k to bαNR`c, where 162

α is a hyper-parameter, N is the number of tokens 163

in the input sentence, and R` is the error-per-token 164

ratio of the `-specific data. 165

4 Experiment 166

4.1 Data and Experimental Setup 167

In our experiments, we use the learner corpora 168

provided at BEA2019, namely Lang-8 (Mizu- 169

moto et al., 2011; Tajiri et al., 2012), FCE (Yan- 170

nakoudakis et al., 2011), NUCLE (Dahlmeier 171

et al., 2013), and W&I+LOCNESS (Granger, 1998; 172

Yannakoudakis et al., 2018; Bryant et al., 2019). 173

2We discard OTHER tags, as their patterns are inconsistent.
3We also consider the part of speech tags in a sentence

and avoid assigning the types of errors that are not compatible
with the sentence (e.g. <R:PREP> should not be assigned to a
sentence that does not contain any preposition).
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Pseudo Errors fr ja ru tr
None 36.4 36.7 40.4 41.2

Standard BT 38.1 42.0 42.9 42.0
Tagged BT 38.2 40.4 45.5 43.7

Fine-tuned BT 39.1 41.4 45.2 42.1

Table 1: F0.5 scores on FCE-`-test obtained by the
GEC models trained with different pseudo errors. The
best scores are boldfaced.

Among them, FEC is an L1-annotated learner cor-174

pus containing a few thousand sentences for each175

L1.4 We split them into development and test data176

for each L1 ` ∈ {French (fr), Japanese (ja), Rus-177

sian (ru), Turkish (tr)}, which we denote as FCE-`-178

dev/test. We assign 1k sentences to FCE-`-dev and179

use them to adapt our BT models to `, by either fine-180

tuning a pre-trained BT model on it, or extracting181

the L1-specific error type distribution that Tagged182

BT emulates. We use the FCE data of Spanish183

speakers as tuning data and use them to determine184

the epoch size of fine-tuning the models and the185

hyper-parameter α, which we set to 4.0. We use the186

other corpora (Lang-8, W&I+LOCNESS and NU-187

CLE) as our training data5 for all the GEC and BT188

models, and the concatenation of all the sentences189

in FEC-{fr/ja/ru/tr}-dev as the development data.190

For the inputs of the BT models, we sample 1.4M191

sentences from Wikipedia.6 To evaluate the effec-192

tiveness of our L1-adaptation methods, we compare193

the performance of GEC models that are trained194

with the training corpora only, or plus artificial er-195

rors generated by a standard BT model (“Standard196

BT”), Fine-tuned BT or Tagged BT. For all the BT197

and GEC models, we use the same Transformer-big198

architecture (Vaswani et al., 2017) to ensure fair-199

ness.7 When we decode pseudo errors using Stan-200

dard and Fine-tuned BT, we sample words from201

the probability distribution8 following Edunov et al.202

(2018), but for Tagged BT, we use beam search and203

increase the number of errors by setting α to 4.0.204

We evaluate the GEC models using ERRANT F0.5205

scores, following recent work.206

4Lang-8 also contains L1 information, but the data is very
noisy and hence we do not use it for L1-adaptation.

5After pre-processing, they amount to 0.54M sentences;
see Appendix A for the details.

6http://data.statmt.org/wmt20/
translation-task/ps-km/wikipedia.en.lid_
filtered.test_filtered.xz

7See Appendix B for the model hyper-parameters and
implementation details.

8Otherwise, the generated errors contain very few errors
and lead to much worse performance in GEC.

Pseudo Errors fr ja ru tr
None 40.8 43.4 44.8 44.7

Standard BT 40.5 44.1 46.2 45.4
Tagged BT 41.3 43.5 48.3 46.1

Fine-tuned BT 41.5 44.3 47.2 45.1

Table 2: F0.5 scores on FCE-`-test obtained by the fine-
tuned GEC models. The scores are averaged over three
runs of fine-tuning the models on FCE-`-dev with dif-
ferent random seeds. The best scores are boldfaced.

4.2 Result 207

Table 1 shows the F0.5 scores achieved by the GEC 208

models trained with or without different types of 209

artificial errors. It indicates that Tagged BT im- 210

proves the model performance when learners’ L1 is 211

Russian or Turkish (+2.6 and +1.7, respectively). 212

Fine-tuned BT is also adapted well to French and 213

Russian speakers, increasing the performance by 214

1.0 and 2.3. However, both models fail to improve 215

the performance on FCE-ja-test and perform worse 216

than Standard BT. This is presumably because the 217

majority of the sentences in the learner corpora 218

come from Lang-8, in which the most dominant 219

L1 is Japanese (Brooke and Hirst, 2013).9 There- 220

fore, the GEC model trained on this data would 221

be adapted to Japanese speakers already, and L1- 222

adaptation of the pseudo errors would have little 223

impact on the performance. 224

Next, we examine whether fine-tuning the GEC 225

model itself on L1-specific data will bring fur- 226

ther improvements, as performed by Nadejde and 227

Tetreault (2019). Table 2 shows the results when 228

the GEC models are pre-trained with different 229

pseudo errors and fine-tuned on FEC-`-dev.10 It 230

demonstrates that our models still outperform the 231

baselines even though all the models are `-adapted 232

using the same data. This result suggests that the 233

L1-adaptation of pseudo errors brings different ben- 234

efits from adapting the GEC model itself, and both 235

adaptation strategies are orthogonal to each other. 236

4.3 Analysis 237

To investigate whether the generated pseudo errors 238

in fact capture the influence of L1, we compare the 239

similarity of the error type distributions between 240

9This is because the Lang-8 corpus is scraped from the
website based in Japan (https://lang-8.com).

10We fine-tune the GEC models with three different seeds
and report the average scores. For each GEC model including
the baselines, we individually tune the epoch size of fine-
tuning using the tuning data, i.e. FCE-Spanish.
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L1 fr ja ru tr
Standard BT – 32.2 29.9 31.6 34.6

Tagged BT

fr 12.9 14.1 14.9 13.6
ja 23.0 14.7 15.0 14.2
ru 18.2 11.6 8.4 12.6
tr 18.4 14.7 13.7 10.4

Fine-tuned BT

fr 45.3 43.1 44.6 43.1
ja 49.2 40.6 42.5 43.3
ru 50.6 41.1 42.3 44.4
tr 57.0 47.9 50.7 49.7

Table 3: KL divergence of the error tag distributions
between FEC-`-test (column) and pseudo errors (row).
For Tagged and Fine-tuned BT, the lowest values in
each column are boldfaced.

FCE-test FCE-dev Pseudo Errors
fr ja fr ja fr ja –

M:DET 3.7 9.4 2.6 9.8 2.1 5.7 6.3
R:VERB 7.4 5.7 7.7 4.1 2.9 2.4 2.2
R:OTHER 11.8 11.8 11.6 9.2 34.3 33.1 29.1
R:NOUN 5.1 3.6 4.7 2.9 13.0 11.4 8.7

Table 4: Error-type percentages on FCE-`-test/dev and
pseudo errors made by Fine-tuned and Standard BT.

the pseudo errors11 and FEC-`-test. As the similar-241

ity metric, we use the Kullback Leibler divergence242

(Kullback and Leibler, 1951) KL(P |Q), where P243

and Q denote the error type distributions on FCE-`-244

test and pseudo errors, respectively; and the result245

is shown in Table 3. First of all, it clearly shows that246

Tagged BT produces the most similar errors of all247

the models to those on the test data. It also shows248

that Tagged BT can adapt the errors to French, Rus-249

sian and Turkish, with the adapted errors being the250

closest to the corresponding L1 test data.12 Regard-251

ing Fine-tuned BT, its pseudo errors are less similar252

to the test data than those made by Standard BT,253

but are adapted to French, Japanese and Russian254

and capture certain important L1 influences. For255

instance, the percentages of the missing-determiner256

error found in the {fr/tr/ru/ja}-adapted pseudo er-257

rors are 2.1%, 3.7%, 5.2%, and 5.7%,13 and these258

numbers clearly reflect the L1 influence; Spanish259

has both definite and indefinite articles like English,260

Turkish has an indefinite article only, and Japanese261

and Russian have neither of them. We also ana-262

lyze other error types in Table 4, which describes263

the percentages of four error types on FCE-fr/ja-264

11We use the first 10k sentences to obtain the distributions.
12This implicitly indicates that the error tendency is consis-

tent across FCE-`-dev and -test, and that L1 influence exists.
13In FCE-{fr/tr/ru/ja}-test, 3.7%, 8.3%, 10.4%, and 9.4%.

Tagged BT Fine-tuned BT

fr ja ru tr fr ja ru tr
fr 38.2 37.8 37.5 38.3 39.1 38.6 38.4 38.4
ja 40.4 40.4 42.3 41.7 40.9 41.4 41.3 41.7
ru 44.0 42.7 45.5 45.0 44.1 43.5 45.2 42.7
tr 42.0 41.6 42.7 43.7 41.6 42.8 43.1 42.1

Table 5: F0.5 scores on FCE-`-test obtained by the
GEC models adapted to `. The best scores for each
model are boldfaced.

dev/test and pseudo errors made by Fine-tuned and 265

Standard BT.14 We select those errors that have 266

the largest absolute differences between Japanese 267

and French FCE-dev, and the table shows that the 268

L1-adapted pseudo errors emulate the same magni- 269

tude relation. However, the relation of R:OTHER 270

does not represent the L1 influence but rather the 271

bias on FCE-dev, as its patterns are not consistent 272

across FCE-dev and FCE-test. Hence, we expect 273

our L1-adaptation methods to perform better as we 274

have larger training and test data that reflect more 275

accurate L1-specific error patterns.15 276

Lastly, to investigate whether the L1 adaptation 277

is indeed effective, we train GEC models with the 278

pseudo errors adapted to different languages from 279

L1, and Table 5 compares their performance. It 280

shows that Tagged BT is mostly adapted to each L1 281

except for Japanese, for which the Russian model 282

performs by far the best. However, as previously 283

shown in Table 3, the Russian-adapted pseudo er- 284

rors have the closest error distribution to FCE-ja- 285

test. This indicates that generating pseudo errors 286

that predict and mimic the error patterns on test 287

data can be effective for improving GEC models. 288

5 Conclusion 289

We proposed a new approach to adapt GEC models 290

to learners’ L1 by generating L1-specific pseudo 291

errors. We showed that both of the methods we ex- 292

plored, that is, fine-tuning a back-translation model 293

and controlling the error types of its output, im- 294

proved GEC models on L1-specific data overall. 295

We also demonstrated that our approach brought 296

additional benefits when combined with an existing 297

L1-adaptation method. By analysing the generated 298

errors, we found that our adapted BT models gen- 299

erated more L1-specific errors. 300

14See Appendix C for the percentages of other error types.
15We also speculate that Fine-tuned BT produced much

more R:OTHER errors than Standard BT as a result of the
model being overfitted to the small FCE-dev data.
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Corpus # Sentences
Lang-8 1,037,561
NUCLE 57,151
W&I+LOCNESS 38,691

After Preprocessing
lang-8 497,386
NUCLE 21,539
W&I+LOCNESS 25,524
Training Data 544,449
FCE-fr-dev 1,000
FCE-fr-dev (non-identical) 675
FCE-fr-test 2,718
FCE-ja-dev 1,000
FCE-ja-dev (non-identical) 535
FCE-ja-test 1,361
FCE-ru-dev 1,000
FCE-ru-dev (non-identical) 623
FCE-ru-test 1,280
FCE-tr-dev 1,000
FCE-tr-dev (non-identical) 649
FCE-tr-test 1,292
FCE-dev 4,000
FCE-dev (non-identical) 2,482

Table 6: The number of sentences in each corpus

A Corpus Statistics and Preprocessing524

Table 6 shows the number of sentences in each cor-525

pus we used in our experiments. We applied a few526

preprocessing steps to each corpus. First, we re-527

moved the sentence pairs in which more than 70%528

of the tokens in either the source or target sentence529

were composed of capital letters only (e.g. “THIS530

IS a PEN”). Then, we extracted the sentences writ-531

ten by native speakers of ` from the FCE corpus,532

and assigned 1,000 sentences to FCE-`-dev and the533

rest to FCE-`-test. Lastly, we removed the sentence534

pairs from the other corpora where the source and535

target sentences were identical, following Chollam-536

patt and Ng (2018). When we fine-tuned BT and537

GEC models on FCE-`-dev, we also discarded such538

sentence pairs, and the numbers of the remaining539

sentences are shown as “(non-identical)”. We used540

the concatenation of FCE-fr/ja/ru/tr-dev (FCE-dev541

and FCE-dev (non-identical)) as the development542

data of the GEC and BT models, respectively.543

B Implementation Details544

Table 7 shows the model hyper-parameters and im-545

plementation settings. We used exactly the same546

Configurations Values

arch
Transformer
(Vaswani et al., 2017)

max-tokens
8,192 (training)
1,024 (fine-tuning)

update-freq 1
seed 1,024
optimizer Adam (Kingma and Ba, 2015)
lr 0.0005

dropout
0.3 (training)
0.1 (fine-tuning)

min-lr 1e-09
lr-scheduler inverse_sqrt
warmup-updates 4,000
warmup-init-lr 1e-07
adam-betas (0.9, 0.98)

max-epoch
20 (training)
Tuned on FCE-Spanish (fine-tuning)

clip-norm 1.0

criterion
label_smoothed_cross_entropy
(Szegedy et al., 2016)

label-smoothing 0.1
beam size 5 or 1 (sampling)

Table 7: Implementation details.

configurations to train and fine-tune all the GEC 547

and BT baselines and our models. We used fairseq 548

version 0.9.0 (Ott et al., 2019) throughout our ex- 549

periments. 550

C Error Tendency 551

Table 8 shows the percentages of the error types 552

that have the 10 largest absolute differences be- 553

tween Japanese and French FCE-dev. It shows that 554

Fine-tuned BT and Tagged BT emulate the same 555

magnitude relations for the most errors. However, 556

for some error types such as M:PUNCT, their rela- 557

tions are not consistent across FCE-dev (fr: 4.6%, 558

ja: 5.9%) and FCE-test (fr: 4.5%, ja: 4.3%). This 559

suggests that when we adapt GEC models to L1, it 560

would be better to focus on the specific error types 561

that are actually influenced by the native language. 562

D Output Examples 563

Table 9 shows examples of the outputs of differ- 564

ent BT models. It indicates that Fine-tuned BTs 565

produced noisier pseudo errors. This may be be- 566

cause the models were overfitted into the small L1- 567

specific data on which they were fine-tuned. On the 568

other hand, Tagged BTs produced more realistic 569

errors that were specified by the error tags. 570
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Learner Corpora Pseudo Errors
Train FCE-dev FCE-test Fine-tuned Tagged Standard

– fr ja fr ja fr ja fr ja –
M:DET 6.7 2.6 9.8 3.7 9.4 2.1 5.7 4.2 11.4 6.3
R:VERB 4.3 7.7 4.1 7.4 5.7 2.9 2.4 3.6 2.1 2.2
R:OTHER 17.7 11.6 9.2 11.8 11.8 34.3 33.1 8.6 7.7 29.1
R:NOUN 2.3 4.7 2.9 5.1 3.6 13.0 11.4 4.3 3.1 8.7
R:PRON 1.3 2.9 1.2 1.8 1.2 0.3 0.2 0.9 0.4 0.3
R:VERB:FORM 2.0 3.2 1.8 2.7 2.2 0.8 0.9 2.8 2.4 1.0
R:VERB:TENSE 4.6 3.9 5.2 4.2 4.2 1.0 1.2 4.4 4.7 1.6
R:PREP 3.3 6.8 5.4 6.9 5.4 3.2 2.8 9.1 6.8 3.6
M:PUNCT 3.5 4.6 5.9 4.5 4.3 2.1 2.5 9.2 10.8 3.4
M:PREP 2.9 2.6 3.6 2.2 3.3 0.9 1.1 3.5 4.5 1.5
M:OTHER 6.0 2.3 3.2 2.5 2.4 1.7 2.0 1.9 2.1 2.5

Table 8: Error-type percentages on learner corpora and pseudo errors made by different BT models.

Sentence

FCE
Input (Error-Corrected) At home , we must wash our hands before lunch .
Learner’s Sentence At home , we must wash our hands before the lunch .

Standard BT
beam search At home , we must wash hands before lunch .
sampling At home , we must wash otherwise it ’s lunch time .

Tagged BT
<R:PREP> <R:SPELL> In home , we must wash our hands befor lunch .
<M:DET> At home , we must wash hands before lunch .

Fine-tuned BT
(sampling)

French At home , we must wash jected to eat our hands before lunch .
Japanese addition , we must wash hands supper .
Russian At home , we must wash conditiones before lunch .
Turkish puthome , we must Listes hands before ano our pales .

FCE
Input (Error-Corrected) I would like to choose swimming and painting .
Learner’s Sentence I would willingly like to choose swimming and painting .

Standard BT
beam search I would like to choose swimming and painting .
sampling I would architecture . . and painting . ally .

Tagged BT
<R:VERB> I would like to choice swimming and painting .
<U:NOUN> I would like to choose swimming color and painting .

Fine-tuned BT
(sampling)

French I would concera likes swimming and guy ided painting .

Japanese
I would clever , order bou to processes ’ like to
choose swimming and painting .

Russian I would spelling to flowers swimming and painting warf .
Turkish I would exhiat Tide swimming , paint .

Table 9: Examples of pseudo errors
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