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Abstract

Recent advances in test-time scaling have led
to the emergence of thinking LLMs that exhibit
self-reflective behaviors and multi-step reason-
ing. While RL drives this self-improvement
paradigm, recent studies show that solely RL
does not truly instill these new reasoning abil-
ities - it merely draws out behaviors already
present in the base models. This raises a ques-
tion: How can we train the models that don’t
exhibit such thinking behavior to develop it in
the first place? To this end, we propose THINK-
TUNING, a GRPO-based interactive training
approach where we augment the rollouts of a
student model with the guidance from a teacher
model. A simple idea from classroom prac-
tice inspires our method: a teacher poses a
problem, lets the student try an answer, then
gives corrective feedback—enough to point the
mind in the right direction and then show the
solution. Each feedback reshapes the student’s
thoughts, leading them to arrive at the correct
solution. Similarly, we find that this type of
implicit supervision through feedback from a
teacher model of the same size improves the
reasoning capabilities of the student model. Par-
ticularly, on average, our method shows 3.69%
improvement over zero-shot baselines across
benchmarks, and on MATH-500 and GPQA-
Diamond, it shows 2.08% and 3.99% improve-
ment over the vanilla-GRPO baseline.

1 Introduction

Recent years in Al research have been driven
by advances in scaling models along the weight-
axis (Kaplan et al., 2020). More recently, scal-
ing along the inference-time or test-time axis has
produced significant performance gains in vari-
ous complex reasoning tasks (Snell et al., 2025).
Thinking models such as OpenAl-o-series (Jaech
et al., 2024), DeepSeek-R1 (Guo et al., 2025) and
Gemini-Thinking (Team et al., 2023) are a testa-
ment to this, capable of producing long reason-
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Figure 1: Illustration of our teacher-student supervision
setup. Top: the teacher poses a math problem, the stu-
dent answers incorrectly, and the teacher offers a short
corrective feedback. Bottom: faced with a new problem,
the student recalls the feedback ("double-check") and
produces the correct answer.

ing chains, with sophisticated behaviors like self-
reflection, self-correction, and multi-step reason-
ing. These significant performance gains are at-
tributed to the success of Reinforcement Learning
(RL) through simple rule-based rewards. However,
online on-policy RL settings face a constraint: so-
phisticated reasoning behaviors will not emerge
unless they are explicitly sampled during training.
For example, models like Qwen (Yang et al., 2025)
often come with strong priors, allowing them to
naturally generate sophisticated reasoning behav-
iors, which RL then amplifies. In contrast, when
models lack strong priors, on-policy RL struggles
to elicit them. Indeed, a recent study shows that
RL applied on Llama 3.2—family (Grattafiori et al.,
2024a) models struggles to elicit the sophisticated
reasoning behaviors (Gandhi et al., 2025a).



In academic settings, cognitive modeling pro-
vides a structured approach for shaping both overt
(external) and covert (internal-cognitive) behav-
iors of students through guided interventions by
a teacher—typically using verbal mediation (Camp
and Bash, 1978). As illustrated in the Fig. 1, sup-
pose a teacher asks: “A train travels at 30 miles
per hour for 3 hours. How far does it go?” A
hasty student might respond, “30 divided by 3 is
10 miles!” A good teacher recognizes the mistake
and explains not just why the answer is incorrect,
but also teaches a generalizable skill. In this case,
the teacher could encourage the student to double-
check what “per hour” means and to think care-
fully about whether they should multiply or divide
in similar problems. Interestingly, recent thinking
models—presumably trained with RL and simple
rule-based rewards—often exhibit such behavior of
re-checking and self-refining, which makes them
better at various reasoning tasks. These thinking
behaviors emerge in those models solely through
RL, as suitable priors are present to help in exhibit-
ing such behavior (Gandhi et al., 2025b). However,
this brings up an important question: How can we
enable models to acquire these types of thinking
skills in the absence of suitable priors? And is RL
alone sufficient for this task?

Drawing inspiration from the example discussed
above, we propose THINKTUNING, a training ap-
proach where an active student model learns to
think by interacting with a teacher model. Rather
than assuming thinking behaviors will emerge dur-
ing RL, we engineer the training process to induce
them. This aligns with how cognitive modeling
in educational settings elicits complex reasoning
strategies such as self-reflection, self-correction,
and problem-solving among students.

THINKTUNING consists of two stages. First, we
start by creating a set of few-shot exemplars (i.e.,
four exemplars in our setting), each demonstrating
an opinion on a student’s response, a reason for
that opinion, and a phrase that typically showcases
specific cognitive behaviors. Our exemplars cap-
ture the most common human self-reflective behav-
iors: Self-Conflict, Self-Agreement, Self-Critique,
and Self-Consultancy. While many other cognitive
behaviors exist, we focus on these four because
they are well defined (Hermans, 2023; Hermans
and Gieser, 2011). Second, we train the student
model in an online RL setting, specifically with
Group Relative Policy Optimization GRPO) (Shao
et al., 2024). At each iteration, the student model

generates n rollouts, from which a subset of  roll-
outs is randomly selected. These selected rollouts
are passed to the few-shot teacher model to obtain
feedback, and the phrases showcase the cognitive
thinking skill. The feedback is then appended to
the corresponding ~ rollouts, which are returned
to the student model to continue the generation
process with the augmented input. The resulting
Yaug Tollouts, together with the remaining 7 — y4ug
un-augmented rollouts, are used for computing the
advantage estimates for the GRPO algorithm.

However, because the teacher model’s guidance
is entirely off-policy, it violates the assumptions
required for importance sampling in methods such
as PPO or GRPO. To address this, we introduce
Advantage-Aware Shaping (AAS), which adjusts
the updates for tokens generated with teacher guid-
ance by taking into account both the advantage
and the student model’s current confidence in pro-
ducing each token. This helps in preventing large
updates during the initial stages of training and
preventing the model from becoming degenerate.

Our experiments show that model trained with
THINKTUNING improves performance across di-
verse reasoning benchmarks like GSM8k (+3.14%),
MATH-500(+9.4%), CSQA(+3.04%), ARC-
Challenge(+4.31%), GPQA-Diamond(+3.08%)
and MMLU-Pro(+2.8%) compared to zero-shot
baselines. = Our training approach improves
over GRPO baseline by 2.08% and 3.99% on
MATH-500 and GPQA-Diamond. Our token
length analysis shows that model trained with
our framework, end up spending more inference-
time compute for solving problems from these
benchmarks. Our qualitative analysis reveal that
THINKTUNING ends up instilling congnitive
reflection in model trained with it.

2 Related Works

Inference-Time Scaling and Cognitive Behav-
iors. Scaling inference-time compute has been a
promising approach to improve the performance
in LLMs. Chain-of-thought (CoT) prompting en-
courages models to generate step-by-step reason-
ing, significantly boosting performance on complex
tasks (Wei et al., 2022; Kojima et al., 2022). Self-
consistency generates multiple reasoning paths and
selects the most frequent answer, further improv-
ing accuracy (Wang et al., 2023). Iterative self-
refinement, where models critique and correct their
own outputs, yields additional gains without weight



updates (Madaan et al., 2023). Methods like Tree-
of-Thoughts and MCTSr extends inference-time
search by exploring branching reasoning trajecto-
ries (Yao et al., 2023). Another work, test-time
optimization(Snell et al., 2025), puts emphasis on
dynamically adjusting inference compute based on
the complexity of the task. In contrast to all these
approaches, out work focuses on training models to
increase their inference-compute during test time
by instilling cognitive reflections in their responses.

Online and Offline Reinforcement Learning.
Proximal Policy Optimization (PPO) underpins
most RLHF pipelines, aligning LLMs to human
preferences (Schulman et al., 2017a; Ouyang
et al., 2022). Directive Preference Optimization
(Rafailov et al., 2023) reformulates preference
alignment as a supervised objective, matching or
outperforming PPO in stability and quality. Vari-
ants of DPO, use three preferences instead of two,
showing better performance on reasoning tasks
(Saeidi et al., 2024). A recent variant of PPO,
Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) discards the critic network from PPO
and computes the advantage estimates by compar-
ing each trajectory’s reward to the mean reward of
a group of sampled trajectories, thus improving ef-
ficiency and scalability of RL training. Our work is
different from these approaches, as we try to obtain
off-policy guidance during on-policy RL training.

Off-Policy Guidance during RL.  Earlier works
in RL like (Schmitt et al., 2018) show case the
kickstarted training improves the data efficiency of
agents being trained. Kickstarting demonstrated up
to 10x faster training and convergence of the agents.
Work done by Yan et al. (2025) closely aligns with
our work. The authors include samples from a
larger model, along with the on-policy rollouts dur-
ing GRPO. They propose using Policy Shaping,
which is used to correct the Importance Sampling
ratios during training. However, our work differs
from theirs by proposing to dynamically calculat-
ing shaping coefficient and augmenting off-policy
tokens with on-policy rollouts.

3 Methods

3.1 Background

Group Relative Policy Optimization (GRPO)
The recent success of DeepSeek-R1 (Guo et al.,
2025) has established GRPO as the preferred
algorithm for online reinforcement learning, due to

its efficiency and ease of implementation. GRPO,
a PPO (Schulman et al., 2017b) variant, estimates
the advantage by aggregating reward scores of a
group of n sampled responses to a given query
q, thus eliminating the need for a separate value
network and generalized advantage estimation
(GAE) (Schulman et al., 2015). Formally, let
My and My, be the current and old policy
models respectively. Let ¢ and o; be the query
and i*" response sampled from the dataset and
the old policy respectively. Let 7(.) be the reward
function, which measures the correctness of a
given response. Then, the GRPO objective is
defined as follows:

Jarpo(0) = E[q ~D, {oi}ity ~ Mo, (O | Q)}
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Here, the advantage is calculated as the normalized
re.wa.rd, ie, Air = 7(0;) = % This
eliminates the need for complicated advantage

estimation that happens in PPO. In the above
My (0i,t|9,0i,<t)

’ Meold (Oi,t |q10i,<t) ’

sampling weight which corrects for the mismatch

between the current policy My and the old policy
M, that generated the sample responses. This
importance sampling weight (w) ensures that
updates are properly reweighted, so that learning
remains unbiased even when the policy changes
over the course of training.

expression is the importance

3.2 THINKTUNING

Student Responses (student responds) First
stage of THINKTUNING, we sample n responses
from the student policy Mugent fOr €ach query ¢
in a training batch drawn from the dataset D. We
sample the responses at a temperature of 1.0 to ob-
serve diversity. These initial responses represent
the student model’s unaided attempts at solving a
given problem, typically exhibiting a mix of cor-
rect, partially correct, and incorrect reasoning.

Teacher Guidance (feacher helps) In the sec-
ond stage, we obtain guidance from the teacher
model Myeqener. Given the student model’s re-
sponse, the teacher model provides its guidance by
first stating its opinion. Then, it provides its justifi-
cation for its opinion, grounded in its own reason-
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Figure 2: ThinkTuning: The student model Mgt yqent generates n rollouts 77, . .

., Ty, for question q. A selected

subset (e.g. 71, T2, 73) is passed—with g—to the teacher model M cacher, producing augmented rollouts 7. All
trajectories enter the verification & advantage module to yield normalized advantages A;. Augmented tokens are
weighted via Advantage Aware Shaping; remaining tokens use the standard importance sampling ratio. These
per-token weights are used in jThinkTuning(ﬂ) for updating the student.

ing process, and finally offers a guiding phrase on
how to approach and solve the problem effectively.
Throughout this process, the teacher model explic-
itly demonstrates cognitive behaviors, serving as
an exemplar of reflective problem-solving strate-
gies for the student to learn from. Particularly, we
focus on four self-reflective cognitive behaviors,
well defined in (): (1) Self-Conflict—challenging
one’s own response by presenting alternative per-
spectives; (2) Self-Critique—identifying weak-
nesses in their response and suggesting improve-
ments; (3) Self-Agreement—affirming and justi-
fying the strengths in their response; and (4) Self-
Consultancy—drawing on an alternative internal
perspective or source of expertise to offer new ad-
vice or insights that could further improve one’s
own response. We provide four few-shot exem-
plars—two illustrating incorrect student responses
and two showcasing correct ones—each demon-
strating one of the mentioned behaviors. Impor-
tantly, all exemplars are expressed in the first-
person perspective, framing the guidance as inner
dialogue or self-reflection, making it natural for the
student model to imitate during training.

After obtaining the rollouts for a given query
from the student model, we pass a fraction v of
student rollouts randomly to receive guidance from
the teacher model. For each selected rollout o;, we
give the corresponding question ¢ to the teacher
model Mieqcner. With the help of our few-shot

exemplars, we obtain the guidance from the teacher
model in a structured way as shown in the AppA.1

Student Training (student improves) In this
stage, the feedback generated by the teacher model
is augmented to the selected fraction «y of the cor-
responding student rollouts. This produces a set
of vaug augmented trajectories. These are com-
bined with the remaining 1 —~y,ug unaugmented stu-
dent rollouts to compute token-level advantage esti-
mates used in the GRPO update. We formally call
this process GUide(Mteachera Mstudentgold 4, 7)’
which is a function of the teacher model, student
model, and guidance fraction ~y. Specifically, we
compute the group-normalized advantage for each
token in a trajectory 7; € {Tunaug U Taug} as:

i o R(Ti) —mean (R(Tunaug U Taug))
Aip =7(Te) = std (R(ﬁmaug U 71‘1“9))

Here, Tunaug denotes the set of unaugmented tra-
jectories, and 7,4 denotes the teacher-augmented
ones. When teacher guidance successfully reasons
towards the correct answer, the augmented trajec-
tory typically receives a higher reward, resulting in
a higher relative advantage. In contrast, if the guid-
ance is not helpful, the unaugmented trajectories
dominate the normalization, which automatically
reduces the effect of poor teacher interventions.

However, a core challenge arises from the fully
off-policy nature of the tokens from teacher guid-



ance. Although importance sampling () can,
in principle, correct for the distributional mis-
match, accurate correction would require access
t0 Micacher(guidance | ¢, owuent). In practice, however,
this does not reflect the true probability with which
the guidance was sampled from the teacher model,
due to differences in the prompting setup. To ad-
dress this, we propose Advantage Aware Shaping
(AAS) for the tokens in the trajectories 74,y in-
stead of using the importance sampling weights.
AAS uses the student model’s own confidence in
the tokens of the augmented trajectory, modulated
by its relative advantage, to determine the weight
assigned to each teacher-injected token’s gradient
during training. Formally, for each token o, in the
augmented trajectory 74,4, we define the Advan-
tage Aware Shaping (AAS) weight as:

Mstudent (Ot | q, 0<i)

Waas (Mstudenty Ot, At) =

where M siydent(0r | q,0<¢) denotes the prob-
ability assigned by the student model to token o¢
given the query ¢ and the preceding tokens 0.
This formulation is similar to the policy shaping
proposed by Yan et al. (2025). However, in THINK-
TUNING we make use of ¢(A;), a shaping coeffi-
cient determined by the advantage Ay, at that token.
To be specific, ¢(A;) is computed as:

1 Amax - At

C(At) = Cmin T (Cmax - cmin) : A — A

where cpin and cpax are hyperparameters, and
Anin, Amax are the minimum and maximum to-
ken advantages possible for a group of responses.
This is a linear mapping function which provide
smaller shaping co-efficient for high advantages
and higher shaping co-efficient for smaller advan-
tages. This linear mapping assigns smaller shaping
coefficients to tokens with higher advantages and
larger coefficients to those with lower advantages.
For a detailed analysis of its effect on wy,s and
the consecutive impact towards the gradient update,
see Appendix A.2
We incorporate this shaping directly into our fi-
nal THINKTUNING objective, which we refer to as
THINKTUNING. For each token o; € Tunqug in the
batch, we compute the importance sampling weight
w; between the current and old student policy. For
tokens in the teacher-augmented trajectories 7y,
we make use of the advantage-aware shaped weight

Mstudent (Ot | q, O<t) + C(At) .

as discussed above. Formally, we define THINK-
TUNING objective as follows:

jTHINKTUNING(e) -
E[q ~ D, {Oi}?:l ~ Guide (q, Meold’ Mieacher, "Y):|
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Algorithm 1 THINKTUNING

1: Input: Initial Student model Miudent,. 0 Teacher
model M cqcher, guidance fraction v, hyperparameter
set (67 ﬂ, Cmin, Cmax)

2:
3: Mstudentg — Mstudentginit
4:
5: for training step=1 to I do
6: student,1q <~ Mstudcnte
7 Sample mini-batch Dy C D
8:
9: // Student acts & Teacher helps
10: for allq € Dy do
11: {0}7:1 ~ GUide(q’ M.studentold7 Mteacher,’}/)
12: end for
13:
14: // Reward calculation and Advantage estimation
15: Compute the rewards r; = r(0;) for each response
Compute group-normalized advantage fli,t for all
tokens
16:
17: for mini-batch step = 1 to p do
18: if 0; € Taug then
19: Calculate waas(0;)
20: else
21: Calculate w(o;)
22: end if
23: Mstudsnte <~ argmaxgjmethod(a)
24: end for
25: end for

26: Output: Final think-tuned model M tudent,

where w and wgygs are importance sampling
weight and advantage-aware shaped weight respec-
tively. This formulation preserves the benefits
of GRPO’s group-relative advantage estimation
while addressing the off-policy nature of teacher-
augmented rollouts through controlled shaping. As
a result, the student model is encouraged to learn
from helpful feedback without overfitting to noisy
or misaligned teacher generations. To prevent the



model from learning the loops of reflective feed-
back, we stop teacher guidance after ¢ steps.

4 Experiments

4.1 Setup

Baselines For THINKTUNING evaluation, we
first compare it against zero-shot baselines and
prompt-based self-improvement methods. In partic-
ular, we compare with Self-Verify and Self-Correct
prompting, following the prompt setups from Ku-
mar et al. and Huang et al. (2023), respectively.
We include these since our can be seen as a self-
improvement training approach. We also compare
with the s1-budgeting (Muennighoff et al., 2025)
method, where we set a token budget of 2048 and
let the model generate until it reaches it, by replac-
ing the end-of-sequence token with “wait...”. For
training-based methods, we compare against Super-
vised Finetuning (SFT), STaR (as implemented by
Kumar et al.), and GRPO (Guo et al., 2025).

Training Dataset For THINKTUNING and other
training-based methods, we make use of the
GSMSk train set which has around 7473 sam-
ples. We train only on this dataset to showcase
that THINKTUNING could generalize to out-of-
distribution and out-of-domain problems.

Models For our experiments we use Llama3.2-
3B-Instruct (Grattafiori et al., 2024b) model as
the base model to get our baseline and train with
THINKTUNING. The reason for choosing this
model is that recent work (Gandhi et al., 2025a)
shows that Llama family of models lacks these
cognitive behaviors in them, whereas models like
Qwen already have them, which On-Policy RL is
able to elicit. Hence, choosing a model from the
Llama family becomes a natural choice for us to
show the utility of our method. We also make use
of the same 3B version as the teacher model.

Benchmarks We evaluate our proposed THINK-
TUNING on several benchmarks across different
reasoning categories: GSM8K (Cobbe et al., 2021)
and MATH-500 (Hendrycks et al., 2021) for Math-
ematical Reasoning; CSQA (Talmor et al., 2018)
and StrategyQA (Geva et al., 2021) for Common-
sense Reasoning; and for Scientific Reasoning, we
use ARC-Challenge (ARC-C) (Clark et al., 2018)
and GPQA Diamond Set (GPQA-D) (Rein et al.,
2024) (see Table 1). To ensure consistent and
proper evaluation, after the model finishes genera-
tion, we append the phrase “So, the final answer is

\boxed{” , which prompts the model to explicitly
output the final answer in a boxed format, simplify-
ing answer parsing and enabling exact match (EM)
accuracy calculation using Math-verify with ease.

Training & Inference We implement our
THINKTUNING training using the verl (Sheng
et al., 2024) framework. All experiments are con-
ducted on 4 NVIDIA H100 GPUs. For detailed hy-
perparameter settings, please refer to the appendix.
To speed up rollout generation and evaluation, we
utilize vLLM (Kwon et al., 2023) due its efficiency

4.2 Results

Comparison with prompting-based methods
From Table 1, we can see that Self-Verify and Self-
Correct methods underperform compared to Zero-
Shot-CoT baseline. They achieve only 52.08% and
51.45% on GSMS8k and 34.98% and 32.46% on
Math-500, respectively, whereas Zero-Shot-CoT
attains 71.08% and 38.14% on these benchmarks.
We see similar trends on other benchmarks like
CSQA, ARC-C, GPQA-D and MMLU-Pro. Our
evaluation reaffirms the limitations of inference-
time self-improvement prompting (). s1-budgeting,
which simply scales inference-time compute, yields
only marginal improvements on GPQA-D yet re-
mains far below the baseline on other reasoning
tasks. Our evaluation shows that this method fails
to produce meaningful gains, and in several cases,
leads to degraded performance. For instance, on
MATH-500, s1-budgeting yields only 25.72%, un-
derperforming even the Zero-Shot-CoT baseline,
and on CSQA, it performs on par with Self-Verify
but remains 16.2 points behind THINKTUNING
(54.21% vs. 70.43%). In contrast, our THINK-
TUNING consistently outperforms Zero-Shot-CoT
and all inference-only variants. It achieves 74.22%
on GSMS8k (+3.14 points), 47.54% on Math-500
(+9.40 points), and similar gains on CSQA, ARC-
C, GPQA-D, StrategyQA, and MMLU-Pro.

Comparison with training-based methods Our
experiments show that fine-tuning (SFT) on the
GSMB8Kk training split degrades performance across
every benchmark. Interestingly, we observe that
SFT leads to a drop in performance by around 8%
even on the GSMS8K test set. We hypothesize that
this is due to a distributional mismatch between
the Llama 3.2 family’s pre-trained reasoning pri-
ors and the highly structured chain-of-thought for-
mats found in the GSM&8Kk training annotations. In
contrast, the STaR method, which uses the self-



Methods Mathematical Reasoning

CommonSense Reasoning

Scientific Reasoning Other Reasoning

GSM8K MATH-500 CSQA ARrC-C GPQA-D STRATEGYQA MMLU-PRO
Zero-Shot-CoT 71.08+0.20 38.1440.75 67.39+0.26 75.4940.20 25.10+0.85 66.4040.43 34.4140.11
Self-Verify 52.0841.73 34.9840.54 54.4140.73 61.56+0.47 23.9410.68 52.1040.39 28.1040.14
Self-Correct 51.4510.30 32.46+0.47 45.90+0.69 52.88+0.58 24.60+0.71 52.39+0.78 25.50+0.12
s1-budgeting 51.30+0.42  25.7240.54 54.2110.44 59.5110.27  26.5710.09 57.88+0.80 28.59+0.10
SFT 62.274+0.61 29.00+0.49 65.9140.24 70.9040.71 24.4940.82 64.1240.65 36.07+0.07
STaR 73.54+0.22 40.7810.35 67.9140.30 T7.2440.21 21.46-+0.86 66.84+0.41 34.69+0.12
GRPO 78.89i0.84 45.46i1_55 69.86i0.52 79.13i0.21 24~19i0.75 70.68i0_35 36.07i0_07
THINKTUNING  74.2210.13 47.5410.46 70.4310.19 79.801024 28.1810.63 66.5210.41 37.21410.11

Table 1: Main Results. We evaluate seven methods on seven benchmarks that we group into a four—way taxonomy:
(1) Mathematical reasoning (GSMS8K, MATH-500); (ii) Commonsense reasoning (CSQA); (iii) Scientific reasoning
(ARC-CHALLENGE, GPQA-DIAMOND); and (iv) Other multi—disciplinary reasoning (STRATEGYQA, MMLU-
PRO). We report accuracy (%) as the mean =+ standard error over ten random seeds. For each dataset the highest
score is boldfaced and the second-highest is underlined. All experiments were run with a maximum context length

of 4096 tokens and a decoding temperature of 0.7.

generated reasoning chains into the fine-tuning pro-
cess achieves 73.54 % on GSM8Kk (vs. 62.27 % for
SFT) and 40.78 % on Math-500 (vs. 29.00 %). It
also improves on CSQA (67.91 % vs. 65.91 %) and
ARC-C (77.24 % vs. 70.90 %), but its gains are
uneven: STaR scores only 21.46 % on GPQA-D
and records 66.84 % on StrategyQA and 34.69%
on MMLU-Pro. By comparison, THINKTUNING
consistently outperforms STaR across all bench-
marks—74.22 % on GSM8k (+0.68 points), 47.54
% on Math-500 (+6.76 points), 70.43 % on CSQA
(+2.52 points), 79.80 % on ARC-C (+2.56 points),
and 28.18 % on GPQA-D (+6.72 points).

Comparison with GRPO GRPO serves as our
strongest online RL baseline, demonstrating robust
generalization across all benchmarks. It achieves
78.89 % on GSM8k and 45.46 % on Math-500, and
records 69.86 % on CSQA, 79.13 % on ARC-C,
and 24.19 % on GPQA-D. On broader reasoning
tasks, GRPO attains 70.68 % on StrategyQA and
36.07 % on MMLU-Pro. In comparison, THINK-
TUNING slightly outperforms GRPO. In compar-
ison, THINKTUNING underperforms GRPO on
GSMS8Kk (74.22% vs. 78.89 %) and StrategyQA
(66.52 % vs. 70.68 %) but outperforms it on other
benchmarks: Math-500 (47.54 % vs. 45.46 %),
CSQA (70.43 % vs. 69.86 %), ARC-C (79.80 %
vs. 79.13 %), and GPQA-D (28.18 % vs. 24.19
9%). Moreover, THINKTUNING exceeds GRPO on
MMLU-Pro (37.21 % vs. 36.07 %), demonstrating
stronger scientific and factual reasoning.

5 Analysis

Does THINKTUNING scale inference time?
To evaluate whether THINKTUNING increases

inference-time compute, we analyze the number
of tokens generated during our evaluation. Specifi-
cally, we compare the output length of responses
from models trained with GRPO and THINKTUN-
ING across six benchmarks, excluding MMLU-
Pro. For each benchmark, we compute the average
number of tokens generated per question and re-
port the results in Figure 4. We observe that both
GRPO and THINKTUNING trained model’s end
up spending more compute on benchmarks which
need multi-step reasoning and scientific knowl-
edge. For example, for problems from benchmarks
like MATH-500 and GPQA-D, they produce re-
sponse with more than 300 tokens. However, on
GPQA-D THINKTUNING model ends up spend-
ing around 5.2% tokens more than GRPO trained
model, which translates into its improvement in
relative performance. Interestingly, GRPO model
spends 3.6% more tokens than THINKTUNING
model, but still the later ends up performing in
this benchmark. On other benchmarks as well,
THINKTUNING models spend around 3.4-20.8%
more tokens than the GRPO one. From these anal-
ysis, it is evident that THINKTUNING increase
the inference-time compute by instilling cognitive
reflection which results in performance improve-
ments in certain benchmarks.

Qualitative analysis THINKTUNING instills cog-
nitive behaviors such as self-verification and de-
liberate re-evaluation, leading to notable improve-
ments across a range of reasoning benchmarks.
These reflective strategies are particularly bene-
ficial in domains requiring multi-step scientific rea-
soning. Figure 3 illustrates a representative exam-
ple from GPQA-D to highlight the qualitative im-



Question: Very large number of neutrinos produced by the Sun reach the Earth (very large flux of neutrinos, defined as the number of neutrinos per
cm”2, per second). Let us assume that, hypothetically, the pp-III branch suddenly stopped in the core of the Sun about 8 and a half minutes ago, while
all other reactions remained as they were. What would be the approximate ratio of the flux between two bands of neutrino energies of 700-800 KeV
(band 1) and 800-900 keV (band 2). Flux (band 1) / flux (band 2) is: Choices: A. 1. B. 0.1 (10"-1). €. 0.01 (10"-2). D. 10.

GRPO ¥

To solve this problem, we need to understand the energy production in the Sun
and how it relates to the neutrino flux.

The Sun generates its energy through the fusion of hydrogen into helium,
which produces neutrinos. There are three main branches of neutrino
production in the Sun: pp-I, pp-ii, and pp-IIL.

* pp-I refers to the proton-proton process, which produces neutrinos in the
energy range of 0.5-2.2 MeV.

* pp-ii refers to a process where two protons Fuse o form deuterium, which
then fuses to form helium, producing neutrinos in the energy range of 2.2-8
MeV...

The ratio of the flux between the two bands is then 0.1818/1.2, which is
0.1517.

Rounded to 2 significant figures, this is 0.15.

However, the answer choices do not include this exact value. The closest
answer is 0.1, which is 10”-1.

So the answer to this problem is:\n\n\boxed{B}

ThinkTuning J

To solve this problem, we need to understand the role of the pp-III branch in the
production of neutrinos in the Sun.

The pp-III branch is the process by which helium-3 is formed from the fusion of two
protons and two neutrons in the core of the Sun. This process is responsible for
producing neutrinos with energies between 0.8 and 8 MeV.

Therefore, the ratio of flux (band 1) / flux (band 2) will be approximately 0.8/0.9, which
equals 8/9, or 0.8888... However, this is not among the answer choices.

Wait... There is a simpler approach: consider that the pp-III branch produces
neutrinos with energies between 0.8-8 MeV, and the bands 1 and 2 are within this energy
range. Since the pp-IIT

Re-examining the options, we notice that none of the above reasoning is correct, and we
need fo re-evaluate the relationship between the energy ranges.

The ratio of the energy range of band 1 to band 2 is 700-800 keV / 800-900 keV = 700 /
900 = 7/9. Therefore, the flux (band 1) / flux (band 2) is 7/9. The final answer is:
$\boxed{C}$

Figure 3: Qualitative comparison on a GPQA-D example. The left pane shows the GRPO-trained model detecting
that its computed ratio isn’t among the answer choices but then simply selecting the closest option without revisiting
its reasoning, whereas the right pane illustrates ThinkTuning’s self-reflective process—questioning its initial
approach, re-evaluating the relationship between energy bands, and arriving at the correct flux ratio.

Token Length Comparison

StrategyQA
MATH-500
GSM8K

GPQA-D

CSQA

Im GRPO

ARC-C ThinkTuning

0 100 200 300 400 500 600
Average Tokens

Figure 4: Average number of tokens generated per ques-
tion by models trained with GRPO and THINKTUNING
across six reasoning benchmarks (StrategyQA, MATH-
500, GSMS8K, GPQA-D, CSQA, and ARC-C).

pact of THINKTUNING. The GRPO model recalls
relevant domain knowledge but often falls short in
applying it effectively to the problem at hand. In
contrast, the THINK TUNING-trained model shows
a greater tendency to reflect on its initial reasoning,
reassess intermediate steps, and adjust its approach
if needed. This form of self-correction contributes
to more consistent outcomes, particularly on ques-
tions that benefit from structured re-evaluation.

6 Conclusion

We introduced THINKTUNING, a GRPO based in-
teractive training framework, that instills cognitive

reflections via guided exploration. The key idea
is to augment on-policy rollouts from a student
model with guidance from a teacher model, which
provides corrective feedback needed to approach
and solve a given problem. Since, this guidance is
completely off-policy, we propose using Advantage
Aware Shaping (AAS) weight, which lets the stu-
dent model to learn helpful tokens while remaining
robust to noisy tokens that could make the training
unstable. The introduced THINKTUNING objective
paves way for qualitative guided exploration under
on-policy RL settings, which is particularly helpful
when the base models lack proper priors.
Empirically, THINKTUNING boosts a Llama-3.2-
3B-Instruct performance that was trained with only
questions from the GSMS8K train split. Across
a four-way taxonomy of reasoning benchmarks—
Mathematical, Commonsense, Scientific and Multi-
disciplinary— THINKTUNING attains the best
score on five of seven datasets, matches or sur-
passes GRPO on every set except GSM8K and
StrategyQA, and delivers the largest absolute gain
of +3.99 pts on the scientific reasoning bench-
mark GPQA-DIAMOND. Token-length analysis,
suggests that THINK TUNING model spends more
inference-time compute than GRPO. Qualitative
analysis confirms that the student model internal-
izes the teacher model’s reflective behaviors. We
hope our work will inspire future works for em-
ploying larger scale interactive frameworks.



Limitations and Future Work. Our study relies
on experimentation done on smaller sized LLMs,
however, experimenting with larger size LLMs
to induce various behaviors beyond cognitive can
be an interesting future research direction. Our
method only assigns reward scores by evaluating fi-
nal answers rather than intermediate reasoning, and
it explores only four cognitive behaviors. Future
work should (i) design richer or adaptive feedback
policies (teacher models), (ii) investigate automatic
curriculum schedules for the guidance fraction -,
(iii) extend the framework to tool-augmented or
multi-modal settings, and (iv) test whether cascad-
ing several weak teachers can compound benefits.
Despite these limitations, our results demonstrate
that our approach is able to instill behaviors that
pure RL can evoke solely.

Ethics Statement

The use of proprietary LLMs such as GPT-4, Gem-
ini, and Claude-3 in this study adheres to their poli-
cies of usage. We have used Al assistants (Gram-
marly and Gemini) to address the grammatical er-
rors and rephrase the sentences.
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A Appendix

A.1 Few-Shot Examples

Self-Conflict Exemplar

\.

Prompt: Question: Every day, Wendi feeds each
of her chickens three cups of mixed chicken feed,
containing seeds, mealworms and vegetables to help
keep them healthy. She gives the chickens their feed
in three separate meals. In the morning, she gives her
flock of chickens 15 cups of feed. In the afternoon,
she gives her chickens another 25 cups of feed. How
many cups of feed does she need to give her chickens
in the final meal of the day if the size of Wendi’s
flock is 20 chickens? Let’s think step by step and
provide your final answer inside boxed notation.

Student Response: To find the total amount of feed
Wendi needs to give her chickens for the final meal
of the day, we need to calculate the total amount of
feed already given to the chickens and subtract that
from the total amount she gives per day. First, let’s
calculate the total amount of feed Wendi gives in the
morning and afternoon: 15 cups (morning) + 25 cups
(afternoon) = 40 cups. Since Wendi gives feed to
20 chickens, we need to divide the total amount of
feed by 20 to get the feed per chicken: 40 cups / 20
chickens = 2 cups per chicken. Now, we need to find
out how many cups of feed Wendi needs for the final
meal of the day. Since each chicken needs 2 cups of
feed, we multiply the number of chickens by 2: 20
chickens * 2 cups per chicken = 40 cups So, Wendi
needs 40 cups of feed for the final meal of the day.
Final Answer:

boxed40

Response:

<opinion>incorrect</opinion>

<reason>Wait... Okay, so let me go back and check
what I just did... I said each chicken got 2 cups, right?
But that’s not what the problem said. Hmm. Yeah...
look here! It says each chicken needs 3 cups per day.
That’s a clear mismatch. I think I let the 40 cups
that were already given steer my math, when really, I
should’ve started from what each chicken is supposed
to get.</reason>

<phrase>So let me try that again, this time from the
actual requirement: 20 chickens times 3 cups each
gives 60 cups total. She already gave 15 in the morn-
ing and 25 in the afternoon... that’s 40 so far. So that
means the last meal needs to make up the difference...
60 minus 40 is 20 cups. So the correct final answer is

</phrase>

J

Self-Agreement Exemplar

Prompt: Question: Toulouse has twice as many
sheep as Charleston. Charleston has 4 times
as many sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle have to-
gether if Seattle has 20 sheep? Let’s think step by
step and output the final answer inside boxed notation

Student Response: To find the total number of sheep,
let’s first find the number of sheep each city has.
Since Charleston has 4 times as many sheep as Seat-

tle, and Seattle has 20 sheep, Charleston has: 4 * 20
= 80 sheep

Since Toulouse has twice as many sheep as
Charleston, and Charleston has 80 sheep, Toulouse
has: 2 * 80 = 160 sheep

Now, let’s add up the number of sheep each city has:
20 (Seattle) + 80 (Charleston) + 160 (Toulouse) =
260 sheep

So, Toulouse, Charleston, and Seattle have 260 sheep
together.

Response:

<opinion>correct</opinion>

<reason>Wait... Alright, let me walk through my
steps again to be sure. Seattle has 20 sheep.
Charleston has 4 times as many, so that’s 80. Then
Toulouse has double Charleston’s amount, which is
160. If I add them: 20 + 80 + 160 — that’s 260. The
ratios all hold, and the math lines up. This is the kind
of chain I’d expect to see when the relationships are
proportional like this.</reason>

<phrase>So yeah, I feel good about this... 260 sheep
total. The logic is solid and everything checks out
when I trace it back. So the correct final answer is
</phrase>

Self-Consultancy Exemplar

Prompt: Question: Carla is downloading a 200 GB
file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows
forces a restart to install updates, which takes 20
minutes. Then Carla has to restart the download from
the beginning. How long does it take to download
the file? Let’s think step by step and provide your
final answer inside \boxed{} notation.

Student Response: To find the total time it takes for
Carla to download the file, we need to break it down
into two parts:

1. The download before the restart: 80% of the file
(0.8 *200 GB) = 160 GB at 2 GB/min.

2. The download after the restart: The full file (200
GB) at 2 GB/min.

Now we can calculate the time needed for each part:
Time for the first part: 160 GB / 2 GB/min = 80
minutes Time for the second part: 200 GB /2 GB/min
= 100 minutes

Total time: 80 minutes + 100 minutes = 180 minutes.
So, it takes Carla 180 minutes to download the file.

Final Answer:

Response:

<opinion>incorrect</opinion>

<reason>Hmm... I said she downloaded 80% before
the restart, but something about that number doesn’t
sit right. Let me check the prompt again... yeah... it
actually says she was only 40% through. So I just...
filled in the rest? That’s definitely on me. And now
I’m thinking — if my old CS teacher were looking
at this, he’d pause, tilt his head, and say, “Are you
sure about that number?” And yeah... I'd catch it
immediately. That voice in my head usually knows
when something’s off.</reason>

<phrase>Alright, time to clean this up. 40% of 200
GB is 80 — at 2 GB per minute, that’s 40 minutes.
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Then we’ve got the 20-minute restart. And after that,
she has to download the entire 200 GB again — so
100 more minutes. So the total should be 40 + 20
+ 100... that’s 160 minutes. The final answer is:
</phrase>

Self-Critic Exemplar

Prompt: Question: Toula went to the bakery and
bought various types of pastries. She bought 3 dozen
donuts which cost $68 per dozen, 2 dozen mini
cupcakes which cost $80 per dozen, and 6 dozen
mini cheesecakes for $55 per dozen. How much was
the total cost? Let’s think step by step and provide
your final answer inside [ notation.

Student Response: To find the total cost of the pas-
tries, we need to calculate the cost of each type of
pastry and add them together.

1. Donuts: 3 dozen donuts at $68 per dozen: 3 * 68 =
$204

2. Mini cupcakes: 2 dozen cupcakes at $80 per dozen:
2 *80=$160

3. Mini cheesecakes: 6 dozen cheesecakes at $55 per
dozen: 6 * 55 = $330

Now, let’s add the costs together: 204 + 160 + 330 =
$694

The total cost of the pastries is $694. Final Answer:

694

Response:

<opinion>correct</opinion>

<reason>Hmm... Alright, so [ had: 3 dozen at 68 —
that’s 204. Then 2 dozen at 80 — that’s 160. And 6
dozen at 55 — that’s 330. That gives a total of 694.
But honestly, I didn’t walk through the addition as
carefully as I should’ve. I just kind of jumped to the
answer.

And that’s something I remind myself often: when
you're dealing with totals, especially with money,
it’s easy to assume it’s right without verifying. I
caught myself doing exactly not following that ad-
vice.</reason>

<phrase>So let me actually check it properly this
time. First, 204 plus 160 gives 364. Then adding
330 to that brings us to 694. Same answer — but
now it feels like I've actually confirmed it, not just
assumed it. When I slow down and show each step, I
reduce the chance of sneaky errors slipping past, and
it’s easier for someone else to follow my logic too.
That’s a habit worth modeling. Finally, the correct

final answer is </phrase>

\.

A.2 Gradient Analysis for THINKTUNING

For each token o; in the augmented trajectories
T-auy» We define Advantage Aware Shaping (AAS)
weight as:

waas(Ot,At) = M()(Ot | q, 0<t) .
Mo (ot | g, 0<¢) + c(At)

where ¢(A;) does not depend on ¢
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For ease of derivation,

let Dy(0) = Mo(os | q,0<1) + c(Ay) .
By the quotient rule,

_ De VoMo — Mg VyDs
= 2

VoWaas = V@[%{’]

C(At)
D}

_ DtVoeMy — Mg VoMo
= o

VoMo .

Using the log-derivative trick,

VoMy(ot| -) = Ma(ot] -) Vglog Mg(o] -),

we obtain the gradient of the Advantage Aware
Shaped (AAS) weight to be:

VoWaas = C(At) Mo (os ‘A)

(Mo(or] -) + c(Ar))

5 Volog Mg (o] -).

Low-Confidence Tokens and High Advantage
When the student model assigns a low probability
to a token from the augmented trajectory 7,4, but
receives a high advantage for it. We want the stu-
dent model to learn it. Let p = My(o¢| q,0<¢) <
landc = C(At) < 1 (since At is large). Then the
gradient becomes

cp
VoWaas = W Vo log Mg(ot| q,0<t).
Since p ~ ¢ < 1 maximizes ﬁ, the update

Vgwaas drives an increase in My(o; | ¢, 0<¢) for
this useful but initially unlikely token.

Low-Confidence Tokens and Low Advantage
When the student model assigns a low probability
but receives a low advantage for a token in 7T,
we want to downweight it. Let

aug’

b= M0<Ot‘ q, 0<t) < 1, Cc = C(At) ~ 1.
Then,
v P ylog Mg(oy] )
Wone = —— & o o o
§Vaas (p+ c)? g log Moot | q,0<¢

and since p/c < 1, the update is negligible, effec-
tively ignoring unlikely, unhelpful tokens.



High-Confidence Tokens and High Advantage
When the student model is already confident in
a highly advantageous token, it is enough if the
model retains its confidence. In this case,

p=My(ot| q,01) = 1, c=c(A) < 1.
Then

cp
VoWaas = W Vg log MG(Ot‘ q, 0<t)
and since ¢ < 1, the update remains small, fine-

tuning the model’s existing confidence.

High-Confidence Tokens and Low Advantage
When the model is confident in a token that yields
low advantage, we again want minimal update,
since massive updates lead to unstable training. In
this case, let

p= MG(Ot’ q70<t) ~1, c= C(At) ~ 1.
Then

vGwaas B} VG IOg MG(Ot ‘ q, O<t)

__¢°p

(p+c)
and since 1/c < 1, the update is again very small,
discouraging overconfidence in low-advantage to-
kens.

A.3 Hyperparameters for THINKTUNING

For the training with THINKTUNING, we train our
model with a batch size of 8, with a rolloutout size
of 16. We have the guidance ratio () to be 75%
of the rollouts. We provide teacher guidance for
around 1/3 of the training steps. For SFT and STaR
baselines, we use a batchsize of 8.
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