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Abstract

Recent advances in test-time scaling have led001
to the emergence of thinking LLMs that exhibit002
self-reflective behaviors and multi-step reason-003
ing. While RL drives this self-improvement004
paradigm, recent studies show that solely RL005
does not truly instill these new reasoning abil-006
ities - it merely draws out behaviors already007
present in the base models. This raises a ques-008
tion: How can we train the models that don’t009
exhibit such thinking behavior to develop it in010
the first place? To this end, we propose THINK-011
TUNING, a GRPO-based interactive training012
approach where we augment the rollouts of a013
student model with the guidance from a teacher014
model. A simple idea from classroom prac-015
tice inspires our method: a teacher poses a016
problem, lets the student try an answer, then017
gives corrective feedback–enough to point the018
mind in the right direction and then show the019
solution. Each feedback reshapes the student’s020
thoughts, leading them to arrive at the correct021
solution. Similarly, we find that this type of022
implicit supervision through feedback from a023
teacher model of the same size improves the024
reasoning capabilities of the student model. Par-025
ticularly, on average, our method shows 3.69%026
improvement over zero-shot baselines across027
benchmarks, and on MATH-500 and GPQA-028
Diamond, it shows 2.08% and 3.99% improve-029
ment over the vanilla-GRPO baseline.030

1 Introduction031

Recent years in AI research have been driven032

by advances in scaling models along the weight-033

axis (Kaplan et al., 2020). More recently, scal-034

ing along the inference-time or test-time axis has035

produced significant performance gains in vari-036

ous complex reasoning tasks (Snell et al., 2025).037

Thinking models such as OpenAI-o-series (Jaech038

et al., 2024), DeepSeek-R1 (Guo et al., 2025) and039

Gemini-Thinking (Team et al., 2023) are a testa-040

ment to this, capable of producing long reason-041

Figure 1: Illustration of our teacher-student supervision
setup. Top: the teacher poses a math problem, the stu-
dent answers incorrectly, and the teacher offers a short
corrective feedback. Bottom: faced with a new problem,
the student recalls the feedback ("double-check") and
produces the correct answer.

ing chains, with sophisticated behaviors like self- 042

reflection, self-correction, and multi-step reason- 043

ing. These significant performance gains are at- 044

tributed to the success of Reinforcement Learning 045

(RL) through simple rule-based rewards. However, 046

online on-policy RL settings face a constraint: so- 047

phisticated reasoning behaviors will not emerge 048

unless they are explicitly sampled during training. 049

For example, models like Qwen (Yang et al., 2025) 050

often come with strong priors, allowing them to 051

naturally generate sophisticated reasoning behav- 052

iors, which RL then amplifies. In contrast, when 053

models lack strong priors, on-policy RL struggles 054

to elicit them. Indeed, a recent study shows that 055

RL applied on Llama 3.2–family (Grattafiori et al., 056

2024a) models struggles to elicit the sophisticated 057

reasoning behaviors (Gandhi et al., 2025a). 058
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In academic settings, cognitive modeling pro-059

vides a structured approach for shaping both overt060

(external) and covert (internal-cognitive) behav-061

iors of students through guided interventions by062

a teacher—typically using verbal mediation (Camp063

and Bash, 1978). As illustrated in the Fig. 1, sup-064

pose a teacher asks: “A train travels at 30 miles065

per hour for 3 hours. How far does it go?” A066

hasty student might respond, “30 divided by 3 is067

10 miles!” A good teacher recognizes the mistake068

and explains not just why the answer is incorrect,069

but also teaches a generalizable skill. In this case,070

the teacher could encourage the student to double-071

check what “per hour” means and to think care-072

fully about whether they should multiply or divide073

in similar problems. Interestingly, recent thinking074

models–presumably trained with RL and simple075

rule-based rewards–often exhibit such behavior of076

re-checking and self-refining, which makes them077

better at various reasoning tasks. These thinking078

behaviors emerge in those models solely through079

RL, as suitable priors are present to help in exhibit-080

ing such behavior (Gandhi et al., 2025b). However,081

this brings up an important question: How can we082

enable models to acquire these types of thinking083

skills in the absence of suitable priors? And is RL084

alone sufficient for this task?085

Drawing inspiration from the example discussed086

above, we propose THINKTUNING, a training ap-087

proach where an active student model learns to088

think by interacting with a teacher model. Rather089

than assuming thinking behaviors will emerge dur-090

ing RL, we engineer the training process to induce091

them. This aligns with how cognitive modeling092

in educational settings elicits complex reasoning093

strategies such as self-reflection, self-correction,094

and problem-solving among students.095

THINKTUNING consists of two stages. First, we096

start by creating a set of few-shot exemplars (i.e.,097

four exemplars in our setting), each demonstrating098

an opinion on a student’s response, a reason for099

that opinion, and a phrase that typically showcases100

specific cognitive behaviors. Our exemplars cap-101

ture the most common human self-reflective behav-102

iors: Self-Conflict, Self-Agreement, Self-Critique,103

and Self-Consultancy. While many other cognitive104

behaviors exist, we focus on these four because105

they are well defined (Hermans, 2023; Hermans106

and Gieser, 2011). Second, we train the student107

model in an online RL setting, specifically with108

Group Relative Policy Optimization GRPO) (Shao109

et al., 2024). At each iteration, the student model110

generates n rollouts, from which a subset of γ roll- 111

outs is randomly selected. These selected rollouts 112

are passed to the few-shot teacher model to obtain 113

feedback, and the phrases showcase the cognitive 114

thinking skill. The feedback is then appended to 115

the corresponding γ rollouts, which are returned 116

to the student model to continue the generation 117

process with the augmented input. The resulting 118

γaug rollouts, together with the remaining n−γaug 119

un-augmented rollouts, are used for computing the 120

advantage estimates for the GRPO algorithm. 121

However, because the teacher model’s guidance 122

is entirely off-policy, it violates the assumptions 123

required for importance sampling in methods such 124

as PPO or GRPO. To address this, we introduce 125

Advantage-Aware Shaping (AAS), which adjusts 126

the updates for tokens generated with teacher guid- 127

ance by taking into account both the advantage 128

and the student model’s current confidence in pro- 129

ducing each token. This helps in preventing large 130

updates during the initial stages of training and 131

preventing the model from becoming degenerate. 132

Our experiments show that model trained with 133

THINKTUNING improves performance across di- 134

verse reasoning benchmarks like GSM8k (+3.14%), 135

MATH-500(+9.4%), CSQA(+3.04%), ARC- 136

Challenge(+4.31%), GPQA-Diamond(+3.08%) 137

and MMLU-Pro(+2.8%) compared to zero-shot 138

baselines. Our training approach improves 139

over GRPO baseline by 2.08% and 3.99% on 140

MATH-500 and GPQA-Diamond. Our token 141

length analysis shows that model trained with 142

our framework, end up spending more inference- 143

time compute for solving problems from these 144

benchmarks. Our qualitative analysis reveal that 145

THINKTUNING ends up instilling congnitive 146

reflection in model trained with it. 147

2 Related Works 148

Inference-Time Scaling and Cognitive Behav- 149

iors. Scaling inference-time compute has been a 150

promising approach to improve the performance 151

in LLMs. Chain-of-thought (CoT) prompting en- 152

courages models to generate step-by-step reason- 153

ing, significantly boosting performance on complex 154

tasks (Wei et al., 2022; Kojima et al., 2022). Self- 155

consistency generates multiple reasoning paths and 156

selects the most frequent answer, further improv- 157

ing accuracy (Wang et al., 2023). Iterative self- 158

refinement, where models critique and correct their 159

own outputs, yields additional gains without weight 160
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updates (Madaan et al., 2023). Methods like Tree-161

of-Thoughts and MCTSr extends inference-time162

search by exploring branching reasoning trajecto-163

ries (Yao et al., 2023). Another work, test-time164

optimization(Snell et al., 2025), puts emphasis on165

dynamically adjusting inference compute based on166

the complexity of the task. In contrast to all these167

approaches, out work focuses on training models to168

increase their inference-compute during test time169

by instilling cognitive reflections in their responses.170

Online and Offline Reinforcement Learning.171

Proximal Policy Optimization (PPO) underpins172

most RLHF pipelines, aligning LLMs to human173

preferences (Schulman et al., 2017a; Ouyang174

et al., 2022). Directive Preference Optimization175

(Rafailov et al., 2023) reformulates preference176

alignment as a supervised objective, matching or177

outperforming PPO in stability and quality. Vari-178

ants of DPO, use three preferences instead of two,179

showing better performance on reasoning tasks180

(Saeidi et al., 2024). A recent variant of PPO,181

Group Relative Policy Optimization (GRPO) (Shao182

et al., 2024) discards the critic network from PPO183

and computes the advantage estimates by compar-184

ing each trajectory’s reward to the mean reward of185

a group of sampled trajectories, thus improving ef-186

ficiency and scalability of RL training. Our work is187

different from these approaches, as we try to obtain188

off-policy guidance during on-policy RL training.189

Off-Policy Guidance during RL Earlier works190

in RL like (Schmitt et al., 2018) show case the191

kickstarted training improves the data efficiency of192

agents being trained. Kickstarting demonstrated up193

to 10x faster training and convergence of the agents.194

Work done by Yan et al. (2025) closely aligns with195

our work. The authors include samples from a196

larger model, along with the on-policy rollouts dur-197

ing GRPO. They propose using Policy Shaping,198

which is used to correct the Importance Sampling199

ratios during training. However, our work differs200

from theirs by proposing to dynamically calculat-201

ing shaping coefficient and augmenting off-policy202

tokens with on-policy rollouts.203

3 Methods204

3.1 Background205

Group Relative Policy Optimization (GRPO)206

The recent success of DeepSeek-R1 (Guo et al.,207

2025) has established GRPO as the preferred208

algorithm for online reinforcement learning, due to209

its efficiency and ease of implementation. GRPO, 210

a PPO (Schulman et al., 2017b) variant, estimates 211

the advantage by aggregating reward scores of a 212

group of n sampled responses to a given query 213

q, thus eliminating the need for a separate value 214

network and generalized advantage estimation 215

(GAE) (Schulman et al., 2015). Formally, let 216

Mθ and Mθold be the current and old policy 217

models respectively. Let q and oi be the query 218

and ith response sampled from the dataset and 219

the old policy respectively. Let r(.) be the reward 220

function, which measures the correctness of a 221

given response. Then, the GRPO objective is 222

defined as follows: 223

224
JGRPO(θ) = E

[
q ∼ D, {oi}ni=1 ∼ Mθold(O | q)

]
{
1

n

n∑
i=1

1

|oi|

|oi|∑
t=1

min
[

Mθ(oi,t|q,oi,<t)
Mθold

(oi,t|q,oi,<t)
Âi,t,

clip
( Mθ(oi,t|q,oi,<t)
Mθold

(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− β DKL

[
Mθ

∥∥ Mref

]}
225

Here, the advantage is calculated as the normalized 226

reward, i.e., Âi,t = r̃(oi) = r(oi)−mean(r)
std(r) . This 227

eliminates the need for complicated advantage 228

estimation that happens in PPO. In the above 229

expression, Mθ(oi,t|q,oi,<t)
Mθold

(oi,t|q,oi,<t)
, is the importance 230

sampling weight which corrects for the mismatch 231

between the current policy Mθ and the old policy 232

Mθold that generated the sample responses. This 233

importance sampling weight (w) ensures that 234

updates are properly reweighted, so that learning 235

remains unbiased even when the policy changes 236

over the course of training. 237

3.2 THINKTUNING 238

Student Responses (student responds) First 239

stage of THINKTUNING, we sample n responses 240

from the student policy Mstudent for each query q 241

in a training batch drawn from the dataset D. We 242

sample the responses at a temperature of 1.0 to ob- 243

serve diversity. These initial responses represent 244

the student model’s unaided attempts at solving a 245

given problem, typically exhibiting a mix of cor- 246

rect, partially correct, and incorrect reasoning. 247

Teacher Guidance (teacher helps) In the sec- 248

ond stage, we obtain guidance from the teacher 249

model Mteacher. Given the student model’s re- 250

sponse, the teacher model provides its guidance by 251

first stating its opinion. Then, it provides its justifi- 252

cation for its opinion, grounded in its own reason- 253
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Figure 2: ThinkTuning: The student model Mstudent generates n rollouts T1, . . . , Tn for question q. A selected
subset (e.g. T1, T2, T3) is passed—with q—to the teacher model Mteacher, producing augmented rollouts Taug. All
trajectories enter the verification & advantage module to yield normalized advantages Âi. Augmented tokens are
weighted via Advantage Aware Shaping; remaining tokens use the standard importance sampling ratio. These
per-token weights are used in JThinkTuning(θ) for updating the student.

ing process, and finally offers a guiding phrase on254

how to approach and solve the problem effectively.255

Throughout this process, the teacher model explic-256

itly demonstrates cognitive behaviors, serving as257

an exemplar of reflective problem-solving strate-258

gies for the student to learn from. Particularly, we259

focus on four self-reflective cognitive behaviors,260

well defined in (): (1) Self-Conflict—challenging261

one’s own response by presenting alternative per-262

spectives; (2) Self-Critique—identifying weak-263

nesses in their response and suggesting improve-264

ments; (3) Self-Agreement—affirming and justi-265

fying the strengths in their response; and (4) Self-266

Consultancy—drawing on an alternative internal267

perspective or source of expertise to offer new ad-268

vice or insights that could further improve one’s269

own response. We provide four few-shot exem-270

plars—two illustrating incorrect student responses271

and two showcasing correct ones—each demon-272

strating one of the mentioned behaviors. Impor-273

tantly, all exemplars are expressed in the first-274

person perspective, framing the guidance as inner275

dialogue or self-reflection, making it natural for the276

student model to imitate during training.277

After obtaining the rollouts for a given query278

from the student model, we pass a fraction γ of279

student rollouts randomly to receive guidance from280

the teacher model. For each selected rollout oi, we281

give the corresponding question q to the teacher282

model Mteacher. With the help of our few-shot283

exemplars, we obtain the guidance from the teacher 284

model in a structured way as shown in the AppA.1 285

Student Training (student improves) In this 286

stage, the feedback generated by the teacher model 287

is augmented to the selected fraction γ of the cor- 288

responding student rollouts. This produces a set 289

of γaug augmented trajectories. These are com- 290

bined with the remaining n−γaug unaugmented stu- 291

dent rollouts to compute token-level advantage esti- 292

mates used in the GRPO update. We formally call 293

this process Guide(Mteacher,Mstudentθold
, q, γ), 294

which is a function of the teacher model, student 295

model, and guidance fraction γ. Specifically, we 296

compute the group-normalized advantage for each 297

token in a trajectory Ti ∈ {Tunaug ∪ Taug} as: 298

Âi,t = r̃(Ti) =
R(Ti)−mean (R(Tunaug ∪ Taug))

std (R(Tunaug ∪ Taug))
299

Here, Tunaug denotes the set of unaugmented tra- 300

jectories, and Taug denotes the teacher-augmented 301

ones. When teacher guidance successfully reasons 302

towards the correct answer, the augmented trajec- 303

tory typically receives a higher reward, resulting in 304

a higher relative advantage. In contrast, if the guid- 305

ance is not helpful, the unaugmented trajectories 306

dominate the normalization, which automatically 307

reduces the effect of poor teacher interventions. 308

However, a core challenge arises from the fully 309

off-policy nature of the tokens from teacher guid- 310

4



ance. Although importance sampling () can,311

in principle, correct for the distributional mis-312

match, accurate correction would require access313

toMteacher(guidance | q, ostudent). In practice, however,314

this does not reflect the true probability with which315

the guidance was sampled from the teacher model,316

due to differences in the prompting setup. To ad-317

dress this, we propose Advantage Aware Shaping318

(AAS) for the tokens in the trajectories Taug in-319

stead of using the importance sampling weights.320

AAS uses the student model’s own confidence in321

the tokens of the augmented trajectory, modulated322

by its relative advantage, to determine the weight323

assigned to each teacher-injected token’s gradient324

during training. Formally, for each token ot in the325

augmented trajectory Taug, we define the Advan-326

tage Aware Shaping (AAS) weight as:327

waas

(
Mstudent, ot, Ât

)
=

Mstudent

(
ot | q, o<t

)
Mstudent

(
ot | q, o<t

)
+ c

(
Ât

) .328

where Mstudent(ot | q, o<t) denotes the prob-329

ability assigned by the student model to token ot330

given the query q and the preceding tokens o<t.331

This formulation is similar to the policy shaping332

proposed by Yan et al. (2025). However, in THINK-333

TUNING we make use of c(Ât), a shaping coeffi-334

cient determined by the advantage Ât at that token.335

To be specific, c(Ât) is computed as:336

c(Ât) = cmin + (cmax − cmin) ·
Amax − Ât

Amax −Amin
337

where cmin and cmax are hyperparameters, and338

Amin, Amax are the minimum and maximum to-339

ken advantages possible for a group of responses.340

This is a linear mapping function which provide341

smaller shaping co-efficient for high advantages342

and higher shaping co-efficient for smaller advan-343

tages. This linear mapping assigns smaller shaping344

coefficients to tokens with higher advantages and345

larger coefficients to those with lower advantages.346

For a detailed analysis of its effect on waas and347

the consecutive impact towards the gradient update,348

see Appendix A.2349

We incorporate this shaping directly into our fi-350

nal THINKTUNING objective, which we refer to as351

THINKTUNING. For each token ot ∈ Tunaug in the352

batch, we compute the importance sampling weight353

wt between the current and old student policy. For354

tokens in the teacher-augmented trajectories Taug,355

we make use of the advantage-aware shaped weight356

as discussed above. Formally, we define THINK- 357

TUNING objective as follows: 358

JTHINKTUNING(θ) =

E
[
q ∼ D, {oi}ni=1 ∼ Guide

(
q,Mθold ,Mteacher, γ

)]
{

1

n

∑
i∈Tn−γaug

1

|oi|

|oi|∑
t=1

min
[
wi,tÂi,t,

clip(wi,t, 1− ϵ, 1 + ϵ) Âi,t

]

+
1

n

∑
i∈Tγaug

1

|oi|

|oi|∑
t=1

min
[
waas(oi,t) ri,tÂi,t,

clip(waas(oi,t) ri,t, 1− ϵ, 1 + ϵ) Âi,t

]
− β DKL

[
Mθ

∥∥Mref

]}

359

Algorithm 1 THINKTUNING

1: Input: Initial Student model Mstudentθinit
, Teacher

modelMteacher , guidance fraction γ, hyperparameter
set (ϵ, β, cmin, cmax)

2:
3: Mstudentθ ←Mstudentθinit

4:
5: for training step=1 to I do
6: Mstudentold ←Mstudentθ

7: Sample mini-batch Db ⊂ D
8:
9: // Student acts & Teacher helps

10: for all q ∈ Db do
11: {o}ni=1 ∼ Guide(q,Mstudentold ,Mteacher ,γ)
12: end for
13:
14: // Reward calculation and Advantage estimation
15: Compute the rewards ri = r(oi) for each response

Compute group-normalized advantage Âi,t for all
tokens

16:
17: for mini-batch step = 1 to µ do
18: if oi ∈ Taug then
19: Calculate waas(oi)
20: else
21: Calculate w(oi)
22: end if
23: Mstudentθ ← argmaxθJmethod(θ)
24: end for
25: end for
26: Output: Final think-tuned modelMstudentθ

where w and waas are importance sampling 360

weight and advantage-aware shaped weight respec- 361

tively. This formulation preserves the benefits 362

of GRPO’s group-relative advantage estimation 363

while addressing the off-policy nature of teacher- 364

augmented rollouts through controlled shaping. As 365

a result, the student model is encouraged to learn 366

from helpful feedback without overfitting to noisy 367

or misaligned teacher generations. To prevent the 368
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model from learning the loops of reflective feed-369

back, we stop teacher guidance after î steps.370

4 Experiments371

4.1 Setup372

Baselines For THINKTUNING evaluation, we373

first compare it against zero-shot baselines and374

prompt-based self-improvement methods. In partic-375

ular, we compare with Self-Verify and Self-Correct376

prompting, following the prompt setups from Ku-377

mar et al. and Huang et al. (2023), respectively.378

We include these since our can be seen as a self-379

improvement training approach. We also compare380

with the s1-budgeting (Muennighoff et al., 2025)381

method, where we set a token budget of 2048 and382

let the model generate until it reaches it, by replac-383

ing the end-of-sequence token with “wait...”. For384

training-based methods, we compare against Super-385

vised Finetuning (SFT), STaR (as implemented by386

Kumar et al.), and GRPO (Guo et al., 2025).387

Training Dataset For THINKTUNING and other388

training-based methods, we make use of the389

GSM8k train set which has around 7473 sam-390

ples. We train only on this dataset to showcase391

that THINKTUNING could generalize to out-of-392

distribution and out-of-domain problems.393

Models For our experiments we use Llama3.2-394

3B-Instruct (Grattafiori et al., 2024b) model as395

the base model to get our baseline and train with396

THINKTUNING. The reason for choosing this397

model is that recent work (Gandhi et al., 2025a)398

shows that Llama family of models lacks these399

cognitive behaviors in them, whereas models like400

Qwen already have them, which On-Policy RL is401

able to elicit. Hence, choosing a model from the402

Llama family becomes a natural choice for us to403

show the utility of our method. We also make use404

of the same 3B version as the teacher model.405

Benchmarks We evaluate our proposed THINK-406

TUNING on several benchmarks across different407

reasoning categories: GSM8K (Cobbe et al., 2021)408

and MATH-500 (Hendrycks et al., 2021) for Math-409

ematical Reasoning; CSQA (Talmor et al., 2018)410

and StrategyQA (Geva et al., 2021) for Common-411

sense Reasoning; and for Scientific Reasoning, we412

use ARC-Challenge (ARC-C) (Clark et al., 2018)413

and GPQA Diamond Set (GPQA-D) (Rein et al.,414

2024) (see Table 1). To ensure consistent and415

proper evaluation, after the model finishes genera-416

tion, we append the phrase “So, the final answer is417

\boxed{” , which prompts the model to explicitly 418

output the final answer in a boxed format, simplify- 419

ing answer parsing and enabling exact match (EM) 420

accuracy calculation using Math-verify with ease. 421

Training & Inference We implement our 422

THINKTUNING training using the verl (Sheng 423

et al., 2024) framework. All experiments are con- 424

ducted on 4 NVIDIA H100 GPUs. For detailed hy- 425

perparameter settings, please refer to the appendix. 426

To speed up rollout generation and evaluation, we 427

utilize vLLM (Kwon et al., 2023) due its efficiency 428

4.2 Results 429

Comparison with prompting-based methods 430

From Table 1, we can see that Self-Verify and Self- 431

Correct methods underperform compared to Zero- 432

Shot-CoT baseline. They achieve only 52.08% and 433

51.45% on GSM8k and 34.98% and 32.46% on 434

Math-500, respectively, whereas Zero-Shot-CoT 435

attains 71.08% and 38.14% on these benchmarks. 436

We see similar trends on other benchmarks like 437

CSQA, ARC-C, GPQA-D and MMLU-Pro. Our 438

evaluation reaffirms the limitations of inference- 439

time self-improvement prompting (). s1-budgeting, 440

which simply scales inference-time compute, yields 441

only marginal improvements on GPQA-D yet re- 442

mains far below the baseline on other reasoning 443

tasks. Our evaluation shows that this method fails 444

to produce meaningful gains, and in several cases, 445

leads to degraded performance. For instance, on 446

MATH-500, s1-budgeting yields only 25.72%, un- 447

derperforming even the Zero-Shot-CoT baseline, 448

and on CSQA, it performs on par with Self-Verify 449

but remains 16.2 points behind THINKTUNING 450

(54.21% vs. 70.43%). In contrast, our THINK- 451

TUNING consistently outperforms Zero-Shot-CoT 452

and all inference-only variants. It achieves 74.22% 453

on GSM8k (+3.14 points), 47.54% on Math-500 454

(+9.40 points), and similar gains on CSQA, ARC- 455

C, GPQA-D, StrategyQA, and MMLU-Pro. 456

Comparison with training-based methods Our 457

experiments show that fine-tuning (SFT) on the 458

GSM8k training split degrades performance across 459

every benchmark. Interestingly, we observe that 460

SFT leads to a drop in performance by around 8% 461

even on the GSM8k test set. We hypothesize that 462

this is due to a distributional mismatch between 463

the Llama 3.2 family’s pre-trained reasoning pri- 464

ors and the highly structured chain-of-thought for- 465

mats found in the GSM8k training annotations. In 466

contrast, the STaR method, which uses the self- 467
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Methods Mathematical Reasoning CommonSense Reasoning Scientific Reasoning Other Reasoning

GSM8K MATH-500 CSQA ARC-C GPQA-D STRATEGYQA MMLU-PRO

Zero-Shot-CoT 71.08±0.20 38.14±0.75 67.39±0.26 75.49±0.20 25.10±0.85 66.40±0.43 34.41±0.11

Self-Verify 52.08±1.73 34.98±0.54 54.41±0.73 61.56±0.47 23.94±0.68 52.10±0.39 28.10±0.14

Self-Correct 51.45±0.30 32.46±0.47 45.90±0.69 52.88±0.58 24.60±0.71 52.39±0.78 25.50±0.12

s1-budgeting 51.30±0.42 25.72±0.54 54.21±0.44 59.51±0.27 26.57±0.99 57.88±0.80 28.59±0.10

SFT 62.27±0.61 29.00±0.49 65.91±0.24 70.90±0.71 24.49±0.82 64.12±0.65 36.07±0.07

STaR 73.54±0.22 40.78±0.35 67.91±0.30 77.24±0.21 21.46±0.86 66.84±0.41 34.69±0.12

GRPO 78.89±0.84 45.46±1.55 69.86±0.52 79.13±0.21 24.19±0.75 70.68±0.35 36.07±0.07

THINKTUNING 74.22±0.13 47.54±0.46 70.43±0.19 79.80±0.24 28.18±0.63 66.52±0.41 37.21±0.11

Table 1: Main Results. We evaluate seven methods on seven benchmarks that we group into a four–way taxonomy:
(i) Mathematical reasoning (GSM8K, MATH-500); (ii) Commonsense reasoning (CSQA); (iii) Scientific reasoning
(ARC-CHALLENGE, GPQA-DIAMOND); and (iv) Other multi–disciplinary reasoning (STRATEGYQA, MMLU-
PRO). We report accuracy (%) as the mean ± standard error over ten random seeds. For each dataset the highest
score is boldfaced and the second-highest is underlined. All experiments were run with a maximum context length
of 4096 tokens and a decoding temperature of 0.7.

generated reasoning chains into the fine-tuning pro-468

cess achieves 73.54 % on GSM8k (vs. 62.27 % for469

SFT) and 40.78 % on Math-500 (vs. 29.00 %). It470

also improves on CSQA (67.91 % vs. 65.91 %) and471

ARC-C (77.24 % vs. 70.90 %), but its gains are472

uneven: STaR scores only 21.46 % on GPQA-D473

and records 66.84 % on StrategyQA and 34.69%474

on MMLU-Pro. By comparison, THINKTUNING475

consistently outperforms STaR across all bench-476

marks—74.22 % on GSM8k (+0.68 points), 47.54477

% on Math-500 (+6.76 points), 70.43 % on CSQA478

(+2.52 points), 79.80 % on ARC-C (+2.56 points),479

and 28.18 % on GPQA-D (+6.72 points).480

Comparison with GRPO GRPO serves as our481

strongest online RL baseline, demonstrating robust482

generalization across all benchmarks. It achieves483

78.89 % on GSM8k and 45.46 % on Math-500, and484

records 69.86 % on CSQA, 79.13 % on ARC-C,485

and 24.19 % on GPQA-D. On broader reasoning486

tasks, GRPO attains 70.68 % on StrategyQA and487

36.07 % on MMLU-Pro. In comparison, THINK-488

TUNING slightly outperforms GRPO. In compar-489

ison, THINKTUNING underperforms GRPO on490

GSM8k (74.22% vs. 78.89 %) and StrategyQA491

(66.52 % vs. 70.68 %) but outperforms it on other492

benchmarks: Math-500 (47.54 % vs. 45.46 %),493

CSQA (70.43 % vs. 69.86 %), ARC-C (79.80 %494

vs. 79.13 %), and GPQA-D (28.18 % vs. 24.19495

%). Moreover, THINKTUNING exceeds GRPO on496

MMLU-Pro (37.21 % vs. 36.07 %), demonstrating497

stronger scientific and factual reasoning.498

5 Analysis499

Does THINKTUNING scale inference time?500

To evaluate whether THINKTUNING increases501

inference-time compute, we analyze the number 502

of tokens generated during our evaluation. Specifi- 503

cally, we compare the output length of responses 504

from models trained with GRPO and THINKTUN- 505

ING across six benchmarks, excluding MMLU- 506

Pro. For each benchmark, we compute the average 507

number of tokens generated per question and re- 508

port the results in Figure 4. We observe that both 509

GRPO and THINKTUNING trained model’s end 510

up spending more compute on benchmarks which 511

need multi-step reasoning and scientific knowl- 512

edge. For example, for problems from benchmarks 513

like MATH-500 and GPQA-D, they produce re- 514

sponse with more than 300 tokens. However, on 515

GPQA-D THINKTUNING model ends up spend- 516

ing around 5.2% tokens more than GRPO trained 517

model, which translates into its improvement in 518

relative performance. Interestingly, GRPO model 519

spends 3.6% more tokens than THINKTUNING 520

model, but still the later ends up performing in 521

this benchmark. On other benchmarks as well, 522

THINKTUNING models spend around 3.4-20.8% 523

more tokens than the GRPO one. From these anal- 524

ysis, it is evident that THINKTUNING increase 525

the inference-time compute by instilling cognitive 526

reflection which results in performance improve- 527

ments in certain benchmarks. 528

Qualitative analysis THINKTUNING instills cog- 529

nitive behaviors such as self-verification and de- 530

liberate re-evaluation, leading to notable improve- 531

ments across a range of reasoning benchmarks. 532

These reflective strategies are particularly bene- 533

ficial in domains requiring multi-step scientific rea- 534

soning. Figure 3 illustrates a representative exam- 535

ple from GPQA-D to highlight the qualitative im- 536
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Question: Very large number of neutrinos produced by the Sun reach the Earth (very large flux of neutrinos, defined as the number of neutrinos per
cm^2, per second). Let us assume that, hypothetically, the pp-III branch suddenly stopped in the core of the Sun about 8 and a half minutes ago, while
all other reactions remained as they were. What would be the approximate ratio of the flux between two bands of neutrino energies of 700-800 KeV
(band 1) and 800-900 keV (band 2). Flux (band 1) / flux (band 2) is: Choices: A. 1. B. 0.1 (10^-1). C. 0.01 (10^-2). D. 10.

To solve this problem, we need to understand the role of the pp-III branch in the
production of neutrinos in the Sun.

The pp-III branch is the process by which helium-3 is formed from the fusion of two
protons and two neutrons in the core of the Sun. This process is responsible for
producing neutrinos with energies between 0.8 and 8 MeV.

.......

Therefore, the ratio of flux (band 1) / flux (band 2) will be approximately 0.8/0.9, which
equals 8/9, or 0.8888... However, this is not among the answer choices.

Wait... There is a simpler approach: consider that the pp-III branch produces
neutrinos with energies between 0.8-8 MeV, and the bands 1 and 2 are within this energy
range. Since the pp-III

.....

Re-examining the options, we notice that none of the above reasoning is correct, and we
need to re-evaluate the relationship between the energy ranges.

.....

The ratio of the energy range of band 1 to band 2 is 700-800 keV / 800-900 keV = 700 /
900 = 7/9. Therefore, the flux (band 1) / flux (band 2) is 7/9. The final answer is:
$\boxed{C}$

To solve this problem, we need to understand the energy production in the Sun
and how it relates to the neutrino flux.

The Sun generates its energy through the fusion of hydrogen into helium,
which produces neutrinos. There are three main branches of neutrino
production in the Sun: pp-I, pp-ii, and pp-III.

*   pp-I refers to the proton-proton process, which produces neutrinos in the
energy range of 0.5-2.2 MeV.
*   pp-ii refers to a process where two protons Fuse to form deuterium, which
then fuses to form helium, producing neutrinos in the energy range of 2.2-8
MeV...

......

The ratio of the flux between the two bands is then 0.1818/1.2, which is
0.1517.

Rounded to 2 significant figures, this is 0.15.

However, the answer choices do not include this exact value. The closest
answer is 0.1, which is 10^-1.

So the answer to this problem is:\n\n\boxed{B}

Figure 3: Qualitative comparison on a GPQA-D example. The left pane shows the GRPO-trained model detecting
that its computed ratio isn’t among the answer choices but then simply selecting the closest option without revisiting
its reasoning, whereas the right pane illustrates ThinkTuning’s self-reflective process—questioning its initial
approach, re-evaluating the relationship between energy bands, and arriving at the correct flux ratio.

0 100 200 300 400 500 600
Average Tokens

ARC-C

CSQA

GPQA-D

GSM8K

MATH-500

StrategyQA

Token Length Comparison

GRPO
ThinkTuning

Figure 4: Average number of tokens generated per ques-
tion by models trained with GRPO and THINKTUNING
across six reasoning benchmarks (StrategyQA, MATH-
500, GSM8K, GPQA-D, CSQA, and ARC-C).

pact of THINKTUNING. The GRPO model recalls537

relevant domain knowledge but often falls short in538

applying it effectively to the problem at hand. In539

contrast, the THINKTUNING-trained model shows540

a greater tendency to reflect on its initial reasoning,541

reassess intermediate steps, and adjust its approach542

if needed. This form of self-correction contributes543

to more consistent outcomes, particularly on ques-544

tions that benefit from structured re-evaluation.545

6 Conclusion546

We introduced THINKTUNING, a GRPO based in-547

teractive training framework, that instills cognitive548

reflections via guided exploration. The key idea 549

is to augment on-policy rollouts from a student 550

model with guidance from a teacher model, which 551

provides corrective feedback needed to approach 552

and solve a given problem. Since, this guidance is 553

completely off-policy, we propose using Advantage 554

Aware Shaping (AAS) weight, which lets the stu- 555

dent model to learn helpful tokens while remaining 556

robust to noisy tokens that could make the training 557

unstable. The introduced THINKTUNING objective 558

paves way for qualitative guided exploration under 559

on-policy RL settings, which is particularly helpful 560

when the base models lack proper priors. 561

Empirically, THINKTUNING boosts a Llama-3.2- 562

3B-Instruct performance that was trained with only 563

questions from the GSM8K train split. Across 564

a four-way taxonomy of reasoning benchmarks— 565

Mathematical, Commonsense, Scientific and Multi- 566

disciplinary— THINKTUNING attains the best 567

score on five of seven datasets, matches or sur- 568

passes GRPO on every set except GSM8K and 569

StrategyQA, and delivers the largest absolute gain 570

of +3.99 pts on the scientific reasoning bench- 571

mark GPQA-DIAMOND. Token-length analysis, 572

suggests that THINKTUNING model spends more 573

inference-time compute than GRPO. Qualitative 574

analysis confirms that the student model internal- 575

izes the teacher model’s reflective behaviors. We 576

hope our work will inspire future works for em- 577

ploying larger scale interactive frameworks. 578
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Limitations and Future Work. Our study relies579

on experimentation done on smaller sized LLMs,580

however, experimenting with larger size LLMs581

to induce various behaviors beyond cognitive can582

be an interesting future research direction. Our583

method only assigns reward scores by evaluating fi-584

nal answers rather than intermediate reasoning, and585

it explores only four cognitive behaviors. Future586

work should (i) design richer or adaptive feedback587

policies (teacher models), (ii) investigate automatic588

curriculum schedules for the guidance fraction γ,589

(iii) extend the framework to tool-augmented or590

multi-modal settings, and (iv) test whether cascad-591

ing several weak teachers can compound benefits.592

Despite these limitations, our results demonstrate593

that our approach is able to instill behaviors that594

pure RL can evoke solely.595

Ethics Statement596

The use of proprietary LLMs such as GPT-4, Gem-597

ini, and Claude-3 in this study adheres to their poli-598

cies of usage. We have used AI assistants (Gram-599

marly and Gemini) to address the grammatical er-600

rors and rephrase the sentences.601
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A Appendix791

A.1 Few-Shot Examples792

Self-Conflict Exemplar

Prompt: Question: Every day, Wendi feeds each
of her chickens three cups of mixed chicken feed,
containing seeds, mealworms and vegetables to help
keep them healthy. She gives the chickens their feed
in three separate meals. In the morning, she gives her
flock of chickens 15 cups of feed. In the afternoon,
she gives her chickens another 25 cups of feed. How
many cups of feed does she need to give her chickens
in the final meal of the day if the size of Wendi’s
flock is 20 chickens? Let’s think step by step and
provide your final answer inside boxed notation.

Student Response: To find the total amount of feed
Wendi needs to give her chickens for the final meal
of the day, we need to calculate the total amount of
feed already given to the chickens and subtract that
from the total amount she gives per day. First, let’s
calculate the total amount of feed Wendi gives in the
morning and afternoon: 15 cups (morning) + 25 cups
(afternoon) = 40 cups. Since Wendi gives feed to
20 chickens, we need to divide the total amount of
feed by 20 to get the feed per chicken: 40 cups / 20
chickens = 2 cups per chicken. Now, we need to find
out how many cups of feed Wendi needs for the final
meal of the day. Since each chicken needs 2 cups of
feed, we multiply the number of chickens by 2: 20
chickens * 2 cups per chicken = 40 cups So, Wendi
needs 40 cups of feed for the final meal of the day.
Final Answer:
boxed40
Response:
<opinion>incorrect</opinion>
<reason>Wait... Okay, so let me go back and check
what I just did... I said each chicken got 2 cups, right?
But that’s not what the problem said. Hmm. Yeah...
look here! It says each chicken needs 3 cups per day.
That’s a clear mismatch. I think I let the 40 cups
that were already given steer my math, when really, I
should’ve started from what each chicken is supposed
to get.</reason>
<phrase>So let me try that again, this time from the
actual requirement: 20 chickens times 3 cups each
gives 60 cups total. She already gave 15 in the morn-
ing and 25 in the afternoon... that’s 40 so far. So that
means the last meal needs to make up the difference...
60 minus 40 is 20 cups. So the correct final answer is
20 </phrase>

793

Self-Agreement Exemplar

Prompt: Question: Toulouse has twice as many
sheep as Charleston. Charleston has 4 times
as many sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle have to-
gether if Seattle has 20 sheep? Let’s think step by
step and output the final answer inside boxed notation

Student Response: To find the total number of sheep,
let’s first find the number of sheep each city has.
Since Charleston has 4 times as many sheep as Seat-

794

tle, and Seattle has 20 sheep, Charleston has: 4 * 20
= 80 sheep
Since Toulouse has twice as many sheep as
Charleston, and Charleston has 80 sheep, Toulouse
has: 2 * 80 = 160 sheep
Now, let’s add up the number of sheep each city has:
20 (Seattle) + 80 (Charleston) + 160 (Toulouse) =
260 sheep
So, Toulouse, Charleston, and Seattle have 260 sheep
together.

Response:
<opinion>correct</opinion>
<reason>Wait... Alright, let me walk through my
steps again to be sure. Seattle has 20 sheep.
Charleston has 4 times as many, so that’s 80. Then
Toulouse has double Charleston’s amount, which is
160. If I add them: 20 + 80 + 160 — that’s 260. The
ratios all hold, and the math lines up. This is the kind
of chain I’d expect to see when the relationships are
proportional like this.</reason>
<phrase>So yeah, I feel good about this... 260 sheep
total. The logic is solid and everything checks out
when I trace it back. So the correct final answer is
260 </phrase>

795

Self-Consultancy Exemplar

Prompt: Question: Carla is downloading a 200 GB
file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows
forces a restart to install updates, which takes 20
minutes. Then Carla has to restart the download from
the beginning. How long does it take to download
the file? Let’s think step by step and provide your
final answer inside \boxed{} notation.

Student Response: To find the total time it takes for
Carla to download the file, we need to break it down
into two parts:
1. The download before the restart: 80% of the file
(0.8 * 200 GB) = 160 GB at 2 GB/min.
2. The download after the restart: The full file (200
GB) at 2 GB/min.
Now we can calculate the time needed for each part:
Time for the first part: 160 GB / 2 GB/min = 80
minutes Time for the second part: 200 GB / 2 GB/min
= 100 minutes
Total time: 80 minutes + 100 minutes = 180 minutes.
So, it takes Carla 180 minutes to download the file.
Final Answer: 180

Response:
<opinion>incorrect</opinion>
<reason>Hmm... I said she downloaded 80% before
the restart, but something about that number doesn’t
sit right. Let me check the prompt again... yeah... it
actually says she was only 40% through. So I just...
filled in the rest? That’s definitely on me. And now
I’m thinking — if my old CS teacher were looking
at this, he’d pause, tilt his head, and say, “Are you
sure about that number?” And yeah... I’d catch it
immediately. That voice in my head usually knows
when something’s off.</reason>
<phrase>Alright, time to clean this up. 40% of 200
GB is 80 — at 2 GB per minute, that’s 40 minutes.

796
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Then we’ve got the 20-minute restart. And after that,
she has to download the entire 200 GB again — so
100 more minutes. So the total should be 40 + 20
+ 100... that’s 160 minutes. The final answer is:
160 </phrase>

797

Self-Critic Exemplar

Prompt: Question: Toula went to the bakery and
bought various types of pastries. She bought 3 dozen
donuts which cost $68 per dozen, 2 dozen mini
cupcakes which cost $80 per dozen, and 6 dozen
mini cheesecakes for $55 per dozen. How much was
the total cost? Let’s think step by step and provide
your final answer inside notation.

Student Response: To find the total cost of the pas-
tries, we need to calculate the cost of each type of
pastry and add them together.
1. Donuts: 3 dozen donuts at $68 per dozen: 3 * 68 =
$204
2. Mini cupcakes: 2 dozen cupcakes at $80 per dozen:
2 * 80 = $160
3. Mini cheesecakes: 6 dozen cheesecakes at $55 per
dozen: 6 * 55 = $330
Now, let’s add the costs together: 204 + 160 + 330 =
$694
The total cost of the pastries is $694. Final Answer:
694

Response:
<opinion>correct</opinion>
<reason>Hmm... Alright, so I had: 3 dozen at 68 —
that’s 204. Then 2 dozen at 80 — that’s 160. And 6
dozen at 55 — that’s 330. That gives a total of 694.
But honestly, I didn’t walk through the addition as
carefully as I should’ve. I just kind of jumped to the
answer.
And that’s something I remind myself often: when
you’re dealing with totals, especially with money,
it’s easy to assume it’s right without verifying. I
caught myself doing exactly not following that ad-
vice.</reason>
<phrase>So let me actually check it properly this
time. First, 204 plus 160 gives 364. Then adding
330 to that brings us to 694. Same answer — but
now it feels like I’ve actually confirmed it, not just
assumed it. When I slow down and show each step, I
reduce the chance of sneaky errors slipping past, and
it’s easier for someone else to follow my logic too.
That’s a habit worth modeling. Finally, the correct
final answer is 694 </phrase>

798

A.2 Gradient Analysis for THINKTUNING799

For each token ot in the augmented trajectories800

Tγaug , we define Advantage Aware Shaping (AAS)801

weight as:802

waas(ot, Ât) =
Mθ(ot | q, o<t)

Mθ(ot | q, o<t) + c(Ât)
,803

where c(Ât) does not depend on θ804

805

For ease of derivation, 806

807

let Dt(θ) = Mθ(ot | q, o<t) + c(Ât) . 808

809
By the quotient rule, 810

∇θwaas = ∇θ

[
Mθ
Dt

]
=

Dt∇θMθ −Mθ∇θDt

D2
t

=
Dt∇θMθ −Mθ∇θMθ

D2
t

=
c(Ât)

D2
t

∇θMθ .

811

Using the log-derivative trick, 812

∇θMθ(ot | ·) = Mθ(ot | ·) ∇θ logMθ(ot | ·), 813

we obtain the gradient of the Advantage Aware 814
Shaped (AAS) weight to be: 815

∇θwaas =
c(Ât)Mθ(ot | ·)(
Mθ(ot | ·) + c(Ât)

)2 ∇θ logMθ(ot | ·). 816

Low-Confidence Tokens and High Advantage 817

When the student model assigns a low probability 818

to a token from the augmented trajectory Taug, but 819

receives a high advantage for it. We want the stu- 820

dent model to learn it. Let p = Mθ(ot | q, o<t) ≪ 821

1 and c = c(Ât) ≪ 1 (since Ât is large). Then the 822

gradient becomes 823

∇θwaas =
c p

(p+ c)2
∇θ logMθ(ot | q, o<t). 824

Since p ≈ c ≪ 1 maximizes c p
(p+c)2

, the update 825

∇θwaas drives an increase in Mθ(ot | q, o<t) for 826

this useful but initially unlikely token. 827

Low-Confidence Tokens and Low Advantage 828

When the student model assigns a low probability 829

but receives a low advantage for a token in Tγaug , 830

we want to downweight it. Let 831

p = Mθ(ot | q, o<t) ≪ 1, c = c(Ât) ≈ 1. 832

Then, 833

∇θwaas =
c p

(p+ c)2
∇θ logMθ(ot | q, o<t) 834

and since p/c ≪ 1, the update is negligible, effec- 835

tively ignoring unlikely, unhelpful tokens. 836
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High-Confidence Tokens and High Advantage837

When the student model is already confident in838

a highly advantageous token, it is enough if the839

model retains its confidence. In this case,840

p = Mθ(ot | q, o<t) ≈ 1, c = c(Ât) ≪ 1.841

Then842

∇θwaas =
c p

(p+ c)2
∇θ logMθ(ot | q, o<t)843

and since c ≪ 1, the update remains small, fine-844

tuning the model’s existing confidence.845

High-Confidence Tokens and Low Advantage846

When the model is confident in a token that yields847

low advantage, we again want minimal update,848

since massive updates lead to unstable training. In849

this case, let850

p = Mθ(ot | q, o<t) ≈ 1, c = c(Ât) ≈ 1.851

Then852

∇θwaas =
c p

(p+ c)2
∇θ logMθ(ot | q, o<t)853

and since 1/c ≪ 1, the update is again very small,854

discouraging overconfidence in low-advantage to-855

kens.856

A.3 Hyperparameters for THINKTUNING857

For the training with THINKTUNING, we train our858

model with a batch size of 8, with a rolloutout size859

of 16. We have the guidance ratio (γ) to be 75%860

of the rollouts. We provide teacher guidance for861

around 1/3 of the training steps. For SFT and STaR862

baselines, we use a batchsize of 8.863
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