Correcting misinterpretations of additive models
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Abstract

Correct model interpretation in high-stakes settings is critical, yet both post-hoc
feature attribution methods and so-called intrinsically interpretable models can
systematically attribute false-positive importance to non-informative features such
as suppressor variables. Specifically, both linear models and their powerful non-
linear generalisation such as General Additive Models (GAMs) are susceptible
to spurious attributions to suppressors. We present a principled generalisation of
activation patterns — originally developed to make linear models interpretable — to
additive models, correctly rejecting suppressor effects for non-linear features. This
yields PatternGAM, an importance attribution method based on univariate gener-
ative surrogate models for the broad family of additive models, and PatternQLR
for polynomial models. Empirical evaluations on the XAI-TRIS benchmark with
a novel false-negative invariant formulation of the earth mover’s distance accu-
racy metric demonstrates significant improvements over popular feature attribution
methods and the traditional interpretation of additive models. Finally, real-world
case studies on the COMPAS and MIMIC-1V datasets provide new insights into
the role of specific features by disentangling genuine target-related information
from suppression effects that would mislead conventional GAM interpretations.

1 Introduction

As machine learning (ML) models are increasingly used in high-stakes domains, the need for reliable
model explanations has grown in tandem, with much of the work in explainable Al (XAI) has focused
on interpreting ML models through post-hoc attribution techniques. Parallel to this, simple model
architectures such as Generalised Additive Models (Hastie & Tibshirani, [1986; Rudin, 2019), which
are thought of as ‘inherently interpretable’ have become popular. GAMs non-linearly model the output
as a sum of smooth functions applied to each input feature, followed by a link function — typically
the logit or softmax in classification settings. This architecture is often considered interpretable in the
sense that each component function — also known as a shape function — can be visualised to illustrate
how the feature contributes to the model’s prediction. However, how models use specific features,
and therefore, how model coefficients or shape functions must be interpreted, depends non-trivially
on the data generating process, even when models are decomposable into simple terms. It is often
erroneously assumed that non-zero coefficients corresponding to a feature or feature pair imply that
these features carry information about the prediction target. However, depending on the joint causal
structure of the model’s in- and outputs, optimal models may assign significant non-zero weight to
non-informative features and, conversely, zero weight to informative features (Haufe et al.| 2014). It
is also possible that a feature enters the model with a polarity that opposes the correlation between
the feature and the target. Such effects can be due to suppressor variables, which are variables that are
statistically unrelated or weakly related to the prediction target but help the model to remove variance
from other variables, therefore improving its predictions (see, e.g.,(Conger;, |1974; Weichwald et al.,
2015 [Haufe et al.| [2024).
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In the context of linear models, [Haufe et al.|(2014) highlighted that model weights cannot be
interpreted as typically desired unless adjusted by the data covariance, which yields the linear
activation pattern, or simply Pattern. Without such adjustment, suppressor variables can receive
arbitrarily large weights of any polarity, misleadingly signalling importance. Such misleading
attribution is also systematically observed in a large variety of popular feature attribution methods
applied to Bayes-optimal model in the presence of suppressors Wilming et al.|(2023)). Empirically,
Wilming et al.[(2022) showed that the Pattern approach outperforms other XAI methods in linear
problem settings in the presence of suppressors, while |Clark et al.| (2024b) extended this analysis
to non-linear problems. Addressing the shortcomings of existing work on interpretable non-linear
models, our contributions are as follows:

1. We introduce a framework for computing univariate and bivariate feature importances to turn the
broad class of non-linear GAMs into models that can be interpreted in terms of practically relevant
associations between features and prediction targets.

2. We instantiate this framework for multiple arts of models, resulting in two new explanation
approaches: PatternQLR (for quadratic models) and PatternGAM (for general additive models).

3. We empirically validate our methods on the XAI-TRIS benchmark suite, reporting superior
performance of PatternGAM and PatternQLR over GAMs and existing attribution methods.

4. We present a novel metric for assessing the performance of feature attributions, false-negative
invariant earth mover’s distance accuracy (FNI-EMDA), to overcome the tendency of vanilla EMD
metrics to penalise false-negative attributions and operate over a narrow resolution.

5. We apply our approaches to two real-world datasets for the prediction of recidivism risk and
in-hospital mortality. Using PatternGAM, we unearth new insights into the role of sensitive
attributes in the prediction process, thereby revealing critical misinterpretations of conventional
GAM-based interpretations that can be attributed to suppression.

2 Background: additive models and suppressor variables

Generalised linear models (GLM) g(E[y|x]) = w " x + ¢, where x € RP are input features, are often
seen as inherently interpretable due to their simple structure, assigning one weight w; to each feature
x;. Consider the two-dimensional linear structural model introduced by |Wilming et al.| (2023):

x=ay+mn, ey

where y is the target label, a = (1,0) " is the signal activation pattern defining how the signal
is represented in each feature, and 7 ~ N(0,X,). The data covariance is defined as Xy =
2
{Tclrtl C:%”} for non-negative standard deviations r; and ro. Then, with u; = (1,0)T and
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w2 = (—1,0)7, the weights of the Bayes-optimal GLM are calculated as w = E;l(,ul — [2),
which derives to w = (a, —acry /72) T for o := (1 + (cr1/72)?)~ /2, showing that, while the
suppressor feature xo contains no class-discriminative information about y, it must still receive
non-zero weight when the correlation between features is non-zero. This misleading attribution
to suppressors is corrected by the activation pattern or Pattern (Haufe et al., [2014), defined as
N -1 o . . .
a=Xw (WTEXW) , which is the ordinary least-squares (OLS) estimate of the coefficients a; of
the univariate models a;7+c; = x; and simplifies to the univariate solutions a; = Cov[z;, §]Var[j] .
In the present case, & = (1,0) T, correctly reflecting the lack of a statistical association between z2
and y and forming the desired data-aware global explanation.

Generalised Additive Models Generalised additive models (GAMSs, |Hastie & Tibshiranil, (1986}
Lou et al., 2013 Nori et al., 2019) model the prediction target y € R as

D D
g(Elylx)) = > 5™ @) + > £t (g, m) | ©)
7 i<k

where f#AM and fGAM are univariate and bivariate shape functions applied to single features and
feature pairs, respectively, and where g is a link function, often chosen as the logit function in binary



classification tasks and the identity function in regression tasks. In the following, we focus on binary
classification, although all presented results should hold for other suitable choices of link functions.

In the original GAM and GA2Ms approaches (Hastie & Tibshirani} [1986; [Lou et al., 2013)), each
shape function is represented as a linear combination of basis functions such as splines. Explainable
Boosting Machines (EBMs) replace the spline functions with tree-based bagging and boosting
techniques for particularly expressive and ‘wiggly’ functions, whereas Neural Additive Models
(NAMs) (Agarwal et al.| 2021} replace the spline- or tree-based shape functions with small neural
networks. Model parameters are fitted using training data D = {(x(1),y() ... (x(N) y(N))1,
enabling coordination among the individual functions during optimisation. In the following, we
assume that E[x] = 0 and Vi Var[z;] > 0. Expectations and variances are taken across training
samples. We refer to single entries «; and pairs (2, ;) of X as univariate and bivariate input features,
respectively, and to f; and f; ;. as univariate and bivariate functions. Note that we largely refrain
from referring to these functions as modelling interactions per se, as the actual computation carried
out depends on statistical properties of the input features ; and x.

We here choose NAMs as our main additive model architecture, where we extend the original
approach to also include bivariate terms foM. Practically this amounts to adding an additional
two-input sub-network with one output per modelled feature combination. In practice, rather than
choosing the entire quadratic set of all possible bivariate feature combinations, [Lou et al.| (2013)
propose and [Nori et al|(2019) make use of the FAST algorithm, which selects bivariate terms based
on the residual of the best current additive model in feature space. Feature pairs are iteratively added
to the model until there is no gain in accuracy. This approach is adopted here as well.

Fitted shape functions fOAM are often visualised to show how the model output varies as the value

of a single feature or feature pair changes. Non-zero shape functions are interpreted as indicating a
statistical association between feature and target, and their scales and signs are interpreted as strengths
and directions of the associations (Lou et al., 2012} |(Caruana et al.,[2015/ e.g.,). Following |Haufe et al.
(2014), these interpretations are theoretically unjustified and potentially misleading. This is because
GAM shape functions reflect how individual features need to be transformed to yield the desired
target — but are not based on statistical association with the target. In the two-dimensional suppressor
setup introduced above, fitting a GAM with the identity link function g leads to a non-zero linear
function in f$4M(x5). Even though x5 is not discriminative in isolation, its statistical association
with x; (the true signal carrier) through the shared noise component causes the GAM to model a
non-zero functional effect for zo, resulting in a spurious attribution of importance.

Existing Non-linear Pattern Approaches Thus far, no analogy to the linear activation pattern has
been proposed for GAMs, while proposals to make other families of non-linear models interpretable
present disadvantages. PatternNet and PatternAttribution are two well known approaches which apply
the principles of Pattern to non-linear models, aiming to trace signal flow in deep neural networks
(Kindermans et al.,[2018). While reducing to Pattern in linear cases, both have been shown to have
degraded performance on controlled non-linear benchmarks, particularly when correlated background
noise acts as a suppressor (Clark et al.,[2024b). The Kernel Pattern method of [Zhang et al.| (2024)
computes the Pattern in kernel space, but due to the pre-image problem (Bakir et al.,2003; |[Honeine &
Richard, [2009), the corresponding input-space Pattern is not uniquely defined and must be estimated.
This reverse mapping is often ill-posed, unstable, or out-of-distribution, and the method captures
only implicit kernel-induced relationships (e.g., similarity) rather than explicit or flexible feature
combinations like those learned by additive models with explicit bivariate terms. Finally, recent work
by Gjglbye et al.| (2025)) uses the Pattern concept in the context of locally linear explanations.

3 Methodology

In the following, we extend the Pattern approach to make two families of additive non-linear models,
quadratic logistic regression (QLR) and GAMs, interpretable with respect to the Statistical Association
Property (Wilming et al.| 2022, 2024).

3.1 Pattern Quadratic Logistic Regression (PatternQLR)

We first extend the idea of activation patterns to a polynomial expansion of the input x up to degree 2,
consisting of all first-order terms and all unique pairwise products



ZUR — P(x) = (ml, ey xD,xf, e ,x%, T1T9,. .. ,:ED,lxD)T . 3)
Note that we include only one of the terms x;x; and xx; for each feature pair (i.e., we assume
a fixed ordering such that j < k), avoiding redundant terms due to symmetry. This results in
DR = 2D + (D? — D)/2 (D linear, D quadratic and (D? — D) /2 pairwise) overall features that
capture all uni- and bivariate effects. For simplicity, we define fJQLR(xj) =z, f]Q,ER(:L s Tk) = T,
and fiQLR(x) = zZQLR. This Quadratic Logistic Regression (QLR) mapping approach (if we were to
use the full non-redundant set of pairwise products) is equivalent to a degree-2 polynomial kernel
k(x:,%x;) = (yx; x; + ¢)? withy = 1, ¢ = 0. Both the QLR and this particular polynomial kernel
can be viewed as additive models with multiplicative feature combinations.

To solve the classification problem, we train a linear classifier (e.g., linear logistic regression, LLR) on
z%R From the obtained weight vector w&R in z-space, we can compute the QLR activation pattern
(PatternQLR) aP@R = Cov[z%R, g(7&R)]Var[g(§R)] L, where g(§UR) = wQRT ZQLR | QLR
This is again equivalent to fitting univariate models a];QLR g9(9) + vaLR = ZZQLR post-hoc with OLS.
In cases where all features of the extended feature vector zZ2™R possess a similar scale, the scale
of the a? ¥ is also comparable across features and can serve as a quantitative measure of feature

importarllce. This is the case in the neuroimaging context, in which Pattern has been introduced, where
features typically correspond to sensors of the same type and are measured in the same units (Haufe
et al., |2014)). If features are on different scales (e.g. correspond to different physical quantities),
the coefficients a’@® are not quantitatively comparable across features as well as across linear to

i
quadratic terms. Here we address this issue in two ways. First, we standardise each zZQLR to zero
mean and unit variance based on the training data prior to Pattern computation. Second, we derive
additional feature importance metrics that are scale-invariant. To this end, we fit DR univariate LLR

models of the form g(E[y|x]) = fF¥R(x) = bFARAR 1 gPAR \yhere the univariate PatternQLR

K2 7
shape functions fT¥R(x) evaluate to fF¥R(x) = PRz, 4+ @R for univariate features and to
fr AR (x) = beLijxk + deLR for bivariate features. Rather than interpreting scale-dependent
coefficients beLR directly, we here interpret shape functions ff QLR " which can be visualised as
functions of the underlying input-space features z; and xj. Note that PatternQLR shape functions

are fit to the true class labels y instead of their QLR estimates j2R as done in the Pattern approach.

3.2 PatternGAM

For the fitted additive model Eq. (@), we obtain DM = D + (D? — D)/2 (D univariate and
(D? — D)/2 bivariate) non-linear features produced by shape functions fiGAM(x) that are jointly
learned. We collect these in

79 = ¢G(X) = (flG(‘rl)v sy fg(xD)v fﬁ2(x11 ‘T2)a Ceey fgfl,D(folvxD))T ) “

GAM s estimated as the mean over K = 100 NAM fits with random initial-

GAM

where, in practice, z
isations, and a subset of bivariate terms are selected by FAST. Summing up the entries of z
according to Eq. formally amounts to applying a linear logistic regression model with fixed
weights wOAM = 1. We observe, however, that this results in slightly suboptimal models, pre-
sumably due to the model averaging process. Therefore, we re-estimate w9M using LLR leading
to adjusted features zOMM «— wFAMGAM "\which are used in all subsequent steps. After a fur-
ther standardisation of the z5AM, we again calculate the PatternGAM activation pattern vector as
aPoAM — Cov[zOAM | g(59M) | Var[g(§°AM)]~1. Similar to PatternQLR, we also fit separate univari-

ate LLR models for each of the DM features, where M (x;) = bPOAM fOAM () 4 @FGAM for
univariate features and f9M (z;, 2x) = 0f9M fOM (25, 2 ) + df9AM for bivariate features.

3.3 Feature importance metrics

Our main object of feature interpretation are PatternQLR and PatternGAM shape functions
f PQLR/PGAM "o aluated as functions of uni- or bivariate features, which we compare to their QLR/GAM

7
counterparts f?LR/GAM. In addition, we use the following scalar metrics of feature importance.
Activations patterns: We use the absolute value of the PatternQLR/PatternGAM coefficients



PQLR/PGAM LR/GAM LR/GAM PQLR/PGAM
aiQ Q : PATZ»(fiQ )= aiQ |

as estimated from standardised features z;
Scale: We evaluate the standard deviation of shape function values as SD;(f;) = Var[f;(x)]"/?
across training samples for both the original QLR and GAM shape functions fiQLR/ GAM

PatternQLR and PatternGAM counterparts fiP QLR/PGAM

Discriminability: We use the area under the receiver operating curve (AUROC) to assess the
univariate discriminability of each univariate or bivariate shape function. We define DISCR; (f;,y) =
2(AUROC( f;,y) — 0.5), where positive associations with the target are reflected by scores between
0 and 1. Being a correlation measure, DISCR is invariant to rescaling of f;, and presents a general
way to avoid suppressor misattribution in additive models.

Intersection: Our main interpretation goal is to identify features or feature pairs that are both
informative w.r.t. the target as well as ‘used’ by the model. The former can be ensured by measuring
importance either with the PAT or DISCR metrics, or by evaluating SD for fPQIRPGAM “Ag QLR and
GAM models have no incentive to estimate non-zero shape functions for unnecessary, e.g. redundant,
features, the latter is also ensured in principle. In practice, however, such features may receive small
non-zero weights, which could preserve any potential statistical association with the target. Such fea-
tures will receive strong importance according to all the above metrics, despite not being used by the

model. To counteract this behavior, we also introduce PROD; = SD; (fQ-R/OAM) . g, (fPALRIPGAM)

Finally, while all importance metrics are evaluated on both univariate and bivariate features, we
restrict our statistical evaluation to input-space. To this end, we aggregate univariate and bivariate
feature importances. We define IMP; = IMP;(f;) for z; = f;(z;) and IMP; ;, = IMP;(f;) for
z; = fi(z;, zk), where IMP = {PAT, SD, DISCR} (analogously for INTER). The aggregated input-
space importance IMP_AGG < RP” is denoted by IMP_AGG, = maxj»; (IMP_PAIR; ), where

IMP; IMP; < IMP,, )
max (IMP; , IMP;) else ,

with f; 1 := fi ; for the case j > k, and where IMP = {PAT, SD, DISCR, INTER}. We compare
these metrics with existing feature attribution methods acting as baselines (c.f. Section[d.T)). For local
methods, we define the global attribution as the average absolute local attribution over all samples.
Finally, denoting by s € R” a global attribution, we rectify all entries by taking their absolute values,
followed by a division by the sum of all entries, thereby ensuring that Vis; > 0O and ), s; = 1.

and their

IMP_PAIR; . = {

3.4 Theoretical Properties PatternQLR and PatternGAM

Let s(D) be a method capable of generating global input-space attributions s € R”.

Definition 1 (Statistical Association Property, SAP, Wilming et al.[ (2022, 2024)) A feature attri-
bution method s possesses the SAP if any significant non-zero importance attribution to a univariate
feature x; indicates a statistical association with the target: s; indicates importance = x; ) y.

The SAP rules out that non-informative variables, including suppressors, are assigned significant
importance, which is a prerequisite for correct interpretations and use of attributions in downstream
tasks such as model debugging, scientific discovery, and counterfactual analysis (Haufe et al.| 2024).

Theorem 1 The following quantities possess the SAP.

1. PatternQLR/GAM shape function coefficients beLR/PGAM for (possibly) non-linear univariate
features ZlQLR/GAM _ ijLR/GAM (z;).

2. Under conditions, PatternQLR/GAM coefficients anLR/PGAM for ziQLR/GAM = ijLR/GAM(:U i)

3. PatternQLR/GAM shape functions f ;) QLRIPGAM (1. Y and their standard deviations SD( fj QLR/PGAM

4. Discriminability metrics applied to univariate functions f;(x;), e.g., ijAM.

Theorem 2 The original GAM shape functions fiGAM for z; = x; and their standard deviations
SD(f5AM) do not possess the SAP.

The proofs are presented in Appendix [A]
3.5 Explanation Performance Metrics

We conduct ground-truth benchmarking of univariate and bivariate feature attributions using the
XAI-TRIS benchmarking suite (Clark et al.| 2024b) see also Supplementary Section D). In the LIN



and MULT XAI-TRIS scenarios, the features x; for which the SAP holds are known by construction
and are collected in the set A", where j € AT < z; )L y. Analogously, we define the ground-truth
set of pairwise interactions Z* for the XOR scenario. In this work, we aggregate univariate and
bivariate importance attributions in input space for benchmarking purposes. In this setting, the
ground-truth is given by the set 7+ = {j | j € AT Vv 3k (4, k) € Z*} containing all univariate
input features that are either in A™ or part of a feature pair that is in Z. We further define the binary
vector t+ € RP, where t+ YTt & T € T+ and t7 = 0 otherwise. Based on the known ground
truth, the explananon performance of a given explanation s is assessed using the following metrics.

Importance Mass Accuracy (IMA): Defined as IMA(s, 7F) = (3,c7+ 5¢) / (Z a1 sd), this

is the proportion of explanation ‘mass’ assigned to known ground-truth features compared to the total
importance attributed to all features (Arras et al., 2022; [Clark et al., [2024b)).

False-Negative-Invariant Earth Mover’s Distance Accuracy (FNI-EMDA): For image data,
the Euclidean distance between input pixels can be taken into account when evaluating explanation
performance (Clark et al., 2024b)). Given such a distance C € RP*D | the earth-mover’s distance
(EMD) between the continuous-valued attribution s and the ground-truth importance t™ is defined as

T
EMD(s, t*, C) FE%)HXD Z Zru wCuw st. T1=sT'1=¢t", (6)
u=1v=1
where I' € RP*P is a transport plan. Unlike IMA, the EMD can readily distinguish between minor
local displacements of ground-truth importance and globally altered importance patterns. EMD,
however, requires that the explanation is transformed into the complete ground truth; that is, to avoid
penalisation, XAI methods need to assign equally high importance to every ground-truth input feature.
In practice, subsets of important features may form equally valid explanations — just as doctors,
models may not need to use every symptom or available measurement to diagnose a patient. False-
Negative-Invariant EMD Accuracy (FNI-EMDA) addresses this shortcoming by setting the transport
costs between all ground-truth features to zero, which is achieved via the modified Euclidean distance
Clo=Cuw(l=T(uec T AveTt)). ENI-EMDA is then defined as the negative normalised

EMD with modified ground distance C’: FNI- EMDA(S tt,C’) = 1 — EMD(s,t".C") /5., where
Omax = max;[(C'tT),] is the worst-case EMD for a given ground truth t . This novel metric does
not unfairly penalise subset-style attributions, as illustrated in Appendix Section[C] and improves
on the original formulation of EMD accuracy by providing a higher resolution of possible resulting
scores. We analogously define EMD Accuracy (EMDA) by replacing C’ again with the unaltered
Euclidean distance C.

4 Results

Code for all experimental results is provide(ﬂ with details on usage, data availability, and compute
required available in Appendix Section [B| We acknowledge the use of LLMs (ChatGPT 40 and
Gemini 2.5 pro) for early prototyping, plot structuring and formatting, however all uses have been
verified and tested (and compared with known results where possible).

4.1 Experiments on XAI-TRIS synthetic ground truth imaging data

Agarwal et al.| (2021) motivate the use of NAMs for computer vision tasks due to their potential
intelligibility. The XAI-TRIS (Clark et al.l 2024b) benchmark datasets provide visually compelling
binary classification scenarios with known signal patterns, shown as ‘tetrominos’ (Golomb), |1996)).
Here, tetromino signals a are combined additively or multiplicatively with two different types of
noisy backgrounds 7: white noise, or correlated noise smoothed with a Gaussian filter. Different
binary classification scenarios are presented — a linear additive noise task (LIN) , a multiplicative
noise task (MULT), and an XOR task with additive noise. In all cases, signal patterns a are combined
with a background noise component 77, where the background is either white (Gaussian) noise, or
correlated noise (white noise smoothed by a 2D Gaussian filter). The correlated background noise
induces suppressors due to the spatial overlap of the background noise and the tetromino components.
Here, we extend this with an explicit distractor pattern d that spatially overlaps the signal tetrominos,

"https://github.com/braindatalab/pattern-gam
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again acting as a suppressor. The full details and visualisations of data generation, model parameters,
and experimental setup can be found in Appendix [D]
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(a) LIN DIST CORR (b) MULT DIST CORR

Figure 1: GAM vs PatternGAM shape functions for a NAM trained on the LIN (left) and MULT (right)
XAI-TRIS scenarios with dedicated distractor patterns and the correlated (CORR) noise background.
Grey shaded features represent class-informative ground truth tetrominos, which completely overlap
with the non-informative distractor (suppressor) patterns (in orange). While the raw shape functions,
used as the traditional global explanation of additive models, highlight noise features and distractors,
PatternGAM correctly removes their influence on the explanation.

In the LIN and MULT scenarios, no interactions are present by construction, for which reason we do
not include explicit bivariate feature terms in the underlying model. Figure [I]shows the raw shape
functions for a NAM trained over these scenarios, where a dedicated distractor (suppressor) pattern,
shaded in orange, overlaps with the tetromino signals in grey. One can see that, when PatternGAM is
applied, the shape functions of irrelevant features are nullified, overcoming misleading attribution of
importance to distractor features as seen in the original GAM shape functions.

(a) SD(FO*M) (b) SD(fFAM) (c) DISCR(fM)

Figure 2: Spatial maps of bivariate feature importances for 256 feature pairs in the XOR-DIST-CORR
XAI-TRIS scenario. Heat indicates higher importance and red contours mark ground-truth features.
Importance of the original NAM shape functions in (a), measured by the SD metric, shows diffuse
and noisy characteristics, whereas PatternGAM importance (b) concentrates within the ground-truth
regions, showing the cross-tetromino interaction pattern of the underlying XOR problem. Similarly,
the discriminability map (c) highlights ground-truth feature pairs as the most informative.

Figure 2] shows spatial importance maps for bivariate feature combinations in terms of the standard

deviation SD( f4M) and SD(fP9AM) of the NAM and PatternGAM shape functions, as well as the
univariate discriminability DISCR(fSAM). This is shown for the XOR-DIST-CORR XAI-TRIS
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setting trained with 128 bivariate terms as selected using FAST. The ‘picture-in-picture’ style image
shows how each feature of the 8 x8 input image is estimated to interact with all other features.
For SD(fAM) limited structure is visible; however for SD(fP9AM) and DISCR( f9AM) we see the
ground-truth XOR interaction between the T-shaped tetromino in the top left and the L-shaped
tetromino in the bottom right reflected in the importances attributed to the corresponding pixel pairs.

We further qualitatively and quantitatively evaluate the global explanations of PatternGAM and
PatternQLR with those of the original NAM, an EBM, Kernel Pattern, SHAP (Lundberg & Lee,
2017), Integrated Gradients (Sundararajan et al., 2017), PatternNet and PatternAttribution. The
latter four are applied to a four-layer Multi-layer Perceptron (MLP). Appendix Figure [8]shows that
PatternGAM and PatternQLR tend to highlight truly important features more consistently than all
other approaches. Interestingly, PatternNet and Kernel Pattern highlight smoothed correlated noise
in several CORR scenarios, and all methods that do not possess the SAP can highlight significant
attribution to the distractor features.

Tables[]presents results of a quantitative assessment of the explanation performance of all attributions
on the XAI-TRIS data using the FNI-EMDA metric. Analogous results for the IMA and regular
EMDA metrics are shown in Appendix Tables [3| and ] Generally, the standard interpretations
from the NAM and EBM as well as the traditional post-hoc feature attribution methods SHAP and
Integrated Gradients have worse performance than Pattern-based methods, showing false-positive
attribution to suppressor and otherwise uninformative features.

LIN ULT XOR
Method WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR
PAT( fOAM)T 0.95 £ 0.01 0.80 £ 0.04 0.96 +0.01 0.80£0.04  0.94+0.01 0.80 + 0.04 0.94 +0.01 0.81+£0.04  0.93+0.01 0.84 £0.04 0.92 +£0.01 0.84 £0.05
PAT( fOR) 0.88+£0.00  0.83+0.02 0.91 +0.00 0.78 £0.01 0.89 £ 0.00 0.73 £ 0.00 0.89 £ 0.00 0.72+0.00  0.92+0.00 0.89+0.01 0.91 +0.00 0.88 £0.03
SD(fPaAM)* 0.99 £0.01 0.96 £ 0.02 0.94+0.02  0.98+0.01 0.96 +0.02 0.98 £ 0.01 0.96 +0.02 0.97 £0.01 0.97 £0.01 0.96 £ 0.01 0.97 £0.01
SD(fPLR)* 0.92+0.00 0.93+0.03 0.86 £0.02  0.96 £ 0.00 0.76 + 0.00 0.96 £ 0.00 0.76 £0.00  0.96+£0.00 0.98+0.01 0.95 +0.00 0.97 £0.01
DISCR( fOAM)¥ 0.97 £0.01 0.93 £0.02 0.90£0.02  0.91+0.01 0.88 +0.03 0.91 £ 0.01 0.88 +£0.03 0.96 £0.00  0.96 +0.01 0.94 £ 0.01 0.94 £0.02
DISCR( fQR)* 0.90£0.00 0.82+0.01 0.81+£0.01 0.90 £ 0.00 0.76 = 0.00 0.90 £ 0.00 0.76 £0.00  0.93+£0.00 0.94£0.01 0.91 £ 0.00 0.93 £0.01
PROD( fP/GAM Y} 1.00£0.00 0.99 +0.01 099+001 1.00£0.01 099£0.01 1.00+0.00 099+0.01 1.00£0.00 0.99+0.01 1.00 £0.00 1.00+0.00
PROD( fP/QLR)T 0.99+£0.00 0.99+0.01 0.99+0.00 1.00£0.00 0.82£0.00 1.00 + 0.00 0.83+£0.00 1.00+£0.00 1.00+£0.00 1.00£0.00 1.00+0.00
SD(fOAM) 0.98 £ 0.01 0.89 £0.02 0.88+£0.02 0.97+0.01 0.89 +0.02 0.97 £0.02 0.89 +0.01 0.88 £0.02 0.85 £ 0.04 0.90 +£0.02 0.87£0.03
SD(fR) 0.85+0.00  0.87£0.00 0.89£0.00  0.90 £ 0.00 0.75 £ 0.00 0.90 £ 0.00 0.75+0.00  0.87+0.01 0.90 £0.00 0.85 £ 0.01 0.91£0.00
EBM 0.96 £0.00  0.90 £ 0.00 0.91+£0.00 0.96+0.00 0.90 +0.00 0.96 + 0.00 0.89+£0.00 0.66+0.03  0.5940.04 0.68 +0.04 0.62 +£0.08
Kernel Pattern 0.96 £0.00  0.93+£0.02 091£0.02 068£0.02 0.63£0.05 0.68 £ 0.02 0.62£0.05 0.69+0.02 0.64+£0.05 0.69 £ 0.03 0.65 £ 0.06
PatternNet 0.90£0.05  0.79£0.07 0.76£0.05 0.76£0.04  0.69 +0.01 0.77 £0.04 0.70+£0.02  0.91+0.05 0.85+0.07 0.91+0.05 0.85 £ 0.07
PatternAttribution | 0.99+0.02  0.814+0.07 0.80£0.07 0.95+0.05 0.82+0.05 0.95 +0.03 0.83+£0.05 0.99+0.01  0.934+0.07 0.98 +£0.02 0.95 £ 0.04
SHAP 0.91 £0.02 0.85 £ 0.02 0.85+£0.02 0.88+0.03 0.82 +0.04 0.88 £0.03 0.82 +£0.04 0.87+£0.03  0.79+£0.05 0.86 +0.02 0.82+£0.03
Int. Grads. 0.99 £0.00  0.96 +0.01 0.95+0.01  0.98+0.01 0.87+0.00 0.98 +0.01 0.88+0.00 0.944+0.03 0.934+0.03 0.91+0.03 0.94 +0.03

Table 1: False-Negative Invariant Earth Mover’s Distance Accuracy (FNI-EMDA) shown as mean +
standard deviation values. The best performing method per row is emboldened, and our proposed
importance metrics are denoted by (7).

4.2 COMPAS Recidivism Risk

COMPAS is a score developed to predict recidivism risk, used to inform bail, sentencing and parole
decisions, and is notorious for the presence of racial bias (Angwin et al., 2016} Dressel & Farid, |2018;
Tan et al.,2018)). Here we investigate the importance of six features, age, race, prior’s count, length of
stay, sex, and charge degree, on recidivism risk using a publicly available dataset (ProPublical 2016).
Figure 3] shows the learned shape functions from an ensemble of 100 NAMs. Sensitive features like

Age Race Priors Count Length of Stay Sex Charge Degree
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Figure 3: NAM shape functions for six predictors of recidivism risk as estimated by an ensemble
of 100 NAMs. Red shading highlights the data density. Blue bar plots mark global importance
according to four metrics: NAM scale, SD(f9AM), PatternGAM scale, SD( fP9AM) the product
of both (PROD), and univariate discriminability (DISCR). In this example, all six features show
(marginal but) significant dependencies to recidivism risk, while the fitted multivariate NAM primarily
focuses on age, length of stay, and priors count.

race and sex, as well as charge degree are of low importance for the multivariate NAM prediction
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Figure 4: Learned shape functions for an ensemble of 100 NAMs trained on MIMIC-IV data to
predict mortality within the first 24 hours of hospital admission, versus PatternGAM shape functions.
Green-shaded plots show features with highest univariate informativeness with respect to mortality
relative to their use in the NAM. Red-shaded plots depict features entering the model with a polarity
that opposes their association with mortality, suggesting negative suppression effects. Yellow-shaded
features are features used by the NAM for variance reduction without being predictive for mortality.
These classical suppressors are nullified by PatternGAM.

as evidenced by low values of the SD(f9AM) metric, despite displaying modest but significant
correlation to the target according to the DISCR(f9AM) metric and univariate PatternGAM analysis.
We may speculate that these latter weak statistical associations could be due to a confounding effects
such as selection biases affecting the dataset’s composition rather than these features being truly
causal for recidivism. Consistent with this two-sided interpretation, we observe that the PROD metric,
quantifying to what extent features are simultaneously informative and used by the model, attains
near-zero values for race, sex, and charge degree. These results suggest that the multivariate NAM
can achieve its predictive accuracy largely without relying on these sensitive attributes, which could
be considered a desirable outcome. This may allow for more nuanced bias mitigating schemes than
simply removing features based on raw correlations or a-priori assumptions.

4.3 MIMIC-IV Mortality Prediction

Finally, we evaluate additive models on in-hospital mortality prediction using the MIMIC-IV v2.0
dataset (Johnson et al.| [2023alb) hosted on the Physionet platform. The task is formulated as binary
classification, where the target indicates whether a patient died during the hospital admission within
the first 7" = 24 hours of admission. The full details of which features are used and the steps for data
preprocessing are shown in Appendix Section

Figure ] shows the learned NAM versus PatternGAM-scaled shape functions for a subset of features
studied, with the full results shown in Appendix Figure [[0] The green, yellow, and red shaded
features are selected according to the strongest positive, strongest negative, and smallest absolute
bPEAM coefficients respectively, fit through the post-hoc univariate PatternGAM models fP9AM. The
ensemble of 100 NAMs achieves an AUROC of 0.821 with zero feature pairs, which has a minor
increase in performance (to AUROC = 0.824) with 64 pairs chosen by the FAST algorithm — as such,
we choose the former, simpler, model for further investigation.

MAP and Bilirubin mean play a minor role in predicting mortality within the multivariate model,
however when modelled univariately, PatternGAM finds these features to be strongly informative.
This could indicate that these features contain less direct information about the target, presumably
through unobserved confounding or indirect causation, than other features, which are then preferred
by the model. It is also noted that the scale of PatternGAM shape functions is generally elevated
compared to GAM functions, as the latter distributes importance over a maximum of (here) 34
features, while the former must use single features for approximating the same target. Interestingly,
Dias BP mean shows a negative suppression effect (Darlington, [1968)). While intermediate and
high Dias BP mean values are negatively associated with mortality, these values enter the NAM’s
prediction positively, likely for the purpose of removing BP-related variance from other informative
features. Finally, the yellow-shaded Hematocrit mean and insurance features, while playing a role in
the NAM, are nullified in the PatternGAM shape function fP6AM, resembling classical suppressors.

5 Discussion

Additive models such as GAMs and NAMs perform on par with deep neural networks in a large
range of tasks. The purported gain in interpretability of these ‘glassbox’ methods is, however, elusive.
The common interpretation of shape functions as ‘highlighting features that are associated with the



predicted target’ is often unjustified for dependent data in the presence of suppressors. Likewise,
the strengths and signs of these shape functions cannot be unambiguously related to the prediction
target. Here we introduce two general approaches, PatternQLR and PatternGAM, which rely on
univariate associations with the target when assigning importance to features and shape functions,
thus providing information that is typically desired by developers and users of XAl, and that can
facilitate correct decision making in downstream tasks. Conversely, we exposed misinterpretations
of conventional additive models both using quantitative ground-truth experiments and real-world
analyses. It is important to note, though, that PatternQLR and PatternGAM function as a post-hoc
adjustments for explanations — they are not designed to be predictive models in themselves or for
altering a model’s underlying predictive mechanisms.

PatternGAM effectively ignores suppressor variables, avoiding their misinterpretation as being
target-informative. Combined with classical GAM shape function analysis, PatternGAM can enable
users to identify suppressors as features used by the model to reduce predictive variance rather than
enabling the prediction itself. In the present MIMIC analyses, this has led to the discovery of negative
suppression, where the correlation of certain clinical features with mortality is the opposite of what
classical GAM analysis would suggest.

Misinterpretations of suppression effects are widespread in the XAI community and can often be
attributed to a lack of understanding of how multivariate models operate, neglecting that ML models
depend on the causal structure of their training data, and may need to assign weight to non-informative
features to remove variance. Notably, such misinterpretations can lead to ineffective or even harmful
actions downstream. |Agarwal et al.| state that the inclusion of sensitive features such as race and
sex may lead to less fair models for making bail decisions; thus advocating for exclusion. Similarly,
Wang et al.| (2021) present a GAM analysis suggesting that patients with asthma are prone to have
lower risk of dying from pneumonia. This interpretation prompts the authors to suggest manual
adjustments to the GAM shape function to ‘correct’ this effect.

In contrast, we promote a two-step approach, in which a GAM is first used to learn potentially
complex non-linear features, after which PatternGAM is applied post-hoc to assess the contextual
importance of these feature through their statistical relationship to the target. In the recidivism
example, this approach would flag several sensitive attributes as important, thus potentially biased,
but would not necessarily mandate exclusion of these attributes due to their insignificance for the
model. In the pneumonia example, PatternGAM would offer a straightforward way to assess whether
the role of asthma lies indeed in contributing target-related information or whether asthma is merely
used as a suppressor by the model. In the latter case, manual adjustment would not be suitable, likely
leading to performance degradation of a potentially optimal model, or worse.

Several modelling choices and technical intricacies of PatternQLR or PatternGAM warrant deeper
discussion. First, univariate shape functions can be fitted to either predicted or observed labels using
either linear rescaling or complete non-linear re-estimation of the GAM shape functions. These
choices offer different solutions within the spectrum between purely data- and purely model-centric
explanations. The proposed approach of linearly rescaling GAM functions to fit true labels thereby
offers interpretability in terms of the actual building blocks used by the model, while possessing
the SAP. Second, statistical guarantees such as for the SAP are provided here only for univariate
PatternGAM and PatternQLR attributions. These results can be extended to bivariate features in the
sense that feature pairs acting jointly as suppressors are correctly rejected by all proposed methods.
Consider the structural model z1 = y + ning, v2 = n1, w3 = n2, where ny /o ~ N(0,1). The
non-zero shape functions of the optimal GAM are f{*M(z1) = 21 and f§4™ (2, #3) = —x223 # 0
despite the fact that x5 and x5 neither individually nor jointly have any statistical association to y. In
contrast, all proposed pattern-based methods would assign no significant importance to (x2, x3). For
the structural model 1 = ¥/n, o = n,n ~ N (0, 1), though, the original QLR and GAM models
consist of the single term fSIQR/GAM(xl, Z9) = X122, for which the PatternQLR and PatternGAM

shape function coefficients evaluate to bll)%LR/ PGAM _ 1. thus, indirectly assigning importance to the

suppressor Z5. Importantly, though, the IMP_AGG rule prevents that this bivariate importance leaks
into the aggregated score for 5. Future work will define strict data-driven notions of (higher order)
feature interactions, and propose appropriate metrics to disentangle different types of suppression
effects from true interactions within the framework of additive models.
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Technical Appendices and Supplementary Material

A Theoretical properties of PatternQLR and PatternGAM

Proof 1 (Theorem 1) We show that x; 1L y = s; implies no importance.

1. From x; 1L y follows that the optimal univariate LLR models g(E[y|x]) = bI¢HFPOAM 2,
deLR/PGAM with ziQLR = z; and z7*M = f;(x;) are constant functions of z;. Therefore, the
fitted beLR/PGAM — 0 for N — oc.

POLR/PGAM
i y+

are constant functions of y if the true labels y rather than g({) are regressed onto
POLRIPGAM. o Cop[ 22RO 4] — 0 for N — oc.

7 %

2. a) Similarly, the original PatternQLR and PatternGAM models a vaLR/PGAM =

LR/GAM
Z? /G,

z; using OLS. Also in this case, a

b) For specific models, the predicted labels {j are linear functions of the input data
(that is the identity function) and can be shown to be uncorrelated to x;. This is the
case for OLS regression models and unregularised linear discriminant analysis acting on

non-linear features z (Haufe et al.||2014). In these cases, Pattern coefficients estimated via

anLR/PGAM x COV[ZZ-QLR/GAM7 Zﬂ 0.

3. From beLR/PGAM — 0 it follows that flP OLRIPGAM _, ()

4. Discriminability metrics such as DISCR measure nothing but the statistical association
between y and f;(x;) and therefore possess the SAP by construction.

Proof 2 (Theorem 2) Consider the linear model Eq. (I). The optimal GAM shape function for

T is given by f¥M = womy with wy = —(1 + (051/52)2)’1/205132_1, which is non-zero almost

everywhere for N — oo if ¢ # 0.

B Code, data availability, and computational resources

B.1 Code implementation and availability

Anonymised code is available at https://github.com/braindatalab/pattern-gam with the
GPL-3.0 license.

The nam subfolder is adapted from the official Pytorch implementation of |Agarwal et al.| (2021]),
available at https://github.com/lemeln/nam.

The xai_tris subfolder is adapted from the XAI-TRIS implementation available at https://
github.com/braindatalab/xai-tris|/with the GPL-3.0 license.

B.2 Data availability

The XAI-TRIS datasets (Clark et al., 2024b) are available to generate at https://github.com/
braindatalab/xai-tris with the GPL-3.0 license, with fixed random seeds used for reproducibil-

1ty.
The COMPAS Recidivism data (ProPublica, [2016) are available at https://github.com/

propublica/compas-analysis, and we provide the specific data file used recid.data in the
anonymised GitHub repository.

The MIMIC-IV dataset (Johnson et al., [2023b) is available via PhysioNet (Johnson et al., [2023a))
athttps://physionet.org/content/mimiciv/2.0/, where training is required on subject han-
dling before access can be granted. We use the v2.0 version of MIMIC-IV.

B.3 Computational resources

All experiments are able to be computed on personal devices, where we have used an M4 Pro
MacBook Pro laptop for a lot of the prototyping and processing work involved. Due to the nature of

14


https://github.com/braindatalab/pattern-gam
https://github.com/lemeln/nam
https://github.com/braindatalab/xai-tris
https://github.com/braindatalab/xai-tris
https://github.com/braindatalab/xai-tris
https://github.com/braindatalab/xai-tris
https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://physionet.org/content/mimiciv/2.0/

the data and the lightweight models, no individual model takes more than a minute or two to train on
such a laptop. Preprocessing the MIMIC-IV data takes slightly longer, however this is within the
order of 30 to 60 minutes. For the XAI-TRIS model training line search and explanation calculation,
we distribute jobs across a maximum of four NVIDIA A40 GPUs to parallelise the process of using
multiple seeds and datasets, however these scripts would likely take around 6 to 18 hours if run
locally and sequentially.

C False-Negative Invariant Earth Mover’s Distance Accuracy (FNI-EMDA)

Ground Truth
EMD=1.000 | FNI-EMD=1.000
1MA=1.000
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Figure 5: Examples of different types of explanations and their corresponding Earth Mover’s Distance
(EMD), False-Negative Invariant EMD (FNI-EMD), and Importance Mass Accuracy (IMA) scores
when compared to the ground truth. This shows the intuition of why FNI-EMD is beneficial over
EMD and IMA, where we can achieve false-negative invariance while preserving a continuous
and distance-based measure of explanation correctness. With EMD and FNI-EMD, an explanation
outlining the ground truth is not penalised compared to IMA. One thing to note is the greater resolution
of scores for this formulation of the EMD-based metrics, due to the ground truth-aware denominator
normalisation of the transport cost compared to the original d,,,x formulation proposed (Clark et al.,
2024b). This is visible in the ‘Corners’ explanation, which represents near the lower bound of
performance due to attribution as far from the ground truth as possible. Here, our new formulation of
the EMD-based metrics has a lower bound of 0.108, compared to the original formulation’s lower
bound of 0.473.

Appendix Figure [5]shows examples of different types of explanations and their corresponding Earth
Mover’s Distance Accuracy (EMDA), False-Negative Invariant EMD Accuracy (FNI-EMDA), and
Importance Mass Accuracy (IMA) scores when compared to the ground truth. This shows the
intuition of why FNI-EMDA is beneficial over EMDA and IMA, where we can achieve false-negative
invariance while preserving a continuous and distance-based measure of explanation correctness.
With EMDA and FNI-EMDA, an explanation outlining the ground truth is not penalised compared
to IMA. In higher-resolution imaging tasks, the discrepancy between EMD-based metrics and IMA
for outline-style explanations may grow larger, as the entire contiguous mass of signal would have
to be highlighted as important for IMA to not penalise the explanation. One thing to note is the
narrower range of scores for the original formulation of the EMD-based metrics, where the ‘Corners’
explanation represents near the lower bound of performance at 0.473 due to attribution as far from
the ground truth as possible. With our ground truth-aware formulation, this lower bound is reduced to
0.108, presenting a higher resolution of values possible.
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D XAI-TRIS Implementation

D.1 Data Generation

Following from |Clark et al.| (2024b), we use the 8 x 8 variant, where each dataset consists of images
of size, formulated as D = {(2(™), y(™)}N_,. This contains independent and identically distributed
observations (z(™ € RP y(™ ¢ {0,1})N_, with N = 10000 and dimensionality D = 64. The
entities (™ and y(™ represent instances of the stochastic variables X and Y, governed by a joint
probability density function px y (z,y). In each defined scenario, the instance 2(") is synthesised
by integrating a signal pattern (™) € R, encapsulating the ground truth features for explanations,
with background noise (™) € RP. The noise component 7(™, indicative of a non-informative
background, is drawn from a multivariate normal distribution A/ (0, Ip), resulting in zero mean and
an identity covariance Ip white Gaussian noise. This setup is designated as the WHITE scenario.
In each classification task, an alternate background, CORR, is specified where a two-dimensional
Gaussian spatial smoothing filter G : R — R modifies the noise element (™), with the smoothing
parameter (spatial standard deviation of the Gaussian) set to ogmooth = 3. As discussed later in Section
the correlated noise backgrounds are where suppressors emerge, where the strength of ogmooth
determines the strength of suppression in the ‘support’ or distance of correlation between pixels.
Here, we also propose an explicit form of a suppressor in the optional distractor pattern d() € R,
where this form of background component contains no class-related information, but provides a more
explicit overlap with ground truth features (™ than the correlated noise background. When this
explicit distractor is used, we designate the specify the scenario as DIST WHITE or DIST CORR
depending on the other background component used.

In [Clark et al.s analysis, a scenario is also considered where the signal pattern (") undergoes
a random spatial rigid body transformation (involving translation and rotation of the tetromino;
shortened to RIGID) R™ . RP — RP. We do not consider this scenario here, as we are looking
to provide global explanations, and the non-fixed nature of the signal in this case means that there
is no single global explanation. In all other scenarios, the identity transformation is utilised, such
that R(™ o ¢(™ = ¢(™. The transformed signal, distractor, and noise components, (R(") o a("))
and (G on(™), are horizontally concatenated into matrices A = { (R 0 aM),... (RN 0 aM)},
D = {(dW),....d")}, and E = {(GonW),...,(Gon™))}. The three components are
then normalised by the Frobenius norms of A, D and E: (R™ o a(™) < (R™ o a™)/| A|r,
(d™) < (d")/||D||, and (G o ™) < (G o ™) /||E|| -, where the Frobenius norm of a matrix

1/2
M is defined as | M||p := (ZnNzl S (mfi”))2> . The weighted sum of the signal, distractor,

and background components is computed, where the scalar parameters a.q, aiq, o, € [0, 1] determines
the signal-to-noise ratio (SNR), such that o, + g+, = 1. This forms two generative models, which
combine these components either additively or multiplicatively. For data generated through either
process, each sample (™ € RP is scaled to the range [—1, 1]?, such that (") < z(") / max |2(™|,
where max |z(")| denotes the maximum absolute value of the sample z(").

D.1.1 Additive Generation

The data generation process for the n-th sample is defined as
(M — %(R(n) o a(n)) + agd™ + o, (Go 77(”))7 7

where the signal pattern a(™) € RP varies, embodying tetromino shapes based on the binary class
label y(™ which is distributed according to a Bernoulli process with a success probability of 0.5.
When the distractor pattern is used, aq, a;, = (1 — aq)/2 for simplicity of parameterisation, however
an imbalanced weighting of the two components can be used as long as o + g + o, = 1. If the
distractor pattern is not used, ™) = 0. The formulation with an explicit distractor is akin to the data
generation process seen in Wilming et al.|(2022).
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D.1.2 Multiplicative Generation

The sample-wise data generation process is defined as
2 — (1 — g (R<”> o a<">)) (1 f add(")) (G o n<n>) : 8)

where (™, d(™), 77(”), R™ and G are defined as previously stated. If the distractor pattern is not
used in the final scenario, d™ is again 0.

D.1.3 Emergence of suppressors

In the scenarios where background noise is correlated, the explicit distractor pattern is used, or
both, the presence of suppressor variables is induced in both the additive and the multiplicative data
generation cases. A suppressor is identified as a pixel not part of the foreground R™ o a(™, but is
correlated with a foreground pixel through the application of the smoothing operator G or spatial
overlap of a(™ with d™). Drawing on characteristics of suppressor variables previously reported
(Conger} |1974; [Friedman & Wall| 2005} Haufe et al.; 2014), it has been hypothesised and since shown
that XAI methods erroneously attribute importance to suppressor features in both linear and non-linear
settings (Wilming et al.| 2022 [Oliveira et al., [2024; [Clark et al., 2024b). This misattribution can
lead to decreased explanation performance when compared to scenarios involving just white noise
backgrounds with no distractors.

D.1.4 Classification scenarios

We study three distinct classification scenarios that are introduced using tetrominoes (Golomb), |1996)),
which are geometric shapes consisting of four features. They are then utilised to define each signal
pattern a(™ € R8*® and distractor pattern d(™) € R®*® when used. These tetrominos are used
to induce statistical associations between the features and the target in the following classification
scenarios.

Linear (LIN) In the linear case, the additive generation model from equation (/) is employed,
where R(™) represents the identity transformation, combining the pure signal pattern and the Gaussian
white noise background additively. T-shaped tetromino patterns a7 and L-shaped tetromino patterns
ay, are utilised for signal patterns, positioned near the top-left corner if y = 0 and near the bottom-
right corner if y = 1, respectively, thus constituting the binary classification problem. Each four-pixel
pattern is encoded such that for each pixel in the tetromino pattern, positioned at the i-th row and j-th

T/L .
column, a, ]/ = 1, and zero otherwise.
)

Multiplicative (MULT) The multiplicative generation process (8) with signal patterns ar, ar, is
defined with the same tetrominoes as in the linear case, while transformation R(") remains the identity
transform. In this scenario, a degree of non-linearity is introduced as the foreground tetromino pattern,
when overlaying the background noise, is reduced towards zero. Therefore, values either increase or
decrease depending on their original sign. The complexity introduced by the non-linearity renders
linear classifiers unable to solve this classification problem effectively (Clark et al.,[2024b). This
configuration is meant to evaluate how different machine learning methods can adjust to and manage
intricate, interconnected data presentations that are not linear.

Exclusive or (XOR) In the XOR configuration, an additive challenge is presented where both
tetromino variants, denoted as aT/L , are utilised in each sample, with the transformation R(®)
maintaining its role as the identity transform. Within this setup, the class membership is defined such
that for the first class (where y = 0), a combination of both tetromino shapes is superimposed on the
image background, either in a positive or negative overlay, expressed as aX O+ = ¢T 4 o and

aXOf== = _4T — o, Conversely, for the second class (where y = 1), the tetromino shapes are
displayed in a contrasting manner; one shape is overlaid positively, and the other negatively, denoted
as aXOFft— = o7 — gl and a¥OF~+ = —a” + a”. This ensures that all four XOR configurations

are represented with equal frequency within the dataset.

In all cases, if the distractor pattern d is used, this represents four 2 x 2-px squares in the results
of Figure [8] as well as Tables and @ In the demonstrative example of Figure [I] this instead
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represents four 2 x 3-px blocks so that the distractors fully overlap the signal. In both cases, each
distractor tetromino takes a random sign +/— in each sample, however the strength of suppression
could be increased by correlating the signs between each distractor tetromino (i.e., the two left
distractor tetrominoes have opposite signs, and the two on the right have opposite signs). Examples of
the generated data can be seen in Appendix Figure[f] using the four 2 x 2-px formulation of distractor
patterns.

Signal  Distractor Sample1l Sample2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
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Figure 6: Examples of the data generated for the XAI-TRIS datasets (Clark et al., [2024b), with
the adaptation of static distractor patterns as an alternative and explicit form of suppressor variable
compared to the correlated noise backgrounds used by the original authors.
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D.2 Defining Ground-Truth Feature Importance

Following [Clark et al.| (2024a), we can formalise the ground truth sets for significant pixels as follows.
For the LIN and MULT scenarios, all pixels belonging to the (smoothed) T and L shaped tetrominoes
have a direct statistical association to the target, whereas there are no bivariate feature interactions by
construction; therefore

‘AITIN, MULT = {4l (R(n) © a(n)>j #0,je{l,...,64}}, ISN,MULT =0. 9
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Note that in line with the definition of importance through the SAP, pixels of both tetrominoes form
the ground-truth, even if in the LIN and MULT cases, only one of the tetrominoes is present in each
individual image.

In the XOR scenario, no individual pixel has a marginal dependence on the target; however, all pairs
of pixels where one pixel is part of the L-shaped tetromino and the other one is part of the T-shaped
tetromino form an interaction with the target. Therefore we have

Aor =0 Tog = {(G.0)| (R 0a™™) 20 (R o0at™) 20, jke (L. .64} .

(10)
The aggregated input-space ground truth is identical in all scenarios:
7£TN, MULT, XOR = -Afm, wutr = 17 | 3k (3, k) € Tior} - (11)

D.3 Classifiers

Here we outline the parameterisation of each classifier used for subsequent training. The XAI-TRIS
library outputs the data pre-split three-fold into training, validation, and test data, defaulting to a
90/5/5 split respectively. However, all models except the MLP do not take the validation data as
input, with the NAM and EBM implementations performing a validation split internally. As such, we
concatenate the training and validation data as an input to all models other than the MLP. For the
XOR scenarios with the NAM and EBM models, pairwise interactions are first identified using the
FAST algorithm (Lou et al.,[2013)) with 128 interactions.

Neural Additive Model (NAM) We utilise the official PyTorch implementation of NAMﬂ We
instantiate each feature network for both main effects f; and interaction subnets f;; as Multi-Layer
Perceptrons (MLPs) with hidden units [16, 16, 16], taking either one or two features as inputs,
respectively. The Adam optimiser is used with the default learning rate of 0.02082 and with a binary
cross-entropy (BCE) loss function, training the model over a maximum of 100 epochs with a patience
of 50 epochs. Output penalisation with the default value of 0.2078 is used to regularise smaller
outputs of each subnetwork, similar to ridge regression.

Quadratic Logistic Regression (QLR) We implement a Logistic Regression model from
scikit-learn with the quadratic feature expansion mentioned in Section [3| No penalty is ap-
plied and the intercept is not fitted.

Multi-Layer Perceptron (MLP) A standard MLP is trained using PyTorch. The network archi-
tecture consists of an input layer, followed by three ReLU-activated hidden layers of size [32,16,8]
and an output layer. The model is trained for a maximum of 100 epochs with a batch size of 64,
using the Adam optimiser with a learning rate of 1e — 3 and a BCE loss function. Early stopping
is implemented with a patience of 50 epochs based on the validation loss. The model with the best
validation loss is stored and used for evaluation.

Kernel Support Vector Machine (kKSVM) We use a Support Vector Classifier from scikit-learn
with a precomputed Radial Basis Function (RBF) kernel, calculated between all training samples.
The parameter v = 1/(d x Var(X)) defines the distance of influence of a single training example,
for d the number of features and Var(X) the sample variance. This can be seen as the inverse of the
radius of influence of samples selected by the model as support vectors. For prediction on the test set,
the kernel is computed between each test sample and all training samples Keg, rain-

Explainable Boosting Machine (EBM) Finally, we use the ExplainableBoostingClassifier
from the interpret library. All parameters are kept at their default values.

D.4 Training

To find the optimal signal-to-noise ratio (SNR) parameterisation, we take a line search across 10
values between zero and one, where the results can be seen in Appendix Figure[/| After this, we

https://github.com/lemeln/nam
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Scenario Qg NAM QLR MLP Kernel SVM EBM
LIN WHITE 020 0.87+0.02 0.88+0.02 0.91+0.01 0.92+0.01 0.92+0.01
LIN CORR 0.10 090+0.06 1.00+0.00 1.00%0.00 1.00£0.00 1.00+0.00
LIN DIST WHITE 020 095+0.03 0.98+0.00 0.98+0.00 0.99+0.01 0.99+0.00
LIN DIST CORR 0.05 077+£006 1.00+0.00 1.00%+0.00 1.00+£0.00 1.00+0.00
MULT WHITE 0.60 0.79+0.05 0.90+0.02 0.93+0.01 0.84+0.02 0.95+0.01
MULT CORR 040 0.81+0.04 099 =+0.00 1.00=+0.00 096 +0.01 1.00+0.00
MULT DIST WHITE 0.60 0.79+0.05 0.89+0.02 0.92+0.01 0.83+0.02 0.95+0.01
MULT DIST CORR 040 0.76+0.04 099=+0.01 1.00+0.01 097 +£0.02 1.00+0.00
XOR WHITE 030 095+0.01 0.98+0.00 0.98+0.00 0.98 +£0.00 0.98 +0.01
XOR CORR 030 093+£0.03 1.00+0.00 1.00%+0.00 1.00+£0.00 0.99 +0.00
XOR DIST WHITE 020 091+0.01 094+0.01 0.96=+0.01 0.95+0.01 0.95+0.01
XOR DIST CORR 020 091+0.03 1.00+0.00 1.00%+0.00 1.00+0.00 0.98 +0.01

Table 2: XAI-TRIS model accuracy (mean + standard deviation) across scenarios and backgrounds
for the chosen signal-to-noise ratios (SNRs), shown by the signal parameter a,.

select SNR values for each such that the classification accuracy of all models on the test dataset is at
or above 80%. The final model accuracies and chosen SNRs (parametrised by the signal strength
weighting o) are shown in Appendix Table[2] As mentioned in the main text, noise strength is set to
o, = 1 — a, when no distractor is present, and oy, a; = (1 — a)/2 when distractors are present.

NAM NAM
(interactions=0) (interactions=128) QLR MLP Kernel SVM EBM

QS}ﬁE&k%V

00 02 04 o6 08 00 02 04 06 08 00 02 04 o6 08 00 02 04 o6 08 00 02 04 o6 08 00 02 04 o6 08
SNR SNR SNR SNR SNR SNR

Figure 7: XAI-TRIS model accuracy results for a line search of signal-to-noise ratios (SNRs) for each
classification scenario, separated by scenario and model type. Data with suppressor variables present
(either as explicit distractor patterns, correlated background noise, or both) results in performant
models at significantly lower SNR values.

D.5 Results
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Figure 8: Global heatmaps for XAI-TRIS scenarios across all XAI methods tested. While most
methods show at least some attribution to the signal tetrominos, the EBM () and Kernel Pattern
et al} [2024) struggle, particularly with correlated noise scenarios. PatternNet and PatternAttribution
(Kindermans et al.| [2019), SHAP (Lundberg et al.},[2020-01), and Integrated Gradients
et al., 2017), are all implemented for the Multi-Layer Perceptron (MLP) model, and tend to also
attribute strong importance to distractor features directly neighbouring the ground truth signal. All
methods proposed in this paper perform well, as also evidenced by the quantitative results of Section
@ with no single ‘best’ method being immediately noticeable qualitatively.

IN MULT XOR

WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR

0.86£0.02  0.40 £0.10 0.89 +0.01 0.36£0.11  0.81£0.04 0.36 £0.11 0.82 +£0.03 0.38+0.11  0.80£0.02 0.50+0.11 0.75 £ 0.04 0.51£0.13

0.66 £0.01  0.49 £0.06 0.72+0.00 0.34+£0.03  0.67£0.01  0.19+0.00 0.66 £ 0.00 0.18+£0.00  0.75+0.00  0.66+0.04 0.72 +£0.01 0.61+0.07

0.97+0.02  0.85+0.06 0.99 +£0.01 0.78£0.07 0.94+0.03 0.84 £0.07 0.94+0.03 0.85+0.07 0.91+0.02 0.90+0.04 0.89+0.03 0.91£0.03

0.75+£0.00  0.78 £0.09 0.86 +0.00 0.59+£0.07 0.88+0.00 0.28+0.00 0.88 +£0.00 0.27+£0.00 0.89+0.00 0.9440.02 0.86 +0.00 0.91£0.02

DISCR( fOAM) 0.90£0.01  0.80£0.07 0.91+0.01 0.71£0.07 0.74£0.03  0.64 +0.10 0.75 £ 0.03 0.64+0.10 0.88+0.01 0.884+0.03 0.82+0.03 0.83 £0.05
DISCR( fOLR)f 0.71+£0.01  0.43+£0.02 0.71+£0.01 0.39+£0.02 0.70£0.01  0.25+0.00 0.70 £0.01 0.24+0.00 0.78+0.01  0.83+0.03 0.74 £0.01 0.79 £0.03
PROD( fP/oAM)f 1.00+0.00 0.96+0.03 1.00£0.00 0.94+0.03 0.99+0.01 0.95+0.03 099+0.01 095+0.03 099+0.01 097+0.04 099+0.01 0.99+0.01
PROD( fPOLR)f 0.97+0.00 0.96+0.02 0.99+0.00 0.93+£0.02 099+£0.00 043+0.00 0.99+0.00 045+0.01 0.99+0.00 1.00+0.00 0.99+0.00 0.99+0.00
SD(f9AM) 0.93+0.04 0.48+£0.05 0.76 +0.04 0.46+£0.04 0.90£0.03 0.46 +0.05 0.90 £ 0.04 048 +0.05 0.65+0.04 0.534+0.08 0.71 £0.05 0.59 £0.08
SD(fLR) 0.54+0.01  0.49+0.00 0.53 +£0.01 0.49+£0.00 0.71£0.01  0.23+0.00 0.71 £ 0.01 0.24+0.00 0.62+0.02  0.65+0.01 0.50 £ 0.02 0.61 £ 0.00
EBM 0.88 £ 0.01 0.57 £ 0.00 0.63 +0.01 0.52+£0.00 0.88:£0.01 0.47 £ 0.00 0.87 £ 0.01 0.46 £ 0.01 0.124£0.04  0.10+£0.10 0.14 £ 0.07 0.10 £ 0.08
Kernel Pattern 0.89 £ 0.01 0.80 £0.07 0.93 +£0.01 0.74£0.06  0.09 £0.02 0.09 +0.03 0.09 £0.02 0.09 +0.03 0.12+0.03  0.11£0.03 0.16 £ 0.04 0.14 £ 0.05
PatternNet 0.71+£0.16  0.40+£0.19 0.80 £0.11 0.32+£0.14  0.32£0.09 0.11+0.03 0.34 £0.09 0.12+£0.04 0.75+0.15 0.554+0.20 0.74 £0.14 0.56 £0.21
PatternAttribution | 0.96 +0.05  0.42+0.17 0.93 £ 0.08 037+£0.13  085£0.12 0.37£0.12 0.86 £ 0.10 0.39+£0.12  098+£0.02 0.78£0.19 0.93 £ 0.06 0.82+£0.11
SHAP 0.74£0.06  0.45+0.04 0.54 +0.09 0.43+£0.03  0.65+0.07 0.39+0.10 0.64 £ 0.07 0.39+£0.08  0.60+0.09  0.37+0.09 0.49 +£0.07 0.38 £0.05
Int. Grads. 0.97+0.01  0.86+0.04 0.95 +0.01 0.80+£0.05 0.93+£0.02  0.48 +0.00 0.93 £0.02 048+0.01 0.82+0.08 0.764+0.12 0.67 £0.11 0.77£0.12

Table 3: Importance Mass Accuracy (IMA) quantitative evaluation results. Values are mean =+
standard deviation. Best result per row is emboldened.

E COMPAS Recidivism risk
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LIN MULT XOR
Method WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR WHITE CORR DIST WHITE _ DIST CORR
PAT(f{\”\M)" 0.94 +£0.01 0.78 £0.03 0.92 +0.02 0.77£0.05  0.91£0.04 0.76 + 0.04 0.91+£0.03 0.76 £ 0.05 0.93 £0.01 0.81+£0.04 0.90 £ 0.01 0.81+£0.05
PAT( fOR)* 0.88£0.00 0.81+0.03 0.8 00 0.76 £ 0.01 0.88 £ 0.00 0.71 +0.00 0.88 £ 0.00 0.71+£0.00  0.91£0.00 0.89+0.01 0.89 +0.00 0.87+£0.03
SD(fPeAM) 0.97 £0.02 0.93 £0.03 0.89+0.03 0.94+0.03 0.91+0.03 0.93 £ 0.04 0.91+0.03 0.96+0.01 0.93 £0.02 0.93+0.02 0.92+0.03
SD(fPLR)* 0.91+£0.00  0.92+0.04 0.83+£0.02  0.96 £ 0.00 0.75 +0.00 0.96 £ 0.00 0.75+0.00 0.96+0.00 0.97+0.01 0.87 £ 0.00 0.87 £ 0.00
DISCR( fOAM)¥ 0.95 £ 0.02 0.91£0.03 0.86 £0.03  0.89 £0.02 0.85 +0.04 0.89 £0.02 0.85+0.03 0.95 £ 0.01 0.92 £0.02 0.90 +0.02 0.88 £0.02
DISCR( foR)* 0.89£0.00  0.81+0.01 0.79 £0.01 0.89 £ 0.00 0.75 +0.00 0.89 £ 0.00 0.75+0.00 0.92+0.00 0.94+0.01 0.89 +0.00 0.90 £ 0.01
PROD( fP/GAM Y} 0.96 £ 0.03 0.84 £0.07 0.73+£0.12  0.91£0.06 0.85 = 0.05 0.91£0.05 0.82 £ 0.08 0.98 £0.01 0.89 £0.03 0.89 +0.03 0.85£0.03
PROD( fP/QLR)T 0.98+0.01 0.97+0.02 0.82+0.01 0.85+£0.02 099+0.00 0.81£0.00 0.98 +£0.01 0.82+£0.00 0.99+0.00 0.98+0.00 0.81£0.01 0.83 £0.00
SD(fOAM) 0.96 £ 0.02 0.79 £0.07 0.89 +0.04 0.71£0.11 0.93£0.03 0.81 +0.04 0.93 £0.04 0.78 £ 0.06 0.86 £ 0.02 0.81+£0.03 0.87 £0.02 0.82+£0.03
SD(fR) 0.83+£0.00  0.86+0.00 0.83£0.00  0.90 £ 0.00 0.74 = 0.00 0.89 £ 0.00 0.74£0.00  0.86 £ 0.01 0.90 £ 0.00 0.83 £0.01 0.88 £0.00
EBM 0.96 £0.00  0.84+0.01 0.79+£0.01  0.96+0.00 0.88+0.00 0.95 £ 0.00 0.87+0.00 0.65+0.03 0.58+0.04 0.65 +0.03 0.61+0.08
Kernel Pattern 0.96 £0.00  0.92+£0.03 0.89+£0.02 067£0.02 0.61£0.04 0.67 £0.02 0.61 £0.05 0.68+£0.02 0.62+£0.04 0.68 £ 0.03 0.63 £ 0.05
PatternNet 0.89£0.06  0.78 £0.07 0.74+0.05 0.73£0.03  0.68 £0.01 0.74£0.03 0.68+0.02 0.85+0.08 0.794+0.08 0.85+0.07 0.80 £0.08
PatternAttribution | 0.94+0.05  0.75 4 0.06 0.75+£0.07 0.77£0.10 0.78 +£0.05 0.76 + 0.09 0.77+£0.06 0.86+0.08 0.8240.09 0.87 £0.07 0.82+0.08
SHAP 0.84 £0.04 0.76 £ 0.07 0.82 +0.04 0.77£0.10  0.82£0.04 0.78 £ 0.05 0.83 £0.03 0.76 £ 0.05 0.83+£0.03  0.75+£0.05 0.80 £ 0.04 0.76 £ 0.04
Int. Grads. 0.96 £0.04  0.94+0.02 0.84 +0.05 0.81+£0.04 0.92+0.05 0.86 +0.01 0.92 +0.05 0.82+0.02  0.86+0.05 0.8840.06 0.84 +0.05 0.86 £ 0.05

Table 4: Earth Mover’s Distance (EMD) Accuracy quantitative evaluation results. Values are mean +
standard deviation. Best result per row is emboldened.

Feature-Feature Pearson Correlation
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Table 5: Dependence Scores between COMPAS fea- Figure 9: Pearson correlation scores between
tures and Recidivism risk, shown for Pearson cor- COMPAS features used to predict recidivism risk.
relation, mutual information (MI) and the Hilbert-

Schmidt independence criterion (HSIC).

F MIMIC-IV Mortality prediction

We construct a cohort for hospital mortality prediction using the MIMIC-IV v2.0 database. Structured
tables from the hosp and icu modules are loaded using pandas, with data filtered to include only
hospital admissions with available outcomes.

Feature extraction. Outcome labels are derived from the hospital_expire_flag field in
the admissions table. Patient age at admission is computed by combining anchor_age and
anchor_year from the patients table with the year of hospital admission. The resulting raw age
is capped at 90 to respect MIMIC-IV de-identification procedures. Admissions with implausible or
missing age information are excluded.

We extract vital signs and laboratory values from chartevents and labevents, respectively:
* Vital signs include heart rate, mean arterial pressure (MAP), respiratory rate, SpO2, temper-

ature, and components of the Glasgow Coma Scale (GCS). GCS components (eye, verbal,
motor) were summed to create a total GCS score.

 Laboratory variables include sodium, potassium, chloride, bicarbonate, blood urea nitrogen
(BUN), creatinine, glucose, white blood cells (WBC), hemoglobin, hematocrit, platelets,
total bilirubin, ALT, AST, lactate, pH, and anion gap.

Each event is mapped to a clinical variable using predefined itemid dictionaries. For each variable,
we compute the mean value over the first 7" hours after admission, with 7' € {1, 24, 48, 72}.

We show the results for the first 77 = 24 hours after admission. Glasgow Coma Scale (GCS)
components are summed to yield a total GCS score.
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In addition to time-series features, we include static variables: age, gender, race, insurance type,
marital status, primary language, admission type, and source. Race, admission location, and admission
type are mapped to coarse categories:

* Race: Grouped into White, Black, Hispanic, Asian, and Other/Unknown.

* Admission Location: Categorised into Emergency, Transfer In, Referral, Inter-
nal/Procedural, and Unknown.

* Admission Type: Simplified into Emergency, Urgent, Elective, Observation, and Unknown.

We also compute two aggregate features: the number of diagnoses (diagnoses_icd) and the number
of prescriptions initiated within the first 7" hours (prescriptions) per hospital admission:

* Diagnoses count: Number of unique ICD diagnoses.
* Prescription count: Number of prescriptions started within the first 7" hours.

Handling missing data and outliers. We employ a two-stage strategy for missing data. First,
rows with missing values in critical features are dropped These features are: age, heart rate, MAP,
respiratory rate, SpO2, temperature, GCS total, lactate, creatinine. Second, remaining missing values
are handled via median imputation for numerical variables and constant-value imputation (‘Unknown’)
for categoricals. All categorical variables are then ordinal-encoded with mapping dictionaries saved
for interpretability.

Outliers are systematically identified and removed using interquartile range (IQR) filtering. Numerical
variables are assessed individually, and observations falling beyond the lower bound (1 — 5 x IQR)
or upper bound (@3 + 5 x IQR) are excluded. This ensures the robustness of statistical estimates and
model stability.

Cohort finalisation. After feature construction, we filter to a minimal set of patients with complete
outcome and critical data. A stratified group-aware split is applied using a group shuffle split, ensuring
that no subject (subject_id) appears in both training and test sets.

After preprocessing, the final sample size is N = 23190 with 19616 unique patients and 3214
samples of deceased patients, split into training/validation/testing data, leading to a typical class
imbalance for medical tasks. The full final list of studied clinical variables and their correlation to the
prediction target can be seen in Table [6]
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Feature Corr Orig. p-val Orig.  Corr Transf.f(x) p-val Transf. f(x)

pH -0.077 <0.001 0.092 <0.001
Marital Status 0.057 <0.001 0.015 0.074
Potassium 0.062 <0.001 0.057 <0.001
WBC 0.078 <0.001 0.087 <0.001
Heart Rate 0.080 <0.001 0.074 <0.001
Creatinine 0.090 <0.001 0.118 <0.001
Bilirubin Total 0.019 0.026 0.063 <0.001
Anion Gap 0.115 <0.001 0.104 <0.001
Sodium 0.025 0.003 0.078 <0.001
Resp Rate 0.127 <0.001 0.127 <0.001
Hematocrit -0.040 <0.001 0.030 <0.001
presc count 24h 0.113 <0.001 0.105 <0.001
Hemoglobin -0.064 <0.001 0.054 <0.001
Age at Admission 0.161 <0.001 0.161 <0.001
SpO2 -0.069 <0.001 0.062 <0.001
Lactate 0.152 <0.001 0.120 <0.001
Admission Type 0.062 <0.001 0.092 <0.001
Dias BP -0.068 <0.001 0.053 <0.001
Platelets 0.010 0.238 0.030 <0.001
Glucose 0.033 <0.001 0.038 <0.001
Sys BP -0.071 <0.001 0.072 <0.001
Admission Location 0.002 0.844 0.020 0.016
MAP -0.076 <0.001 0.065 <0.001
ALT 0.002 0.850 0.063 <0.001
Bicarbonate -0.043 <0.001 0.079 <0.001
Chloride -0.004 0.638 0.033 <0.001
Temperature -0.027 0.001 0.064 <0.001
Diagnosis count 0.148 <0.001 0.136 <0.001
Race 0.020 0.016 0.004 0.615
Gender -0.020 0.017 0.020 0.017
Insurance -0.044 <0.001 0.033 <0.001
BUN 0.157 <0.001 0.166 <0.001
AST 0.043 <0.001 0.070 <0.001
GCS Total -0.235 <0.001 0.189 <0.001

Table 6: MIMIC-IV feature-wise correlations and p-values with the target (Hospital Expire Flag)
for mortality prediction 1" = 24 hours after admission. This is shown for the original data, and then
for the feature transformed by the learned shape function f;(x;) for the given feature. Features like
platelets, gender, and marital status have non-zero shape functions but near-zero correlation with the
target, and when nullified by PatternGAM, this shows that they may have a suppressive effect on the
data. By contrast, features like GCS, age, and BUN have the scale of their importance preserved by
PatternGAM, and here we can see that they have stronger correlation with mortality.
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Figure 10: All learned shape functions for an ensemble of 100 NAMs trained on MIMIC-IV mortality
data within the first 24 hours of ICU admission, versus PatternGAM shape functions. Data density is
shown above each plot, where regions of low density present higher uncertainty in the learned shape
functions.

G Additional Plots

This section shows additional plots referenced in the appendix above that have been added here to
not disturb the referencing order given in the submitted main text.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Introduction sections reflect the papers contributions and
scope, and the introduction states the assumptions and limitations of current work, ending
with a dedicated block to state our contributions and limitations of our findings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Introduction briefly states the limitations of the work, ending with a
dedicated block to state our contributions and limitations of our findings. The Background
and Methodology sections list the assumptions made by prior and related work, and how
these relate to our contribution. The Discussion section has limitations listed alongside
avenues for future work that would overcome these limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In the Background and Methodology sections, we provide the full set of
instructions and assumptions on calculating activation patterns for additive models and
benchmarking the resulting explanations. The Appendices provide additional details (For
example, Appendix Section [C|provides more details on the benefits and properties of the
FNI-EMD metric).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Where possible, we state the key experimental setup details in the main paper,
with the Appendices providing the specific and exact instructions. We state the availability
of all code to achieve the experimental results in the main text in the form of an anonymised
GitHub repository, and point to Appendix Section [B|which provides additional details on
code usage, data availability, computational resources required and the limits thereof. For
code, we have used fixed random seeds where possible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Similar to the prior question, we state the availability of all code to achieve
the experimental results in the main text in the form of an anonymised GitHub repository,
and point to Appendix Section [B] which provides additional details on code usage, data
availability, computational resources required and the limits thereof. For code, we have used
fixed random seeds where possible. All data is openly available, with only the MIMIC-IV
data (Johnson et al., 2023b) requiring the completion of a data usage agreement and a
required training course available via Physionet (Johnson et al.,[2023a)).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Where possible, we have provided details in the main text, with the complete
details available in the Appendices. The full code to run all experiments is available with a
link stated at the start of the Results section and additional details in Appendix Section [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for the quantitative results of Table|l|in the main text,
and for training results that are elaborated in the Appendices where appropriate. Details on
the number of experiments/models/datasets run for each are provided in the Appendices
along with the full instructions on parameterisation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the details on compute resources in Appendix Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
complies with these guidelines in every respect.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction we justify why misinterpretation (particularly with respect
to suppressor variables being highlighted as important in explanations) is harmful, and
why it is necessary to avoid this. Throughout the paper we discuss real world examples in
the COMPAS recidivism risk (ProPublical [2016)) and MIMIC-IV datasets (Johnson et al.}
2023b). In the Discussion section we revisit the argumentation by other authors in the field
related to our work, and the broader impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss in the results for the COMPAS dataset (ProPublical |2016) that it is
very important to tread carefully in the analysis of biases (there specifically biases against
race and sex) and the notion of what ‘correcting’ such biases entails. Our approach aims to

prevent misuse and promote safe and fair usage of machine learning models in the context
of interpretability.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We state the ownership of code and data in Appendix Section[B] with subse-
quent sections for individual datasets and experiments giving the details on specific licenses
and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New XAI-TRIS datasets (Clark et al., [2024b)) are introduced in the main
text with the full generation and usage details available in the Appendix Section[D] Data
preprocessing and usage instructions for the real world examples COMPAS (ProPublical
2016) and MIMIC-IV (Johnson et al., |2023b)) are stated in their respective results with
the full instructions given in the appendices. All generation and preprocessing assets are
available with the code provided.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper uses existing datasets COMPAS (ProPublica, [2016) and MIMIC-IV
(Johnson et al., 2023b) which themselves make use of data human subjects. All details can
be seen in the original source materials.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: For the MIMIC-IV dataset, given the de-identified nature of the data, the Beth
Israel Deaconess Medical Center’s ethical committee waived the requirement for informed
consent (Johnson et al.,[2023bj)). For the COMPAS data, there are known risks and biases
including racial biases (Angwin et al.,[2016; Dressel & Farid, [2018; Tan et al., [2018), which
we discuss in the main text including the risk of unfair treatment as a result. However, we
do not provide new data or experiments of our own that involve human subjects, so we have
answered NA to this and the above questions.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We have stated our usage of LLMs at the start of the Results section, and
have ticked the relevant checkboxes on OpenReview to disclose this, including: Editing
(e.g., grammar, spelling, word choice), Data processing/filtering, Visualizing results for
submission, Facilitating or running experiments, Implementing standard methods.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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