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Abstract

To check the accuracy of Bayesian computations, it is common to use rank-based
simulation-based calibration (SBC). However, SBC has drawbacks: The test statis-
tic is somewhat ad-hoc, interactions are difficult to examine, multiple testing is
a challenge, and the resulting p-value is not a divergence metric. We propose to
replace the marginal rank test with a flexible classification approach that learns test
statistics from data. This measure typically has a higher statistical power than the
SBC test and returns an interpretable divergence measure of miscalibration, com-
puted from classification accuracy. This approach can be used with different data
generating processes to address simulation-based inference or traditional inference
methods like Markov chain Monte Carlo or variational inference. We illustrate an
automated implementation using neural networks and statistically-inspired features,
and validate the method with numerical and real data experiments.

1 Introduction

Simulation based calibration (SBC) is a default approach to diagnose Bayesian computation. SBC
was originally designed to validate if computer software accurately draws samples from the exact
posterior inference, such as Markov chain Monte Carlo (MCMC, [4, 38, 26]) and variational inference
[41]. With recent advances in amortized and simulation-based inferences [6] and growing doubt on
the sampling quality [23, 18], there has also been an increasing trend to apply SBC to likelihood-free
inference such as approximate Bayesian computation [42] and normalizing-flow-based [31, 1] neural
posterior sampling [22, 20], with a wide range of applications in science [15, 7, 34].

Bayesian computation tries to sample from the posterior distribution p(θ|y) given data y. We work
with the general setting where it may or may not be possible to evaluate the likelihood p(y|θ).
Suppose we have an inference algorithm or software q(θ|y) that attempts to approximate p(θ|y),
and we would like to assess if this q is calibrated, meaning if q(θ|y) = p(θ|y) for all possible θ, y.
Simulation based calibration involves three steps: First, we draw a θ from the prior distribution
p(θ). Second, we simulate a synthetic observation y from the data model p(y|θ). Third, given y

we draw a size-M posterior sample θ̃1, . . . , θ̃M from the inference engine q(θ|y) that we need to
diagnose. SBC traditionally computes the rank statistic of the prior draw θ among the q samples, i.e.
r =

∑M
m=1 1(θ ≤ θ̃m). If the inference q is calibrated, then given y both θ and θ̃m are from the same

distribution p(θ|y) , hence with repeated simulations of (θ, y), we should expect such rank statistics
r to appear uniform, which can be checked by a histogram visualization or a formal uniformity test.

Despite its popularity, rank-based SBC has limitations: (i) We only compute the rank of univariate
parameters. In practice, θ and y are high dimensional. We typically run SBC on each component of
θ separately, this creates many marginal histograms and does not diagnose the joint distribution or
interactions. We may compare ranks of some one-dimensional test statistics, but there is no method to

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



θi yi

θ̃i1
θ̃i2
· · ·
θ̃iM

simulation table
classification examples

label mapping
Φ

t1, ϕ1

t2, ϕ2

· · ·

tK , ϕK...
...

... ...i = 1, . . . , S

classifier

feature engineering
log p, log q, rank, etc.

prediction
loss

divergence D
and its C.I.

permutation
test (p value)

Figure 1: Our discriminate calibration framework has three modules (a) generate simulation table (θ, y, θ̃),
and map it into classification examples with some label t and feature ϕ, (b) train a classifier to predict labels, (c)
from the learned classifier, perform hypothesis testing and estimate a divergence.

find the best summary test statistic. (ii) As long as we test multiple components of θ or test statistics,
directly computing the uniformity p-values is invalid (subject to false discovery) unless we make a
multiple-testing adjustment, which drops the test power (subject to false negative) in high dimensions.
(iii) Often we know inference is approximate, so the final goal of diagnostic is not to reject the null
hypothesis of perfect calibration but to measure the degree of miscalibration. The p-value is not such
a measure: neither can we conclude an inference with p = .02 is better than p = .01, nor connect
the p-value with the posterior inference error. The evidence lower bound, a quantity common in
variational inference, also does not directly measure the divergence due to the unknown entropy.

Heuristic: calibration via classification. To address all these drawbacks, while maintaining
versatility in various computing tasks, we propose discriminative calibration, a pragmatic and unified
framework for Bayesian computing calibration and divergence estimation. The intuitive heuristic
behind discriminative calibration is to use a classifier to perform similarity tests—when two or several
distributions are similar, we cannot distinguish samples from them so the classification error is large.
In Bayesian computation, we compare conditional distributions, the true p(θ|y) and inferred q(θ|y),
to which we have access via simulations, and in some occasions explicit densities. It is natural to try
to classify the samples drawn from p v.s. from q, and the ability to distinguish them would suggest a
miscalibration between p and q.

To formulate such heuristics into an algorithm, we design a family of “label mapping” that prepares
the simulations into classification examples that contain the label and feature. In Sec. 2, we first
give four concrete label mapping examples, where the rank-based SBC becomes essentially a special
case. Sec. 3 states the general theory: if we train a classifier to predict the labels, then the prediction
ability yields a computable divergence from p(θ|y) to q(θ|y). In Sec. 4, we illustrate the practical
implementation to get the divergence estimate, its confidence interval, and a valid hypothesis testing
p-value. We explain why the learned classifier helps statistical power. In Sec. 4.1, we discuss the
classifier design and incorporate extra known information such as ranks, likelihood, and log densities,
whenever available, as features. We also show our method is applicable to MCMC without waste
from thinning. We illustrate numerical and cosmology data examples in Sec. 5. We review other
related posterior validation approaches and discuss the limitation and future direction in Sec. 6.

2 Generate labels, run a classifier, and obtain a divergence

Input:
one simulation run:
(y, θ, θ̃1, . . . , θ̃M );
Output:
M + 1 examples:

label t features ϕ
0 (θ, y)

1 (θ̃1, y)
1 · · ·
1 (θ̃M , y)

As with traditional SBC, we generate a simulation table by repeatedly sampling
parameters θ and synthetic data y from the target model p, i.e. draws (θ, y) ∼
p(θ, y). Then, for each (θ, y), we run the inference routine q to obtain a set
of M IID approximate posterior samples θ̃1, · · · , θ̃M ∼ q(θ|y). We wish to
assess how close, on average (over different y), the inference procedure q(θ|y)
is to the true posterior p(θ|y). Here, we observe that classification example-sets
can be created in several ways and these produce different divergences. We
generalize the four examples and the claims on divergence in Sec. 3.

Example 1: Binary classification with full features. An intuitive way to
estimate this closeness between q(θ|y) and p(θ|y) is to train a binary classifier.
Imagine creating a binary classification dataset of (t, ϕ) pairs, where t is a binary label, and ϕ are
features. For each (θ, y) simulated from p, M + 1 pairs of examples are created. In the first, t = 0

and ϕ = (θ, y). In the others, t = 1, and ϕ = (θ̃m, y), 1 ≤ m ≤ M . Collecting all data across
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1 ≤ i ≤ S, we obtain S(M + 1) pairs of (t, ϕ) classification examples. A binary classifier is
then trained to maximize the conditional log probability of t given ϕ. If inference q were exact, no
useful classification would be possible. In that case, the expected test log predictive density could be
no higher than the negative binary entropy h(w) := w logw + (1 − w) log(1 − w) of a Bernoulli
distribution with parameter w := 1/(M + 1).

Now imagine drawing a validation set in the same way, and evaluating the log predictive density
of the learned classifier. We will show below (Thm. 1) that the expected log predicted density [10]
ELPD = E log Pr(t|ϕ) of the classifier on validation data is a lower bound to a divergence D1

between p(θ|y) and q(θ|y) up to the known constant h(w),

ELPD1 − h(w) ≤ D1(p, q) := wKL (p(θ|y) ∥ r(θ|y)) + (1− w)KL (q(θ|y) ∥ r(θ|y)) , (1)

where w = 1/(M + 1) and r(θ|y) = wp(θ|y) + (1 − w)q(θ|y) is a mixture of posterior density.
If the classifier c is optimal (c(t|ϕ) = Pr(t|ϕ) in the distribution) then the bound in the above
equation is tight maxclassifiers ELPD1 − h(w) = D1(p, q). Here KL(p(θ|y)∥q(θ|y)) denotes a
standard conditional Kullback–Leibler divergence1. By optimizing the classifier, maxELPD1−h(w)
becomes a commutable divergence, and its approaching zero is a necessary and sufficient condition
for perfect calibration since D1(p, q) = 0 if and only if p(θ|y) = q(θ|y) almost everywhere.

t ϕ
0 θ

1 θ̃1
1 ·
1 θ̃M

Example 2: Binary classification without y. Similar to Example 1, from each
simulation draw we generate M + 1 pairs of (t, ϕ) examples, except that the feature
ϕ only contains the parameters θ, not y. A binary classifier is then trained to predict t
given ϕ. The ELPD of this classifier on validation data is a lower bound to a generalized
divergence D2 between the prior p(θ) and q(θ), up to a known constant h(w)

ELPD2 − h(w) ≤ D2(p, q) := wKL (p(θ) ∥ r(θ)) + (1− w)KL (q(θ) ∥ r(θ)) , (2)

where w = (M+1)−1, r(θ) = wp(θ)+(1−w)q(θ) is the prior mixture, and the bound is tight when
the classifier is optimal. A large ELPD reveals the difference between the inference q(θ|y) and p(θ|y).
But D2 is only a generalized divergence: D2 = 0 is necessary not sufficient for q(θ|y) = p(θ|y).

Output: M + 1 examples:
t ϕ

0
∑M

m=1 1(θ ≤ θ̃m)

1
∑M

m′=1 1(θ̃1 ≤ θ̃m′)
1 · · ·
1

∑M
m′=1 1(θ̃M ≤ θ̃m′)

Example 3: Binary classification with ranks (where the classical
SBC is a special case). Instead of classification using full (θ, y), we
construct a feature: the rank statistics. From each simulation draw
we generate M + 1 pairs of (t, ϕ) examples. The first pair is t = 0

and ϕ =
∑M

m=1 1(θ < θ̃m), the rank statistics of the prior draw. In
the others, t = 1 and ϕ =

∑M
m′=1 1(θ̃m < θ̃m′) + 1(θ̃m < θ),

1 ≤ m′ ≤ M are the rank statistics of the inferred samples. A binary
classifier is then trained to predict t given ϕ. The ELPD of this classifier is a lower bound to a
generalized divergence D3 between p(θ|y) and q(θ|y) up to a known constant h(w)

ELPD3 − h(w) ≤ D3(p, q) := D2(Z(p, q) ∥ Uniform(0, 1)), w = 1/(M + 1), (3)

and again the bound is tight if the classifier is optimal. Here Z(p, q) is a random variable defined by
Z = Q(θ|y), (θ, y) ∼ p(θ, y), where Q is the cumulative distribution function of q(θ|y).
Training a “generative” classifier on this rank-based label-generating map is similar to testing for
uniformity in rank statistics, as done in traditional SBC which estimates the distribution of r|t = 0
by histograms (See Appendix A.1 for precise correspondence between SBC and the naive Bayes
classifier). The success of SBC suggests the usefulness of ranks, which motivates us to include ranks
or more generally feature engineering in the classifier. However, D3 is only a generalized divergence:
D3 = 0 is necessary but not sufficient for p(θ|y) = q(θ|y). If inference always returns the prior,
q(θ|y) = p(θ), then D3(p, q) = 0, a known counterexample of when rank-based SBC fails [32].

Output: M + 1 examples:
t ϕ

0 (θ, θ̃1, θ̃2, · · · , θ̃M , y)

1 (θ̃1, θ, θ̃2 · · · , θ̃M , y)
· · · ·
M (θ̃1, θ̃2 · · · , θ̃M , θ, y)

Example 4: Multi-class classification. We go beyond binary
labeling. Given a simulation run (y, θ, θ̃1, · · · , θ̃M ), we now create
an (M+1)-class classification dataset with M + 1 pairs of (t, ϕ)
examples. In each one, the features are ϕ = (y, θ∗) where θ∗ is a
permutation of (θ, θ̃1, · · · , θ̃M ) that moves θ into a given location
and t ∈ 0, · · · ,M indicates the location of θ in the permutation

1Standard notation for conditional divergences [5] is that KL(p(θ|y)∥q(θ|y)) := Ep(y,θ) log
p(θ|y)
q(θ|y) . Condi-

tional divergence is not the divergence of conditional distributions. We interpret p(y) = q(y).
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(See the table on the right). We train a (M+1)-class classifier to predict t from ϕ. The ELPD on a
validation set is a lower bound to the following divergence D4 between p(θ|y) and q(θ|y) up to a
known constant:

ELPD4+log(M+1) ≤ D4(p, q) := KL

p(θ0)

M∏
k=1

q(θk),
1

M + 1

M∑
m=0

p(θm)
∏
k ̸=m

q(θk)

 . (4)

Again the bound is tight if the classifier is optimal. The divergence 0 ≤ D4 ≤ log(M + 1), and
D4 = 0 if and only if p(θ|y) a.e.

= q(θ|y), necessary and sufficient for calibration. In Theorem 3 we
shows that as M → ∞, D4(p, q) converges to KL(p(θ|y), q(θ|y)) at an O(1/M) convergence rate.

3 Theory on calibration divergence

To generalize the previous examples, we define a “label mapping” Φ : (y, θ, θ̃1, . . . , θ̃M ) 7→
{(t1, ϕ1), . . . , (tL, ϕL)}. that maps one simulation run (y, θ, θ̃1, . . . , θ̃M ) into a K-class classification
example-set containing L pairs of labels t and features ϕ. The label tl ∈ {0, 1, . . . ,K − 1} is
deterministic and only depends on l. The features ϕl can depend on l and (y, θ, θ̃1, . . . , θ̃M ). We
only consider Φ satisfying that, when p(θ|y) = q(θ|y), ϕ given y is conditionally independent of t
(equivalently, ϕ|(y, t) has the same distribution for any t). Let F be the set of these mappings Φ.

We train a classifier on the classification examples created by Φ collected across repeated sampling.
The classifier performance is measured by its expected log predictive density (ELPD), or equivalently
the negative cross-entropy loss. Given p, q, and the mapping Φ, let c(ϕ) be any probabilistic classifier
that uses ϕ to predict the label t, and Pr(k|ϕ, c) is the predicted k-th class probability. Taking
expectations over features and labels with (θ, y) ∼ p and θ̃m ∼ q(θ|y) reaches the ELPD of the
classifier,

ELPD(Φ, c) := Et,ϕ log Pr(t = k|ϕ, c), (t, ϕ) = Φ(y, θ, θ̃1, . . . , θ̃M ) (5)
We then define the prediction ability D(p, q,Φ, c) to be the ELPD plus the entropy of a categorical
distribution, i.e.

D(p, q,Φ, c) = ELPD(Φ, c)−
K−1∑
k=0

wk logwk, where wk =
1

L

L∑
l=1

1(tl = k). (6)

The optimal classifier is the c that achieves the highest prediction ability in the population:
Dopt(p, q,Φ) := max

c∈C
D(p, q,Φ, c), where C is the set of all probabilistic classifiers. (7)

The next theorem is the basic theory of our method: as long as we pass the simulation draws to a
label mapping Φ ∈ F, and train a classifier on the classification examples, then Dopt(p, q,Φ) is a
generalized divergence between p and q.
Theorem 1 (Prediction ability yields divergence). Given any p, q, and feature mapping Φ ∈ F,
the optimal prediction ability Dopt(p, q,Φ) is a generalized divergence from p to q in the sense
that Dopt(p, q,Φ) ≥ 0, and p(θ|y) = q(θ|y) almost everywhere implies Dopt(p, q,Φ) = 0. This
generalized divergence is reparametrization invariant and uniformly bounded. For any classifier c,

0 ≤ D(p, q,Φ, c) ≤ Dopt(p, q,Φ) ≤ −
K−1∑
k=0

wk logwk; (8)

p(θ|y) a.e.
= q(θ|y) ⇒ Dopt(p, q,Φ) = 0.

That is, any label mapping Φ produces a generalized divergence Dopt(p, q,Φ), the prediction ability
of the optimal classifier. The prediction ability D(p, q,Φ, c) of any classifier c estimated on validation
data is a lower bound to Dopt(p, q,Φ). Further, this generalized divergence Dopt(p, q,Φ) is always a
proper Jensen–Shannon divergence in the projected feature-label space (Theorem 1 in the Appendix).

When p(θ|y) ̸= q(θ|y), to increase the statistical power, we wish that the generalized divergence
can be as “strong” as possible such that we can detect the miscalibration. In the four examples in
Section 2, we have used D1, D2, D3, D4 to denote the (generalized) divergence they yield. The next
theorem shows there is a deterministic domination order among these four metrics. Moreover, D4 is
the largest possible classification divergence from any given simulation table.
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Theorem 2 (Strongest divergence). For any given p, q, and any Φ ∈ F, (1) D4 ≥ D1 ≥ D3 ≥ D2.
(2) D4 and D1 are proper divergences. They attain 0 if and only if p(θ|y) = q(θ|y) almost everywhere.
They attain the corresponding upper bound in (8) if and only p(θ|y) are q(θ|y) are disjoint, i.e.,∫
A
p(θ|y)q(θ|y)dθ = 0 for any measurable set A and almost surely y. (3) For any p, q and Φ ∈ F

(Φ can have an arbitrary example size L and class size K), D4(p, q) ≥ Dopt(p, q,Φ).

The following result shows that the divergence D4 in Eq. (4) approaches the “mode-spanning” KL
divergence in the limit that the number of posterior draws M → ∞. This is appealing because for
many inference routes, increasing the number of posterior draws is cheap. Thus, D4 provides an
accessible approximation to the KL divergence that is otherwise difficult to compute from samples.

Theorem 3 (Big M limit and rate). For any p, q, generate the simulation {(y, θ, θ̃i, . . . , θ̃M )} and
train the multiclass-classier, then D4(p, q)−KL(p(θ|y) || q(θ|y)) → 0, as M → ∞.

If further p(θ|y) and q(θ|y) have the same support, and if Ep(θ|y)

[
p(θ|y)
q(θ|y)

]2
< ∞ for a.s. y, then

D4(p, q) = KL(p(θ|y) || q(θ|y))− 1

2M
χ2(q(θ|y) || p(θ|y)) + o(M−1).

where χ2(·||·) is the conditional chi-squared divergence.

4 Practical implementation

Algorithm 1: Proposed method: Discriminative calibration
input : The ability to sample from p(θ, y) and q(θ|y), and a label mapping Φ.
output :(i) estimate of a divergence between p(θ|y) and q(θ|y); (ii) p-value for testing p(θ|y) = q(θ|y).
for ( i = 1 : S )

Sample (θi, yi) ∼ p(θ, y), and sample θ̃i1, θ̃i2 . . . , θ̃iM ∼ q(θ|yi); ▷ simulation table
Generate a batch of L examples of (t, ϕ) = Φ(yi, θi, θ̃i1, . . . , θ̃iM ), 0 ≤ t ≤ K − 1; ▷ label mapping

Randomly split the LS classification examples (t, ϕ) into training and validation sets (all L examples for a
given i go to either training or validation);

Train a K-class classifier to predict label t on the training examples, incorporating useful features;
Compute the validation log predictive density LPDval in (9), obtain an estimate of the divergence (7) and

its bootstrap confidence intervals; ▷ divergence
for ( b = 1 : B )

Randomly permute the label t in the validation set within each batch;
Compute LPDb

val on the permutated validation set;
Compute the calibration p-value p = 1/B

∑B
b=1 1(LPD

val
b ≥ LPDval). ▷ frequentist test

Workflow for divergence estimate. We repeat the simulation of (y, θ, θ̃1, . . . , θ̃M ) for S times. Each
time we sample (y, θ) ∼ p(θ, y) and θ̃1:M ∼ q(θ|y) and generate a batch of L examples through a
label mapping Φ ∈ F. In total, we obtain SL pairs of (t, ϕ) classification examples. We recommend
using the binary and multiclass labeling schemes (Examples 1 and 4, where L = M+1 and K = 2 or
M + 1) such that we can obtain a proper divergence estimate. We split the classification example-set
{(t, ϕ)} into the training and validation set (do not split batches) and train a K-class classifier c on
the training set to minimize cross-entropy. Denote Ival to be the validation index, Pr(t = tj |ϕj , c) to
be the learned class probability for any validation example (tj , ϕj), we compute the ELPD (5) by the
validation set log predictive density:

ELPD(Φ, c) ≈ LPDval(Φ, c) := |Ival|−1
∑

j:∈Ival

log Pr(t = tj |ϕj , c). (9)

For any c, LPDval(Φ, c)−
∑K−1

k=0 wk logwk becomes a lower bound estimate of the (generalized)
divergence Dopt(p, q,Φ) in Thm. 1, and an estimate of Dopt(p, q,Φ) itself when the classier c is
good enough. In addition to the point estimate of the divergence, we can compute the confidence
interval. It is straightforward to obtain the standard error of the sample mean (9). To take into account
the potentially heavy tail of the log predictive densities, we can also use Bayesian bootstrap [37] that
reweights the sum in (9) by a uniform Dirichlet weight.
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Hypothesis testing. Our approach facilitates rigorous frequentist hypothesis testing. The null
hypothesis is that the approximate inference matches the exact posterior, i.e., p(θ|y) = q(θ|y) almost
everywhere. We adopt the permutation test: We train the classifier c once on the training set and keep
it fixed, and evaluate the validation set log predictive density LPDval(Φ, c) in (9). Next, permutate
the validation set B times: at time b, keep the features unchanged and randomly permutate the
validation labels t within each batch of examples (Φ generates a batch of L examples each time), and
reevaluate the validation set log predictive density (9) on permutated labels, call it LPDval

b . Then
we compute the one-sided permutation p-value as p =

∑B
b=1 1(LPD

val
b ≥ LPDval)/B. Given a

significance level, say 0.05, we will reject the null if p < 0.05 and conclude a miscalibration.
Theorem 4 (Finite sample frequentist test). For any finite simulation size S and posterior draw
size M , and any classifier c, under the null hypothesis p(θ|y) = q(θ|y) almost everywhere, the
permutation test is valid as the p-value computed above is uniformly distributed on [0, 1].

Our test is exact when the simulation size S and M is finite, while the original SBC [4] relied on
asymptotic approximation. Further, we learn the test statistic via the classifier, and our test is valid
regardless of the dimension of θ and there is no need to worry about post-learning testing [3], while
the usual SBC rank test will suffer from low power due to multiple testing.

Our test is always valid even if the classifier c is not optimal. Why does our learning step help? For
notional brevity, here we only reason for the binary classification. For any p, q, we apply the binary
classification as described in Example 1, t = 0 or 1 and ϕ = (θ, y).
Theorem 5 (Sufficiency). Let ĉ(θ, y) = Pr(t = 1|θ, y) be the probability of label 1 in the optimal
classifier as per (7), and let πp

c and πq
c be the one-dimensional distributions of this ĉ(θ, y) when

(θ, y) is sampled from p(θ, y) or from p(y)q(θ|y) respectively, then (i) Conditional on the summary
statistic ĉ, the label t is independent of features ϕ = (θ, y). (ii) Under regularity conditions, there is
no loss of information in divergence as the joint divergence is the same as the projected divergence in
the one-dimensional ĉ-space D1(p, q) = D1(π

p
c , π

q
c ).

That is, the best prediction ĉ entails the best one-dimensional summary statistics of the high dimen-
sional θ × y space. The enhancement of the test power from using the sufficient statistics is then
assured by the Neyman-Pearson lemma [27].

4.1 Feature engineering: use rank, log density and symmetry

Reassuringly, whatever the classifier c, the prediction ability D(p, q,Φ, c) is always a lower bound to
the corresponding divergence Dopt(p, q,Φ), and the permutation test is always exact. But we still
wish to train a “good” classifier in terms of its out-of-sample performance, for a tighter bound in
divergence, and a higher power in testing. We will typically use a flexible parametric family such as a
multilayer perceptron (MLP) network to train the classifier.

The oracle optimal probabilistic classifier is the true label probability, and in the binary and multiclass
classification (Example 1 and 4), the oracle has closed-form expressions, although we cannot evaluate:

Pr
binary

(t = 0|θ, y) = p(θ|y)
p(θ|y) + q(θ|y)

, Pr
multi

(t|θ0, . . . , θM , y) =
p(θt, y)/q(θt|y)∑M

k=0 p(θk, y)/q(θk|y)
. (10)

Statistically-meaningful feature. Depending on the inference task, we have more information
than just the sample points and should use them in the classifier. In light of the shape and component
of the optimal classifiers (10), the following statistically-meaningful features are useful whenever
available: (i) The log target density log p(θ|y). As proxies, the log joint density log p(θ, y) and the
log likelihood log p(y|θ) are often known to traditional Bayesian models. (ii) The log approximate
density log q(θ|y), known to volitional and normalizing flows. (iii) When the log approximate
density is unknown, a transformation is to integrate the density and obtain the posterior CDF,
Q(θ|y) = Ex∼q(x|y) 1(x > θ), and this CDF can be approximated by the rank statistics among the
approximate draws up to a rescaling r(θ, y) :=

∑MS
m=1,i=1 1(yi = y)1(θ < θ̃im). See Appendix

Table 1 for the usage and extension of these features in binary and multiclass classifiers.

Linear features. We call the log likelihood, the log approximate density, or log prior (whenever
available) linear features, and denote them to be l(θ, y). For example if both likelihood and q density
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is known, then l(θ, y) = (log p(y|θ), log q(θ|y)). Because they appear in the oracle 10, we will keep
linear features in the last layer of the network (followed by a softmax). We recommend parameterizing
the binary classification in the following form:

Pr(t = 1|(θ, y)) = inv_logit[MLP(θ, y) + wT l(θ, y)]. (11)

Symmetry in multiclass classifier. The multi-class classifier is harder to train. Luckily, we can use
the symmetry of the oracle classifier (10): the probability of class k is proportional to a function of
(θk, y) only, hence we recommend parameterizing the multiclass probability as

Pr(t = k|(θ0, θ1, . . . , θM , y)) =
exp(g(θk, y))∑M

k′=0 exp(g(θk′ , y))
, g(θ, y) = MLP(θ, y) + wT l(θ, y), (12)

where l(θ, y) is available linear features. We only need to learn a reduced function from θ × y to R,
instead of from θM+1 × y to R, reducing the complexity while still keeping the oracle (10) attainable.

Zero waste calibration for MCMC. If θ̃1, . . . , θ̃M ∼ q(θ|y) are produced by MCMC sampler,
typically θ̃ has autocorrelations. Although classical SBC originated from MCMC application, the
rank test requires independent samples, so SBC can only handle autocorrelation by thinning: to
subsample θ̃m and hope the thinned θ̃ draws are independent. Thinning is a waste of draws, inefficient
when the simulations are expensive, and the thinned samples are never truly independent. With
MCMC draws θ̃, our method could adopt thinning as our Thm. 1 and 4 are valid even when M = 1.

Yet we can do better by using all draws. The “separable” network architecture (12) is ready to use
for MCMC samples. For example, we sample (θ, y) ∼ p(θ, y), and sample (θ̃1, . . . , θ̃M ) from a
MCMC sampler whose stationary distribution we believe is q(θ|y), and generate examples from the
multiclass permutation (Example 4). Then we run a separable classifier(12) to predict t. Intuitively,
the separable network design (12) avoids the interaction between θ̃m with θ̃m′ , and disallows the
network to predict t based on the autocorrelation or clustering of θ̃. The next theorem states the
validity of our method in MCMC settings without thinning.

Theorem 6 (MCMC). Suppose we sample (θ, y) ∼ p(θ, y), and sample (θ̃1, . . . , θ̃M ) from a
MCMC sampler whose stationary distribution we believe is q(θ|y) (i.e., marginally θ̃i is from q(θ|y)),
and generate examples ((t1, ϕ1), . . . , (tM+1, ϕM+1)) from the multiclass permutation, such that
ϕ = (θ0, θ1, . . . , θM ). Then we run an exchangeable classifier (12) in which g is any Θ× Y → R
mapping. Denote DMCMC,sep

4 (p, q) to be the predictive ability of the optimal classifier among all
separable classifiers (12), then DMCMC,sep

4 (p, q) = D4(p, q).

Dimension reduction and nuisance parameter. Sometimes we only care about the sampling
quality of one or a few key dimensions of the parameter space, then we only need to restrict
the classifier to use these targeted dimensions, as a result of Theorem 1. For example, in binary
classification, if we reduce the feature ϕ = (θ, y) to ϕ = (h(θ), y) in the classifier, where h(θ) can be
a subset of θ dimensions, then the resulting classification divergence becomes projected divergence
between h(θ)|y, θ ∼ p(θ|y) and h(θ)|y, θ ∼ q(θ|y), and other nuisance parameters do not impact
the diagnostics.

Weighing for imbalanced binary classification. When M is big, the binary classification (Example
1) can suffer from imbalanced labels, and the divergence in (1) degenerates: D1(p, q) → 0 as
M → ∞. One solution is to use the multiclass classification which has a meaningful limit (Thm. 3).
Another solution is to reweigh the loss function or log predictive density by the label t. If the weights
of class 1 and class 0 examples are M+1

2M and M+1
2 , used in both training and validation log prediction

density, then regardless of M , the weighted classification is equivalent to balanced classification, and
the resulting divergence is the symmetric Jensen-Shannon (JS) divergence 1

2 KL[p(θ|y)||r(θ|y)] +
1
2 KL[q(θ|y)||r(θ|y)], where r(θ|y) = 1

2 [p(θ|y) + q(θ|y)]. See Appendix A for proofs.

5 Experiments

Closed-form example. Consider a multivariate normal parameter prior θ ∈ Rd ∼ MVN(0, Idd) and
a normal data model y|θ ∼ MVN(θ,Σ), so the exact posterior p(θ|y) is explicit. In the experiments,
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the true target and sampled distribution at a given num-
ber of iterations, indicating gradual convergence.

we use neural nets to train binary (11) or symmetric multiclass classifiers (12), which we generally
recommend. We assume the inference posterior log q(θ|y) is known and added to the classifier.

Legitimacy of testing. First, to validate our hypothesis test under the null, we use true inference
q(θ|y) = p(θ|y). With d = 16, we simulate S = 500 draws of (θ, y) ∼ p(θ, y), then generate true
posterior θ̃m ∼ p(θ|y), and run our binary-classifier and obtain a permutation p-value. We repeat
this testing procedure 1000 times to obtain the distribution of the p-values under the null, which is
uniform as shown in Fig. 2, in agreement with Thm. 4. Because θ has d dimensions, a SBC rank test
on each margin separately is invalid without adjustment, and would require Bonferroni corrections.
Power. We consider two sampling corruptions: (i) bias, where we add a scalar noise (0.01 to 0.2)
to each dimension of the true posterior mean, (ii) variance, where we inflate the true posterior
covariance matrix by multiplying a scalar factor (0.8 to 1.2). We compare our discriminative tests
to a Bonferroni-corrected SBC chi-squared rank-test. In both settings, we fix a 5% type-I error and
compute the power from 1000 repeated tests. Fig. 3 shows that our method has uniformly higher
power than SBC, sometimes as good as SBC with a 10 times bigger simulation sample size.

Divergence estimate. The left panel of Fig. 4 validates Thm. 1: We run a weighted binary classifier on
the Gaussian simulations with a scalar bias 1 or 2 added to the posterior mean in q. As the number of
simulations S grows, the learned classifier quickly approaches the optimal, and the prediction ability
matches the theory truth (dashed line): the Jensen-Shannon divergence between p(θ|y) and q(θ|y).
The right panel validates Thm. 3: With a fixed simulation size S , we increase M , the number of
posterior draws from q, and run a multiclass classification. When M is big, the estimated divergence
converges from below to the dashed line, which is the theory limit KL(p(θ|y), q(θ|y)) in Thm. 3.

Benchmark examples. Next, we apply our calibration to three models from the SBI benchmark
[23]: the simple likelihood complex posterior (SLCP), the Gaussian linear, and the Gaussian mixture
model. In each dataset, we run adaptive No-U-Turn sampler (NUTS) and check the quality of the
sampled distribution after a fixed number of iterations, varying from 2 to 2000 (we use equal number
of iterations for warm-up and for sampling, and the warm-up samples were thrown away). At each
given MCMC iterations, we run our classifier calibration, and estimate the JS divergence, as reported
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in Fig. 5. In all three panels, we are able to detect the inference flaws at early iterations and observe a
gradual convergence to zero.

Visual check. Our diagnostic outputs rigorous numerical estimates, but it also facilities visual checks.
We make a scatter plot of the binary classifier prediction Pr(t = 1|ϕ), a proxy of p(θ|y)/q(θ|y),
against any one-dimensional parameter we need to check: If that parameter is under- or over-confident,
this scatter plot will display a U- or inverted-U-shaped trend. Compared with SBC rank histograms,
our visualization can further check the magnitude of mismatch (how far away Pr(t = 1|ϕ) is from
0.5), tail behavior (small q(θ|y)), and several dimensions jointly. Fig 6 is a visual check in the
Gaussian example when we multiply the posterior covariance in inference q by 0.8, 1, or 1.2.

model 1, dy=38 model 2, dy=151 model 3, dy=1031
1-flow 0.015 (0.004) 0.076 (0.007) 0.068 (0.007)
5-ens. 0.013 (0.004) 0.044 (0.006) 0.035 (0.006)

Galaxy clustering. We would
like to model galaxy spatial clus-
tering observations in a Lambda
cold dark matter framework [34], where observations y correspond to statistical descriptors of galaxy
clustering, and a 14-dimensional parameter θ encodes key cosmological information about the Uni-
verse. The forward simulation y|θ involves expensive N -body simulations (each single y simulation
takes around 5000 cpu hours). We consider three different physical models p: they contain the
same cosmology parameter θ but three types of observations whose dimension dy varies from 38 to
1031, reflecting three power-spectrum designs. We apply simulation based inference to sample from
each of the models, where we try various normalizing flow architectures and return either the best
architecture or the ensemble of five architectures. We now apply our discriminative calibration to
these six approximate inferences using a weighted binary classifier trained from S = 2000,M = 500
simulations for each inference (that is 1 million examples). We have added the log densities log q(θ|y)
as extra features in the classifier, as they are known in the normalizing-flows. The table above
shows the estimated Jensen–Shannon distances and standard deviation. Compared this table with the
estimates from blackbox MLP classifier (Appendix Fig. 8), using statistical features greatly improves
the label prediction and tightens the divergence estimate. From the table above, all inferences q have
a significantly non-zero but small divergence, among which the 5-ensemble that uses a mixture of 5
flows always has a lower divergence so is more trustworthy. Further visualization of the classification
log odds (Fig. 7) reveals that q is under-confident in the parameter that encodes the galaxy concentra-
tion rate. To interpret the tail behavior, the predicted log odds are negatively correlated with log joint
normalizing-flow density q(θ|y), suggesting q(θ|y) > p(θ|y) in the tail of q(θ|y), another evidence
of q underconfidence.

We share Jax implementation of our binary and multiclass classifier calibration in Github2.

6 Discussions

This paper develops a classifier-based diagnostic tool for Bayesian computation, applicable to MCMC,
variational and simulation based inference, or even their ensembles. We learn test statistics from data
using classification. Through a flexible label mapping, our method yields a (family of) computable
divergence metric and an always valid testing p-value, and the statistical power is typically higher
than the traditional rank based SBC. Various statically-meaningful features are available depending
on the task and we include them in the classifier. Visual exploration is also supported.

2https://github.com/yao-yl/DiscCalibration
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Related diagnostics. The early idea of simulation based calibration dates back to [13] who compared
the prior and the data-averaged posterior, i.e., to check p(θ) =

∫
q(θ|y)p(y)dy using simulations.

[42] further developed techniques for the first and second moment estimate of the data-averaged
posterior using the law of total variance. Our method includes such moment comparison as special
cases: using the no-y binary labeling (Example 2), then comparing the empirical moments of the q
sample the p sample can be achieved through a naive Bayes classifier or a linear discriminant analysis.

The rank-based SBC [4, 38] can be recovered by ours using binary labels and taking ranks to be
features (Example 3). The rank statistic is central to SBC, which follows the classical frequentist
approach—using the tail probability under the posited model quantifies the extremeness of the realized
value[11] is only a convenient way to locate the observations in the reference distribution, especially
in the past when high dimensional data analysis was not developed—it is the use of modern learning
tools that sharpens our diagnostic. Recently, SBC has developed various heuristics for designing
(one-dimensional) test statistics ϕ(θ, y). Such rank tests are recovered by our method by including
the rank of ϕ in our features (Sec. 4.1). For example, [26] proposed to test the rank of the likelihood
ϕ = p(θ|y) in MCMC, [20] looked at the rank of proposal density q(θ|y), [22] used the q-probability
integral transformation in normalizing flows. In light of our Theorem 5, the optimal test statistic is
related to the density ratio and hence problem-specific, which is why our method includes all known
useful features in the classifier and learns the test statistic from data.

Classifier two-sample test. Using classification to compare two-sample closeness is not a new idea.
The classifier two-sample test (C2ST) has inspired the generative adversarial network (GAN) [16]
and conditional GAN [25]. [33] has developed GAN-typed inference tools for SBI. In the same vein,
[19] used classifiers to diagnose multiple-run MCMC, and [24] used classifiers to learn the likelihood
ratio for frequentist calibration, which is further related to using regression to learn the propensity
score [36] in observational studies. The theory correspondence between binary classification loss
and distribution divergence has been studied in [21, 28, 35]. This present paper not only applies
this classifier-for-two-sample-test idea to amortized Bayesian inference to obtain a rigorous test, but
also advances the classifier framework by developing the theory of the “label mapping”, while the
traditional GAN-type approach falls in the one-class-per-group category and deploy binary classifiers
as in Example 1. Our extension is particularly useful when samples are overlapped (multiple θ per y),
autocorrelated, and imbalanced.

KL divergence estimate from two samples. As a byproduct, our proposed multiclass-classifier
provides a consistent KL divergence estimate (Thm. 3) from two samples. Compared with existing
two-sample KL estimate tools from the f -divergence representation [29] or the Donsker-Varadhan
representation [2], our multiclass-classifier estimate appears versatile for it applies to samples with
between-sample dependence or within-sample auto-correlation. It is plausible to apply our multiclass-
classifier approach to other two-sample divergence estimation tasks such as the f -GAN [30], which
we leave for future investigation.

Limitations and future directions. Like traditional SBC, our method assesses the difference
between p(θ|y) and q(θ|y), averaged over y. This is a “global” measure relevant to developing
algorithms and statistical software. But sometimes the concern is how close p and q are for some
particular observation y = yobs. “Local” diagnostics have been developed for MCMC [14, 12, 40, 17],
variational inference [41, 8] and simulation-based inference [42, 22] that try to assess q(θ|yobs) only.
It would be valuable to extend our approach to address these cases. Another future direction would be
to extend our approach to posterior predictive checks [11, 9, 39] that diagnose how well the statistical
model p fits the observed data.
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Appendices to “Discriminative Calibration”

The Appendices are organized as follows. In Section A, we provide several extra theory results for
the main paper. In Section B, we discuss our experiment and implementations. In Section C, we
provide proofs for the theory claims.

A Additional theory results

Theorem 7 (Closed form expression of the divergence). Consider the label generating process
in Section 4. Let π(t, ϕ) be the joint density of the label and features after mapping Φ, i.e., the
distribution of the (t, ϕ) generated by the simulation process:

1. sample (θ, y) ∼ p(θ, y);

2. sample (θ̃1, . . . , θ̃M ) from q(θ|y);

3. generate ((t1, ϕ1), . . . , (tL, ϕL))) = Φ((y, θ, θ̃1, . . . , θ̃M ));

4. sample an index l from Uniform(1, . . . , L);

5. return (tl, ϕl).

We define

πk(ϕ) = π(ϕ|t = k) =

∫
y

π(y)π(ϕ|y, t = k)dy

to be the y-averaged law of ϕ|t = k. Note that y has been averaged out.

Then classification divergence defended through (7) in Theorem 1 has a closed form expression, a
Jensen–Shannon divergence in this projected ϕ space.

Dopt(p, q,Φ) =

K−1∑
k=0

wkKL

πk(·) ||
K−1∑
j=0

wjπj(·)

 . (13)

This Theorem 7 gives a connection between our divergence and the familiar Jensen–Shannon diver-
gence, which is well known to be linked to IID sample classification error (note that the classification
examples we generate are not IID for they share y).

As a special case, when K = 2, w0 = w1 = 1/2, we recover the symmetric two-group
Jensen–Shannon divergence, or JSD. In general, between two densities π1(x) and π2(x), the JSD is

Jensen Shannon divergence(π1, π2) =
1

2
KL

(
π1 ||

π1 + π2

2

)
+

1

2
KL

(
π2 ||

π1 + π2

2

)
. (14)

As before, the standard notation [5] of conditional divergence is defined as taking expectations over
conditional variables:

JSD(π1(x|z), π2(x|z)) =
1

2
KL

(
π1(x|z) ||

π1(x|z) + π2(x|z)
2

)
+

1

2
KL

(
π2(x|z) ||

π1(x|z) + π2(x|z)
2

)
. (15)

Theorem 8 (weighting). The binary label mapping generates M paris label-1 examples and one
pair of label-0 examples per simulation. We can reweight the binary classifier by letting the ELPD
be E[ C

M+11(t = 1) log p(t = 1|c(ϕ)) + CM
M+11(t = 0) log p(t = 0|c(ϕ))], where C = (M+1)2

2M is a
normalizing constant.

That is if we modify the training utility function or the validation data LPD to be:

1

n

n∑
i=1

(
C

M + 1
1(ti = 1) log Pr(t = 1|c(ϕi)) +

CM

M + 1
1(ti = 0) log Pr(t = 0|c(ϕi))

)
.
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then the resulting binary classification divergence in Thm. 1, i.e.,

weighted ELPD + log 2,

is the conditional Jensen Shannon divergence (15).

A.1 SBC test and generative classifier

In Example 3, we stated the intuitive connection between the SBC rank test and using rank as the
feature in a “generative” classifier (in contrast to our “discriminate” approach). Now we make such
comparison more precise: Assuming the parameter θ is one-dimensional. This is what SBC does:
From p we obtain θ, y, and for each θ we compute the rank of it in the paired q samples who shared
the same y: r =

∑M
m=1 1(θ ≤ θ̃m). Repeating this simulation many times, we obtain a sample of r,

and SBC will test if such r is discrete-uniformly distributed. This test could be done by simulating
a reference distribution that matches the null. We do so by generating the ranks in the q samples:
r̃n =

∑
m ̸=n 1(θ̃n ≤ θ̃m) + 1(θ̃n ≤ θ). To be clear, there are other ways to generate reference

samples, but all it matters is that the reference distribution matches the distribution of r under the null.
The uniformity test in SBC now becomes to test if r and r̃ have the same distribution. For example,
we can do a two-sample Kolmogorov–Smirnov test or a permutation test.

In comparison, this is what naive Bayes would do: the naive Bayes classifier first estimates the
two conditional distributions: Pr(r|t = 0) from the empirical distribution of the prior rank r, and
Pr(r|t = 1) from the empirical distribution of r̃. Then to test if Pr(r|t = 0) = Pr(r|t = 1) becomes
the same to testing if the empirical distribution of r is the same as the empirical distribution of r—the
same task as in SBC. The point is that given any two-sample based test,

SBC + sample-based test

is operationally the same as

only use rank + naive Bayes classifier + density estimated by histogram + sample-based test.

B Implementations

B.1 A cheat sheet of useful pre-learned features

Table 1 summarizes how to use the statistical feature (whenever available) in both the binary and
multiclass classifiers.

binary multiclass
full feature (θ, y) (θ1, . . . , θK , y)

MCMC p(θ, y), r(θ, y) p(θt, y) r(θt, y), 1 ≤ t ≤ K
VI p(θ, y), q(θ|y) p(θt, y) q(θt|y), 1 ≤ t ≤ K

likelihood-free p(θ), q(θ|y) p(θt), q(θt|y), 1 ≤ t ≤ K
Table 1: A cheat sheet of useful pre-learned features

B.2 Code and data

We share the python and Jax implementation of our binary and multiclass calibration code in
https://github.com/yao-yl/DiscCalibration.

In the MLP training we include a standard L2 weight decay (i.e., training loss function = cross
entropy loss + tuning weight ∗ L2 penalization). We tune the weight of the decay term by a 5 fold
cross-validation in the training set on a fixed grid {0.1, 0.01, 0.001, 0.0001}.

In the cosmology experiment in Section 5, we use one-hidden-layer MLP with 64 nodes to parameter-
ize the classifier with the form (11), with additional pre-learned features such as log q(θ|y) added
as linear features. The approximate log density log q(θ|y) is known (i.e., we can evaluate the for
any θ and y, or at least least up to a constant) in either the normalizing flow or the ensemble of the
normalizing flows. One classification run with roughly one million examples took roughly two hour

14
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model 1 (dy=38) model 2 (dy=151) model 3 (dy=1031)
1-flow 0.008 (0.003) 0.05(0.006) 0.0001 (0.0002)

5-ensemble 0.001 (0.002) 0.008(0.003) 0.001( 0.001)

Figure 8: The estimated divergence of two simulation based inferences (either using one flow or an
ensemble of five flows) in three cosmology models. These three models have the same parameter
space and involve expensive simulations. Here we apply our classifier approach and estimate
the Jensen–Shannon divergence (and standard deviation) using weighted binary classifiers from
S = 2000,M = 500 simulations: that is 2000 ∗ 501=1 million classification examples. In this table,
we run this classifier by the black-box multilayer perceptron (MLP) on the full (θ, y) vector, while the
table we have in the main paper further adds log q(θ|y) as a pre-learned feature since it is known in
the normalizing flows. In this black box estimate table, we would pass a t-test and not even detect
miscalculation. Adding a statistically-meaningful feature greatly improves the classifier prediction,
and tightens the bound of the divergence estimate.

cpu time on a local laptop. It would be more efficient to run the classification on GPU, thought the
classification cost is overall negligible compared with the simulation step y|θ which is pre-computed
and stored.

In the closed-form Gaussian experiment in Section 5, we consider the easiest setting: θ ∈ Rd ∼
MVN(0, Idd) and a normal data model y|θ ∼ MVN(θ, Idd). Indeed, we have kept both the true
distribution and the sampling corruption mean-field to make the calibration task easier for the
traditional SBC rank-test. The power of the traditional SBC rank-test would be even worse if we
add some interaction terms in the corrupted samples q(θ|y), while our method leans the joint space
sampling quality by default. The exact posterior p(θ|y) is known but we pretend we cannot evaluate
it. We set d = 16 to be comparable with the real data example. The right panel validates Thm. 3
fixed the simulation size S = 5000 and vary M . We have tried other fixed M = 1000 but it seems
the resulting graph is very similiar. The confidence band in Figure 3 and Figure 4 is computed using
1.96 times standard error from repeated experiments.

Table 8 shows the naive classifier: using the bandbox MLP without the linear features. The estimate
is rather loose compared with the table we obtained in Section 5 which used statistically-meaningful
features.

C Proofs of the theorems

We prove the theorems in the following order: Thm. 7, Thm. 1, Thm. 8, Thm. 6, Thm. 3, Thm. 5,
Thm. 4, and finally Thm. 2.

Contents

C.1 The classification divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C.2 Reweighting (Theorem 8) leads to symmetric divergence . . . . . . . . . . . . . . 18

C.3 MCMC without thinning (Theorem 6) . . . . . . . . . . . . . . . . . . . . . . . . 19

C.4 Large sample limit and rate as M → ∞ (Theorem 3) . . . . . . . . . . . . . . . . 20

C.5 Valid hypothesis testing (Theorem 4) . . . . . . . . . . . . . . . . . . . . . . . . . 22

C.6 Why does classifier help test? (Theorem 5) . . . . . . . . . . . . . . . . . . . . . . 23

C.7 The maximum discriminative generator (Theorem 2) . . . . . . . . . . . . . . . . 23

C.1 The classification divergence

To prove our Theorem 1, we first state an equivalent but a more general theorem. Note that we are
allowing non-IID classification examples for the shared z variables in this theory.
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Theorem 9 (The general relation between divergence and classification error). Define a simulation
process π(z, k, x) through the following process, among the three random variables, z ∈ Rn, x ∈ Rd

can have any dimension, and k ∈ {1, 2, . . . ,K} is an integer.

1. Sample z ∼ π(z)

2. Sample k ∼ Categorical(w), where w is a simplex.

3. Sample x ∼ πk(x|z)

4. Return (z, k, x)

Define U(π) to be the expected log probability or cross-entropy of an optimal classifier trained to
predict k from (x, z), i.e.

U(π) = max
c

Eπ U(k, c(x, z)),

where U(k, c) = log c(k). Then3

U(π)−
K∑

k=1

wk logwk =

K∑
n=1

wkKL (πn(x|z) ∥ π(x|z))

where π(x|z) =
∑K

k=1 wkπk(x|z) is the mixture over all groups.

We define D(π) = U(π)−
∑K

k=1 wk logwk. Then this D has the following properties:

1. (lower bound). D(π) ≥ 0. It achieves zero if and only if all pk are the same, i.e., Pr(Xk ∈
A) = Pr(Xj ∈ A) for any measurable set A.

2. (upper bound). D(π) ≤
∑K

n=1 wk logwk. This maximum is achieved is pk are disjoint, i.e.,
Pr(Xk ∈ A) Pr(Xj ∈ A) = 0 for any measurable set A.

3. (alternative upper bound when the difference is small). D(π) ≤
maxj,k KL(πk(x|z), πj(x|z)).

4. (reparametrization invariance). For any fixed bijective transformation x 7→ g(x), let pgk be
the law of g(xk), then D(pgk, . . . , p

g
k) = D(pk, . . . , pk).

5. (transformation decreases divergence). For any fixed transformation x 7→ g(x), let pgk be
the law of g(xk), then D(pgk, . . . , p

g
k) ≤ D(pk, . . . , pk).

Proof. The (unknown) optimal conditional classifier is the Bayes classifier:

P̂r(t = k|x, z) = wkπk(x|z)∑
j wkπj(x|z)

.

Let r(x|z)
∑K

j=1 wkπj(x|z) be mixture density marginalized over the group index k.

3We emphasize that we are using the notation of conditional KL divergence:

KL (πn(x|z) ∥ π(x|z)) :=
∫ [

p(z)

∫
πk(x|z) log

(
πk(x|z)
r(x|z)

)
dx

]
dz.
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The expected log predictive density of the optimal classification is then

ELPD(P̂r(t = k|x, z)) = Ez

∫
r(x|z)

K∑
k=1

[
wkπk(x|z)
r(x|z)

log

(
wkπk(x|z)
r(x|z)

)]
dx

= Ez

K∑
k=1

wk

∫
πk(x|z) log

(
πk(x|z)
r(x|z)

+ logwk

)
dx

= Ez

K∑
k=1

wk log(wk) +

K∑
n=1

wk Ez

∫
πk(x|z) log

(
πk(x|z)
r(x|z)

)
dx

=

K∑
k=1

wk log(wk) +

K∑
n=1

wkKL (πk(x|z) , r(x|z)) .

When ELPD−
∑K

k=1 wk log(wk) = 0,
∑K

k=1 wkπk(x|z) = 0, hence these K conditional densities
πk(x|z) are the same almost everywhere.

The reparametrization invariance is directly inherited from KL diverge.

The upper bound is the consequence of ELPD ≤ 0 for category classification and the lower bound is
that KL divergence ≥ 0.

Let’s emphasize again that we are following the notation of conditional divergence in [5], such that for
any two joint density p(theta, y) and q(θ, y), the conditional KL divergence is KL(p(θ|y)∥q(θ|y)) :=
Ep(y) Ep(y|θ) log

p(y|θ)
q(y|θ) , an expectation is taken over y.

The procedure in Theorem 9 can reflect many different generating processes. Let’s recap the examples
we show in Section 2.

In Example 1 of the main paper, the binary case, K = 2, and we generate M samples from q.
π1 = p(θ|y), π2 = q(θ|y), w1 = 1/M , w2 = (M − 1)/M . Our simulation process in example 1 is
equivalent to

1. Sample y ∼ marginal p(y),
2. Sample k ∼ Categorical(w), where w1 = 1/M , w2 = (M − 1)/M .
3. Sample x ∼ πk(x|z), where π1 = p(θ|y), π2 = q(θ|y).
4. Return (z, k, x)

As a direct consequence of Theorem 9, the resulting divergence in the binary case is

D1(p, q) = w1KL (p(θ|y) ∥ r(θ|y)) + w2KL (q(θ|y) ∥ r(θ|y)) ,

where r = w1p+ w2q.

In Example 2: Binary label with no y, we generate M samples from q. K = 2, π1 = p(θ), π2 = q(θ),
w1 = 1/(M + 1), w2 = M/(M + 1). Our simulation process in example 2 is equivalent to

1. Sample k ∼ Categorical(w), where w1 = 1/M , w2 = (M − 1)/M .
2. Sample x ∼ πk(x), where π1 = p(θ), π2 = q(θ).
3. Return (k, x)

From Theorem 9, the resulting divergence reads

D3(p, q) = w1KL (p(θ) ∥ r(θ)) + w2KL (q(θ) ∥ r(θ))

In the multivariate Example 4, K = M + 1, and the individual density is

πk(θ1:K) = p(θk|y)
∏
m ̸=k

q(θm|y)

.
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From Theorem 9, the resulting divergence reads

D4(p, q) = KL

p(θ1|y)
∏
m>1

q(θm|y) ∥ 1

K

K∑
k=1

p(θk|y)
∏
m̸=k

q(θm|y)


We give more results on this D4 in Section C.4.

The discriminative calibration is designed to detect and gauge the difference between p(θ|y) and
q(θ|y). From now on we use a long vector θ1:M+1 (the index starts by 1) to represent the simulation
draw. Each simulation draw first generates one θ1 from the prior, one data point y from the sampling
distribution p(y|θ1), and finally M draws from the approximate inference θ1,...,M+1 ∼ q(θ|y).
The “label generating process” Φ takes a simulated draw as its input and returns a vector of features
ϕ and labels t.

Φ : (y, θ1,...,M+1) 7→ {(ϕ1, t1), . . . , (ϕK , tK)}.
The classifier will then see this feature and labels (the index k is disregarded) across all simulations.

We only ask that the map Φ be within in set F : satisfying that:

F : ϕ|y is independent of t if p(θ|y) = q(θ|y), a.e.

Proof of Theorem 1.

Proof. The classifier sees features ϕ and labels t. Given a t, (ϕ, y) are IID draws from p(y)π(ϕ|y, t).
In case y is not observable by the classifier, ϕ|t are IID draws from

∫
y
p(y)p(ϕ|y, t).

To use Theorem 9, let xk = {(ϕj , y)|tj = k} and wk = Pr(t = k). The divergence from Theorem 9:
reads

Dopt(p, q,Φ) =

K∑
n=1

wkKL

(
π1(ϕ) ,

K∑
k=1

wkπ1(ϕ)

)
,

in which πk(ϕ) = p(ϕ|t = k) =
∫
y
p(y)π(ϕ|y, t = k)dy is the y-averaged ϕ margin. This is

essentially Theorem 7.

If p = q, from F, the law of ϕ, y is independent of t (y is always independent of t marginally), so
that πk(ϕ) =

∫
y
p(y)π(ϕ|y, t = k)dy is also independent of t, as it only depends on y and ϕ, hence

the divergence remains 0.

C.2 Reweighting (Theorem 8) leads to symmetric divergence

We now prove Theorem 8. The binary label mapping generates M pairs label-1 examples and one
pair of label-0 examples per simulation. We can reweight the binary classifier by letting the ELPD
be E[ C

M+11(t = 1) log p(t = 1|c(ϕ)) + CM
M+11(t = 0) log p(t = 0|c(ϕ))], where C = (M+1)2

2M
is a normalizing constant. We want to prove that after weighting, the classification divergence is
symmetric Jensen shannon distance, as if we have balanced classification data.

Proof. After the label-reweighing, the optimal classifier is the balanced-class classifier

c(t = 1|ϕ) = Pr(ϕ|t = 1)

Pr(ϕ|t = 1) + Pr(ϕ|t = 0)
.

The re-weighted ELPD in the population is

ELPD = Eϕ[Pr(t = 0|ϕ) CM

M + 1
log c(t = 0|ϕ) + Pr(t = 0|ϕ) C

M + 1
log c(t = 1|ϕ)]

= Ey

[
p(θ|y) +Mq(θ|y)

M + 1

(
p(θ|y)

p(θ|y) +Mq(θ|y)
CM

M + 1
log

p(θ|y)
2r(θ|y)

+
Mq(θ|y)

p(θ|y) +Mq(θ|y)
C

M + 1
log

q(θ|y)
2r(θ|y)

)]
= Ey

[
C

2M

(M + 1)2

(
p(θ|y)

2
log

p(θ|y)
2r(θ|y)

+
q(θ|y)

2
log

q(θ|y)
2r(θ|y)

)
.

]
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With an appropriate normalizing constant C = (M+1)2

2M ,

ELPD = Ey

[
1

2
p(θ|y) log p(θ|y)

r(θ|y)
+

1

2
q(θ|y) log p(θ|y)

r(θ|y)

]
− log 2.

That is, the reweighted ELPD + log 2 is the conditional Jensen Shannon divergence (15) between
p(θ|y) and q(θ|y).

C.3 MCMC without thinning (Theorem 6)

To diagnose MCMC, we sample (θ, y) ∼ p(θ, y), and sample (potentially autocorrelated) draws
(θ̃1, . . . , θ̃M ) from a MCMC sampler whose stationary distribution we believe is q(θ|y) (i.e.,
marginally θ̃i is from q(θ|y)), and generate examples ((t1, ϕ1), . . . , (tM+1, ϕM+1)), from the multi-
class permutation (see definition in Example 4), such that

ϕ = (θ0, θ1, . . . , θM ).

Then we run an exchangeable classifier parameterized by

Pr(t = k|(θ0, θ1, . . . , θM , y)) =
exp(g(θk, y))∑M

k′=0 exp(g(θk′ , y))
, (16)

where g is any Θ× Y → R mapping to be learned.

Note that here Pr(t = k|(θ0, θ1, . . . , θM , y)) is the classifier model we restrict it to be, not the true
population π. In general π(t = k|(θ0, θ1, . . . , θM , y)) ≠= Pr(t = k|(θ0, θ1, . . . , θM , y)) Roughly
speaking, the optimal classifier should be the Bayes classifier projected to the restricted space (16),
and we need to proof that this projected restricted solution turns out to be the same as the IID case
10, which is not trivial in general.

Proof. Intuitively, this separable network design (16) avoids the interaction between θ̃m with θ̃m′

and disallows the network to predict t based on the autocorrelation or clustering of θ̃.

Because of the permutation design and we define q to be the marginal distribution of θ̃, first, we know
that

π(θk|y, t = k) = p(θk|y), π(θk|y, t ̸= k) = q(θk|y),
in the MCMC population π (there is no need to address the joint for now).

From this we obtain the conditionals in the population

π(t = k|θk, y) =
p(θk|y)

p(θk|y) +Mq(θ|y)

and further the ratios for any m, k withtin the index set {0, 2, . . . ,M} and m ̸= k:

π(t = k|θk, θm, y) =
p(θk|y)q(θk|y)

p(θk|y)q(θm|y) + q(θk|y)p(θk|y) + (M − 1)q12(θk, θm)
.

Here q12(θk, θm) is the joint distribution of two out of M draws from the MCMC sampler q(θ|y),
which would often not be the same as q(θk|y)q(θm|y) because of the autocorrelation of Markov
chains. We do not need to specify the form of this joint. The key blessing is that when θk is from
p(θ|y) and θm is from q(θ|y), then they are independent (the numerator).

Next, from the line above we obtain the ratio estimate in the true population π:

π(t = k|θk, θm, y)

π(t = m|θk, θm, y)
=

p(θk|y)q(θk|y)
q(θk|y)p(θk|y)

=
p(θk|y)/q(θk|y)
p(θm|y)/q(θm|y)

. (17)

Now we project the restricted classifier (16). Intuitively, the separable classifier “almost” only depends
on θt, except for the normalizing constant. We can remove the dependence on the normalizing constant
by specifying the ratio

Pr(t = k|(θ0, θ1, . . . , θM , y))

Pr(t = m|(θ0, θ1, . . . , θM , y))
=

exp(g(θk, y))

exp(g(θm, y))
.
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Marginalizing out all other components, we obtain

Pr(t = k|(θk, θm, y))

Pr(t = m|(θk, θm, y))
=

exp(g(θk, y))

exp(g(θm, y))
. (18)

Matching the restriction (18) with the true population (17), the restricted projection is attainable if
and only if

exp(g(θt, y) = p(θt, y)/q(θt|y),
so that the optimal classifier needs to be

Pr(t|θ1, . . . , θK , y) =
p(θt, y)/q(θt|y)∑K

k=1 p(θk, y)/q(θk|y)
.

It happens that this MCMC restricted optimal classifier matches the IID optimal classifier (10). It
follows from the proof in Theorem 9 that the classification divergence using the restricted classifier is
still D4(p, q), as if {θ̃m}Mm=1 are IID samples from q(θ|y).

C.4 Large sample limit and rate as M → ∞ (Theorem 3)

In the multivariate Example 4, from each draw θ, y, θ̃1:M , we generate M + 1 examples from
K := M + 1 classes; one label from each. We will use the index starting from 1 in this subsection.
For the k-th example, tk = k, and the permutation for classifier reads ϕk is a vector including y and
K copies of θ, where the k-th copy is the prior draw, and the remaining θ are from q(|y). Slightly
abused the notation, in this subsection, we call this long feature vector as θ1:K ; it is a vector in the
ΘM+1 space. We now prove Theorem 3.

Proof. First, we write the true conditional label probability in this process:

π(t|θ1:K , y) =
p(θt|y)

∏
j ̸=t p(θj |y)∑

t′ p(θt′ |y)
∏

j ̸=t′ p(θj |y)
=

p(θt|y)/q(θt|y)∑
j p(θj |y)/q(θj |y)

.

Plug it as the classifier, we obtain the optimal ELPD or negative cross entropy: ELPD =
E log π(t|θ1:K , y),

ELPD = E
p(θt|y)/q(θt|y)∑K

k=1 p(θk|y)/q(θk|y)

= E log
p(θt|y)
q(θt|y)

− E log
∑
k

p(θk|y)/q(θk).

The first term above is simply

E log
p(θt|y)
q(θt|y)

= KL (p(θ|y)||q(θ|y))

According to our definition (4), the divergence is ELPD offset by an entropy term,

D4 := ELPD+ logK.

We now derive the limit of D4−KL (p(θ|y)||q(θ|y)) when M → ∞ (or equivalently K = M+1 →
∞)

∆ := D4 −KL (p(θ|y)||q(θ|y))
= ELPD+ logK −KL (p(θ|y)||q(θ|y))

= logK − E log

(∑
k

p(θk|y)
q(θk|y)

)

= −E log

(
1

K

K∑
k=1

p(θk|y)
q(θk|y)

)
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Given any label value 1 ≤≤ K, θt ∼ p(·|y), and all the remaining θj ∼ q(·|y) for j ̸= t.

Let

Xk =
1

K

K∑
k=1

p(θk|y)
q(θk|y)

=
1

K

p(θt|y)
q(θt|y)

+
1

K

∑
k ̸=t

p(θt|y)
q(θt|y)

.

The first term

1

K

K∑
k=1

p(θt|y)
q(θt|y)

→ 0.

The second term, call it ∆2 is the mean of IID means as θj ∼ q(·|y) for j ̸= t, the law of large
number yields

∆2 :=
1

K

K∑
k ̸=t

p(θt|y)
q(θt|y)

, ∆2 → Ex∼q(x|y)
p(x|y)
q(x|y)

= 1.

This proves that
∆ → 0, as K → ∞.

Hence,
D4 −KL (p(θ|y)||q(θ|y)) → 0,

which finished the first part of the proof.

Now let’s derive the rate. Under regularity conditions, for example, the variance of density ratio is
bounded, i.e., there exists a constant C < ∞, such that for all y,

Varθt∼q(θt|y)

(
p(θt|y)
q(θt|y)

)
< C,

then CLT holds, such that the second term above has a normal limit,
√
K(∆2 − 1) → normal(0, σ2), in distribution,

where

σ2 = Varq(
p(θt|y)
q(θt|y)

)

= Eθ,y∼q(θ,y)

(
p(θ|y)
q(θ|y)

− 1

)2

= Ey Eθ∼q(θ|y)

(
p(θ|y)
q(θ|y)

− 1

)2

= χ2 (p(θ|y) || q(θ|y)) ,

which is the definition of the conditional chi-squared divergence.

Consider a Taylor series expansion, log(1 + x) = x − 1
2x

2 + o(x2). Using the Delta method to
express the log function and the Slutsky theorem to ignore the zero term, we get

K E log(∆2) → −σ2

2
.

Plug this in the definition of ∆ we obtain the desired convergence rate,

D4 = KL (p(θ|y)||q(θ|y))− 1

2M
χ2 (p(θ|y) || q(θ|y)) + o(1/M).

This proves the claims in Theorem 3.
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our permutation

0 0.5 1

naive permutation
p−values under null

Figure 9: Our designed permutation vs the naive permutation.

Table 2: Batch permutation of labels
Original batch from one run

label t features ϕ
(θ, y) 1
(θ̃1, y) 0
(θ̃2, y) 0
· · · · · ·

(θ̃M , y) 0

a batch of permuted labels
label t

0
1
0
· · ·
0

another batch of permutation
label t

0
0
0
· · ·
1

C.5 Valid hypothesis testing (Theorem 4)

It is not trivial to have a valid permutation test since we do not have IID examples. One naive
permutation is to permutate all the labels t (across batches i ). The resulting permutation testing is
not uniform under the null (Figure 9).

In contrast, when we permute the label, we only ask for within-batch permeation (permute the index
{t1, . . . , tL} in each batch). See Table 2 for an illustration. Let’s prove this permutation is valid.

Proof. Under the null, p(θ|y)= q(θ|y) almost everywhere. According to the label mapping Φ ∈ F,
label t is independent of ϕ given y. We first show that label t is independent of ϕ.

In general conditional independence does not lead to unconditional independence. But because
here we design the generating process by π(y, t, ϕ) = πY (y)πt(t)π(ϕ|y, θ). Under the null we have
π(y, t, ϕ) = πt(t)(πY (y)π(ϕ|y)). Hence t needs to be independent of ϕ.

For any classifier c, because c(ϕ) is a function of ϕ, c(ϕ) and t are also independent. Let πΦ(ϕ) be
the marginal distribution of ϕ in π.

Now we are computing the cross entropy (with respect to the population π). LPD =∑N
j=1 U(c(ϕn), tn) where U is the log score U(P, x) = logP (x). It is a random variable be-

cause we have a finite validation-set. Now we are conducting a permutation of label t, the permuted
label t̃ is an independent draw from the same marginal distribution of t, πt(t). Because of the indepen-
dence, Eϕ,t U(c(ϕ), t) = Et Eϕ U(c(ϕ), t), hence the permuted LPDb

d
= LPD, where LPDb is the

computed LPD in the b-th permutation. Therefore Pr(LPD ≤ x) = Pr(LPDb ≤ x). In expectation
(with an infinitely amount of repeated random permutation), this p-value will be uniform on [0,1].

In practice, the computed p-value from finite permutation can only take values on a finite set
{0, 1/B, . . . , (B− 1)/B, 1}. More precisely, under the null hypothesis, this permutation test p-value
is discreetly-uniform on this set. This is because for any 0 ≤ m ≤ B

Pr(p = m/B) =

∫ 1

0

(
B

m

)
pm(1− p)B−mdp = 1/(B + 1), ∀m.

Hence, the permutation p-value based on B random permutations is uniformly distributed on the set
{0, 1/B, . . . , (B − 1)/B, 1}.
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C.6 Why does classifier help test? (Theorem 5)

Let’s recap the binary label-generating process:

1. Sample y ∼ marginal p(y),
2. Sample k ∼ Bernoulli(w), where w1 = 1/M , w2 = (M − 1)/M .
3. Sample θ ∼ πk(θ|z), where π0 = p(θ|y), π1 = q(θ|y).
4. Return (z, k, x)

Theorem 5 state that the optimal classifier has a sufficiency propriety in that (a) let ĉ be the probability
of label 1 in the optimal classifier as per (7), and let πp

c and πq
c be the one-dimensional distribution of

this ĉ(ϕ) when (θ, y) is sampled from p(θ, y) or from p(y)q(θ|y) respectively, then (i) Conditional
on the summary statistic ĉ, the label t is independent of all features ϕ = (θ, y). (ii) There is no
loss of information in divergence as the joint divergence is the same as the projected divergence,
D1(p, q) = D1(π

p
c , π

q
c ).

Proof. There are three random variables, θ, y, and t. The optimal classifier ĉ is the probability in this
true joint:

ĉ(θ, y) = Pr(t = 1|(θ, y)).

To show sufficiency or conditional independence, all we need to show is that, conditional on any
given value of ĉ, Pr(t = 1|(θ, y), c) does not depend on (θ, y) (in other words, Pr(t = 1|(θ, y), c) is
a function of c only). This becomes obvious as

Pr(t = 1|(θ, y), c(θ, y)) = Pr(t = 1|(θ, y)) = ĉ(θ, y).

Now we prove that there is “no loss” in divergence.

D1(p, q) = wKL(p(θ, y)||r(θ, y)) + (1− w)KL(q(θ, y)||r(θ, y))

We express the first term in ĉ

KL(p(θ, y) || wp(θ, y) + (1− w)q(θ, y))

= KL(π(θ, y|t = 0) || π(θ, y))
= KL(π(ĉ|t = 0) || π(ĉ))−KL(π(θ, y|ĉ, t = 0) || π(θ, y|ĉ))

This steps uses the chain rule of KL divergence: KL[p(x, y) | q(x, y)] = KL[p(x) | q(x)]+KL[p(y |
x) | q(y | x)]
Using conditional independence:

π(θ, y|ĉ, t = 0) = π(θ, y|ĉ, t = 1)

Hence KL(π(θ, y|ĉ, t = 0) || π(θ, y|ĉ)) = 0. Therefore,

KL(p(θ, y)||r(θ, y)) = KL(π(ĉ|t = 0) || π(ĉ))
where π(c) = π(ĉ|t = 0) + (1− w)π(ĉ|t = 0)

Similarly,
KL(q(θ, y)||r(θ, y)) = KL(π(ĉ|t = 1) || π(ĉ))

This proves D1(p, q) = D1(π
p
c , π

q
c ).

C.7 The maximum discriminative generator (Theorem 2)

We save the proof of Theorem 2 in the end for its length.

The generator ϕ contains a few degrees of freedom: the number of classes K, the number of examples
L, and how to design and the label-feature pairs. In the binary labeling: t1 = 1, ϕ1 = (θ1, y) and the
remaining tk = 0, ϕk = (θk, y) for 2 ≤ k ≤ M + 1. The multi-class Φ∗ assigns labels 1:K as

Φ∗ : tk = k, ϕk = (Perm1→k(θ1, . . . , θM ), y), 1 ≤ k ≤ K = M + 1. (19)
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Before the main proof that the multiclass permutation creates the largest divergence, let’s first
convince that the multi-class classification produced higher divergence than the binary one.

In the binary classification with M = 1 (one draw from p and one draw from q)

D1(p, q) =
1

2
KL

(
p(θ|y), p(θ|y) + q(θ|y)

2

)
+

1

2
KL

(
q(θ|y), p(θ|y) + q(θ|y)

2

)
.

In the multi-class classification with M = 1,

D4(p, q) = KL

(
p(θ1|y)q(θ2|y), p(θ

1|y)q(θ2|y) + q(θ1|y)p(θ2|y)
2

)
.

Use the joint KL > marginal KL, we have

D4(p, q) ≥ KL

(
p(θ1|y), p(θ

1|y) + q(θ1|y)
2

)
.

Likewise,

D4(p, q) ≥ KL

(
q(θ2|y), p(θ

2|y) + q(θ2|y)
2

)
.

Add these two lines we obtain
D4(p, q) ≥ D1(p, q).

To prove that this multi-class permutation produced the uniformly largest divergence (across M , K,
p, q) optimal, we organize the proof into lemmas 5 to 9. For notation brevity, we denote M̂ := M +1
in these lemmas to avoid using index M + 1.
Lemma 10. For an arbitrary integer L, any given output space Y , and any input space X that has at
least L elements, if there are two functions mapping XL to Y

f1, f2 : (x1, . . . , , xL) 7→ y ∈ Y.

satisfying the following propriety:

• for any probability distribution π on X , when x1, . . . , xn are L iid random variables with
law π, f1(x1, . . . , , xL) has the same distribution as f2(x1, . . . , , xL),

then there must exist a permutation of 1 : L, denoted by σ(1 : L), such that

f2(x1, . . . , xL) = f1(xσ(1), . . . , xσ(L)).

Proof. For any L distinct values a1, . . . , aL, ai ∈ X , let π be a mixture distribution of L delta
functions:

π =

L∑
m=1

δ(am)pm,

where the m-th mixture probability is

pm = C

(
1

2

)Lm−1

, C−1 =

L∑
m=1

(
1

2

)Lm−1

.

C is chosen such that
∑L

m=1 pm = 1.

Now that x1, . . . , xL are L IID random variables from this π, f1(x1, . . . , xL) is also a mixture of
delta functions, For any sequence of input indices (u1, . . . , uL) ∈ {1 : L}L,

Pr(f1(x1, . . . , , xL) = f1(au1
, . . . , , auL

)) =

L∏
m=1

((C/2L
m−1

)

∑L
j=1 1(uj=m)

)

= CL(
1

2
)
∑L

m=1(
∑L

j=1 1(uj=m)Lm−1), (20)
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in which the power index can be written as L∑
j=1

1(uj = 1), . . . ,

L∑
j=1

1(uj = L)


L

:=

L∑
m=1

 L∑
j=1

1(uj = m)Lm−1


as an L-decimal-integer.

Next, we study the law of f2(x1, . . . , , xL):

Pr(f2(x1, . . . , , xL) = f2(a1, . . . , , aL)) = CL(
1

2
)(1,1,...,1)L .

Because f2(x1, . . . , , xL) and f1(x1, . . . , , xL) have the same distribution, f2(a1, . . . , , aL)) needs
to match the value at which f1(x1, . . . , , xL) has probability CL( 12 )

(1,1,...,1)L to attain. Comparing
with (20), this probability is only attained when

∑L
j=1 1(uj = m) = 1, ∀m. That is, there exists a σ,

a permutation of 1 : L, such that u1, . . . , uL = σ(1, 2, . . . , L).

Matching the value of f2(x1, . . . , , xL) we obtain

f2(a1, . . . , aL) = f1(aσ(1), . . . , aσ(L)).

Because the choice of vector (a1, . . . , aL) is arbitrary, we have

f2(x1, . . . , xL) = f1(xσ(1), . . . , xσ(L)).

Because augmentation increases divergence, for the purpose of finding the largest divergence, to
produce the largest divergence, we only need to consider an augmented generator that includes all y

Φaug : (y, θ1,...,L) 7→ {((ϕ1, y), t1), . . . , ((ϕK , y), tK)}.

It is enough to consider the generator of which ϕk = ϕk(θ1, . . . , θL) are K functions of (θ1, . . . , θL).
Lemma 11. For any augmented generator Φarg satisfiesF, the null, there must exists K permutations
σ1(1 : L), . . . , σK(1 : (L)), with the convention σ1(1 : L) = 1 : L, such that

ϕk(θ1, . . . , θL) = ϕ1(θσk(1:(L))).

Proof. Use Lemma (10) for (K − 1) times.

Lemma 12. For any augmented generator Φarg satisfies F, all feature-label generator can be
replaced by a permutation, ϕk(θ1, . . . θL) = (θσk(1), . . . θσk(L)), while the divergence does not
decrease.

Proof. From the previous lemma,

ϕk(θ1, . . . , θL) = ϕ1(θσk(1:L)).

The augmented feature is now (ϕ1(θσk(1:L)), y), a transformation of (θσk(1:L)), y). Using the raw
feature (θσk(1:L)), y) keeps the divergence non-decreasing.

Now that we only want to consider permutation-based generators: there exists a K, and K permuta-
tions σk(1 : L).

Φaug : (y, θ1,...,L) 7→ {((ϕ1, y), t1), . . . , ((ϕk, y), tk)}.
ϕk(θ1, . . . , θL) = θσk(1:L).

Given a p ̸= q, any permutations θσi(1:L) contains one copy from p and (L − 1) copies from q. It
suffices to only consider those permutation θσi(1:L) whose distributions are unique.
Lemma 13. Given any p ̸= q and L fixed, assuming all θσi(1:L) has different distributions, then
D(q, p,Φarg) is an increasing function on K.
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Proof. Using that joint KL is always not smaller than the KL divergence of sub-coordinates.

Lemma 14. Among all permutations σ(θ1, . . . θL), the maximum number of distinct distributions
are K = L.

Proof. The total number of permutations is L!. Because θ2:L are IID given y, the permutation of
index 2 : L does not change the distribution. When p ̸= q, the total number of distributionally distinct
permutations is L!/(L− 1)! = L = M + 1.

It is clear that the proposed multi-class permutation Φ∗ attains this maximum number of distinct
distributions, which proves its optimality among all generators from all previous lemmas, thereby the
proof of our Theorem 2.
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